반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
최신이야기
검색
기술이야기
WAS(웹 애플리케이션 서버) 성능, APM을 통해 최적화하는 법
기술이야기
WAS(웹 애플리케이션 서버) 성능, APM을 통해 최적화하는 법
WAS(Web Application Server)는 현대 기업들이 운영하는 다양한 웹 애플리케이션이 원활하고 안정적으로 작동하도록 돕는 핵심 인프라입니다. 온라인 쇼핑몰, 인터넷 뱅킹, 병원 정보 시스템 등, 일상생활에서 자주 접할 수 있는 부분에서 WAS의 역할이 두드러지게 나타나죠. 대표적으로 온라인 쇼핑몰을 예를 들어 볼까요? 블랙프라이데이와 같은 쇼핑 성수기에는 많은 사람들이 동시에 웹사이트에 접속하기 때문에, 서버에 큰 부담이 생깁니다. 이때 WAS는 부하 분산 기능과 세션 관리를 통해 이런 부담을 효과적으로 나누어 처리하고, 각 사용자의 접속 상태를 잘 관리하여 웹사이트가 원활하게 작동하도록 돕는데요. 만약 WAS가 제대로 작동하지 않으면 웹사이트가 느려지거나 접속이 되지 않아 고객들이 불편을 겪고, 결국 매출 손실로 이어질 수도 있습니다. 이러한 이유들로 인해 WAS를 안정적으로 운영하기 위해서는 APM(Application Performance Management)이 필요합니다. APM은 애플리케이션 성능을 실시간으로 모니터링하고, 최적화하며, 성능 저하나 장애를 사전에 예방할 수 있도록 도와주는 시스템을 의미하는데요. 그렇다면 APM을 통해 어떤 방식으로 WAS를 관리할 수 있을까요? │APM으로 WAS(Web Application Server)를 관리하는 방법 우선 첫 번째로는, WAS에서 실행 중인 애플리케이션을 실시간으로 모니터링할 수 있습니다. 즉 WAS에서 실행 중인 애플리케이션이 제대로 작동하는지 실시간으로 확인할 수 있어, 문제가 발생해도 신속하게 해결할 수 있도록 도와주죠. [그림] Zenius APM : 실시간 모니터링 상황판 Zenius APM을 통해 자세히 살펴볼게요. Zenius APM은 한 화면에서 전체 또는 인스턴스 별로 수행되고 있는 트랜잭션의 처리 현황을 종합적으로 파악할 수 있는데요. 서버의 상태와 애플리케이션 성능이 정상적으로 작동하는지 한눈에 확인할 수 있고, 문제가 발생할 경우 빠르게 대응할 수 있습니다. • • • • • • 두 번째로는, 애플리케이션의 서비스가 지연되는 현황을 확인할 수 있습니다. 사용자 웹 페이지가 느려지면, 지연 원인을 빠르게 파악하고 조치해야 하기 때문에 이러한 문제를 직관적으로 파악할 수 있어야 합니다. [그림] Zenius APM : 액티브 서비스 모니터링 Zenius APM을 통해 살펴보면 액티브 서비스 처리 현황을 확인할 수 있습니다. 이 현황을 통해 스피드 메타 차트를 통해 전체 실시간 트랜잭션 유입량과 처리 상태, 그리고 서비스 지연 여부를 확인할 수 있는데요. 사용자의 웹 페이지가 느려질 경우 위 그림처럼 빨간 표기로 지연된 부분을 파악할 수 있습니다. [그림] Zenius APM : 액티브 서비스 현황 모니터링 만약 처리가 지연되고 있다면 인스턴스, 액티브 서비스 현황 차트를 통해 보다 명확하게 확인할 수 있습니다. 위 그림과 같이 이퀄라이저 차트에서 주황색 또는 붉은색으로 표시된 부분을 통해, 인스턴스에서 발생한 잠재적인 문제를 확인할 수 있죠. 이렇게 지연된 서비스가 발견된 인스턴스에서 처리 중인 트랜잭션 목록을 확인할 수 있습니다. 또한 지연된 트랜잭션이 어느 단계에서 멈춰 있는지도 파악할 수 있습니다. [그림] Zenius APM : 서비스 응답 분포 및 트랜잭션 상세 모니터링 처리 완료된 트랜잭션의 지연 구간은 서비스 응답 분포를 통해 확인할 수 있으며, 이슈 정보를 통해 좀 더 상세한 지연 위치를 알 수 있습니다. • • • • • • 세 번째는, 과거 장애 시점에 대한 정밀한 장애 원인을 분석할 수 있습니다. 이 기능은 장애 재발을 막고 시스템의 안정성을 높이기 위해 중요한 부분인데요. [그림] Zenius APM : 스냅샷 분석 예시를 통해 자세히 알아보겠습니다. Zenius APM과 같은 APM 솔루션은 장애 시점에 대한 정보를 스냅샷을 통해 과거 실시간 상황을 동일하게 재현하여, 당시의 시스템 상태와 성능을 정확히 파악할 수 있게 도와줍니다. 또한 모든 세부 정보를 포함한 Raw 데이터를 기반으로 하는데요. 과거 시점에 장애 원인 분석을 보다 정밀하게 파악할 수 있어, 장애 재발을 방지하고 시스템 안정성을 확보할 수 있습니다. • • • • • • 지금까지 APM을 통해 어떻게 WAS를 관리하는지 살펴보았습니다. 하지만 여기서 한 가지 더 알아야 할 것은, 애플리케이션 성능 저하가 WAS만의 문제는 아니라는 점입니다. CPU, 메모리, 디스크 I/O 등 서버 자원의 부족이나 데이터베이스 쿼리 성능 저하 등 다양한 원인에 의해 발생할 수도 있죠. 따라서 이러한 모든 요소들을 종합적으로 모니터링하는 것이 중요한데요. 이러한 요구를 해결하기 위해 Zenius APM은 서버와 데이터베이스를 자동으로 매핑하여 연관 관계를 시각적으로 확인할 수 있는 '토폴로지 맵'을 제공합니다. 이를 통해 애플리케이션 성능 저하가 서버 자원의 부족 때문인지, 데이터베이스 쿼리 성능 저하 때문인지 명확히 파악할 수 있습니다. 이번 시간에는 APM으로 WAS를 어떻게 관리하는지 알아보았습니다. 결론적으로 기업에서 안정적이고 신뢰할 수 있는 웹 애플리케이션 환경을 구축하기 위해서는, APM은 더 이상 선택이 아닌 필수입니다. 이제 Zenius APM을 통해 WAS 관리를 효과적으로 관리하여, 최적의 웹 애플리케이션 성능을 유지해 보세요! 🔍더보기 Zenius APM으로 WAS 관리하기 📝함께 읽으면 더 좋아요 • APM에서 꼭 관리해야 할 주요 지표는? • APM의 핵심요소와 주요기능은? • 옵저버빌리티 vs APM, 우리 기업에 맞는 솔루션은? • 오픈소스 APM만으로 완벽한 웹 애플리케이션 관리, 가능할까?
2024.07.29
기술이야기
오픈소스 APM만으로 완벽한 웹 애플리케이션 관리, 가능할까?
기술이야기
오픈소스 APM만으로 완벽한 웹 애플리케이션 관리, 가능할까?
