반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
최신이야기
검색
기술이야기
옵저버빌리티 확보를 위한 대표 정보 소스 3가지
기술이야기
옵저버빌리티 확보를 위한 대표 정보 소스 3가지
지난 블로그에서는 옵저버빌리티가 기존 모니터링과 어떻게 다른지 비교해봤습니다. 간략히 되짚어보면, 옵저버빌리티란 IT 환경이 다양해지고 기업의 서비스가 점점 복잡해짐에 따라 빠르게 문제를 찾아 해결하기 위해 서비스의 내부 상태와 동작을 이해하는 능력입니다. 옵저버빌리티는 IT 인프라별로 어떤 것이 문제라는 기준을 중심으로 모니터링하는 기존 방식에서 벗어나 모든 데이터를 실시간으로 수집하고 분석하여 IT시스템의 근본 원인에 접근하고, IT 운영 전문가의 노하우를 바탕으로 각 메트릭별 상관관계를 분석해 미래의 장애를 예측하는 인사이트를 강조합니다. 이번 블로그에서는 옵저버빌리티 확보에 가장 기본이자 중요한 정보 소스인 로깅, 메트릭, 트레이싱을 중심으로 알아보겠습니다. 이 세가지 소스는 시스템의 정확한 모니터링을 보장하고, 문제가 발생할 때 무엇이 잘못됐는지 근본원인을 추적하고, 전체 기능을 개선하는 데 도움이 되는 방법들입니다. 물론 이 세가지 방법만으로 옵저버빌리티가 확보됐다고 할 수는 없습니다. 옵저버빌리티 확보를 위해서는 로깅, 메트릭, 트레이싱을 통합해 이벤트의 상관관계를 분석하고, 데이터 시각화로 사용자에게 인사이트를 제공하는 능력이 추가돼야 합니다. l Logging : 시스템 내에서 발생하는 이벤트를 인지하고 향후 분석을 위해 저장하는 프로세스 l Metric : 응답 시간 또는 오류율과 같은 시스템 성능을 설명하는 숫자 값 l Tracing: 개발자가 병목 현상과 성능 문제를 식별할 수 있도록 서비스 호출 경로와 시간을 추적하는 프로세스 Logging 로깅은 로그를 남기는 것으로 로그를 수집하고, 저장하는 프로세스입니다. 로깅은 시스템 동작을 이해하고 문제를 진단하는 데 필요한 것으로, 향후 분석을 위해 저장하는 데이터인 만큼 올바른 세부 기준에 따라 의미가 있는 로그를 추출하는 것이 필요합니다. 그리고 예를 들어 웹 애플리케이션에 문제가 발생한 경우 로그를 남기는데, 메트릭을 통해서는 이 문제를 발견할 수 없으므로 그래서 로그는 중요합니다. 로그의 수집은 간단한 텍스트 파일에서 ELK(Elasticsearch, Logstash, Kibana)처럼 정교한 프레임워크에 이르기까지 다양한 형태를 취할 수 있습니다. 그래서 로그는 정형화하기 어렵고 그 양이 방대함으로 로그를 수집, 저장하고 분석할 때 다음과 같은 사항을 유의해야 합니다. l 과도한 로깅은 스토리지 비용을 증가시키고 로그의 검색 효율을 떨어뜨릴 수 있습니다. 따라서 어떤 데이터를 기록하고, 어떤 데이터를 기록하지 않을지 필터링하는 것이 중요합니다. l 장기간 보관할 필요가 없는 로그 효율적인 로깅 시스템을 위한 로그 보관 정책이 필요합니다. l 로그에는 인사이트를 제공할 수 있는 모든 컨텍스트 정보가 포함돼야 합니다. l 로깅은 다른 프로세스에 영향을 미치지 않도록 비동기 방식이어야 합니다. l 민감한 데이터가 로그에 남겨지지 않도록 마스킹을 해야 합니다. 그럼 로그 분석을 통해 알 수 있는 정보는 무엇이 있을까요? l 시스템의 상태: 로그에는 어떤 액션을 수행했는지, 어떤 데이터가 처리됐는지, 또 어떤 오류가 발생했는지 등의 정보가 담겨 있으므로 이러한 정보를 분석해 시스템의 상태를 파악할 수 있습니다. l 이슈 파악: 로그에는 어떤 오류가 발생했고, 어떤 요청이 실패했는지, 어떤 리소스가 부족한지 등의 정보가 담겨 있으므로 이러한 정보를 분석해 이슈를 파악하고, 빠르게 대응할 수 있습니다. l 보안성 강화: 로그에는 로그인 시도, 권한 부여, 보안 이벤트 발생 등의 정보가 담겨 있으므로 이러한 정보를 분석해 보안 이슈를 파악하고, 보안성을 강화할 수 있습니다. Metric 로그가 텍스트라면 메트릭은 단순한 수치입니다. 메트릭은 시스템의 상태를 측정하고, 모니터링하는데 사용되는 숫자 측정값입니다. 조금 더 자세히 설명하면, 메트릭은 측정 항목을 정의하고 해당 항목을 수치로 측정해, 그 결과를 보고하고 시스템이 정상적으로 동작하는지 확인하거나 장애를 빠르게 감지하기 위한 소스입니다. 메트릭의 측정 대상은 CPU 사용률, 메모리 사용률, 네트워크 트래픽 등 인프라의 성능이나 초당 수신하는 요청수, 응답에 걸린 시간, 사용자에게 오류를 다시 보낸 응답 수 등 애플리케이션의 상태와 관련돼 있습니다. 메트릭을 통한 수집 가능한 범위는 모니터링 도구 사용 여부에 따라 달라집니다. 일반적인 방식은 에이전트를 이용해 모니터링 대상으로부터 데이터를 수집하는 것으로, 수집할 메트릭을 정의하기가 유연하고 성능이나 안정성 등의 이슈에 대한 정보도 수집할 수 있는 장점이 있습니다. 에이전트를 사용하지 않고 운영 체제나 애플리케이션에서 제공하는 메트릭 수집 API를 사용하는 방식도 있는데, 수집하는 메트릭이 비교적 제한적입니다. 단순히 메트릭을 수집하는 것만으로 시스템을 모니터링하기에 충분하지 않습니다. 메트릭 데이터를 잘 활용하기 위해서는 분석 방법이 중요한데, 분석을 위해서는 몇가지 단계를 거쳐야 합니다. l 먼저, 데이터를 시각화하여 쉽게 이해할 수 있는 형태로 변환해야 합니다. 차트나 그래프, 대시보드 등을 통해 데이터의 패턴과 추세를 파악할 수 있으며, 시스템의 상태를 실시간으로 모니터링할 수 있습니다. l 다음으로, 데이터를 분석하여 시스템의 문제를 식별합니다. 예를 들어, 응답 시간이 지연되는 경우, 이를 발생시키는 주요 요인을 파악하여 시스템을 개선해야 합니다. 이를 위해 데이터를 세분화하여 요소를 파악하고, 문제를 식별하는 데 도움이 되는 경향성을 찾아야 합니다. l 마지막으로 이전 데이터와 비교하고 평가에 활용합니다. Metric 데이터를 분석할 때는 이전 데이터와 비교하여 시스템의 개선 정도를 파악하는 것이 중요하고, 이를 통해 시스템의 성능 개선 여부를 판단하고, 추가적인 개선 방안을 모색할 수 있습니다. Tracing 트레이싱은 분산 시스템에서의 서비스 호출 경로와 시간을 추적하는 기술입니다. 즉, 서비스 간의 호출 관계와 시간 정보를 추적해 각 서비스의 응답 시간을 파악하고, 이를 시각화해 병목 현상을 파악할 수 있습니다. 트레이싱은 크게 세 가지 구성 요소로 이뤄져 있습니다. l Trace: Trace는 서비스 간의 호출 경로와 시간 정보를 담고 있는 데이터 레코드입니다. Trace는 Span과 Trace ID, Parent Span ID 등의 정보를 가지며, 각 Span은 서비스 내부에서의 호출 관계와 시간 정보를 담고 있습니다. l Span: 분산 추적에서 가장 기본이 되는 논리 단위로 여러 개의 span 이 모여 trace를 완성한다는 개념입니다. 각각의 Span은 작업이름, 시작 시간과 종료 시간, key value 형태의 tags 와 Logs, span contexts를 가지고 있습니다. Span contexts는 분산추적을 하기위해 Trace 구간에서 종속된 Span을 구별할 수 있는 Span id와 Trace id를 말합니다. l Collector: Collector는 Trace 정보를 수집하고 저장하는 역할로, Trace 정보를 수집하기 위한 에이전트와 수집된 Trace 정보를 저장하고 분석하기 위한 Backend로 이뤄져 있습니다. (출처: [MSA] OpenTracing, 분산추적(Distributed Tracing) 과 Span context, KSR의 저장소) 이렇게 옵저버빌리티를 구현하기 위한 로깅, 매트릭, 트레이싱 등 세 가지의 중요한 정보 소스들을 다루기 위해서는 여러가지 기술들이 조합되어야 합니다. 다음 블로그에서는 그와 같은 정보 소스들을 다루어 옵저버빌리티를 구현하기 위해서 널리 사용되는 대표적인 오픈 소스들을 알아보고 Zenius-EMS에서는 옵저버빌리티 향상을 위해서 어떤 기능들을 제공하고 있는지 살펴보겠습니다.
