반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
최신이야기
검색
기술이야기
브라우저 모니터링 시스템(Zenius BRMS) 개발기
기술이야기
브라우저 모니터링 시스템(Zenius BRMS) 개발기
IT 시스템은 날이 갈수록 복잡해지고 있습니다. 모놀리식 아키텍처는 유연한 마이크로서비스(MSA)로 분화되었고, 정적인 서버 환경은 컨테이너와 서버리스 기반의 클라우드 네이티브로 빠르게 전환되었습니다.이러한 변화 속에서 DevOps 문화의 확산과 함께 시스템 전체의 상태를 파악하는 '옵저버빌리티(Observability)'의 중요성은 그 어느 때보다 커졌습니다. 이러한 배경에서 브레인즈컴퍼니는 고객들이 사용자 경험의 최접점인 웹 브라우저 구간까지 모니터링 범위를 확장하여 서비스 전반의 가시성을 확보할 수 있도록, 브라우저 모니터링 시스템인 'Zenius BRMS(Browser Monitoring System)'를 개발하게 되었습니다. 사용자 행동 추적과 정밀한 체감 성능 분석이 강점인 Zenius BRMS의 핵심 엔진을 구현하기 위한 내용을 정리했습니다. 우리만의 아키텍처: 중계 에이전트가 없는 통합 파이프라인 Zenius BRMS는 브라우저 데이터 수집의 핵심 도구로 표준 오픈소스 프레임워크를 채택했습니다. 이는 특정 벤더에 종속되지 않으면서 MSA 및 클라우드 네이티브 환경의 사실상 표준(De Facto Standard)으로 자리 잡은 기술이기 때문입니다. 단순히 데이터를 수집하는 기능을 넘어, 데이터의 생성부터 전송까지 수집 라이프사이클 전체를 아우르는 포괄적인 규격을 갖추었다는 점이 결정적인 도입 배경이 되었습니다. 다만, 표준 아키텍처를 그대로 따르기보다는 운영 환경에 최적화된 구조를 설계하는 데 집중했습니다. 이미 백엔드 데이터 처리의 중추 역할을 하는 자사 매니저가 존재하므로, 이를 최대한 활용하여 전체 구조를 단순화하기로 한 것입니다. 결과적으로 운영 복잡도를 높이는 별도의 오픈소스 수집 에이전트를 중간에 두는 대신, 브라우저에서 수집한 데이터를 자사 매니저로 직접 전송하는 효율적인 통합 파이프라인을 구축했습니다. “애플리케이션 -> 매니저 -> 저장소” 구조로 배치 프로세서를 사용하여 데이터를 수집한 후 매니저로 전송합니다. 이를 통해 외부 프레임워크 관리 포인트를 줄이면서도 자사 솔루션의 강력한 데이터 처리 기능을 활용하여 프로세스를 일원화할 수 있었습니다. NodeJS나 모바일 앱 환경이라도 엔드포인트만 매니저로 지정하면 즉시 연동이 가능한 구조입니다. 이제 이렇게 수집된 데이터를 어떻게 다루고 있는지 살펴보겠습니다. 세션(Session) 정의와 생명주기 수집된 데이터를 분석하기 위해서는 기준이 필요합니다. 우리는 식별 ID를 가진 특정 사용자가 아니라 브라우저에 접근한 행위 자체를 하나의 세션으로 정의했습니다. 따라서 한 명의 사용자라도 상황에 따라 여러 개의 세션을 생성할 수 있습니다. 세션은 무한히 지속될 수 없으므로, 미동작 만료 시간(15분)과 최대 지속 시간(4시간)을 두어 생명주기를 관리합니다. 사용자가 활동을 하면 만료 시간이 갱신되지만 시작 후 15분 이내 동작이 없거나 4시간이 지나면 강제로 만료되는 구조입니다. 세션 정보는 쿠키를 활용하여 데이터 수집시점에 활용합니다. 해시 기반 샘플링 (XOR 연산의 활용) 때에 따라 대량의 데이터를 모두 수집하는 것은 비효율적이므로 샘플링이 필수적입니다. 기존의 샘플링은 단편적인 데이터 손실을 유발했기에 우리는 세션 기준 샘플링을 도입했습니다. 알고리즘 핵심은 균등한 분포(Uniform Distribution)를 만드는 것입니다. 세션 ID(UUID)를 32비트 정수로 변환하여 샘플링에 활용했는데 이 과정에서 AND 연산은 0으로 OR 연산은 최대값으로 수렴하는 경향이 있습니다. 따라서 우리는 비트의 무작위성을 가장 잘 보존하는 XOR 연산을 사용하여 균등한 샘플링 확률을 보장했습니다. 데이터 유실 없는 전송: sendBeacon vs keepalive 조금 더 자세한 가시성 확보를 위해 우리는 세션의 행동이 녹화되는 기능을 추가했습니다. 세션 행동을 녹화하여 전송할 때 가장 큰 문제는 브라우저 닫기 등으로 인한 데이터 유실입니다. 보통 이 시점에 navigator.sendBeacon을 많이 사용하지만 우리는 Fetch API의 keepalive: true 옵션을 선택했습니다. sendBeacon은 헤더 커스터마이징에 제약이 있고 응답 처리가 불가능한 반면 keepalive 옵션은 훨씬 유연한 제어가 가능하기 때문입니다. 