지난 글을 통해 옵저버빌리티(Observability) 중요성과 APM 차이점을 자세히 살펴보았습니다(자세히 보기). 옵저버빌리티는 APM 한계성을 극복하는 방법은 맞지만, 어느 하나가 더 나은 방법이라기 보단 조직이나 사용자 상황에 따라 적합한 선택해야 하는 것이 주요 포인트였습니다. 하지만 상용 APM 제품은 다소 높은 구매 비용으로 인해, 규모가 작은 기업의 경우 부담이 될 수 있는데요. 이 때 오픈소스 APM 솔루션이 효과적인 대안이 될 수 있는데요. 따라서 이번 시간에는 주요 오픈소스 APM 알아보고, APM 상용 제품과는 어떤 차이점이 있는지 살펴보겠습니다. │오픈소스(Open Source) 소프트웨어란? 오픈소스(Open Source)란 개발 핵심 소스 코드를 공개하여 누구나 접근하고, 수정하여, 배포할 수 있는 소프트웨어를 말합니다. 얼핏 자유 소프트웨어와 비슷하게 느껴질 수 있지만 조금 다른 의미를 가지는데요. 자유 소프트웨어는 사용자의 '자유'를 강조하지만, 오픈소스는 소스 코드의 '접근성과 협업'을 중시합니다. 대표적으로 관계형 데이터베이스인 MySQL, 웹 브라우저인 Firefox, 컨테이너 가상화 플랫폼인 Docker가 대표적인 오픈소스 소프트웨어라고 할 수 있습니다. 현재 국내 디지털플랫폼 정부 구축 정책 기조에 따르면, 오픈소스 소프트웨어는 여러가지 장점을 갖고 있는데요. 오픈소스 장점 오픈소스의 첫번 째 장점은 진입 비용이 낮다는 점입니다. 공개된 소스를 기반으로 수정과 배포가 가능하기 때문에 새로운 기반 기술을 만들어 갈 경우, 비용을 줄일 수 있습니다. 두 번째 장점은 MSA 아키텍처의 기술적 토대가 오픈소스에 기반한다는 점입니다. 최근 소프트웨어 개발 환경은 오픈소스 의존도가 높아지고 있는데요. 이는 오픈소스가 특정 벤더에 종속되지 않아 독립성을 보장한다는 점에서, 오픈소스의 가장 큰 장점이라고 할 수 있습니다. 그에 반해 오픈소스 단점도 명확한데요. 오픈소스 단점 첫 번째 단점은 상용 소프트웨어와 비교해 매뉴얼이 빈약한 경우가 많다는 점입니다. 이에 따라 실제 개발 단계에서 운영이 지연될 가능성이 높아지죠. 두 번째 단점으로는 기술 지원 체계는 오픈소스 커뮤니티에 의존하고 있기 때문에, 유지보수에 큰 어려움이 따른다는 점입니다. 물론 특정 벤더에 종속되지 않는 독립성을 취할 수 있지만, 지속적인 기술지원은 어렵죠. 그렇다면 현재 국내에서 가장 많이 사용하는 오픈소스 APM 소프트웨어는 무엇인지, 자세히 살펴보겠습니다. │오픈소스 APM 종류 오픈소스 APM 종류는 다양하지만 대표적으로 Scouter, Pinpoint, Prometheus & Grafana에 대해 알아보겠습니다. 1. Scouter 첫 번째로 소개해 드릴 오픈소스 APM은 스카우터(Scouter)입니다. 스카우터는 LG CNS에서 만든 오픈소스 APM 소프트웨어로, 자바를 사용하는 애플리케이션과 컴퓨터 시스템 성능을 모니터링합니다. 이 소프트웨어는 Window, Linux, Mac 등 다양한 운영체제(OS)에서 사용할 수 있으며, 주로 이클립스 플랫폼에서 개발되었습니다. 즉 여러 환경에서 자바 애플리케이션 데이터를 수집하고, 성능 상태를 효과적으로 할 수 있다는 점이 스카우터의 주요 기능입니다. 1-1. Scouter 아키텍처 Scouter는 주로 네 가지 주요 컴포넌트로 구성되어 있는데요. 자세히 살펴보도록 하겠습니다. Java Agent Java 기반의 웹 애플리케이션(예: Tomcat, JBoss, Resin)과 스탠드얼론 Java 애플리케이션을 모니터링하는 모듈입니다. 이 에이전트는 웹 애플리케이션 서버(WAS)에 설치되어 애플리케이션 성능 정보(예: 메소드 실행 시간, 사용자 요청 처리 시간 등)를 수집하고 Scouter 서버로 전송합니다. Host Agent 이 에이전트는 운영 체제(예: Linux, Unix, Windows 등)에 설치되어 시스템 하드웨어 리소스 사용 상태를 모니터링합니다. CPU 사용률, 메모리 사용량, 디스크 I/O와 같은 정보를 수집하여 Scouter Server로 보내주는 역할을 합니다. Scouter Server(Collector) 이 서버는 Java Agent와 Host Agent로부터 데이터를 수집해 저장합니다. 사용자는 클라이언트를 통해 이 데이터에 접근할 수 있으며, 이를 통해 애플리케이션의 성능을 모니터링하고 분석할 수 있습니다. Scouter Client 사용자는 Scouter Client를 통해 서버에 접속하여, 서버로부터 수집된 데이터를 조회할 수 있습니다. 이 클라이언트는 다양한 성능 지표를 기반으로 한 시각적인 대시보드를 제공하여, 애플리케이션과 시스템 성능 상태를 효과적으로 모니터링할 수 있게 도와줍니다. 1-2. Scouter 주요기능 출처ⓒ tistory_chanchan-father Scouter의 주요기능 중 하나는 'XLog'인데요. 이 기능은 트랜잭션 응답 시간을 시각적으로 표현하여 시스템 성능을 모니터링하는 데 유용합니다. 액티브 서비스가 종료될 때마다 XLog 차트에 점으로 나타나기 때문에, 개발자는 트랜잭션 처리 시간을 간편하게 확인할 수 있습니다. 각 점을 클릭하여 관련 트랜잭션의 자세한 정보를 얻을 수 있으며, 시스템 분석과 성능 개선 작업에도 도움을 줍니다. 2. Pinpoint 두 번째로 소개해 드릴 오픈소스 APM는 '핀포인트(Pinpoint)'입니다. 핀포인트는 네이버에서 2012년 7월부터 개발을 시작해, 15년 초에 배포한 오픈소스 APM 솔루션입니다. 핀포인트는 MSA를 위한 국산 오픈소스 APM으로 각광 받아왔습니다. 2-1. Pinpoint 아키텍처 핀포인트 아키텍처는 다음과 같은 네 가지 주요 구성요소는 이루어져 있는데요. 아래 내용을 통해 자세히 살펴보겠습니다. Agent 핀포인트의 에이전트는 애플리케이션 서버에 java-agent 형태로 추가되어, 애플리케이션 성능 데이터를 실시간으로 수집합니다. 이 에이전트는 수집한 데이터를 Collector로 전송하며, 이 과정을 통해 성능 모니터링과 문제 해결에 필요한 중요 정보를 제공합니다. Collector Agent로부터 받은 프로파일링 데이터를 수집하고 처리하는 역할을 합니다. Collector는 이 데이터를 구조화하여 빅데이터 데이터베이스인 HBase로 전송합니다. 이를 통해 데이터가 안정하게 저장되고 필요할 때 쉽게 접근할 수 있습니다. HBase Hbase는 분산 데이터베이스로서, 핀포인트 시스템에서 성능 데이터를 저장하고 검색하는 중심적인 역할을 합니다. 