2023.04.19
기술이야기
클라우드 송환(Cloud Repatriation): 클라우드에서 다시 온프레미스로
기술이야기
클라우드 송환(Cloud Repatriation): 클라우드에서 다시 온프레미스로
다시 온프레미스로 복귀하려는 움직임 2022년 발표된 IDC 조사 결과에 의하면, 미국 기업의 71%가 향후 2년내에 ‘클라우드 송환’ 계획이 있다고 합니다. 실제 일부 애플리케이션을 클라우드에서 빼내 자체 데이터센터로 다시 가지고 오는 기업이 늘고 있습니다. 우리나라의 경우 ‘클라우드 전환’이 업계의 화두가 되고 있지만, 클라우드 전환을 10년 넘게 경험하고 있는 미국의 경우에는 이제 ‘클라우드 송환’이 또 다른 화두가 되고 있습니다. 클라우드 송환(Cloud repatriation)은 기업이 클라우드 환경에서 운영하던 애플리케이션, 데이터, 서비스 등을 온프레미스 환경으로 되돌리는 것을 말합니다. 이는 퍼블릭 클라우드가 비즈니스 민첩성을 향상시킬 수 있지만, 특정한 상황에서 온프레미스보다 퍼블릭 클라우드의 지출 비용이 더 크다는 사실을 기업이 깨달으면서 해당 애플리케이션 등을 온프레미스로 복귀시키려는 IT 전략입니다. 클라우드 송환 현상은 IT 비용과 성능을 비롯한 여러 측면에서 클라우드가 항상 최선의 해결책은 아니라는 인식을 바탕으로 확대되는 추세이며 이제 기업이 비용, 성능, 보안의 극대화를 위해 기존 환경과 새로운 환경 사이에서 자연스러운 워크로드 분산을 시작했다는 의미이기도 합니다. 미처 몰랐던 클라우드 서비스의 문제점 클라우드를 채택한 기업이 클라우드 송환을 선택하는 이유는 다음과 같은 문제가 있기 때문입니다. 첫째, 클라우드 비용 문제입니다. 2022년 클라우드 현황(Flexera 2022 State of the Cloud Report) 보고서에 따르면, 클라우드 비용의 30% 정도가 낭비되고 있습니다. 클라우드 서비스가 표면적으로 내세우는 클라우드의 가장 큰 장점이 비용 절감임에도 불구하고, 클라우드 전환 OPEX(operational expenses)가 기존 CAPEX(capital expenses) 대비 더 낫다고 단정하기 어렵습니다. 초기에는 클라우드의 비용이 저렴하게 느껴지지만, 가상머신(VM)과 컨테이너 인스턴스에서 처리하는 작업이 늘어날수록 비용도 더해지기 때문입니다. 워크로드가 증가하는 스타트업은 클라우드를 통해 유연성을 확보하는 것이 비용면에서 유리하겠지만, 예측 가능한 수준의 워크플로우를 갖고 있는 기업이라면 얘기가 달라집니다. 특히, 클라우드에서는 인터넷 대역폭 및 스토리지 요금 등 추가적인 비용이 발생할 수 있습니다. 둘째, 보안 문제입니다. 기업은 클라우드 제공자가 제공하는 기본적인 보안 기능 외에도 보안 문제에 대한 책임을 직접 지게 됩니다. 또, 기업은 자체 보안 정책을 준수해야 하며, 이를 클라우드 환경에 적용하는 것이 쉽지 않습니다. 특히 복잡한 멀티클라우드 환경에서는 견고하게 클라우드 보안 아키텍처를 구축하기 어렵고 외주 처리에 따라 많은 비용이 듭니다. 셋째, 성능 문제입니다. 클라우드에서는 다른 기업과 리소스를 공유하기 때문에 성능 문제가 발생할 수 있습니다. 또, 클라우드 환경에서 애플리케이션 및 데이터를 조작하는 데 필요한 대역폭이 충분하지 않을 경우 성능 문제가 발생할 수 있습니다. 따라서 기업은 성능 문제로 인해 클라우드 송환을 선택할 수 있습니다. 넷째, 제어 문제입니다. 클라우드에서는 기본적으로 클라우드 제공자가 인프라 관리와 보안을 담당합니다. 이는 기업이 클라우드 환경에서는 많은 경우 애플리케이션, 데이터, 서비스 등을 직접 제어할 수 없다는 것을 의미합니다. 따라서, 기업이 직접 컨트롤하지 못해서 문제가 발생한다고 느낄 때에는 클라우드 송환을 선택할 수 있습니다. 클라우드 송환의 이점 클라우드 송환(Cloud repatriation)은 기업에게 여러 가지 이점을 제공합니다. 첫째, 기업은 애플리케이션, 데이터, 서비스 등을 직접 관리할 수 있습니다. 이는 기업이 보안 및 규정 준수와 같은 중요한 문제를 직접 다룰 수 있도록 해주며, 제어력을 높임으로써 IT 부서가 잠재적 문제에 대비해 인사이트와 더 나은 계획을 수립할 수 있게 해줍니다. 클라우드에서는 기본적으로 클라우드 제공 업체가 인프라 관리와 보안을 담당하기 때문에, 이를 직접 제어할 수 없습니다. 클라우드 송환에 적합한 케이스는 정적인 기능을 제공하며 사용량이 많은 애플리케이션입니다. 비용이 고정되고 예측 가능한 애플리케이션은 온프레미스 환경에서 관리하는 편이 더 효과적입니다. 둘째, 기업은 클라우드 비용을 절감할 수 있습니다. 한때 퍼블릭 클라우드가 모든 문제의 해답이라고 생각했다가 퍼블릭 클라우드의 비용 특성과 이점이 기업의 상황과는 맞지 않는다는 사실을 깨닫게 됩니다. 2~3년에 걸쳐 추가되는 비용을 감안하면 퍼블릭 클라우드를 계속 사용할 만한 매력은 시간이 갈수록 희석됩니다. 기업은 반복적으로 발생하는 클라우드 운영 비용을 줄이거나 없애는 방법으로 많은 비용을 절감할 수 있습니다. 예를 들어, 어떤 기업의 데이터가 여러 사이트에서 발생하고 그 양이 많다면 클라우드 환경에서 데이터를 보관하고 이동시키는 데 많은 비용이 발생할 수 있습니다. 또 다른 예로 영상을 불러오고 저장하는 작업이 빈번한 영상 제작 기업의 경우, 클라우드 서버에서 병목현상이 발생할 수 있고 내부 LAN처럼 10Gbps 속도로 데이터를 옮기려면 그 비용이 저렴하지 않을 수 있습니다. 비용 외에도 데이터 이동에 많은 시간이 소모되며 이로 인해 데이터를 필터링해 최소한의 데이터만 저장해야 하는 불편함이 있습니다. 한편, 메모리와 디스크 리소스 비용이 계속 하락하면서 기업의 온프레미스 투자가 유리해지고 있습니다. 더불어 클래스 메모리 및 SDN(소프트웨어 정의 네트워크)과 같은 비용에 도움을 주는 솔루션을 활용하면, 한때 퍼블릭 클라우드의 큰 매력이었던 유연성, 확장성, 중복성의 간극이 상당부분 사라집니다. 셋째, 기업은 데이터 보호와 백업을 더욱 쉽게 할 수 있습니다. 클라우드 업체도 데이터 프라이버시에 대해 엄격하지만 온프레미스 환경에서 데이터를 저장하고 백업 받고 복구하는 것보다 더 안전할 수 없습니다. 물론 민감한 정보를 로컬 환경에 저장하는 것 역시 문제 제기가 있겠지만 최소한 고객 데이터가 사라졌을 때 무엇을 어떻게 해야 하는지 알 수 있습니다. 규정 준수 측면에서도 각 국마다 개인정보보호 규정이 달라 우발적인 규정 위반 가능성이 있습니다. 이러한 우려를 줄이는 방법은 애플리케이션을 특정 위치의 온프레미스 환경에서 실행하는 것입니다. 넷째, 대역폭 문제에서 자유로운 장점이 있습니다. 클라우드 환경에서 빅데이터 시스템을 활용하는 기업은 빅데이터 시스템에서 생성되는 데이터가 높은 대역폭을 요구하면서 자사 데이터 센터보다 훨씬 더 많은 운용 비용을 지불합니다. 컴퓨팅은 온디맨드이므로 탄력적인 클라우드가 유리할 수 있지만 스토리지는 매일 매초 비용이 계속 증가하고 있는 사실을 알아야 합니다. 클라우드냐 온프레미스냐 고려할 점 클라우드 송환은 비용면에서 매력적이지만 매우 도전적인 과제입니다. 클라우드 서비스 공급자는 일반적으로 클라우드에서 빠져나오기 상당히 어렵게 계약하고, 해체됐거나 아예 존재하지 않던 온프레미스 환경을 준비하기 위해 기업의 재무와 조직 운영에 큰 영향을 미치기 때문입니다. 게다가 애플리케이션을 온프레미스 데이터센터로 마이그레이션하는 경우 기업은 클라우드의 확장성, 유연성, 가용성, 탄력성을 유지하기 힘들고 자체 데이터센터가 클라우드에 비해 더 안전하다는 보장을 하기도 어렵습니다. 따라서 이런 경우에는 애플리케이션에서 실행 중인 환경에 대한 종속성이 있는 부분과 단순히 데이터를 관리하는 부분을 분리하면 혼란을 최소화할 수 있습니다. 처음부터 클라우드 환경을 고려해 서비스를 설계했다면, 워크로드를 다시 데이터센터로 되돌리기 위해서는 어느 정도의 재설계가 필요하며 빅데이터에 의존하는 기업은 상당한 마이그레이션 작업을 각오해야 합니다. 이처럼 클라우드 송환은 매우 어려운 과제입니다. 따라서 처음부터 워크로드를 퍼블릭 클라우드로 이전하는데 매우 신중한 입장을 취하는 것이 가장 중요합니다. 