64KB 용량 제한 이슈는 전송 주기를 조절하고 자체 용량 체크 로직을 추가하여 해결했습니다. 단순 저장소를 넘어: 다차원 분석을 위한 데이터 아키텍처 전환 Zenius BRMS의 초기 설계에서는 매니저에서 가공된 데이터의 신속한 기록과 실시간 조회를 위해, 입출력 속도가 뛰어난 Key-Value 기반의 인메모리 데이터베이스가 활용되었습니다. 하지만 분석해야 할 데이터 속성이 점차 다차원적으로 고도화되고, 분산된 시스템 간의 정교한 데이터 동기화가 요구되면서 기존 Key-Value 구조를 넘어선 확장성이 필요해졌습니다. 이에 따라 대규모 데이터 검색과 복잡한 집계 연산에 최적화된 검색 엔진 기반 저장소로 아키텍처를 전환했습니다. 특히 데이터 유입 단계의 파이프라인에서 요청-응답 시간(Response Time)과 같은 주요 파생 데이터를 미리 연산하여 저장하는 방식을 도입함으로써, 조회 시점의 연산 부하를 줄이고 데이터 가공 효율을 높였습니다. 단순한 처리 속도를 넘어 데이터의 활용성과 분석의 유연성에 무게를 둔 결과, 보다 심도 있고 다각적인 모니터링이 가능한 분석 환경을 구축할 수 있게 되었습니다. 브라우저에서 실시간으로 수집된 데이터는 자사 매니저를 거쳐 분석 목적에 최적화된 저장소에 안전하게 기록됩니다. 이로써 그간 파악하기 어려웠던 사용자 경험의 최전방인 프론트엔드 구간의 가시성을 확보할 수 있게 되었습니다. 이제 남은 핵심 과제는 "사용자의 클릭 한 번이 백엔드의 구체적인 어떤 쿼리를 유발했는가?"를 단절 없이 연결하는 것입니다. 이러한 전 구간(End-to-End) 추적을 실현하기 위해 서비스 간의 연관 관계를 정의하는 컨텍스트 전파(Context Propagation) 기술을 더욱 고도화할 계획입니다. 나아가 AI 기반의 이상 탐지(AIOps) 기술을 결합하여, 단순한 수치 관찰을 넘어 시스템 스스로 문제를 진단하고 예측하는 진정한 의미의 옵저버빌리티를 완성해 나갈 예정입니다.
2025.12.23
기술이야기
범정부 정보시스템 예방점검체계 대응 솔루션, Zenius GPM의 4가지 장점
기술이야기
범정부 정보시스템 예방점검체계 대응 솔루션, Zenius GPM의 4가지 장점
최근 디지털 행정서비스의 중요성이 날로 커짐에 따라 행정안전부는 범정부 정보시스템에 대한 예방점검 체계 도입을 의무화했습니다. 안정적인 서비스를 제공하기 위한 필수적인 조치이지만, 현장의 실무자들에게는 만만치 않은 도전이기도 합니다. 매일 약 120개에 달하는 점검 항목을 수동으로 확인하고 보고서를 작성하는 일은 업무 피로도를 높일 뿐만 아니라, 자칫 집중력 저하로 인한 점검 누락이나 데이터 오기입과 같은 인적 오류를 유발할 수 있기 때문입니다. Zenius GPM(Government Preventive Monitoring)은 이러한 현장의 어려움을 해결하고 보다 효율적인 모니터링 환경을 제공하기 위한 솔루션입니다. 행정안전부의 예방점검 매뉴얼을 충실히 시스템화하여 업무 효율성과 시스템 안정성을 동시에 잡은 Zenius GPM의 핵심 특장점 4가지를 자세히 살펴보겠습니다. 범정부 정보시스템 예방점검체계 대응 솔루션, Zenius GPM의 4가지 장점 1. 행정안전부 매뉴얼을 준수하는 자동 점검 체계 구현 Zenius GPM의 가장 큰 강점은 행정안전부가 규정한 '범정부 정보시스템 예방점검 매뉴얼'을 기반으로 설계되었다는 점입니다. 기존에는 관리자가 직접 서버나 장비에 접속하여 CPU, 메모리, 디스크 상태 등을 일일이 확인하는 수동 점검이 주를 이뤘습니다. 하지만 Zenius GPM은 매뉴얼에 명시된 약 120여 개의 필수 점검 항목을 시스템 내에 내재화하여, 서버, WEB, WAS, DBMS, 네트워크 장비 등 이기종 IT 자원에 대해 Agent의 수집기능과 명령어 수행을 통해 자동 점검을 수행합니다. 이러한 자동화는 단순히 편리함만을 제공하는 것이 아닙니다. 수작업 시 발생할 수 있는 점검 누락을 원천적으로 차단하고, 데이터를 수기로 입력하는 과정에서 생길 수 있는 실수를 방지하여 데이터의 신뢰성을 크게 높여줍니다. 또한, 단순히 점검을 수행하는 것에 그치지 않고 매뉴얼에 따른 표준 운영 절차를 시스템적으로 강제함으로써, 조직 전체가 일관된 기준에 따라 시스템을 관리할 수 있는 환경을 조성합니다. 