대규모 데이터 볼륨을 효율적으로 처리할 수 있는 구조로 설계되어 있으며, 수집된 데이터의 신속한 처리와 안정적인 저장을 보장합니다. Web UI 웹 인터페이스를 통해 사용자에게 데이터를 시각적으로 제공하는 구성 요소입니다. 이 데이터는 핀포인트 에이전트가 애플리케이션 서버에서 수집한 정보를 기반으로 생성됩니다. 이렇게 수집된 데이터는 서버를 통해 Web UI로 전송되면, 사용자는 UI를 통해 다양한 형태의 성능 지표를 조회하고 분석할 수 있습니다. 이러한 구성을 통해 네이버 핀포인트는 애플리케이션 성능 문제를 진단하고 해결하는 데 필요한 정보를 제공합니다. 2-2. Pinpoint 주요기능 그 다음으로 핀포인트의 대표적인 주요 기능에 대해 자세히 알아보겠습니다. 서버맵 이 기능은 분산 환경에서 각 노드 간의 트랜잭션 흐름을 시각적으로 표현하여, 트랜잭션 성공/실패와 응답 시간 분포를 실시간으로 모니터링할 수 있습니다. 이를 통해 시스템 부하 상태와 성능 병목 지점을 식별할 수 있죠. 콜스택 콜스택(Call Stack) 기능은 트랜잭션의 세부 실행 과정을 추적하여, 성능 문제 원인을 분석하고, 코드 최적화를 지원합니다. 이 기능은 각 콜스택에서 소요되는 시간과 발생하는 예외 상황까지 자세히 보여주어, 성능 병목 현상 진단에 도움을 줍니다. 트랜잭션 필터 사용자는 트랜잭션 필터 기능을 이용해 응답 시간이 긴 트랜잭션, 특정 사용자나 IP 주소에서 발생한 트랜잭션 등을 세부적으로 필터링하여 분석할 수 있습니다. 이는 특정 조건에 따른 트랜잭션의 세부 사항을 더 깊이 이해하는 데 유용합니다. Application Inspector 이 기능은 애플리케이션 성능 지표를 시간별/일별로 분석하며 CPU 사용률, 메모리 사용량, JVM 상태 등을 체계적으로 관리하는 기능을 제공합니다. 이를 통해 애플리케이션의 전반적인 성능 관리가 가능합니다. 3. Prometheus 세 번째로 소개해 드릴 오픈소스 APM는 '프로메테우스(Prometheus)'입니다. 프로메테우스는 관제 대상으로부터 모니터링 메트릭 데이터를 저장하고, 검색할 수 있는 시스템인데요. 무엇보다 CNCF 재단으로부터 '클라우드 네이티브에 적합한 오픈소스 모니터링'으로 각광 받아 쿠버네티스(Kubernetes, K8s) 이후 두번째로 졸업한 프로젝트입니다. 프로메테우스는 CNCF 졸업 인증서를 받은 이후 시장에서 많은 주목을 받았습니다. 구조가 간단해서 운영이 쉽고, 다양한 모니터링 시스템과 연계할 수 있는 여러 플러그인을 보유하고 있기 때문이죠. 이러한 장점은 클라우드 네이티브를 위한 기초적인 오픈소스로 각광 받게 되었습니다. 3-1. Prometheus 아키텍처 프로메테우스에서 가장 큰 특징은 에이전트(Agent)가 아닌, 메트릭(Metric)을 통해 데이터를 수집한다는 점입니다. 메트릭이란 이전 시간에도 살펴봤듯이, 현재 상태를 보기 위한 시계열 데이터를 의미합니다. 프로메테우스는 이러한 메트릭 수집을 위해 다양한 수집 도구를 사용하는데요. 좀 더 자세히 살펴보도록 하겠습니다. Application 위 아키텍처에서 수집하고자 하는 대상은, 애플리케이션으로 표현됩니다. 주로 MySQL DB과 Tomcat과 같은 웹 서버까지 다양한 서버와 WAS가 모니터링 대상이 됩니다. 프로메테우스는 이를 주로 Target System으로 표현하고 있습니다. Pulling 프로메테우스에서는 각 Target System에 대한 메트릭 데이터 수집을 풀링(Pulling) 방식을 통해 데이터를 수집합니다. 프로메테우스는 앞서 언급했듯 별도의 에이전트로 데이터를 수집하지 않습니다. Prometheus Server에서 자체적인 Exporter를 통해 메트릭 읽는 방식을 사용하죠. 보통 모니터링 시스템 에이전트는, 모니터링 시스템으로 메트릭을 보내는 푸쉬(Push) 방식을 사용합니다. 특히 푸쉬 방식은 서비스가 오토 스케일링 등과 같이 환경이 가변적일 경우 유리한데요. 풀링 방식의 경우 모니터링 대상이 가변적으로 변경될 경우, 모니터링 대상의 IP 주소를 알 수 없기 때문에 정확한 데이터 수집이 어려워집니다. Service Discovery 이처럼 정확한 데이터 수집을 해결하기 위한 방안이 서비스 디스커버리(Service Discovery) 방식입니다. 서비스 디스커버리는 현재 운영 중인 대상 목록과 IP 주소를 동적으로 수집하는 프로세스입니다. 예를 들어 file_sd, http_sd 방식부터 디스커버리 전용 솔루션인 Consul을 사용하죠. Exporter Exporter는 모니터링 대상 시스템에서 데이터를 수집하는 역할을 합니다. 별도의 에이전트는 아니지만, 에이전트와 비슷하게 데이터를 수집하는 역할을 합니다. HTTP 통신을 통해 메트릭 데이터를 수집하며, Exporter를 사용하기 어려울 경우 별도 Push gateway를 사용합니다. Prometheus Server 프로메테우스 서버는 데이터 수집, 저장, 쿼리를 담당하는 중앙 구성 요소입니다. HTTP 프로토콜을 사용하는 것이 특징이며, Exporter가 제공하는 HTTP 엔드포인트에 접속해 메트릭 데이터를 수집합니다. Alert Manager 사용자에게 알람을 주는 역할을 담당합니다. Prometheus는 타 오픈소스 모니터링 솔루션과 달리 Alert Manager UI 기능을 제공하여 일부 제한된 데이터를 시각화할 수 있습니다. 하지만 시각화 기능이 제한적이므로, 보통 Grafana라는 오픈소스 대시보드 툴을 사용하여 UI를 보완합니다. 3-2. Grafana '그라파나(Grafana)'에 좀 더 자세히 설명한다면, 데이터 분석을 시각화하기 위한 오픈소스 대시보드 도구입니다. 다양한 플러그인을 이용해 프로메테우스와 같은 모니터링 툴과 *그라파이트(Graphite)1, *엘라스틱서치(Elasticsearch)2, *인플럭스DB(InfluxDB)3 와 같은 데이터베이스와 연동하여 사용자 맞춤형 UI를 제공합니다. 특히 방대한 데이터를 활용해 맞춤형 대시보드를 쉽게 만들 수 있는 것이 그라파나의 큰 장점이죠. *1. Graphite: 시계열 데이터를 수집하고 저장하며, 이를 그래프로 시각화하는 모니터링 도구 *2. Elasticsearch: 다양한 유형의 문서 데이터를 실시간으로 검색하고 분석하는 분산형 검색 엔진 *3. InfluxDB: 시계열 데이터의 저장과 조회에 특화된 고성능 데이터베이스 그라파나의 주요 특징은 플러그인 확장을 통한 데이터 시각화와 템플릿 지원으로, 다른 사용자 대시보드 템플릿을 쉽게 가져와 사용할 수 있다는 점입니다. 