그래서 최근에는 기업들이 클라우드 환경을 고수하는 것보다는 필요한 경우 클라우드와 온프레미스 환경을 융합하는 하이브리드 클라우드 전략을 선택하는 경향이 있습니다. 모든 서비스를 클라우드로 전환하는 것이 아니라, 단기간에 트래픽이나 사용자가 급속히 늘어날 가능성이 있거나, 클라우드 서비스를 활용해 서비스를 빠르게 런칭해야 하는 경우로 한정하는 것이 필요합니다. 우리나라에서도 많은 기업들이 이미 클라우드가 갖고 있는 단점들을 경험하고 온프레미스로 전환하고 있습니다만, ‘클라우드 전환’이라는 큰 물결 아래 ‘클라우드 송환(Cloud Repatriation)’에 대한 논의는 제한적입니다. 우리나라의 클라우드 전환율이 세계시장과 비교해 볼 때 현저히 낮지만, 오히려 클라우드 환경의 문제를 이미 경험한 나라들의 교훈을 미리 받아들인다면 학습비용을 줄일 수 있을 것으로 기대합니다. Zenius-EMS는 고객들이 레거시 시스템에서부터 클라우드 네이티브 시스템에 이르기까지 다양한 관점의 서버모니터링을 할 수 있도록 지원합니다. 대규모 인프라가 존재하는 데이터센터 및 클라우드 환경에서 대용량 데이터 처리에 대한 높은 성능을 확인할 수 있습니다. 고유의 특허 기술을 통해 수천대의 장비에서 발생되는 데이터들을 안정적으로 수집하고 빠르게 처리할 수 있습니다. [출처] John Edwards, "클라우드의 온프레미스 송환이 타당한 5가지 경우", IT WORLD, 2019.04.16 Steven J. Vaughan-Nichols, "모두가 '클라우드' 외칠 때 '로컬 서버' 선택해야 하는 이유, IT WORLD, 2022.07.27 Andy Patrizio, "기업 71%, 2년 이내 클라우드에서 온프레미스로 복귀할 것", IT WORLD, 2022.06.29 Clint Boulton, "'전진 위한 후퇴'··· 클라우드서 온프레미스로 송환하는 기업들", CIO Korea, 2020.03.30 Brian Adler, "Cloud Computing Trends: Flexera 2022 State of the Cloud Report", flexera, 2022.03.21
2023.04.07
기술이야기
서버 모니터링 트렌드 살펴보기
기술이야기
서버 모니터링 트렌드 살펴보기
기업이나 조직의 IT 인프라 모니터링은 서버 모니터링에서 출발합니다. 통상적으로 서버 모니터링부터 네트워크, 데이터베이스, 웹애플리케이션, 전산설비 등으로 모니터링의 범위를 확장해 나가는 것이 일반적입니다. 서버는 초창기 메인 프레임부터 유닉스 서버, 리눅스 서버를 거쳐 최근의 가상화 서버에 이르기까지 물리적 및 논리적으로 그 성격이 변화해 왔습니다. 그에 따라 서버 모니터링의 관점도 많이 변모해 왔습니다. 기껏해야 1~2대 규모로 운영하던 메인 프레임의 시대와 수천, 수만대의 서버팜을 관리해야 하는 시대의 모니터링 개념은 달라야 합니다. 또, 가상화 시대를 맞아 물리적 서버 개념보다는 논리적 서버 개념이 중요해지고, 서버 1~2대의 장애 상황보다는 서버팜이 이루고 있는 서비스의 영속성이 중요해졌습니다. 이처럼 서버라는 인프라가 기술 발전에 따라 변모하고 있고, 그에 대응해 모니터링 콘셉트나 방법도 변화하고 있습니다. 이번 블로그에서는 서버 관련 새로운 인프라 개념 및 기술들이 대두되면서 변화하는 서버 모니터링의 새로운 트렌드에 관해 논의해 보고자 합니다. 1. 클라우드 네이티브 모니터링 더 많은 기업이나 조직이 전통적인 레거시 시스템에서 클라우드로 이동함에 따라 클라우드 모니터링의 필요성이 급격히 증가했습니다. 클라우드 네이티브 모니터링 도구는 Amazon Web Services(AWS), Microsoft Azure, Google Cloud Platform(GCP)과 같은 클라우드 환경에서 애플리케이션과 클라우드 인프라를 모니터링하도록 설계됐습니다. 또, 클라우드 인프라의 성능, 가용성 및 보안에 대한 실시간 인사이트를 제공해, IT운영부서가 문제를 신속하게 발견하고 해결할 수 있도록 지원합니다. 일반적인 클라우드 모니터링은 메트릭과 로그를 사용해 클라우드 인프라 및 애플리케이션 성능을 하나의 통합된 화면에 제공합니다. 또한 통합 IT 환경 측면에서는 컨테이너 오케스트레이션 플랫폼 및 서버리스 컴퓨팅과 같은 다른 클라우드 환경과 통합해 모니터링할 수도 있습니다. 클라우드 기반 모니터링의 최신 추세는 하이브리드 모니터링입니다. 조직은 하이브리드 모니터링을 통해 클라우드와 온프레미스에서 각각 실행 중인 서버 및 애플리케이션 모두를 단일 플랫폼에서 모니터링할 수 있습니다. 2. 인공지능과 머신러닝 서버 모니터링의 또 다른 트렌드는 인공 지능(AI)과 머신 러닝(ML)을 사용해 모니터링 과정을 자동화하는 것입니다. AI 및 ML 알고리즘은 모니터링 과정에서 생성된 방대한 양의 데이터를 분석하고 패턴을 식별해 이상 징후를 감지할 수 있습니다. 이는 실시간으로 수행될 수 있으므로 운영관리자는 발생하는 모든 문제에 신속하게 대응할 수 있습니다. ML 알고리즘은 과거 데이터를 분석해 트래픽이 가장 많은 시기나 잠재적 장애와 같은 미래 추세를 예측할 수 있습니다. 이를 위해 서버의 성능과 관련된 대규모 데이터 세트에서 ML 알고리즘을 교육해야 합니다. 이 데이터는 서버 로그, 시스템 메트릭, 애플리케이션 로그 및 기타 관련 정보가 해당됩니다. 다음으로 알고리즘을 학습해 다양한 메트릭 간의 패턴과 상관 관계를 식별하고 이상 징후와 잠재적 문제를 감지합니다. 머신 러닝 모델이 훈련되면 서버를 실시간으로 모니터링하도록 배포할 수 있으며, 모델은 지속적으로 서버 메트릭을 분석하고 이를 학습한 패턴과 비교합니다. 편차나 이상을 감지하면 문제를 해결하기 위해 경고 또는 자동화된 작업을 트리거할 수 있습니다. 예를 들어, 트래픽이 갑자기 증가하는 경우 리소스를 자동으로 Scaling 하거나 다운 타임을 방지하기 위해 다른 조치를 취할 수 있습니다. 전반적으로 인공 지능과 머신 러닝을 사용해 서버 모니터링을 자동화하면, 문제해결에 시간을 절약하고 인적 오류의 위험을 줄일 수 있습니다. 또, 심각한 문제로 번지기 전에 잠재적 문제를 식별해 서버 인프라의 전반적인 안정성과 가용성을 향상할 수 있습니다. 3. 컨테이너 모니터링 컨테이너가 애플리케이션 배포에 점점 더 많이 사용되면서, 컨테이너 모니터링은 서버 모니터링의 중요한 측면이 됐습니다. 컨테이너란 애플리케이션을 모든 인프라에서 실행하는데 필요한 모든 파일 및 라이브러리와 함께 번들로 제공하는 소프트웨어 배포 도구입니다. 컨테이너를 사용하면 모든 유형의 디바이스 및 운영 체제에서 실행되는 단일 소프트웨어 패키지를 만들 수 있습니다. 뿐만 아니라, 단일 시스템에서 한 컨테이너는 다른 컨테이너의 작업을 방해하지 않으므로 확장성이 뛰어나고, 결함이 있는 서비스가 다른 서비스에 영향을 주지 않아 애플리케이션의 복원력과 가용성이 향상되는 장점이 있습니다. 컨테이너 모니터링은 CPU 및 메모리 사용량과 같은 컨테이너 리소스 사용률에 대한 실시간 메트릭을 제공할 수 있습니다. 또, 애플리케이션이 의도한 대로 실행되고 있는지 확인하기 위해 Kubernetes(쿠버네티스)와 같은 컨테이너 오케스트레이션 플랫폼을 모니터링하고, 컨테이너 및 기본 인프라에 대한 실시간 가시성을 제공합니다. 4. 서버리스 모니터링 서버리스 컴퓨팅은 사용량에 따라 백엔드 서비스를 제공하는 방법으로, 개발자가 서버를 관리할 필요없이 애플리케이션을 빌드하고 실행하는 것을 가능하게 합니다. 서버리스 컴퓨팅은 벤더 종속성(Vendor lock-in), 콜드 스타드와 DB백업이나 영상 인코딩 등 단시간에 많은 컴퓨팅 용량이 필요한 경우, 효율적이지 않음에도 불구하고 최근 몇 년 동안 주목을 받아오며 서버리스 모니터링이 서버 모니터링의 새로운 트렌드가 됐습니다. 서버리스 모니터링은 CPU, 메모리, 디스크 사용량 등 리소스 사용률, 애플리케이션 성능, 호출 시간 및 오류율과 같은 기능 성능에 대한 실시간 인사이트를 제공합니다. 서버리스 모니터링은 데이터베이스 쿼리 성능과 같은 서버리스 함수의 종속성에 대한 인사이트도 제공합니다. 5. 마이크로서비스 모니터링 마이크로서비스는 하나의 큰 애플리케이션을 여러 개의 작은 기능으로 쪼개어 변경과 조합이 가능하도록 만든 아키텍처로, 각 서비스를 다른 서비스와 독립적으로 개발, 배포 및 확장할 수 있는 장점이 있습니다. 