이는 결과적으로 시스템 장애를 사전에 탐지하고 예방하는 데 큰 역할을 수행합니다. 2. 직관적인 통합 모니터링 뷰(Dashboard View) 제공 수많은 장비의 상태를 실시간으로 파악해야 하는 모니터링 업무에서 시각적인 직관성은 무엇보다 중요합니다. Zenius GPM은 방대한 점검 데이터를 시각화하여 관리자가 시스템의 전반적인 건강 상태를 한눈에 파악할 수 있는 통합 모니터링 뷰를 제공합니다. 일상점검 요약 대시보드를 통해 전체 IT 자원의 점검 현황을 종합적으로 보여주며, 정상, 이상의 상태를 색상(Color-coded)으로 명확히 구분하여 관리자가 직관적으로 상황을 인지할 수 있도록 돕습니다. 텍스트 위주의 나열식 화면이 아닌, 아이콘 차트와 그래프를 활용해 점검 진행률과 결과를 가시적으로 표현하기 때문에 관리자는 어떤 영역에서 문제가 발생했는지 즉각적으로 식별할 수 있습니다. 만약 요약 화면에서 이상 징후가 발견된다면, 클릭 한 번으로 상세 점검 결과 화면으로 이동하여 구체적인 원인을 파악할 수 있는 드릴다운(Drill-down) 기능을 지원합니다. 이러한 사용자 중심의 인터페이스는 문제 발생 시 대응 시간을 단축시키고 관제 업무의 효율을 높여줍니다. 3. 운영 환경에 최적화된 유연한 설정과 확장성 모든 기관의 IT 환경이 동일할 수는 없기에, 솔루션은 다양한 운영 환경을 수용할 수 있는 유연성을 갖춰야 합니다. Zenius GPM은 정해진 시간에 자동으로 점검을 수행하는 스케줄링 기능을 기본으로 제공하며, 장애가 의심되거나 긴급한 확인이 필요할 때는 언제든 관리자가 즉시 점검을 실행할 수 있는 온디맨드(On-demand) 기능을 지원합니다. 또한 Zenius GPM은 기본 제공되는 점검 항목을 그대로 사용하는 데 그치지 않고, 각 항목에 적용되는 점검 명령어와 판단 기준을 운영 환경에 맞게 조정할 수 있도록 설계되어 있습니다. 기관별 시스템 구성이나 운영 정책에 따라 비정상 패턴이나 임계치를 항목 단위로 개별 수정하거나, 필요 시 일괄 적용할 수 있어 점검 기준을 현실적인 수준으로 유지할 수 있습니다. 이를 통해 환경 특성과 맞지 않는 과도한 알람을 줄이고, 실제 운영에 의미 있는 이상 징후를 보다 정확하게 식별할 수 있습니다. 아울러 Zenius GPM은 Zenius EMS 프레임워크 기반 위에서 NMS, SMS, APM 등 다른 모니터링 솔루션과 유기적으로 연동될 수 있도록 구성되어 있습니다. 이를 통해 예방점검 결과를 기존 관제·모니터링 체계와 자연스럽게 연결하고, 점검과 관제를 아우르는 통합 IT 운영 관리 플랫폼으로 확장할 수 있습니다. 4. 보고서 작성 자동화 및 체계적인 이력 관리 실무자들이 가장 많은 시간을 할애하면서도 번거로워하는 업무 중 하나가 바로 보고서 작성입니다. Zenius GPM은 이 부분을 획기적으로 개선했습니다. 일상점검, 특별점검, 구조진단 등 행정안전부 기준 양식에 맞는 다양한 보고서 폼을 내장하고 있어, 시스템이 수집한 데이터를 바탕으로 클릭 몇 번이면 규격에 맞는 보고서를 자동으로 생성해 줍니다. 생성된 보고서는 시스템에 이력이 남게 되어 언제든 다시 조회하거나 다운로드할 수 있으며, 필요에 따라 점검 결과 리스트를 엑셀파일로 내보내는 기능을 지원하여 2차 가공이나 별도 보고 자료 작성 시에도 유용하게 활용할 수 있습니다. 축적된 점검 데이터와 보고서는 단순한 기록을 넘어 시스템의 장기적인 성능 추이를 분석하고, 향후 인프라 증설이나 개선 계획을 수립하는 데 있어 객관적인 근거 자료로 활용될 수 있어 데이터 기반의 의사결정을 강력하게 지원합니다. Zenius GPM은 단순한 모니터링 도구를 넘어, 복잡하고 반복적인 범정부 예방점검 업무를 시스템화하여 관리자가 보다 생산적이고 핵심적인 업무에 집중할 수 있도록 돕는 든든한 운영 파트너입니다. 표준화된 점검 체계를 통해 장애를 사전에 예방하고, 자동화를 통해 업무 효율을 높이고자 하는 담당자분들에게 Zenius GPM은 가장 확실한 해답이 될 것입니다. 