이처럼 Promeheus 장점은 Exporter를 통한 다양한 메트릭 데이터 수집과 3rd Party 솔루션과 연계가 수월하다는 점입니다. 오픈소스로 IT 인프라를 구성하는 기업의 경우 Prometheus와 Grafana를 연계하여, 서비스 운영현황을 모니터링 할 수 있습니다. 지금까지 오픈소스 APM가 무엇이고, 각각의 아키텍처와 주요 기능은 무엇인지 살펴보았는데요. 그렇다면 상용 APM 제품과, 오픈소스 APM는 어떤 차이점이 있을까요? │상용 APM 제품 vs 오픈소스 APM 제품 앞에서 소개해 드린 오픈소스 APM 중, 대표적으로 프로메테우스와 핀포인트를 상용 APM 제품과 비교해 보겠습니다. Prometheus vs 상용 APM 제품 우선 프로메테우스를 대표하는 장점은 유연한 통합성입니다. 마이크로서비스가 대세 기술로 자리 잡으면서, 인스턴스를 자주 확장하거나 축소하는 것이 자유로운 요즘인데요. 만약 이 작업을 수동으로 관리한다면 매우 어려울 수 있습니다. 하지만 프로메테우스를 사용하면 이런 문제를 해결할 수 있죠. 프로메테우스는 쿠버네티스와 같은 여러 서비스 디스커버리 시스템과 통합되어, 쿠버네티스 클러스터 내의 모든 노드와 파드에 발생하는 매트릭을 자동으로 수집할 수 있습니다. 이러한 기능은 마이크로서비스 환경에서 효율적으로 모니터링 할 수 있습니다. 하지만 한계점도 있는데요. 바로 실시간 데이터 확인이 어렵다는 점입니다. 프로메테우스는 풀링(Pulling) 주기를 기반으로 메트릭 데이터를 수집하기 때문에, 순간적인 스냅샷 기능이 없습니다. 수집된 데이터는 풀링하는 순간 스냅샷 데이터라고 볼 수 있죠. 이러한 단점은 APM에서 일반적으로 지원하는 실시간성 트랜잭션 데이터를 대체하기 어렵습니다. 반면에 상용 APM 제품은 어떨까요? 대표적으로 Zenius APM 사례를 통해 살펴보겠습니다. Zenius APM은 에이전트가 자동으로 메트릭을 수집하여 서버로 전송하여, 데이터를 실시간으로 처리할 수 있습니다. 또한 에이전트가 푸쉬(Push) 방식이기 때문에, 데이터의 지연이 풀링 방식에 비해 적고 데이터가 더 정확하게 수집되죠. 또한 Raw Data 기반의 실시간 과거 데이터를 통해 정밀한 장애 원인 분석이 가능합니다. 과거 시점 스냅샷 기능도 있어 문제 발생 시점을 정확히 파악하여, 문제 해결 시간을 단축시킬 수 있죠. Pinpoint 장단점 vs 상용 APM 제품 그 다음으로는 핀포인트를 대표하는 장점에 대해 알아 보겠습니다. 핀포인트 장점으로는 클라우드 환경에서 뛰어난 가시성을 보여준다는 점입니다. 클라우드에서의 웹 애플리케이션 서버(WAS)는 유연성과 확장성이 뛰어나지만, 복잡한 시스템 구조로 인해 모니터링이 어려울 수 있는데요. 핀포인트는 이러한 환경에서, 각 가상 서버의 성능을 실시간으로 파악하고 문제를 신속하게 진단하는데 큰 도움을 줍니다. 그에 반해 핀포인트에 단점은 다양한 기능이 부족합니다. 핀포인트는 JVM 기반 데이터의 모니터링이 일부 제한되는데요. 대시보드의 'Inspector'와 같은 일부 기능이 지원되지 않아, 이용에 어려움이 있습니다. 또한 다수 트랜잭션이 동시에 실행될 때 특정 트랜잭션이 오래 걸리거나 에러가 발생할 경우, 그 원인을 파악하기 어렵습니다. 이는 세부적인 콜백 정보를 충분히 제공하지 않았기 때문이죠. 그렇다면 상용 APM 제품은 어떨까요? 이번에도 Zenius APM를 통해 자세히 살펴보겠습니다. Zenius APM은 다양한 트랜잭션 모니터링 기능을 제공하는데요. 이를 통해 사용자는 트랜잭션 성능을 실시간으로 파악하고, 잠재적 문제를 빠르게 진단할 수 있습니다. 또한 이 시스템은 대량으로 동시 접속자를 대량으로 관리할 수 있어, 피크 타임에 발생할 수 있는 성능 저하를 사전에 감지하고 대응할 수 있도록 지원합니다. 비교표 구분 Zenius APM Prometheus Pinpoint Scouter 기술지원 벤더 지원을 통한 빠른 초기 설정, 기술지원 용이 오픈소스 기반의 기술지원 불가로 초기 학습 필요 오픈소스 기반의 기술 지원 불가로 초기 학습 필요 오픈소스 기반의 기술 지원 불가로 초기 학습 필요 사용자 인터페이스 실시간 트랜잭션 처리, 액티브 서비스 모니터링, 동시 접속 사용자 수 등, 사용자 정의 실시간 모니터링 상황판 구성 Grafana 플러그인 연계로 다양한 컴포넌트 모니터링 가능 토폴로지 일부 모니터링 불가, 제한적으로 사용자 동시 접속자 수 모니터링 가능, 사용자 정의 기반 모니터링 불가 기능 제한에 따른 간소화된 UI 제공, 사용자 정의 기반 모니터링 불가 컨테이너 모니터링 가능 가능 가능 불가 쿠버네티스 모니터링 가능 가능 불가 불가 연관 인프라 정보 모니터링 연관된 WAS 서버, DB서버, DB확인, 해당 인프라 상세 정보 제공 불가 재한적으로 연관 인프라 모니터링 제공 불가 Raw Data 과거 시점 재현 초 단위 데이터를 기준으로 장애 발생시점 등 과거 상황을 그대로 재현함 불가 불가 불가 리포팅 사용자 정의 기반 리포팅 서비스 제공 써드 파티를 이용한 제한적인 리포팅 기능 제공 불가 불가 이번 시간에는 주요 오픈소스 APM와 상용 APM 차이점을 살펴보았습니다. 각 솔루션은 분명한 장단점을 갖고 있으며, 모든 상황에 완벽한 솔루션은 없습니다. 그러나 여기서 주목해야 할 것은, APM의 핵심이 '트랜잭션을 얼마나 효과적으로 모니터링할 수 있는가'라는 점입니다. 이 측면에서 오픈소스 APM은 한계가 있으나, 상용 APM 제품은 이를 효과적으로 수행할 수 있습니다. 물론 비용 면에서 오픈소스 APM와 비교해, 상용 APM 제품이 부담스러울 순 있습니다. 하지만 트랜잭션 모니터링 관리의 중요성을 고려한다면, 이러한 투자는 가치가 있습니다. 더 나아가 심층적인 실시간 데이터 모니터링, 신속한 데이터 처리, 전문적인 기술적인 기술 지원, 보다 복잡한 시스템 환경에서 효과적인 트랜잭션 관리를 우선시 한다면 Zenius APM 제품이 더더욱 적합할 것입니다. 🔍더보기 Zenius APM 더 자세히 보기 📝함께 읽으면 더 좋아요 • APM에서 꼭 관리해야 할 주요 지표는? • APM의 핵심요소와 주요기능은? • 옵저버빌리티 vs APM, 우리 기업에 맞는 솔루션은?
2024.07.26
기술이야기
옵저버빌리티(Observability) vs APM, 우리 기업에 맞는 솔루션은?!
기술이야기
옵저버빌리티(Observability) vs APM, 우리 기업에 맞는 솔루션은?!