하지만 마이크로서비스는 일반적으로 분산된 환경에 배포되므로 성능을 추적하고 문제를 찾아내기가 어렵고, 독립적으로 설계됐으므로 호환성에 어떤 문제가 있는지 감지할 필요가 있어 마이크로서비스 모니터링이 필요합니다. 마이크로서비스 모니터링은 개별 마이크로서비스 및 전체 애플리케이션의 성능과 상태를 추적하는 프로세스로 로그, 메트릭 및 트레이스와 같은 다양한 소스에서 데이터를 수집하고 분석해 문제를 식별하고 성능을 최적화하는 작업입니다. 마이크로서비스 모니터링은 각 마이크로서비스 별 가용성, 응답 시간, 가동 시간, 지연 시간, 오류율을 포함합니다. CPU, 메모리, 디스크 사용량과 같은 리소스 사용률을 추적해 잠재적인 성능 병목 현상이나 리소스 제약을 식별할 수 있고, 마이크로서비스 간의 데이터 흐름을 추적하고 서비스 간의 종속성 추적을 모니터링합니다. 또, 마이크로서비스 모니터링은 애플리케이션 전체의 전반적인 상태와 성능뿐만 아니라 타사 서비스 및 API의 성능과 상태도 모니터링할 수 있습니다. ----------------------------------- 브레인즈컴퍼니는 꾸준히 연구개발에 매진해 상기와 같은 새로운 트렌드를 반영한 Zenius-EMS를 개발, 출시했습니다. Zenius-EMS는 고객들이 레거시 시스템에서부터 클라우드 네이티브 시스템에 이르기까지 다양한 관점의 서버모니터링을 할 수 있도록 지원합니다. *이미지 출처: Unsplash, flaction
2023.03.29
기술이야기
Monitoring vs Observability, 모니터링과 옵저버빌리티 이해하기
기술이야기
Monitoring vs Observability, 모니터링과 옵저버빌리티 이해하기
옵저버빌리티는 "무슨 일이 일어났는가?", "왜 그런 일이 일어났는가?"와 같은 질문에 답하는 것을 목표로 합니다. 옵저버빌리티는 IT시스템 전체적인 관점에서 문제를 신속하게 식별하고 근본 원인을 분석할 수 있습니다. 최근 IT 인프라의 종류가 다양해지고, 수가 기하급수적으로 많아지고, 복잡도가 급격히 증가함에 따라 IT 인프라의 가용성을 보장하기 위해서 전통적으로 행해지던 모니터링의 범주를 넘어서는 옵저버빌리티라는 개념이 등장했습니다. 모니터링과 옵저버빌리티라는 두 용어들은 때로는 비슷한 개념으로 서로 바꿔서 사용되기도 하지만, 시스템 관리에 대한 다른 접근 방식을 나타냅니다. 이번 블로그에서는 모니터링과 옵저빌리티의 차이점을 알아보겠습니다. Monitoring이란? 모니터링은 IT 시스템에서 CPU 사용량, 메모리 사용량, 네트워크 트래픽과 같은 데이터를 수집하고 분석해 성능과 동작을 파악하는 것입니다. 모니터링의 목표는 시스템에 문제가 있는 것으로 추정되는 이상한 동작이나 조건을 감지하고 경고하는 것입니다. 모니터링은 종종 문제를 나타낼 수 있는 특정 메트릭이나 이벤트에 대한 알람 설정을 포함합니다. 이 접근 방식은 일반적으로 예측 가능한 개별 시스템에 사용합니다. 전통적인 모니터링 방법은 일정한 간격으로 수집되는 사전 정의된 메트릭이나 로그에 의존합니다. 예를 들어, 서버의 CPU 사용량을 1분마다 확인하고 사용량이 특정 임계값을 초과하면 알람을 보낼 수 있습니다. 이러한 방식은 특정 유형의 문제를 감지하는 데 효과적이지만, IT 시스템 동작을 전체적으로 파악하거나 근본 원인 분석에 대한 심층적인 인사이트는 제한적일 수 있습니다. Observability란? 옵저버빌리티는 IT 시스템 관리에 대한 새로운 접근 방식으로, 시스템의 내부 동작을 이해하는 것에 중점을 둡니다. 옵저버빌리티의 목표는 시스템의 동작을 깊이 이해하고 발생 가능한 모든 문제의 근본 원인을 파악하는 것입니다. 옵저버빌리티는 메트릭, 추적, 로그 등을 실시간으로 수집하고 분석하는 것을 포함합니다. 참고로 메트릭은 CPU 사용량, 메모리 사용량, 네트워크 트래픽과 같은 시스템 성능과 관련된 정량적 정보를, 추적은 요청의 호출 순서 및 응답 시간과 같은 시스템 동작에 대한 정보를, 로그는 사용자 작업 및 오류를 포함해 시스템 활동을 제공합니다. 옵저버빌리티가 필요한 이유 옵저버빌리티는 복잡하고 동적인 시스템에서는 문제를 빠르게 찾고 해결하기 위해 시스템의 동작과 성능을 측정하고 분석할 필요가 있습니다. 옵저버빌리티를 통해 다음과 같은 이점을 얻을 수 있습니다. 옵저버빌리티가 필요한 이유 1. 문제 해결 속도 향상: 옵저버빌리티를 사용하면 복잡한 시스템에서 발생하는 문제를 더욱 빠르게 파악할 수 있습니다. 이를 통해 시스템 장애나 성능 저하와 같은 문제를 빠르게 해결할 수 있습니다. 2. 전체 시스템 이해도 증가: 옵저버빌리티를 사용하면 전체 시스템의 내부 동작을 쉽게 이해할 수 있습니다. 이는 문제를 예방하거나 빠르게 대처할 수 있도록 도와줍니다. 3. 대규모 시스템 관리 가능: 대규모 분산 시스템에서는 옵저버빌리티가 필수적입니다. 이를 통해 수많은 서버, 네트워크, 애플리케이션 등에서 발생하는 다양한 데이터를 수집하고 분석할 수 있습니다. 4. 문제 예방 및 최적화: 옵저버빌리티를 사용하면 시스템의 성능을 지속적으로 모니터링하고 문제를 예방할 수 있습니다. 또한 시스템의 최적화를 위해 데이터를 분석하고 개선할 수 있습니다. 따라서, 옵저버빌리티는 복잡한, 여러 개의 세분화된 시스템으로 구성된 전체 시스템에서 필수적인 도구로, 시스템의 성능 개선과 장애 대응 등 다양한 측면에서 가치를 제공합니다. Monitoring vs Observability 모니터링과 달리, 옵저버빌리티는 사전에 정의된 메트릭과 알람에 의존하는 대신, 시스템 동작의 더욱 전체적인 관점을 제공합니다. 옵저버빌리티는 여러 소스에서 수집한 데이터를 같이 분석함으로써 쉽게 찾을 수 없는 어떤 패턴과 상관관계를 발견하는 데 도움을 줄 수 있습니다. 이 접근 방식은 예측할 수 없는 동작을 가진 복잡한 시스템에서 특히 유용합니다. 모니터링과 옵저버빌리티의 또 다른 중요한 차이점은 사람의 개입 수준입니다. 모니터링은 특정 이벤트 또는 조건을 감지하고 해당 이벤트 또는 조건이 발생할 때 경고를 트리거하도록 설계되므로 모니터링을 설정하고 구성하는데 사람의 개입이 필요할 수 있지만 일단 도구가 셋업되면 사람의 개입 없이 자동으로 작동하는 편입니다. 반면에, 옵저버빌리티는 데이터를 해석하고 결정을 내리고 조치를 취하는데 IT 운영자의 전문 지식을 사용해 프로세스에 관여합니다. 이러한 접근 방식은 시간이 더 많이 소요될 수 있지만, 문제의 근본 원인에 대한 더 많은 인사이트를 제공할 수도 있습니다. 올바른 어프로치 선택하기 모니터링과 옵저버빌리티는 각각 장단점이 있으며, 시스템의 특정 요구사항에 따라 어떤 접근 방식을 선택할지 달라져야 합니다. 비교적 상황 파악이 어렵지 않은 간단한 시스템의 경우, 전통적인 모니터링 도구로 충분할 수 있습니다. 그러나 복잡하고 시스템이 분산된 경우, 시스템 동작을 완전히 이해하기 위해 옵저버빌리티가 필요할 수 있습니다. 결국, 효과적인 시스템 관리의 핵심은 문제를 빠르게 감지하고 해결하기 위한 적절한 도구와 프로세스를 갖추는 것입니다. 모니터링 또는 옵저버빌리티를 선택하든, 시스템과 조직의 요구에 부합하는지 정기적으로 검토하고 개선하는 것이 중요합니다. 적절한 도구와 프로세스에 투자함으로써, 시스템의 신뢰성과 성능을 개선하고 비용이 많이 드는 다운타임과 서비스 중단을 피할 수 있습니다. Zenius EMS 브레인즈컴퍼니는 20년 이상 축적된 노하우를 바탕으로 레거시 환경은 물론 최근 더욱 복잡해지고 있는 클라우드 네이티브 시스템까지 모니터링과 옵저버빌리티 모두를 제공함으로써 고객이 원하는 방식으로 사용이 가능합니다. Zenius EMS는 SMS, NMS, APM 등 각 인프라별 모니터링을 통합해 시스템을 더욱 안정성 있게 관리하고 자동화된 장애대응 환경을 제공하며 객관적인 데이터 기반으로 리포팅이 가능한 지능형 IT 성능 모니터링입니다. 또한 쿠버네티스, 오픈 스택을 지원하는 클라우드 환경을 모니터링합니다. 국내 공공분야 관제 SW 1위, 제니우스의 상관관계 분석, 인공지능을 활용한 성능예측 등 옵저버빌리티 기술을 통해 다양한 시스템 레이어에서 성능, 장애, 구성에 대한 인사이트를 얻으시기 바랍니다.