이미 1,500여 개의 고객사에서 검증된 기술력을 바탕으로 여러분의 IT 운영 환경을 한 단계 더 발전시켜 보시기를 권해 드립니다. { "@context": "https://schema.org", "@type": "BlogPosting", "headline": "범정부 정보시스템 예방점검체계 대응 솔루션, Zenius GPM의 4가지 장점", "description": "행정안전부의 예방점검 매뉴얼을 시스템화하여 업무 효율성과 시스템 안정성을 높이는 Zenius GPM의 핵심 기능 4가지(자동 점검, 통합 뷰, 유연한 설정, 보고서 자동화)를 소개합니다.", "image": "https://www.brainz.co.kr/og_image/blog/436", "datePublished": "2025-12-11", "author": { "@type": "Person", "name": "차정환", "jobTitle": "차장", "description": "브레인즈컴퍼니의 마케팅과 브랜딩, 홍보를 총괄하고 있습니다." }, "publisher": { "@type": "Organization", "name": "브레인즈컴퍼니", "logo": { "@type": "ImageObject", "url": "https://www.brainz.co.kr/_html/images/layout/logo.svg" } }, "mainEntityOfPage": { "@type": "WebPage", "@id": "https://www.brainz.co.kr/recent-story/view/id/436" }, "articleBody": "Zenius GPM의 4가지 장점: 1. 행정안전부 매뉴얼을 준수하는 자동 점검 체계 구현 2. 직관적인 통합 모니터링 뷰(Dashboard View) 제공 3. 운영 환경에 최적화된 유연한 설정과 확장성 4. 보고서 작성 자동화 및 체계적인 이력 관리" }
2025.12.11
기술이야기
하이브리드 클라우드 모니터링에서 Zenius의 4가지 핵심 강점
기술이야기
하이브리드 클라우드 모니터링에서 Zenius의 4가지 핵심 강점
최근 기업들은 퍼블릭과 프라이빗 클라우드를 함께 활용하는 하이브리드 클라우드 환경을 적극적으로 도입하고 있으며, 그 위에서 쿠버네티스를 기반으로 한 마이크로서비스 운영이 점점 보편화되고 있습니다. 이러한 구조는 유연성과 확장성 측면에서 유리하지만, 동시에 관리와 운영의 복잡성을 크게 높이는 요인이 됩니다. 이러한 환경에서는 단순한 지표 수집을 넘어 End-to-End Observability, 쿠버네티스 이벤트와 성능 지표의 통합 해석, 분산된 클라우드 자원의 일관된 관리가 필요합니다. 더 나아가 알림과 자동화는 단순 경고를 넘어 실제 대응으로 이어질 수 있어야 합니다. Zenius EMS는 이러한 과제를 해결하기 위한 다양한 기능을 갖추고 있습니다. 다양한 환경을 아우르는 단일 뷰, 쿠버네티스와 애플리케이션까지 연결된 심층 분석, 자동화와 예측 기능, 그리고 모듈화 기반 확장성을 하나의 솔루션 안에서 제공합니다. 이번 글에서는 Zenius EMS가 하이브리드 클라우드 모니터링에서 가지는 핵심 강점을 구체적으로 살펴보겠습니다. 하이브리드 클라우드 모니터링에서 Zenius의 4가지 핵심 강점 1) End-to-End Observability 모니터링의 핵심은 파편화된 데이터를 문맥(Context) 기반으로 연결하는 것입니다. Zenius EMS는 사용자 경험부터 애플리케이션, 인프라, 네트워크까지 전 과정을 단일 관점에서 해석하여 사각지대 없는 가시성을 제공합니다. Topology Map & Service Map: 애플리케이션과 인프라 자원 간의 복잡한 호출 관계를 자동으로 시각화합니다. 이를 통해 장애 발생 시 어느 경로로 문제가 전파되고 있는지 직관적으로 파악할 수 있습니다. APM(애플리케이션 성능 관리) 연계: 트랜잭션 처리 경로를 구간별로 정밀 추적하여, WAS 코드의 문제인지 DB 쿼리의 지연인지, 혹은 외부 시스템의 병목인지 정확하게 식별합니다. NPM(네트워크 성능 관리) 통합 분석: 커널 수준의 네트워크 트래픽(RTT, Jitter, Latency)을 분석하여, 애플리케이션 성능 저하가 실제 네트워크 이슈에서 비롯되었는지 입체적으로 규명합니다. 이처럼 Zenius는 개별 지표를 나열하는 데 그치지 않고 데이터 간의 상관관계를 명확히 보여줍니다. 덕분에 운영자는 단편적인 수치를 맞추느라 시간을 낭비하는 대신, 서비스 전반에 미치는 영향을 즉각적으로 이해하고 의사결정을 내릴 수 있습니다. 2) 효과적인 알림 체계 단순히 "문제가 발생했다"는 경고만으로는 운영자의 피로도만 높일 뿐 실질적인 도움이 되지 않습니다. Zenius의 알림 체계는 장애 탐지부터 원인 분석, 그리고 대응까지 이어지는 완결된 워크플로우를 제공하도록 설계되었습니다. 