지난 글을 통해 웹 애플리케이션을 전반적으로 모니터링하고 관리하기 위한 좋은 도구인, APM의 핵심요소와 기능에 대해서 알아봤습니다(지난 글 보기). APM은 분명 좋은 도구이지만 문제 원인이 애플리케이션, 웹, WAS, DB가 아닌 특정한 시스템 오류이거나 클라우드 네이티브 환경에서의 장애일 경우 문제 발생 원인을 명확히 밝히기 어려울 수 있습니다. 따라서 이번 시간에는 APM의 한계성은 무엇이고, 이를 보완하기 위한 방법은 무엇인지 자세히 살펴보겠습니다. │APM 한계성 불과 얼마 전까지만 해도 예상치 못한 장애를 탐지하고 분석하는 것은, 기존 APM만으로 충분했었습니다. 기존에는 모놀리식 구조로 되어있어 애플리케이션이 적은 수로 구성되어 있었고, Web-WAS-DB가 모두 단일 구조로 구성되어 있었기 때문입니다. 하지만 현재 대다수 기업들은 MSA 환경에서 서비스를 구축하고, DevOps 구조로 업무를 진행하는 경우가 많습니다. 즉 클라우드 네이티브 환경에서는 기존 모놀리식 구조의 APM의 한계가 하나둘씩 보이기 시작한 것이죠. 이러한 이유로 클라우드 네이티브 방식에는 서비스 장애 원인을 분석하기 위한 새로운 모니터링 툴이 필요했습니다. 이때 등장하는 것이 바로 옵저버빌리티(Observability)입니다. │Observability란? 그렇다면 Observability란 무엇일까요? 옵저버빌리티는 IT 인프라에 대한 근본적인 장애 원인을 분석하기 위한 방법론입니다. 관찰 가능성이라고 표현되기도 하죠. Obsevability는 비교적 최근에 사용한 용어이지만, 옵저버빌리티를 위한 고민은 오래전부터 지속되어왔습니다. 시스템이 내가 의도한 대로 작동하고 있을까? 예상치 못한 장애 탐지와 장애 근본 원인은 어떻게 분석할 수 있을까? IT 인프라 운영 환경에 문제가 발생했을 때, 문제 식별을 위해 필요한 객관적인 지표는 어떻게 도출할 수 있을까? 하지만 소프트웨어 애플리케이션에서 Observability는, 위와 같은 고민이 발생하거나 겪어보지 못했던 현상이 생길 때 이를 이해하고 설명할 수 있는 지표를 분석해 줍니다. │Obsevability의 등장배경 및 필요성 앞에서 옵저버빌리티가 무엇인지 살펴봤는데요. 이어서 Observability가 등장하게 된 이유와 필요성에 대해 자세히 살펴보겠습니다. MSA 전환에 따른 복잡성 증가 옵저버빌리티가 등장하게 된 첫 번째 이유는, 모놀리식 아키텍처에서 MSA 환경으로 전환함에 따라 복잡성이 증가했기 때문입니다. 우선 그림을 통해 자세히 살펴보겠습니다. [그림(왼)]은 모놀리식 아키텍처를 나타내는데요. 애플리케이션의 모든 구성 요소가 하나의 인프라로 통합되어 있는 형태입니다. 배포가 간단하며, 확장성이 쉽고, E2E 테스트가 용이하다는 장점이 있습니다. 하지만 조그마한 수정 사항이 있으면, 다시 구성 환경을 빌드하고 배포해야 한다는 단점이 있습니다. 또한 일부 오류가 전체 아키텍처에 영향을 미친다는 치명적인 단점도 존재하죠. 반면 [그림(오)]에 해당하는 MSA(Micro Service Architecture)는 하나의 큰 애플리케이션을 여러 개의 작은 애플리케이션으로 쪼개어, 변경과 조합이 가능합니다. 작은 서비스의 독립적 배포라는 강력한 장점을 앞세워 Netflix, PAYCO와 같은 다양한 기업들이 앞다투어 MSA를 받아들였습니다. 여기서 문제는 MSA로 변화함에 따라 통합 테스트나 E2E 테스트 검증이 필요해졌는데요. 이처럼 여러 서비스의 API를 검증해야 하므로, 복잡성이 증가하고 많은 시간과 비용이 소모되었습니다. 무엇보다 각 서비스 별로 자체적인 데이터베이스가 있어, 트랜잭션에 대한 파악이 어려워지기도 했죠. 따라서 기존 APM이 담당하는 트랜잭션 모니터링의 복잡성은 더욱 증가했고, Observability의 필요성이 대두되었습니다. DevOps와 클라우드 네이티브 환경으로서의 전환 옵저버빌리티가 등장하게 된 두 번째 이유는, DevOps와 클라우드 네이티브 환경으로 전환하기 위해 필요한 도구이기 때문입니다. DevOps의 핵심은 소프트웨어의 개발(Deployment)과 운영(Operation)을 분리하는 것이 아닌, 하나로 통합된 업무 처리 방식으로 진행됩니다. 이때 관리하는 서비스 전반에 대한 가시성이 충분히 확보되지 않으면, DevOps 조직은 근본적인 원인을 찾는 데 어려움을 겪게 됩니다. 이러한 어려움을 해결하기 위해서는 서비스를 구성하는 아키텍처부터 트랜잭션까지 가시성이 확보되어야 합니다. 이를 통해 DevOps의 목표인 지속적인 개발과 운영의 통합을 만들어낼 수 있죠. 또한 Observability는 클라우드 네이티브 환경으로 전환하기 위한 필수 조건입니다. 기업에서 운영 중인 서비스/IT 인프라가 클라우드 네이티브 환경으로 전환되면서, 이전에 발생하지 않았던 모든 장애 가능성에 대한 인지를 위해 Observability가 선행되어야 합니다. │Observability와 Monitoring 차이점 그렇다면 기존의 모니터링(Monitoring)과 옵저버벌리티(Observability)의 차이점은 무엇일까요? 기존의 모니터링 역할은 IT 인프라의 '정상 작동 확인'을 위한 도구 역할에 초점이 맞춰져 있었습니다. 모니터링 구성 요소인 대시보드와 사용자 알람을 통해 가시성을 확보하고, 장애를 쉽게 감지할 수 있었죠. 즉 모니터링은 인프라 성능 지표, 구성 관리, 사용자 알람에 주 목적을 둔 IT 운영 담당자에 포커스를 맞춘 도구입니다. Observability는 기존 모니터링이 맡는 알람(Alerting), 메트릭(Metric) 외에도 로그(시스템, 애플리케이션), 트레이스, 디버깅과 같은 작업이 가능합니다. 이를 통해 앞으로 발생할 수 있는 장애를 미리 예측하고, 발생한 장애에 대한 근본적인 원인을 찾아내는 데 초점이 맞춰져 있습니다. │Observability 확보를 위한 핵심 구성 요소 옵저버빌리티는 앞서 언급했듯이 메트릭(Metric), 로깅(Logging), 트레이싱(Tracing) 등 작업이 가능한데요. 좀 더 자세히 살펴보겠습니다. Metric 모니터링 분야에서 Metric(메트릭)이란, 인프라 혹은 서비스 성능과 상태를 나타내는 지표입니다. 여기서 중요한 점은 단순히 현재 상태를 보기 쉽게 표현하는 것에서 더 나아가 '시계열 데이터' 형태로 변화하는 데이터를 보여줘야 합니다. 예를 들어 CPU 사용률, 메모리 사용률, 스레드 사용률과 같이 시간이 지남에 따라 어떻게 변화하는지 효율적으로 보여줄 수 있어야 하죠. 또한 메트릭은 여러 AI 분석툴과 오픈소스와 결합하여, 직관적인 파라미터를 통해 시계열 데이터의 다양한 패턴을 자동 감지할 수 있어야 합니다. 