2023.03.28
회사이야기
'대한민국 SW기업경쟁력 대상' 우수상 수상
회사이야기
'대한민국 SW기업경쟁력 대상' 우수상 수상
브레인즈컴퍼니가 22일 서울 역삼동 삼정호텔에서 열린 '제22회 대한민국 SW기업 경쟁력 대상 시상식'에서 우수상을 수상했습니다. 대한민국 SW기업 경쟁력 대상은 인적자원·기술력·시장가치국제화 등 다각적으로 기업 역량을 평가해, 국내 SW산업 수준을 향상시킨 우수 SW기업에 수여하는 상입니다. 브레인즈컴퍼니는 IT솔루션 부분에서 자사 제품인 Zenius(제니우스)의 기술력을 인정받아 우수상을 수상했습니다. Zenius는 다양한 이기종 IT 인프라에 대한 통합관리 시스템 Zenius EMS, 웹 애플리케이션 실시간 성능 관리 시스템 Zenius APM, 분산된 대용량 로그에 대한 통합관리 시스템 Zenius LogManager 등으로 구성된 소프트웨어입니다. 이번 행사는 전자신문·한국소프트웨어산업협회·연세대 기업정보화연구센터·소프트웨어공제조합이 공동주최하고 과학기술정보통신부가 후원하며, 연세대 기업정보화연구센터가 개발한 SW기업 전문평가시스템을 적용해 수상자를 선발했습니다.
2023.02.23
회사이야기
제니우스, 주요 CSP 5곳 마켓플레이스에 등록...클라우드 시장 공략 가속화
회사이야기
제니우스, 주요 CSP 5곳 마켓플레이스에 등록...클라우드 시장 공략 가속화
클라우드 환경에서 제니우스를 간편하게 이용할 수 있게 접근성 높여 브레인즈컴퍼니(099390)는 IT 인프라 통합관리 소프트웨어 ‘Zenius EMS’와 애플리케이션 관리 소프트웨어 ’Zenius APM’이 국내 주요 클라우드 서비스 제공기업(CSP) 5곳의 마켓플레이스에 모두 등록됐다고 26일 밝혔다. ‘Zenius(제니우스) EMS’는 클라우드 기반으로 서버, 네트워크, 데이터베이스 및 웹서비스(URL) 등을 단일화된 플랫폼에서 통합관리하는 소프트웨어다. ‘Zenius APM’은 WAS(Web Application Server)에서 일어나는 트랜잭션의 추적 및 장애 원인 분석 기능을 제공하는 제품이다. 도커(Docker)와 같은 컨테이너 기반의 애플리케이션 관리 및 오토 스케일링(Auto-Scaling) 자동화 기능 등 클라우드 맞춤형 서비스를 제공한다. 고객은 Zenius를 통해 백엔드부터 클라이언트 영역에 이르는 서버, 데이터베이스, 애플리케이션, 네트워크 및 웹서비스 응답시간을 통합적으로 추적 관찰할 수 있다. 또, 대시보드 등과 같은 모니터링 중앙화 도구를 통해 여러 IT 자원 간의 연관관계 및 영향 등을 분석할 수 있는 옵저버빌리티(Observability) 환경을 쉽게 구현할 수 있다. ‘Zenius EMS’와 ‘Zenius APM’은 현재 KT클라우드, 네이버클라우드, NHN클라우드, 카카오i클라우드, 가비아클라우드 총 5곳에 등록을 완료한 상태다. 고객은 각 CSP 웹사이트에서 원하는 서비스를 구입해 즉시 사용할 수 있으며, 월 구독 방식으로도 이용이 가능하다. 강선근 브레인즈컴퍼니 대표는 “이번 주요 클라우드 마켓플레이스 등록을 통해, 클라우드 기반으로 웹어플리케이션을 운영하거나 온프레미스에서 클라우드로 전환하려는 고객에게 쉽고 빠르게 접근해 더 많은 고객을 유치할 것으로 기대한다”고 말했다.
2022.12.26
회사이야기
모비젠과 빅데이터∙AI 플랫폼 사업 MOU
회사이야기
모비젠과 빅데이터∙AI 플랫폼 사업 MOU
양사 보유한 빅데이터 및 AI 플랫폼 분야 전문성으로 시너지 창출 브레인즈컴퍼니(099390)는 빅데이터 플랫폼 전문 기업 모비젠과 ‘빅데이터 및 인공지능(AI) 플랫폼 사업’ 공동 추진을 위한 양해각서(MOU)를 체결했다고 8일 밝혔다. 이번 협약으로 양사는 빅데이터 플랫폼 분석 기술 및 AI 분야의 전문성을 바탕으로 시너지를 창출할 계획이다. 특히 공공분야의 빅데이터 및 AI 사업에 공동 대응할 방침이다. 최근 양사는 부동산 분야 빅데이터 플랫폼 및 혁신서비스 구축 관련 프로젝트를 컨소시엄 형태로 수주해 구축 중이다. 해당 프로젝트에서 모비젠은 빅데이터 연계 및 서비스 구축을 담당하고, 브레인즈컴퍼니는 AI 기술을 활용해 부동산에 대한 고객 맞춤형 혁신 서비스를 제공할 예정이다. 브레인즈컴퍼니는 AI와 빅데이터 기술을 접목한 지능형 IT 인프라 통합관리 솔루션 전문 기업으로, 국내 주요 공공 및 금융기관, 통신사, 대기업, 포털 등에 솔루션을 공급하고 있다. 최근 클라우드∙AI 플랫폼 전문기업 에이프리카를 인수하고 AI 플랫폼 분야로 사업을 확장 중이다. 모비젠은 통신 데이터를 비롯해 교통, 물류, 이커머스 등에서 발생하는 다양한 형태의 빅데이터를 수집∙저장∙분석하고 모니터링하는 기업이다. 최근 출시한 서비스형 소프트웨어(SaaS)기반의 빅데이터 분석 플랫폼은 다양한 저장소의 데이터를 시각적으로 분석해, 웹 기반 분석 애플리케이션 제작이 가능한 원스톱 환경을 제공한다. 심재걸 브레인즈컴퍼니 전략사업본부장은 “이번 MOU를 통해 양사는 빅데이터 및 AI 분야 사업에 대한 협력 강화를 바탕으로, 클라우드 기반 빅데이터 및 AI 플랫폼 전문 기업으로 발돋움할 것”이라고 말했다.
2022.12.08
회사이야기
브레인즈컴퍼니, 에이프리카 인수로 클라우드∙AI 사업 강화
회사이야기
브레인즈컴퍼니, 에이프리카 인수로 클라우드∙AI 사업 강화
클라우드 네이티브 인프라 환경에서 사업 시너지 극대화할 것 브레인즈컴퍼니(099390)는 클라우드 및 인공지능 사업 강화를 위해 에이프리카의 경영권 인수 계약을 체결했다고 2일 밝혔다. 이번 인수는 브레인즈컴퍼니의 기존 사업에 에이프리카의 인공지능과 클라우드 기술을 더해 클라우드 네이티브 인프라 환경에서 사업적 시너지를 극대화한다는 전략이다. 2000년 설립한 브레인즈컴퍼니는 21년 기준 공공분야 관제 소프트웨어 점유율(24.06%) 1위 기업이다. ▲다양한 IT 인프라를 단일 플랫폼에서 통합관리하는 지능형 모니터링 소프트웨어(EMS, Enterprise Management Software) ▲웹 애플리케이션의 지연시간을 실시간으로 관제하는 어플리케이션 성능 모니터링 소프트웨어(APM, Application Performance Management) ▲대용량 로그관리 소프트웨어 및 인공지능 소프트웨어 ▲IT서비스 통합관리(ITSM, IT Service Management) 소프트웨어 등을 주된 사업으로 하고 있다. 2011년에 설립된 에이프리카는 ▲인공지능 개발 클라우드 플랫폼(MLOps, Machine Learning Operations) ▲클라우드 매니지먼트 플랫폼(CMP, Cloud Management Platform) ▲클라우드 구축 컨설팅 및 서비스 사업을 주요 사업으로 한다. 강선근 브레인즈컴퍼니 대표이사는 “시장 초기부터 클라우드 네이티브 환경의 구축, 운영관리, 인공지능 등의 분야에서 착실히 다져온 에이프리카의 기술력을 높이 평가해 인수하게 됐다”며, “양사는 상호 협력으로 클라우드 및 인공지능 인프라에 관한 고객 수요를 충족시키며 사업 확장을 함께 도모해, 향후 에이프리카를 클라우드 네이티브 인프라 관리와 인공지능 개발 관리를 위한 솔루션 및 서비스 분야의 국내 대표주자로 육성할 계획”이라고 밝혔다.