자동 에스컬레이션(Auto-Escalation): 장애의 심각도와 지속 시간에 따라 담당자에게 단계별로 자동 보고됩니다. 이로써 중요 장애가 누락되거나 전파가 지연되는 리스크를 원천 차단합니다. 스냅샷(Snapshot) 기술: 장애가 발생한 그 순간의 CPU, 메모리, 트랜잭션 흐름 등 시스템 맥락(Context)을 그대로 저장합니다. 운영자는 이 데이터를 통해 장애 상황을 '재생'해보며 정확한 원인을 분석할 수 있습니다. Knowledge DB 축적: 과거의 장애 조치 이력을 데이터베이스화하여 제공합니다. 동일 유형의 문제가 재발했을 때, 운영자는 선배나 동료가 남긴 해결 가이드를 즉시 참고할 수 있습니다. 결과적으로 Zenius의 알림은 단순한 '소음(Noise)'이 아니라, 해결을 위한 가장 확실한 '단서'와 '가이드'가 되어 운영자의 대응 시간을 획기적으로 단축시킵니다. 3) 쿠버네티스 특화 모니터링 쿠버네티스 환경은 Pod의 생성과 종료, 오토스케일링, 롤링 업데이트 등 끊임없는 변화를 특징으로 합니다. 이러한 동적 분산 구조에서는 단순한 리소스 지표만으로는 문제를 진단하기 어렵습니다. Zenius EMS는 이를 위해 쿠버네티스 전용 모듈(Zenius K8s)을 제공하여, 클러스터 전체 상태를 세밀하게 추적하고 분석합니다. Zenius K8s는 Cluster, Node, Pod, Container 단위의 상태와 자원 사용량을 실시간으로 수집·시각화합니다. 이를 통해 CPU·메모리 사용률 변화나 네트워크 트래픽·에러 패킷량과 같은 성능 지표를 파악할 수 있으며, 동시에 Pod 재시작이나 성능 저하와 같은 주요 상태 변화를 함께 모니터링할 수 있습니다. 또한 자동 생성되는 Topology Map은 Pod와 서비스 간의 연결 관계를 시각적으로 표현하여, 클러스터 내부 자원의 배치와 상호 연관성을 직관적으로 이해할 수 있도록 지원합니다. 더 나아가 Zenius EMS는 K8s 모듈과 APM 모듈을 연계하여, 클러스터 내부의 자원 이슈가 실제 애플리케이션 성능에 어떤 영향을 미쳤는지 교차 분석합니다. 이를 통해 운영자는 단순히 “Pod가 불안정하다”는 현상에 머무르지 않고, 서비스 성능 저하의 근본 원인을 클러스터 이벤트와 연관 지어 명확히 규명할 수 있습니다. 4) 클라우드 리소스 통합 관리 하이브리드 클라우드 환경에서는 서로 다른 CSP 계정과 리전, 다양한 서비스 콘솔이 분산되어 있어 운영 복잡성이 높아집니다. Zenius EMS는 CMS 모듈을 통해 이러한 분산된 리소스를 하나의 기준으로 통합 관리할 수 있도록 합니다. CMS 모듈은 AWS, Azure, GCP, NCP, OCI 등 주요 퍼블릭 클라우드 계정과 리전을 자동으로 동기화하며, 각 리소스에 이미 설정된 서비스·팀·환경 태그 정보를 함께 조회할 수 있습니다. 이를 통해 운영자는 CPU, 메모리, 스토리지 사용량과 같은 성능 지표뿐만 아니라 비용과 가용성까지 단일 화면에서 관리할 수 있습니다. 보안 측면에서는 각 클라우드 사업자가 제공하는 보안 그룹이나 접근 제어 설정 수준의 정보를 함께 조회할 수 있어, 운영자가 리소스 구성 상태를 점검하는 데 도움을 줍니다. 이를 통해 복잡하게 분산된 클라우드 계정과 리전을 보다 일관된 기준으로 관리할 수 있으며, 운영 효율성을 크게 높일 수 있습니다. 즉, Zenius EMS의 클라우드 모니터링은 단순 리소스 사용량 확인에 그치지 않고, 비용·성능·보안을 아우르는 거버넌스 수준의 통합 관리를 지원합니다. 운영자는 여러 CSP 콘솔을 오가며 데이터를 취합할 필요 없이, 단일 프레임워크 내에서 일관된 기준으로 클라우드 환경을 운영할 수 있습니다. 하이브리드 클라우드와 쿠버네티스 환경은 앞으로 더 확장되고 복잡해질 것입니다. 기업들은 다양한 퍼블릭 클라우드 서비스와 프라이빗 인프라를 병행하며, 수많은 마이크로서비스와 컨테이너가 실시간으로 변동하는 상황에 직면하게 됩니다. 이때 운영자는 단편적인 지표를 모니터링하는 것만으로는 장애의 흐름을 이해하거나 대응 속도를 보장할 수 없습니다. Zenius EMS는 복잡한 환경을 단일 프레임워크로 단순화하여 운영자의 의사결정을 돕습니다. 장애는 더 빨리 탐지되고, 더 정확하게 원인이 분석되며, 더 신속하게 대응으로 이어집니다. 결국 이는 비용 절감과 SLA 준수, 고객 경험 개선이라는 구체적인 성과로 이어집니다. Zenius EMS는 하이브리드 클라우드 환경에서 안정적인 운영 성과를 실현하는 믿을 수 있는 파트너입니다. 