운영자와 개발자에게 필요한 리소스를 선택할 수 있도록 성능 예측하는 지표도 필요합니다. Logging Logging(로깅)은 운영 중인 시스템과 애플리케이션에서 발생하는 다양한 이벤트와 에러 등을 기록하는 과정입니다. Observability는 여기서 더 나아가 클라우드 시스템의 모든 로그를 수집하여, 해당 로그를 통해 문제 원인을 식별할 수 있어야 합니다. 물론 각 로그 스트림은 단일 인스턴스에 대한 이벤트를 알려주기 때문에, 마이크로 서비스 환경에서 전체적인 문제 원인을 파악하기 어려울 수 있습니다. 하지만 중앙 집중식 로깅을 사용하면, 애플리케이션 로그를 한곳에 저장할 수 있습니다. 이를 통해 여러 서비스로 구성된 MSA 환경에서 로그를 효과적으로 검색하고 모니터링할 수 있죠. 이러한 작업을 하기 위해서 ELK Stack1 과 같은 로그 수집 활용 도구가 필요한데요. 이 도구는 로그 관리를 단순화화여, 전체 시스템 문제를 더 쉽게 분석할 수 있도록 도와줍니다. *ELK Stack1: Elastic Search. Logstash, Kibana의 약자로 데이터를 수집하고 분석하는 도구 모음 Tracing 트레이싱은 애플리케이션 실행 정보를 기록하는 '특별한 로깅' 방식을 의미합니다. 사실 로깅과 트레이싱을 구분하는 것에 큰 의미는 없습니다. 하지만 Observability 관점에서 트레이싱은, 전체 로그 중 문제를 일으키는 특정 로그들을 시각화하고 이를 선택적으로 관찰하는데 의미가 있습니다. Debugging Observability에서 말하는 디버깅은, 시스템과 서비스 성능을 확인하고 검사할 수 있는 다양한 도구입니다. 장애 원인을 찾을 경우 그 장애 원인뿐만 아니라, 연관관계를 가진 여러 인프라와 애플리케이션을 함께 보여줄 수 있어야 하죠. RUM RUM은 Real User Monitoring 약자로, 사용자의 인터랙션을 추적하여 웹사이트나 애플리케이션 성능을 실시간으로 모니터링하는 기술입니다. 옵저버빌리티는 앞서 언급했듯, 더 이상 IT 인프라 운영자를 위한 도구가 아닙니다. DevOps를 위한 통합적인 가시성을 제공하는 도구이죠. 따라서 운영자와 개발자를 위한 '실제 사용자 관점'에서 모니터링을 제공해야 합니다. 이처럼 옵저버빌리티 시스템은 애플리케이션의 전체적인 상태를 깊이 있게 파악하고, 문제 원인을 분석하는 데 중점을 두는 접근 방식입니다. 그렇다면 애플리케이션 성능 관리 시스템인 APM 도구와는 어떤 차이점이 있을까요? │APM과 Observability 차이점 어떻게 보면 APM과 Observability는 비슷해 보이지만, 문제 원인과 인프라를 분석하는 시각에 따라서 다양한 차이점을 지니고 있습니다. 우선 첫 번째 차이점으로는 모니터링 목적 대상에 따른 차이가 있습니다. APM은 E2E(End-to-End) 성능 구간에 주목합니다. WEB-WAS-DB에 걸친 이 과정을 실제 서비스 사용자의 *액티브 서비스2에 초점을 맞춰, 애플리케이션 성능을 분석하고 모니터링하죠. *액티브 서비스: 현재 시점에서 사용자에게 제공되고 있는 상태 Observability는 APM에서 주목하는 E2E보다, 더 많은 범위를 모니터링합니다. 시스템 인프라, WAS, DB에 대한 정밀 성능 분석과 장애 감지는 물론. 운영 중인 인프라와 서비스를 통합하여 문제 원인을 찾는 데 집중합니다. [그림] Zenius-APM 사용자 정의 실시간 모니터링 상황판 따라서 두 번째 차이점으로는, 측정하는 지표에도 많은 차이가 있는데요. APM은 사용자 요청에 따른 응답 시간과 응답 분포, 액티브 서비스 상태, 트랜잭션 처리율, 이슈 중심으로 '사용자 요청' 관점에 따라 주요 지표를 확인할 수 있습니다. Observability는 사용자의 요청 관점이 아닌, 발생할 수 있는 '모든 이벤트 지표'에 주목합니다. 보다 더 전방위적인 모니터링이 가능하죠. 또한 옵저버빌리티는 기존 APM에서 발생하는 주요 장애 원인뿐 아니라, 예측하지 못한 장애를 객관적인 지표로 보여줍니다. 정리한다면 인프라와 서비스를 분석하고 장애를 탐지한다는 점에서 APM과 Observability는 동일한 역할을 갖지만, 결국 사용자가 무엇을 더 초점에 맞추느냐에 따라 사용 목적은 아래와 같이 달라질 수 있습니다. 우리 기업은 Observability가 맞을까, APM가 맞을까? APM Type Observability Type 애플리케이션 성능 최적화가 필요한 경우 애플리케이션 코드 내의 문제를 식별하고 해결하는 데 중점을 둘 경우 MSA 환경이 아닌 모놀리식 아키텍처에서 서비스를 구성하고 있는 경우 MSA 환경에서의 분산 시스템을 통해 서비스를 구성하는 경우 단순한 애플리케이션 성능을 넘어 전체 IT 인프라 환경에 대한 통찰력 확보가 필요한 경우 인프라 운영자, 개발자, 보안담당자 모두가 통합 모니터링 환경이 필요한 경우 이번 글에서는 옵저버빌리티의 중요성과 APM의 차이점을 자세히 살펴보았습니다. 결론적으로 옵저버빌리티와 APM 중 어느 하나를 더 좋다고 할 수 없으며, 각 조직의 요구사항과 사용 편의성에 맞춰 선택해야 합니다. 그러나 점점 복잡해지는 IT 환경을 고려한다면, 옵저버빌리티를 기반으로 한 Zenius-APM과 같은 도구를 활용하여 좀 더 효율적으로 웹 애플리케이션을 관리해 보는 것은 어떨까요? 🔍더보기 Zenius APM 더 자세히 보기 📝함께 읽으면 더 좋아요 • APM에서 꼭 관리해야 할 주요 지표는?! • APM의 핵심요소와 주요기능은?!
2024.07.24
기술이야기
APM의 핵심요소와 주요기능은?!
기술이야기
APM의 핵심요소와 주요기능은?!
지난 글을 통해서 APM의 필요성과 '트랜잭션' 현황 파악의 중요성에 대해서 알아봤습니다. 이번 시간에는 트랜잭션을 어떤 방식으로 추적하는지 APM 동작 과정을 통해 살펴보고, APM 시스템을 최적화하는 핵심 요소와 기능은 무엇인지 자세히 알아보겠습니다. │APM 동작 과정 APM은 Client-Web Application-DBMS와 같은 구성요소 사이에 트랜잭션1을 추적할 수 있어야 합니다. 이를 통해 웹 서비스 전반적인 성능을 모니터링하고, 문제가 발생했을 때 원인을 신속하게 진단할 수 있기 때문인데요. 그렇다면 각 단계별로 APM가 어떻게 트랜잭션1을 추적하는지 좀 더 자세히 살펴보겠습니다. *트랜잭션1: 쉽게 말해 데이터베이스에 실행되는 작업 단위를 의미합니다. 트랜잭션은 작은 여러 작업들을 하나의 그룹으로 묶어 처리하기 때문에, A라는 작업에서 일부가 성공했다고 하더라도 하나의 트랜잭션 처리가 비정상적으로 종료되면 모두 실패한 것이죠. 클라이언트(Client) 웹 서비스 사용자가 이용하는 디바이스 또는 브라우저입니다. 