2022.12.02
사람이야기
일잘러가 바라보는 브레인즈컴퍼니
사람이야기
일잘러가 바라보는 브레인즈컴퍼니
다음 인터뷰를 고민하던 차에 브레인즈컴퍼니에서는 누가 일을 잘할까?라는 궁금증이 생겼습니다. 여러 브레인저들에게 물어본 결과, 개발3그룹의 진광님을 많이 추천해줬는데요. 개발3그룹은 AI 기술을 적용한 차세대 제니우스와 애플리케이션 성능관리 솔루션인 제니우스 APM을 개발하고 있는 핵심 부서인데요. 이 부서는 올해 신입 개발자를 7명이나 채용해 제품 개발에 힘을 쏟고 있습니다. 브레인즈의 일잘러, 진광님이 말하는 브레인즈의 제품, 동료, 일하는 방식에 대해 들어보겠습니다. ----------------------------------------------------------------- Q1. 안녕하세요, 진광님. 자기 소개 부탁드립니다. 안녕하세요, 개발3그룹에서 근무 중인 김진광입니다. 저는 SI 개발자로 시작해 외산 미들웨어(WAS) 솔루션 회사에서 엔지니어로 제품 관련 서비스 및 컨설팅 업무를 담당했었어요. 이때 미들웨어와 서비스에 대한 모니터링 필요성을 생각하게 됐고, 기회가 돼 직전 회사에 합류 후 APM 제품들을 개발했습니다. 브레인즈컴퍼니는 당시 제가 근무 중이던 회사에서 APM제품을 OEM 하면서 연이 닿았어요. 다니던 회사의 방향성이 바뀌면서 이직을 결심했고, 브레인즈컴퍼니의 영업 및 TC팀 분들 추천으로 2017년에 입사하게 됐습니다. 당시 브레인즈컴퍼니는 자사 솔루션을 갖고 있었고, 제품 내재화 단계일 때라 매력을 느꼈습니다. Q2. 맡고 있는 업무에 대해 구체적으로 설명해주세요. 브레인즈컴퍼니의 Zenius APM 전반을 맡고 있습니다. APM은 특수성이 있는 제품이에요. 서비스 문제점을 찾는 솔루션이다 보니, 설치 및 기술 지원 뿐만 아니라 이슈 분석 등 전반적인 사이트 지원이 필요합니다. 그래서 처음에는 제품개발 외 설치, 데모, 성능 컨설팅 등 APM에 관련된 전반적인 부분을 지원했습니다. 이제는 TC팀에서 설치나 사이트 구축, 교육 및 고객 응대 등 전반적인 부분을 잘 지원해 주시고 있어 감사하게 생각하고 있습니다. Q3. 그렇다면, APM의 특장점은 무엇인가요? Zenius APM은 고객의 서비스에서 발생된 이벤트를 처리하고 분석하는 방식이 점점 좋아지고 있습니다. APM은 어플리케이션 서비스가 잘 되고 있는지, 사용자들이 어느 정도 쓰고 있고 응답 속도가 어느 정도 되는지를 항상 모니터링 하는게 기본적인 기능이고요. 문제 발생 시, 그 문제를 인지하고 조치하는 것이 2단계, 다음으로 장애 복구가 완료된 다음에 어떤 것이 문제의 원인이었는지를 찾아내는 것을 3단계로 볼 수 있어요. 문제의 원인은 고객이 쉽게 파악할 수 있도록 데이터들을 차트와 같이 시각화해서 제공하고 있고요. 브레인즈 대표 제품인 Zenius EMS는 전반적인 인프라(H/W)를 모니터링하는 것이고 APM은 그 위에서 서비스되는 어플리케이션(S/W)을 모니터링하는 것으로 보면 돼요. 서비스와 인프라를 같이 모니터링 해야 어떤 문제가 발생했을 때 어플리케이션 자체 문제인 건지, 기반한 서버나 네트워크와 같은 인프라 요소들이 영향을 미치는 것인지를 판단할 수 있어요. 그래서 APM과 기존의 자사 제품들이 더욱 잘 통합될 수 있도록 지속적으로 제품을 발전시켜 나가고 있습니다. Q4. 브레인즈에서 근무한 지 6년차에 접어드셨네요. 그 동안 근속할 수 있었던 브레인즈의 매력은 무엇인가요? 브레인즈컴퍼니는 제가 생각하고 있는 솔루션 회사의 조건에 가장 가까운 회사라고 생각합니다. 자사 솔루션을 보유하고 있고, 해당 분야를 리딩하고 있는 회사에서 일하고 싶었어요. 그런 회사가 국내에서는 많지 않다고 생각합니다. 또, 브레인즈는 동료들이 좋아요. 가장 개발자적 마인드를 많이 갖고 있는 분들이라고 생각합니다. 관제 분야에서 오랜 시간 깊은 전문성을 갖추고 계신 분들이고, 개발자로서도 자부심을 갖고 계신다고 생각해요. 마지막으로, 가족 친화적인 회사라는 점이요. 다양한 행사와 해외 연수, 복지 혜택 등도 부족함이 없는 회사입니다. 전 직원 연봉이 1000만원 상승하면서 처우도 좋아졌고요. Q5. 가장 힘들었던/보람을 느꼈던 순간은? 처음 APM을 설치했을 때. 첫 납품처가 의약품안전관리위원회였는데요. 아무래도 처음이라 우리 제품이 고객사의 서비스에 문제가 되는 것이 아닐까 하는 걱정이 많았어요. 문제가 발생했을 때, TC팀과 함께 어렵게 원인을 찾아내고 집중해서 해결했던 순간이 가장 기억에 남고 보람 있었습니다. Q6. 일을 잘해서 좋은 인사고과를 받으신다고 들었어요. 본인만의 일 잘하는 꿀팁은? 재밌게 일하는 편인 것 같아요. 가급적 일하는 것 자체를 즐기고, 성능 관리와 이슈를 발견하고 처리하는 일들에 관심이 많고 적성에도 잘 맞는 것 같습니다. 완벽주의자 성향이 있기도 하고요. 일이 잘못됐다고 판단되면 다시 처음부터 해야 하다 보니, 최대한 정보를 수집한 후 가장 좋은 방법에 대해 여러 번 생각하고 실행하는 스타일입니다. APM이 원하는 기능으로 나오도록 개발하는 것뿐만 아니라, APM을 사용하는 사용자의 편의성이나 설치 및 지원 팀, 그리고 제품을 소개하고 어필할 때 어떤 모습으로 보여질지에 대한 것 등 여러 가지 측면에서 생각하고 고민 후 실행에 옮기려고 노력하고 있습니다. 전체 작업 시간 중 50% 이상은 다양한 관점에서 고민하는 시간을 갖고 작업을 진행하고 있는 것 같아요. 또, 앞에서 말씀 드렸던 프로젝트 개발 경험과 미들웨어에 엔지니어로서의 경험이나 제품 개발 경력 등의 다양한 경력이 타 부서와의 협업이나 제품 개발, 사이트 지원 등에서 일할 때 많은 도움이 되는 것 같아요. 조금은 다양한 시각을 갖게 해주는 부분이 여러 면에서 도움되더라고요. 그래서 TC팀, 영업팀 등 타 부서 분들이 긍정적으로 봐주시는 것 같아요. (웃음) Q7. 진광님이 생각하는 브레인즈에서 일을 잘하는 사람은? TC팀에 APM 지원파트가 있는데요. 제 입장에서 가장 고마운 분들이기도 하고 대부분 일을 잘 하신다고 생각하고 있어요. 부서장인 영수님, APM에 열정적이신 종관님, APM 지원 파트리더 기현님, 정대님뿐만 아니라 일잘러 기열님까지 모두 잘 하시는 분들이라 생각해요. Q8. 이제 부서 이야기를 해볼게요. 개발3그룹 소개해주세요. 저희 부서는 차세대 제니우스와 APM 제품을 맡고 있어요. 부서장님은 구성원들과 대화하고 코딩하는 것을 좋아하세요. 관리자이지만, 여전히 계속 현업에서 개발하고자 하시는 열정 넘치는 분이십니다. (웃음) 교육도 직접 하시면서 신입 분들 일일이 다 봐주시고 있어요. 비슷한 시기에 들어온 신입 개발자들은 동기애가 느껴지고, 밝은 성격들이라 화기애애한 분위기가 형성돼 있습니다. Q9. 부서만의 일하는 방식은 무엇인가요? 그룹장님이 추구하는 방식이 “각자 알아서 잘 하자”예요. 서로 상의해서 어떤 일을 할 지 분배하고요. 그 이후는 개인의 계획과 독립적 부분을 인정해주는 등 최대한 자율성을 부여하고 있어요. 결과는 서로 공유하면서 평가해주고 있습니다. 신입이더라도 스스로 일을 처리하고 결과물을 갖고 그룹장님과 이야기하며 피드백을 받고 보완해나가는 형식으로 일하고 있어요. Q10. 새로운 동료가 합류한다면, 어떤 스타일의 동료와 함께 일하고 싶은가요? 개발직을 천직이라고 생각하는 사람. 이쪽 일을 한 번 해볼까하는 단순 호기심이 아니라, 전공자를 떠나서 앞으로 쭉 개발 일을 하고 싶은 사람이면 좋겠어요. 또, 일을 많이 하거나 빨리하기 보다는 개발자에 대한 자부심을 바탕으로 어떤 일이 발생하면 최선의 방법을 생각하는 스타일이면 좋겠습니다. 시간이 좀 걸리더라도 충분히 고민하고 행동으로 옮기는 사람을 선호해요. Q11. 5년 후 본인의 모습과 앞으로의 목표는? APM도 유기적으로 발전하는 방향으로 개발해 나가겠지만, APM 말고 새로운 제품도 만들어 보고 싶어요. 데이터 시각화에도 관심이 많은데, 기회가 된다면 새로운 분야와 관련된 솔루션에 도전해보고 싶습니다. 향후에도 관리자보다는 개발자로서 계속 일을 해 나갈 수 있었으면 좋겠습니다.