하이브리드 클라우드 운영 가이드 FAQ Q1. 온프레미스와 퍼블릭 클라우드가 섞인 복잡한 환경, 전체적인 가시성을 어떻게 확보해야 하나요? 파편화된 인프라를 End-to-End Observability를 통해 '단일 관점'으로 통합해야 합니다. Zenius를 활용하면 토폴로지 맵(Topology Map)으로 자원 간의 연결 관계를 시각화하고, 사용자 경험부터 인프라까지의 데이터를 유기적으로 연계해야 전체 서비스 상태를 맥락적으로 파악할 수 있습니다. Q2. 쿠버네티스(K8s) 도입 후 장애 원인 파악이 더 어려워졌는데, 효과적인 모니터링 전략은 무엇인가요? 동적인 자원 변화를 실시간으로 추적하는 쿠버네티스 전용 분석이 필수입니다. 단순히 리소스만 보는 것이 아니라, APM(애플리케이션 성능) 데이터와 교차 분석하여 파드(Pod)의 상태 변화나 재시작이 실제 서비스 성능 저하에 미친 인과관계를 명확히 규명해야 합니다. Q3. 쏟아지는 장애 알림(Alert) 속에서 대응 시간을 단축하고 운영 피로도를 줄이는 방법은? 단순 경고를 넘어 실제 조치가 가능하도록 정보가 제공되어야 합니다. Zenius는 장애 발생 시점의 시스템 상태를 저장한 스냅샷(Snapshot)과 과거 조치 이력(Knowledge DB)을 통해 분석 시간을 단축하고, 심각도에 따른 자동 에스컬레이션으로 불필요한 알림 소음을 줄여야 합니다. Q4. AWS, Azure 등 여러 클라우드(Multi-Cloud)를 쓸 때, 비용과 자원 관리를 일원화할 수 있나요? 각 CSP 콘솔을 오갈 필요 없이 통합 관리(Zenius CMS) 기능으로 계정과 리전을 자동 동기화해야 합니다. 이를 통해 흩어진 자원의 성능 지표는 물론, 비용 현황과 보안 설정(접근 제어)까지 하나의 화면에서 일관된 기준으로 관리하여 운영 효율성을 높일 수 있습니다. { "@context": "https://schema.org", "@graph": [ { "@type": "Organization", "@id": "https://www.brainz.co.kr/#organization", "name": "브레인즈컴퍼니 (Brains Company)", "url": "https://www.brainz.co.kr/", "tickerSymbol": "KOSDAQ:099390", "sameAs": [ "https://www.facebook.com/brainzcompany.official/", "https://kr.linkedin.com/company/brainzcompany", "https://thevc.kr/brainzcompany" ], "logo": { "@type": "ImageObject", "url": "https://www.brainz.co.kr/assets/img/logo.png", "width": 180, "height": 60 }, "contactPoint": { "@type": "ContactPoint", "telephone": "+82-2-2205-6015", "contactType": "customer service", "areaServed": "KR", "availableLanguage": "Korean" } }, { "@type": "Product", "@id": "https://www.brainz.co.kr/#zenius", "name": "Zenius (제니우스)", "description": "AI 기반 IT 인프라 통합 모니터링 솔루션 (EMS/NMS/APM)", "brand": { "@type": "Brand", "name": "Brains Company" }, "manufacturer": { "@id": "https://www.brainz.co.kr/#organization" }, "category": "IT Infrastructure Monitoring Software" }, { "@type": "TechArticle", "@id": "https://www.brainz.co.kr/recent-story/view/id/428#article", "headline": "하이브리드 클라우드 및 쿠버네티스 모니터링을 위한 Zenius EMS 핵심 전략", "description": "복잡한 하이브리드 클라우드와 쿠버네티스 환경에서의 End-to-End Observability 확보, 효율적인 알림 체계, 통합 리소스 관리 등 Zenius EMS의 4가지 핵심 강점을 심층 