클라이언트에서 발생하는 요청과 응답을 추적하여 페이지 로딩 시간, 사용자 활동, 에러 발생 등을 파악할 수 있습니다. 이 정보들을 통해 사용자 경험을 분석하고 개선하는데 기초 자료로 사용되죠. 웹서버(Web Server) 클라이언트 요청을 받아, 적절한 답을 생성하여 보내는 서버입니다. 이 단계에서 APM은 서버(예: Apache, Nginx) 로그와 성능 지표를 분석하여 요청 처리 시간, 데이터 전송량, 서버 오류 등 정보를 모니터링하고 기록합니다. 웹 애플리케이션 서버(WAS) WAS는 Web Application Server의 약자로, 애플리케이션에서 사용하는 데이터를 저장하고 관리하는 시스템입니다. 이 단계에서 APM은 데이터베이스 성능을 모니터링하여 DB 쿼리 실행시간과 DB 서버 부하 등을 측정하고, 성능 문제를 파악하는 데 도움을 줍니다. WAS 종류로는 WebLogic, Websphere, JEUS, Tomcat 등이 있습니다. 데이터베이스(DBMS) DBMS(Database Management System)는 기업에서 발생하는 모든 데이터를 저장하고 관리하는 소프트웨어입니다. 이 단계에서는 DB 성능 관리 솔루션을 통해, 애플리케이션 개발자가 작성한 SQL 튜닝과 DBMS 소프트웨어 병목 현상 등을 모니터링할 수 있습니다. 특히 데이터베이스는 IT 인프라에서 필수 요소입니다. 기업 서비스 대부분이 데이터베이스에 접근하여, 데이터를 조회하고 수정해야 하기 때문에 DB 관리는 매우 중요하다 할 수 있죠. 이처럼 APM은 Client-Web Server-Was-DB 각 구성요소 사이에 있는 트랜잭션을 추적하여 웹 서비스 성능을 평가할 수 있습니다. 그다음으로는 APM 시스템 전체적인 성능을 평가하고 최적화하는 핵심 요소는 무엇인지 살펴보겠습니다. │APM 성능을 최적화하는 핵심요소 APM 시스템은 크게 5가지 요소를 통해, 전체적인 성능을 최적화할 수 있습니다. 우선 Resource는 시스템 성능과 안정성을 평가하는데 중요한 역할을 하며, DataBase는 SQL 쿼리의 실행 계획이나 DB 연결 상태와 같은 세부 정보를 분석하여 데이터베이스 성능을 최적화합니다. Alert는 모니터링된 데이터에서 문제를 식별하고 사용자나 운영자에게 경고를 보내며, User 경험과 행동을 추적하여 서비스 품질을 평가합니다. WAS는 서버 내부에서 발생하는 이벤트를 모니터링하고, 서버 성능을 평가하는 역할을 합니다. Resource-Database-Alert-User-WAS 이 5가지 요소는 APM 아키텍처를 구성하는 핵심 요소이기도 한데요. 다음 내용을 통해 APM 아키텍처를 좀 더 자세히 살펴보겠습니다. │APM 아키텍처 APM 아키텍처는 Agent를 통해 WAS(관리대상) 실시간 데이터를 수집하고 → Manager에서 데이터를 수집/분석/가공 한 뒤 → 다양한 UI로 시각화합니다. 특히 꼭 기억해야 할 APM 아키텍처 핵심 3가지는 에이전트, 데이터베이스, 통신방식인데요. 좀 더 자세히 알아보겠습니다. 에이전트 APM 관리대상(예시: WebSphere, WebLogic, JBoss, JEUS, Tomcat 등)에 Agent라고 불리는 소프트웨어를 설치합니다. 그다음 모니터링 대상 시스템(WAS)에서 데이터를 수집하죠. 에이전트는 애플리케이션 내부 동작을 모니터링하고, 성능 데이터를 수집하는 역할을 합니다. 이러한 데이터를 활용하여 에이전트는 서비스 구간별 현황과 초당 처리 건수, 서비스 응답시간, 동시 접속자 수, 트랜잭션 거래량, 에러 등 상세한 지표를 제공해 주죠. 데이터베이스 수집된 데이터를 보관하고 분석하기 위해서는, 데이터베이스(DataBase)를 사용합니다. 이 데이터베이스는 대규모 데이터를 저장하고 관리하는 구조여야 하며, 분석하고 보고서를 생성하는데 필요한 데이터를 효율적으로 쿼리 할 수 있어야 합니다. 통신방식 APM 시스템은 보통 다양한 통신 프로토콜(Communication Protocol)을 사용하여, 데이터를 수집하고 전송합니다. 예를 들어 웹 소켓(WebSocket)을 통해 실시간 데이터를 전송하거나 http(s)를 사용하여 주기적으로 데이터를 전송하는 방식이 일반적입니다. 그다음으로는 APM은 어떤 주요 기능을 제공하는지 알아보도록 하겠습니다. │APM 주요기능 APM은 대표적으로 웹사이트와 소프트웨어 애플리케이션 및 서비스에서, 성능을 모니터링하고 분석하는 기능이 있는데요. 좀 더 자세한 APM 기능을 살펴보겠습니다. 실시간 성능 통합 모니터링 [그림] Zenius-APM 토폴로지 맵 APM은 Tomcat, Jboss, WebLogic, JEUS 등 다양한 애플리케이션 서버(WAS) 환경에서 실행되는 애플리케이션 통합 모니터링을 제공합니다. 시스템 간의 처리 성능과 현황 정보는 토폴로지 뷰를 통해 시각적으로 파악할 수 있죠. [그림] Zenius-APM 모니터링 상황판 또한 각 서버의 트랜잭션 처리량, 처리 속도, 자원 사용량을 실시간으로 분석하여 시스템 성능을 관리합니다. 특정 트랜잭션 실행 경로를 추적하고 분석하여, 성능 병목 현상도 식별할 수 있습니다. [그림] Zenius-APM 모니터링 서비스 응답분포 APM은 서비스 응답 분포도를 제공하여, 비정상적인 트랜잭션을 집중적으로 조회하고 분석할 수 있습니다. 장애관리 APM은 메모리 누수, 서비스 응답 지연과 같은 장애 원인을 실시간으로 추적하고 분석하는 기능을 제공합니다. Rawdata를 기반으로 장애 발생 시점을 재현하여, 문제의 근본 원인을 파악하는 데 도움을 주죠. 또한 자동 이벤트 처리는 장애 관리 규칙(Rule)에 따라 이루어지며, 문제 발생 시에는 사용자에게 즉각적인 알림을 제공합니다. 성능 분석과 통계 APM은 애플리케이션 성능을 다양한 지표(예: 성능비교, 기간비교, 증설 필요성, 시간대별 등)를 통해 분석하고, 여러 파일 형식의 보고서로 제공합니다. 또한 애플리케이션 성능 문제와 SQL 쿼리 간의 연관성을 분석하여 성능 개선 방안을 제안합니다. 다양한 환경 지원 레거시 시스템에서 클라우드 인프라에 이르기까지, APM은 다양한 IT 환경을 효과적으로 지원합니다. 또한 WAS 중심 성능 관리와 MSA(마이크로 서비스 아키텍처) 환경 모니터링을 가능하게 하는 기술을 제공하죠. 이번 시간에 알아본 내용처럼 APM은 다양한 애플리케이션 서버(WAS) 환경에서 실행되며, 트랜잭션 성능을 관리하는 통합 모니터링 제품입니다. Zenius-APM와 같이 다양한 WAS 환경에서의 통합 모니터링과 트랜잭션 처리 현황을 체계적으로 파악할 수 있는 APM을 통해, 효과적으로 웹 애플리케이션을 관리해 보세요!