2022.11.07
회사이야기
다시 태어난 브레인즈컴퍼니 홈페이지
회사이야기
다시 태어난 브레인즈컴퍼니 홈페이지
브레인즈컴퍼니의 홈페이지가 새롭게 단장했습니다. 기본적으로 고객을 비롯한 방문자들이 풍부한 정보를 직관적으로 파악할 수 있게 설계했습니다. 특히 구매, 채용, 블로그 이 세 가지를 가장 큰 변화로 꼽을 수 있는데요. 브레인즈컴퍼니의 대표 제품인 Zenius(제니우스)를 이제 온라인에서 SaaS(구독형) 방식으로 구매 가능해졌고, 미래의 브레인저를 위해 채용 및 블로그 페이지도 생겼습니다. 그럼, 어떻게 달라졌을지 함께 구경해 볼까요? "브레인즈, 제니우스, 브레인저" 1. 브레인즈컴퍼니는 어떤 회사일까요? 회사(브레인즈), 제품(제니우스), 구성원(브레인저). 홈페이지 대문은 브레인즈컴퍼니를 대표하는 이미지 3장을 슬라이드 형태로 구성했습니다. 브레인즈컴퍼니는 다양한 인재들이 모여 국내에서 가장 경쟁력 있는 IT 인프라 통합관리 소프트웨어를 만드는 회사라는 점을 드러냈습니다. 더불어, 고객과 예비 브레인저를 위해 제품과 채용 페이지로 바로 이동할 수 있는 버튼을 고정된 형태로 넣었습니다. 상단 메뉴는 드롭다운 형태로 구성해 방문자가 원하는 내용을 한눈에 쉽게 찾아볼 수 있도록 했습니다. 오른쪽에는 문의하기 버튼이 항상 따라다니는데요. 제품 구입, 기술 지원, IR, PR, 채용 등 어떤 문의든지 환영합니다. 해당 부서에서 발빠르게 확인해 회신할 예정이니, 편하게 이용해주세요. 2. 대한민국 1등 지능형 IT 인프라 통합관리 소프트웨어, Zenius! Zenius(제니우스)는 업계에서 가장 경쟁력 있는 제품입니다. 브레인즈=제니우스라는 수식이 성립할 정도로, 제니우스는 20년 넘는 시간 동안 브레인즈컴퍼니를 건재하게 이끌어왔습니다. Zenius는 클라우드, 인공지능(AI), 빅데이터 등 최신 기술들을 적용해 트렌드를 놓치지 않고 고객 니즈에 발빠르게 대응하고 있습니다. 이 같은 Zenius를 더 많은 고객들이 이해하고 사용해볼 수 있도록 풍부한 정보를 보기 쉽게 담았습니다. 오른쪽 이미지에 마우스를 가져다 대면 (+) 버튼이 나타나고, 해당 버튼을 클릭하면 상세한 내용을 확인할 수 있습니다. 3. 고객이 브레인즈컴퍼니를 선택한 이유 Zenius는 다양한 분야에서 1,000개 이상의 고객을 확보한 제품입니다. 더보기를 클릭하면, 여러 고객들을 공공/금융/의료 등 분야별로 카테고리화한 것을 확인할 수 있습니다. 그 중 궁금한 기업이 있다면, ‘자세히 보기’를 클릭해 어떤 형태로 Zenius를 사용 중인지 팝업창을 통해 확인할 수 있도록 했습니다. "새로 생겼어요! 구매, 채용, 블로그" 1. 구매: SaaS, On-Premise 방식 모두 구매 가능한 Zenius 기존 홈페이지 대비 가장 달라진 점을 꼽으라면, 온라인상으로 Zenius 구매가 가능해졌다는 점입니다. 특히 온프레미스(On-Premise) 방식뿐만 아니라 요즘 핫한 구독형(SaaS)으로도 사용할 수 있게 됐는데요. IT 인프라 규모와 환경에 맞춰 서버, 네트워크, 데이터베이스, 애플리케이션 모니터링을 계획하고 실행해 보시기 바랍니다. 구매 전 브레인즈컴퍼니에 좀 더 알고 싶다면 자료실을 통해 회사소개서를 다운받을 수 있습니다. 제품 카탈로그도 함께 업로드해뒀으니, 필요한 제품을 골라 확인해보면 됩니다. 2. 채용: New 브레인저를 찾습니다! 기존 홈페이지에서는 찾아볼 수 없었던 채용 메뉴가 생겼습니다. 브레인즈컴퍼니는 지난해 코스닥에 상장하며 신사업 추진력을 확보하고 조직에 새로운 바람을 불어넣기 위해 신규 인력들을 적극적으로 채용 중인데요. 좋은 인재를 확보하기 위해 이번에 채용 페이지를 생성했습니다. 채용은 피플, 컬처, 공고, FAQ로 이뤄져 있습니다. 피플 상단에는 다양한 직급과 부서의 브레인저들을 슬라이드 형태로 배치했습니다. 화살표를 클릭하면 팝업창을 통해 그들이 무슨 업무를 하고 어떤 동료를 원하는지, 또 브레인즈컴퍼니를 왜 추천하는지에 대해 확인할 수 있습니다. 그 아래에는 부서별 소개, 브레인저가 말하는 브레인즈컴퍼니, 채용 과정 순으로 배치했습니다. 채용 과정의 합류하기 버튼을 통해 채용공고 페이지로 편리하게 이동할 수 있습니다. 컬처 부분에서는 브레인저가 일하는 방식, 인재상, 소통하는 방법, 근무환경 및 복지에 대한 내용들로 구성됐습니다. 채용공고와 FAQ는 토글 형태로 만들어, 페이지를 이동하는 불편함 없이 바로 해당 내용을 확인할 수 있도록 했습니다. 3. 블로그: 지금 브레인즈컴퍼니는 브레인즈컴퍼니의 사람/회사/기술 이야기를 담은 블로그도 생겼습니다. ▲사람 이야기에는 브레인저 인터뷰 ▲회사 이야기에는 브레인즈의 다양한 소식 ▲기술 이야기에는 제니우스를 비롯해 브레인즈가 몸담고 있는 업계 관련 콘텐츠를 담았습니다. 앞으로 브레인즈컴퍼니와 관련된 모든 소식은 이곳에서 만나볼 수 있습니다. 함께 소통해요! 새로워진 브레인즈컴퍼니의 홈페이지, 구경 잘 하셨나요? 혹시 불편한 점이나 개선사항이 있다면, 그냥 지나치지 말고 문의하기를 통해 의견 남겨 주시면 큰 힘이 될 거예요. 그럼 앞으로도 브레인즈컴퍼니에 자주 들러 주시고, 새로운 소식으로 또 찾아 뵙겠습니다!