분석합니다.", "url": "https://www.brainz.co.kr/recent-story/view/id/428#u", "author": { "@id": "https://www.brainz.co.kr/#organization" }, "publisher": { "@id": "https://www.brainz.co.kr/#organization" }, "datePublished": "2025-12-19", "dateModified": "2025-12-19", "inLanguage": "ko-KR", "about": { "@id": "https://www.brainz.co.kr/#zenius" } }, { "@type": "ItemList", "@id": "https://www.brainz.co.kr/recent-story/view/id/428#features", "name": "Zenius EMS 하이브리드 클라우드 모니터링 핵심 기능", "description": "Zenius EMS가 제공하는 4가지 주요 모니터링 강점 요약", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "End-to-End Observability", "description": "Topology Map과 Service Map을 통한 인프라 및 애플리케이션의 유기적 관계 시각화 및 통합 분석." }, { "@type": "ListItem", "position": 2, "name": "지능형 알림 및 대응 체계", "description": "자동 에스컬레이션, 장애 스냅샷(Snapshot), Knowledge DB를 통한 신속한 장애 대응 프로세스." }, { "@type": "ListItem", "position": 3, "name": "쿠버네티스(K8s) 특화 모니터링", "description": "동적 클러스터 환경의 실시간 추적 및 APM 연계 분석을 통한 서비스 성능 최적화." }, { "@type": "ListItem", "position": 4, "name": "멀티 클라우드 통합 관리 (CMS)", "description": "AWS, Azure 등 이기종 클라우드 리소스의 비용, 성능, 보안 설정을 단일 콘솔에서 통합 관리." } ] }, { "@type": "FAQPage", "@id": "https://www.brainz.co.kr/recent-story/view/id/428#faq", "mainEntity": [ { "@type": "Question", "name": "온프레미스와 퍼블릭 클라우드가 섞인 복잡한 환경, 전체적인 가시성을 어떻게 확보해야 하나요?", "acceptedAnswer": { "@type": "Answer", "text": "파편화된 인프라를 End-to-End Observability를 통해 '단일 관점'으로 통합해야 합니다. Zenius를 활용하면 토폴로지 맵(Topology Map)으로 자원 간의 연결 관계를 시각화하고, 사용자 경험부터 인프라까지의 데이터를 유기적으로 연계해야 전체 서비스 상태를 맥락적으로 파악할 수 있습니다." } }, { "@type": "Question", "name": "쿠버네티스(K8s) 도입 후 장애 원인 파악이 더 어려워졌는데, 효과적인 모니터링 전략은 무엇인가요?", "acceptedAnswer": { "@type": "Answer", "text": "동적인 자원 변화를 실시간으로 추적하는 쿠버네티스 전용 분석이 필수입니다. 단순히 리소스만 보는 것이 아니라, APM(애플리케이션 성능) 데이터와 교차 분석하여 파드(Pod)의 상태 변화나 재시작이 실제 서비스 성능 저하에 미친 인과관계를 명확히 규명해야 합니다." } }, { "@type": "Question", "name": "쏟아지는 장애 알림(Alert) 속에서 대응 시간을 단축하고 운영 피로도를 줄이는 방법은?", "acceptedAnswer": { "@type": "Answer", "text": "단순 경고를 넘어 실제 조치가 가능하도록 정보가 제공되어야 합니다. Zenius는 장애 발생 시점의 시스템 상태를 저장한 스냅샷(Snapshot)과 과거 조치 이력(Knowledge DB)을 통해 분석 시간을 단축하고, 심각도에 따른 자동 에스컬레이션으로 불필요한 알림 소음을 줄여야 합니다." } }, { "@type": "Question", "name": "AWS, Azure 등 여러 클라우드(Multi-Cloud)를 쓸 때, 비용과 자원 관리를 일원화할 수 있나요?", "acceptedAnswer": { "@type": "Answer", "text": "각 CSP 콘솔을 오갈 필요 없이 통합 관리(Zenius CMS) 기능으로 계정과 리전을 자동 동기화해야 합니다. 이를 통해 흩어진 자원의 성능 지표는 물론, 비용 현황과 보안 설정(접근 제어)까지 하나의 화면에서 일관된 기준으로 관리하여 운영 효율성을 높일 수 있습니다." } } ] } ] }