2024.07.19
기술이야기
서버 모니터링 트렌드 살펴보기
기술이야기
서버 모니터링 트렌드 살펴보기
기업이나 조직의 IT 인프라 모니터링은 서버 모니터링에서 출발합니다. 통상적으로 서버 모니터링부터 네트워크, 데이터베이스, 웹애플리케이션, 전산설비 등으로 모니터링의 범위를 확장해 나가는 것이 일반적입니다. 서버는 초창기 메인 프레임부터 유닉스 서버, 리눅스 서버를 거쳐 최근의 가상화 서버에 이르기까지 물리적 및 논리적으로 그 성격이 변화해 왔습니다. 그에 따라 서버 모니터링의 관점도 많이 변모해 왔습니다. 기껏해야 1~2대 규모로 운영하던 메인 프레임의 시대와 수천, 수만대의 서버팜을 관리해야 하는 시대의 모니터링 개념은 달라야 합니다. 또, 가상화 시대를 맞아 물리적 서버 개념보다는 논리적 서버 개념이 중요해지고, 서버 1~2대의 장애 상황보다는 서버팜이 이루고 있는 서비스의 영속성이 중요해졌습니다. 이처럼 서버라는 인프라가 기술 발전에 따라 변모하고 있고, 그에 대응해 모니터링 콘셉트나 방법도 변화하고 있습니다. 이번 블로그에서는 서버 관련 새로운 인프라 개념 및 기술들이 대두되면서 변화하는 서버 모니터링의 새로운 트렌드에 관해 논의해 보고자 합니다. 1. 클라우드 네이티브 모니터링 더 많은 기업이나 조직이 전통적인 레거시 시스템에서 클라우드로 이동함에 따라 클라우드 모니터링의 필요성이 급격히 증가했습니다. 클라우드 네이티브 모니터링 도구는 Amazon Web Services(AWS), Microsoft Azure, Google Cloud Platform(GCP)과 같은 클라우드 환경에서 애플리케이션과 클라우드 인프라를 모니터링하도록 설계됐습니다. 또, 클라우드 인프라의 성능, 가용성 및 보안에 대한 실시간 인사이트를 제공해, IT운영부서가 문제를 신속하게 발견하고 해결할 수 있도록 지원합니다. 일반적인 클라우드 모니터링은 메트릭과 로그를 사용해 클라우드 인프라 및 애플리케이션 성능을 하나의 통합된 화면에 제공합니다. 또한 통합 IT 환경 측면에서는 컨테이너 오케스트레이션 플랫폼 및 서버리스 컴퓨팅과 같은 다른 클라우드 환경과 통합해 모니터링할 수도 있습니다. 클라우드 기반 모니터링의 최신 추세는 하이브리드 모니터링입니다. 조직은 하이브리드 모니터링을 통해 클라우드와 온프레미스에서 각각 실행 중인 서버 및 애플리케이션 모두를 단일 플랫폼에서 모니터링할 수 있습니다. 2. 인공지능과 머신러닝 서버 모니터링의 또 다른 트렌드는 인공 지능(AI)과 머신 러닝(ML)을 사용해 모니터링 과정을 자동화하는 것입니다. AI 및 ML 알고리즘은 모니터링 과정에서 생성된 방대한 양의 데이터를 분석하고 패턴을 식별해 이상 징후를 감지할 수 있습니다. 이는 실시간으로 수행될 수 있으므로 운영관리자는 발생하는 모든 문제에 신속하게 대응할 수 있습니다. ML 알고리즘은 과거 데이터를 분석해 트래픽이 가장 많은 시기나 잠재적 장애와 같은 미래 추세를 예측할 수 있습니다. 이를 위해 서버의 성능과 관련된 대규모 데이터 세트에서 ML 알고리즘을 교육해야 합니다. 이 데이터는 서버 로그, 시스템 메트릭, 애플리케이션 로그 및 기타 관련 정보가 해당됩니다. 다음으로 알고리즘을 학습해 다양한 메트릭 간의 패턴과 상관 관계를 식별하고 이상 징후와 잠재적 문제를 감지합니다. 머신 러닝 모델이 훈련되면 서버를 실시간으로 모니터링하도록 배포할 수 있으며, 모델은 지속적으로 서버 메트릭을 분석하고 이를 학습한 패턴과 비교합니다. 편차나 이상을 감지하면 문제를 해결하기 위해 경고 또는 자동화된 작업을 트리거할 수 있습니다. 예를 들어, 트래픽이 갑자기 증가하는 경우 리소스를 자동으로 Scaling 하거나 다운 타임을 방지하기 위해 다른 조치를 취할 수 있습니다. 전반적으로 인공 지능과 머신 러닝을 사용해 서버 모니터링을 자동화하면, 문제해결에 시간을 절약하고 인적 오류의 위험을 줄일 수 있습니다. 또, 심각한 문제로 번지기 전에 잠재적 문제를 식별해 서버 인프라의 전반적인 안정성과 가용성을 향상할 수 있습니다. 3. 컨테이너 모니터링 컨테이너가 애플리케이션 배포에 점점 더 많이 사용되면서, 컨테이너 모니터링은 서버 모니터링의 중요한 측면이 됐습니다. 컨테이너란 애플리케이션을 모든 인프라에서 실행하는데 필요한 모든 파일 및 라이브러리와 함께 번들로 제공하는 소프트웨어 배포 도구입니다. 컨테이너를 사용하면 모든 유형의 디바이스 및 운영 체제에서 실행되는 단일 소프트웨어 패키지를 만들 수 있습니다. 뿐만 아니라, 단일 시스템에서 한 컨테이너는 다른 컨테이너의 작업을 방해하지 않으므로 확장성이 뛰어나고, 결함이 있는 서비스가 다른 서비스에 영향을 주지 않아 애플리케이션의 복원력과 가용성이 향상되는 장점이 있습니다. 컨테이너 모니터링은 CPU 및 메모리 사용량과 같은 컨테이너 리소스 사용률에 대한 실시간 메트릭을 제공할 수 있습니다. 또, 애플리케이션이 의도한 대로 실행되고 있는지 확인하기 위해 Kubernetes(쿠버네티스)와 같은 컨테이너 오케스트레이션 플랫폼을 모니터링하고, 컨테이너 및 기본 인프라에 대한 실시간 가시성을 제공합니다. 4. 서버리스 모니터링 서버리스 컴퓨팅은 사용량에 따라 백엔드 서비스를 제공하는 방법으로, 개발자가 서버를 관리할 필요없이 애플리케이션을 빌드하고 실행하는 것을 가능하게 합니다. 서버리스 컴퓨팅은 벤더 종속성(Vendor lock-in), 콜드 스타드와 DB백업이나 영상 인코딩 등 단시간에 많은 컴퓨팅 용량이 필요한 경우, 효율적이지 않음에도 불구하고 최근 몇 년 동안 주목을 받아오며 서버리스 모니터링이 서버 모니터링의 새로운 트렌드가 됐습니다. 서버리스 모니터링은 CPU, 메모리, 디스크 사용량 등 리소스 사용률, 애플리케이션 성능, 호출 시간 및 오류율과 같은 기능 성능에 대한 실시간 인사이트를 제공합니다. 서버리스 모니터링은 데이터베이스 쿼리 성능과 같은 서버리스 함수의 종속성에 대한 인사이트도 제공합니다. 5. 마이크로서비스 모니터링 마이크로서비스는 하나의 큰 애플리케이션을 여러 개의 작은 기능으로 쪼개어 변경과 조합이 가능하도록 만든 아키텍처로, 각 서비스를 다른 서비스와 독립적으로 개발, 배포 및 확장할 수 있는 장점이 있습니다. 하지만 마이크로서비스는 일반적으로 분산된 환경에 배포되므로 성능을 추적하고 문제를 찾아내기가 어렵고, 독립적으로 설계됐으므로 호환성에 어떤 문제가 있는지 감지할 필요가 있어 마이크로서비스 모니터링이 필요합니다. 마이크로서비스 모니터링은 개별 마이크로서비스 및 전체 애플리케이션의 성능과 상태를 추적하는 프로세스로 로그, 메트릭 및 트레이스와 같은 다양한 소스에서 데이터를 수집하고 분석해 문제를 식별하고 성능을 최적화하는 작업입니다. 마이크로서비스 모니터링은 각 마이크로서비스 별 가용성, 응답 시간, 가동 시간, 지연 시간, 오류율을 포함합니다. CPU, 메모리, 디스크 사용량과 같은 리소스 사용률을 추적해 잠재적인 성능 병목 현상이나 리소스 제약을 식별할 수 있고, 마이크로서비스 간의 데이터 흐름을 추적하고 서비스 간의 종속성 추적을 모니터링합니다. 또, 마이크로서비스 모니터링은 애플리케이션 전체의 전반적인 상태와 성능뿐만 아니라 타사 서비스 및 API의 성능과 상태도 모니터링할 수 있습니다. ----------------------------------- 브레인즈컴퍼니는 꾸준히 연구개발에 매진해 상기와 같은 새로운 트렌드를 반영한 Zenius-EMS를 개발, 출시했습니다. Zenius-EMS는 고객들이 레거시 시스템에서부터 클라우드 네이티브 시스템에 이르기까지 다양한 관점의 서버모니터링을 할 수 있도록 지원합니다. *이미지 출처: Unsplash, flaction
2023.03.29
1