2022.09.22
기술이야기
IT 인프라 모니터링 트렌드
기술이야기
IT 인프라 모니터링 트렌드
EMS란? EMS는 Enterprise Management System의 약자로, 여러 기업과 기관의 IT서비스를 이루는 다양한 IT Infrastructure를 통합적으로 모니터링하는 시스템을 의미합니다. 해외에서는 일반적으로 ITIM(IT Infra Management)이라는 용어로 많이 사용되고 있지만, 국내에서는 EMS라는 용어로 통용되고 있습니다. EMS는 IT인프라의 데이터를 실시간으로 수집 및 분석할 뿐만 아니라, 수집된 데이터를 활용해 비즈니스의 가치를 창출할 수 있습니다. 글로벌 IT분야 연구자문 기업인 “가트너(Gartner)”에서는 ITIM, 즉 EMS를 데이터센터, Edge, IaaS(Infrastructure as a Service), PaaS(Platform as a Service) 등에 존재하는 IT인프라 구성요소의 상태와 리소스 사용률을 수집하는 도구로 정의하며, 컨테이너, 가상화시스템, 서버, 스토리지, 데이터베이스, 라우터, 네트워크 스위치 등에 대한 실시간 모니터링이 가능해야 한다고 서술합니다. <사진 설명: 가트너의 ITIM 정의를 도식화한 그림> 이러한 EMS는 초기에는 기업 전산실에 물리적인 형태로 존재하는 서버, 네트워크의 리소스관리를 중심으로 모니터링해 왔습니다. 서버의 CPU, Memory 등의 리소스 정보를 수집하거나, 네트워크 장비의 트래픽 정보를 모니터링하고 임계치를 기반으로 이벤트 감지하는 역할이 대부분이었으며, 이 정도 수준에서도 충분한 IT 인프라 관리가 이뤄질 수 있었습니다. 그러나 가상화(Virtualization)라는 개념이 생겨나고 다양한 IT 인프라들이 기업 전산실에서 클라우드(Cloud) 환경으로 전환됨에 따라, EMS의 모니터링 분야도 조금씩 바뀌어 가고 있습니다. 많은 기업들이 효율적인 리소스 사용과 비용 절감을 목표로 VMware와 같은 가상화 시스템을 도입해 운영하게 됐으며, 모니터링 부문도 이에 대응하기 위해 가상화 리소스에 대한 관리 영역으로 확장됐습니다. 가상화 환경을 이루는 하이퍼바이저(Hypervisor)와 가상머신(Virtual Machine)의 연관성을 추적하고, 각 가상머신들이 사용하고 있는 리소스를 실시간으로 분석해 효율적인 자원 배분, 즉 프로비저닝(Provisioning)을 위한 근거 데이터를 제공할 수 있도록 하고 있습니다. 더 나아가 VMware, Hyper-V 등의 다양한 가상화 플랫폼에서 가상머신을 생성하고 삭제하고, 실제로 가상머신에 CPU, Memory 등과 같은 리소스를 할당해 줄 수 있는 컨트롤 영역까지 제공하는 제품을 개발하는 벤더사들이 많아지고 있습니다. 이러한 가상화 기술을 기반으로 현대에는 IT 인프라들이 대부분 클라우드 환경으로 전환하고 있는 추세입니다. 클라우드 환경으로의 전환 클라우드(Cloud)란, 언제 어디서나 필요한 컴퓨팅 자원을 필요한 시간만큼 인터넷을 통해 활용할 수 있는 컴퓨팅 방식으로, 최근 기업들은 각자의 목적과 상황에 맞게 AWS, MS Azure와 같은 Public Cloud 및 OpenStack, Nutanix 등을 활용한 Private Cloud 등의 환경으로 기업의 전산설비들을 마이그레이션 하고 있습니다. 클라우드로의 전환과 기술의 발전에 따라, EMS의 IT 인프라 모니터링은 더 이상 *On-Premise 환경에서의 접근이 아닌, Cloud 환경, 특히 MSA(Micro Service Architecture)를 기반으로 하는 클라우드 네이티브(Cloud Native) 관점에서의 IT 운영 관리라는 새로운 접근이 필요하게 됐습니다. (*On-Premise : 기업이 서버를 클라우드 환경이 아닌 자체 설비로 보유하고 운영하는 형태) 클라우드 네이티브란, 클라우드 기반 구성요소를 클라우드 환경에 최적화된 방식으로 조립하기 위한 아키텍처로서, 마이크로서비스 기반의 개발환경, 그리고 컨테이너 중심의 애플리케이션 구동환경 위주의 클라우드를 의미합니다. 클라우드 네이티브는 IT비즈니스의 신속성을 위해 도커(Docker)와 같은 컨테이너를 기반으로 애플리케이션이 운영되므로, EMS는 컨테이너의 성능, 로그, 프로세스 및 파일시스템 등 세부적인 관찰과 이상징후를 판단할 수 있는 기능들이 요구되고 있습니다. 자사 제품인 Zenius SMS에서는 이러한 변화에 따라 Docker에 대한 모니터링 기능을 기본적으로 제공하고 있습니다. Docker 컨테이너가 생성되면 자동으로 관리대상으로 등록되며, Up/Down 뿐만 아니라, CPU, Memory, Network 및 Process의 정보를 실시간으로 모니터링하고 발생되는 로그들을 통합관리 할 수 있도록 합니다. <사진 설명: Zenius-SMS에서 제공하고 있는 Docker 컨테이너 모니터링 기능> 또, 복원력과 탄력성을 위해 쿠버네티스와 같은 오케스트레이션 도구를 활용해 컨테이너를 스핀업하고, 예상되는 성능에 맞게 효율적으로 리소스를 맵핑하고 있으며, 이러한 기술에 대응하기 위해 EMS는 쿠버네티스(Kubernetes), 도커스웜(Docker Swarm) 등의 오케스트레이터들의 동작여부를 직관적으로 관찰하는 제품들이 지속적으로 출시되고 있는 상황입니다. 이와 더불어 컨테이너, 오케스트레이터의 동적 연결관계를 실시간으로 모니터링하고, 파드(POD), 클러스터, 호스트 및 애플리케이션의 관계를 표현하는 역할의 중요성이 점차 커져가고 있습니다. 통합 모니터링(Monitoring) EMS 모니터링의 또 다른 변화로는 통합(Integration)의 역할이 더더욱 강해지고 있다는 것입니다. IT 서비스가 복잡해지고 다양해짐에 따라 IT 인프라의 관리 범위도 점차 증가하면서, 다양한 IT 인프라들을 융합하고 관리하기 위한 노력들이 관찰되고 있습니다. 데이터독(Datadog), 스플렁크(SPLUNK)와 같은 장비 관점의 모니터링 벤더들은 APM과 같은 애플리케이션 모니터링 시장으로, 앱다이나믹스(AppDynamics), 다이나트레이스(Dynatrace), 뉴렐릭(NewRelic)과 같은 애플리케이션 모니터링 시장의 강자들은 인프라 장비 관점의 모니터링 시장으로의 융합이 확인되고 있습니다. 자사 제품인 Zenius 역시 서버, 네트워크 중심의 관리에서 애플리케이션, 데이터베이스 등의 시장으로 관리 범위를 확장해 나가고 있는 추세입니다. IT 서비스의 영속성을 유지하기 위해서는 IT 서비스를 구성하는 다양한 요소들을 실시간으로 모니터링하고 연관관계를 추적해 문제 원인을 찾아내는 것이 중요하기 때문에 다양한 IT 요소들을 통합적으로 모니터링하는 것 뿐만 아니라, 상호 연관관계를 표현하고 추적할 수 있는 기능들이 지속적으로 요구되고 있습니다. 모니터링의 트렌드는 서버, 네트워크 등의 독립적인 개체에 대한 모니터링 아닌 IT 서비스를 중심으로 기반 요소들을 모두 통합적으로 모니터링하고, 각 상호간의 의존성과 영향도를 파악해 RCA(Root Cause Analysis) 분석을 가능하게 하고 이를 통해 IT 서비스의 연속성을 보장할 수 있는 통찰력을 확보하게끔 하는 방향으로 흘러가고 있습니다. Zenius는 서버, 네트워크, 애플리케이션, 데이터베이스 및 각종 로그들의 정보를 시각적으로 통합 모니터링할 수 있는 오버뷰(Overview) 도구와 IT 서비스 레벨에서 인프라들의 연관관계를 정의하고 다양한 조건(Rule)에 따라 서비스 이상유무와 원인분석이 가능한 서비스 맵(Service Map) 도구를 기본적으로 제공하고 있습니다. <사진 설명: Zenius 오버뷰 화면> <사진 설명: Zenius 서비스맵 화면> 앞서 언급했듯이, 클라우드 환경으로 전환함에 따라 통합적 관리 요구는 더욱 높아지고 있습니다. IT 인프라에 대한 통합 뿐만 아니라, AD(Active Directory), SAP 및 AWS, Azure, GCP 등의 다양한 서비스의 주요 지표까지 연계하고 하나의 시스템으로 통합 모니터링하기 위한 노력들이 관찰되고 있습니다. 데이터독(Datadog)의 경우, 500개 이상의 시스템, 애플리케이션 및 서비스들의 지표들을 손쉽게 통합 관리할 수 있다고 돼있습니다. <사진 설명: 데이터독 홈페이지 캡처> 이처럼 IT 서비스의 복잡성과 다양화에 따라 관리해야 될 서비스와 지표들은 점점 늘어나고 있으며, 기업의 현황에 맞게 컴포넌트 기반으로 손쉽게 지표들을 통합할 수 있는 기능과 도구들이 요구되고 있습니다. AI 기반의 예측&자동화 모니터링의 세번째 변화로는 ’AI 기반의 예측과 자동화’입니다. IT 인프라 및 서비스의 주요 지표를 모니터링하는 것도 중요하지만, 축적된 데이터를 기반으로 미래의 상황을 예측 및 이상탐지해 사전에 대비할 수 있는 체계를 갖추는 일은 모니터링 시장에서 중요한 이슈로 자리잡고 있습니다. 현재의 AIOps(AI for IT Operations)를 표방하는 모니터링 기술들은 서버, 네트워크, 애플리케이션, 데이터베이스 등의 주요 지표들을 실시간으로 수집하고, 저장된 데이터를 기반으로 AI 알고리즘 또는 통계기법을 통해 미래데이터를 예측하며 장애 발생가능성을 제공하고 있습니다. 이와 같은 기술을 통해 미래 성능 값을 예측해 IT 인프라의 증설 필요성 등을 판단하고, 장애 예측으로 크리티컬한 문제가 발생되기 전에 미리 조치를 취할 수 있도록 해 효율적인 의사결정을 할 수 있도록 합니다. Zenius도 4차 산업혁명 및 디지털 뉴딜시대가 도래함에 따라 미래예측 기능을 최신 버전에 탑재했으며, 이를 통해 IT운영자가 미래 상황에 유연하고 선제적으로 대응할 수 있도록 합니다. Zenius에서는 서버, 네트워크, 애플리케이션 등 다양한 IT 인프라의 미래 성능 값, 패턴 범위, 이상 범위 등을 예측해 IT 운영자에게 제시합니다. <사진 설명: 인공지능(AI) 기반 미래데이터 예측 화면> 다만, 인공지능 기술을 통해 장애 발생 가능성을 탐지하는 기능 외에, 어디에 문제가 발생됐는지 알려주는 기능은 모니터링 시장에 과제로 남아있고, 이를 제공하기 위한 여러 업체들의 노력이 보이고 있습니다. 이제는 EMS에서 보편적인 것이 됐지만, 모바일 기기를 통해 시∙공간적 제약 없는 모니터링이 이뤄지고 있습니다. 다양한 기종의 스마트폰, 태블릿PC 등을 이용해 운영콘솔(Console) 뿐만 아니라, 회의 등 시간을 잠시 비우더라도 IT 인프라에 대한 연속적인 모니터링이 모바일기기를 통해 가능해졌습니다. <사진 설명: 다양한 기기를 통한 모니터링>
2022.09.05
1
2
3
4