2025.10.30
기술이야기
하이브리드 클라우드와 쿠버네티스 모니터링 시 반드시 고려해야 할 4가지
기술이야기
하이브리드 클라우드와 쿠버네티스 모니터링 시 반드시 고려해야 할 4가지
많은 기업과 기관은 퍼블릭 클라우드와 프라이빗 클라우드(또는 온프레미스)를 병행하는 하이브리드 클라우드 환경을 도입하고 있으며, 그 위에서 쿠버네티스(Kubernetes, K8s)를 활용해 수십 개의 마이크로서비스를 독립적으로 배포하고 확장하는 방식을 채택하고 있습니다. 이러한 구조는 높은 유연성과 확장성을 제공하지만, 동시에 운영 복잡성을 크게 증가시키는 특징이 있습니다. 이에 따라 다양한 모니터링 도구와 대시보드가 활용되고 있지만, 실제로 장애가 발생하면 원인을 파악하기까지 여전히 많은 시간이 소요됩니다. 데이터 자체는 충분히 수집되고 있으나, 사용자 요청에서 애플리케이션과 컨테이너, 네트워크, 클라우드 리소스에 이르는 흐름이 하나의 시간축으로 유기적으로 연결되지 않기 때문입니다. 결국 각 지표가 분절된 조각으로만 보이면서, 문제의 전반적인 맥락을 명확하게 파악하기 어렵게 됩니다. 따라서 이제 모니터링의 목적은 단순한 데이터 수집을 넘어야 합니다. 수집된 데이터를 유기적으로 연결된 관점에서 해석하고, 복잡한 분산 환경의 특성을 반영하며, 탐지 이후에는 신속하게 조치와 대응으로 이어질 수 있는 체계를 마련하는 것이 중요합니다. 그렇다면 하이브리드 클라우드와 쿠버네티스 환경에서 모니터링을 수행할 때, 구체적으로 어떤 부분을 반드시 고려해야 할까요? 지금부터 그 핵심 요소들을 차례로 살펴보겠습니다. 하이브리드 클라우드와 쿠버네티스 모니터링, 반드시 고려해야 할 4가지 1) End-to-End Observability로 장애 원인을 빠르게 찾을 수 있어야 한다 모니터링은 사용자 경험에서 시작해 애플리케이션, 컨테이너와 노드, 네트워크, 그리고 클라우드 리소스까지 하나의 흐름으로 이어져야 합니다. 예를 들어 사용자가 웹 애플리케이션에서 지연을 겪는다면, 해당 요청의 트레이스를 열어 어느 구간에서 지연이 발생했는지 확인하고, 같은 시각의 CPU·메모리·입출력(IO) 사용량과 데이터베이스나 메시지 큐 같은 클라우드 매니지드 서비스의 상태를 함께 살펴야 합니다. 이렇게 해야 단순히 “느리다”라는 현상에서 멈추는 것이 아니라, “어떤 서비스의 어떤 호출이 병목이며, 어떤 인프라 자원이 영향을 주었는가”라는 구체적 결론으로 이어질 수 있습니다. 이를 위해서는 데이터가 일관된 방식으로 연결되어야 합니다. 트레이스 식별자(Trace ID)와 서비스·환경 태그 같은 공통 메타데이터가 전체 수집 계층에 적용되어야 하며, 로그·메트릭·트레이스는 이 기준을 통해 즉시 상관 분석이 가능해야 합니다. 화면 구성도 마찬가지입니다. 서비스 개요에서 시작해 트랜잭션 세부, 컨테이너와 노드 지표, 네트워크와 클라우드 리소스로 자연스럽게 이어지는 드릴다운 구조가 마련되어야 운영자가 불필요하게 여러 화면을 오가며 시간을 낭비하지 않습니다. 또한 사용자 경험 지표를 백엔드 데이터와 연결하는 과정도 필요합니다. 실제 사용자 모니터링(RUM, Real User Monitoring) 기능 등을 통해 웹 성능의 핵심 지표를 함께 확인해야 합니다. LCP(Largest Contentful Paint·핵심 내용이 화면에 표시되기까지의 시간), INP(Interaction to Next Paint·사용자 입력에 대한 반응성), CLS(Cumulative Layout Shift·레이아웃 안정성)와 같은 지표를 백엔드 트레이스와 매칭하면, 지연의 원인이 서버 처리인지, 네트워크 왕복 시간인지, 외부 리소스 때문인지 명확히 설명할 수 있습니다. 2) 쿠버네티스 주요 이벤트를 실시간 성능 데이터와 함께 볼 수 있어야 한다 쿠버네티스는 끊임없이 변화하는 동적 분산 시스템입니다. Pod는 생성과 종료를 반복하고, 오토스케일러는 순간적인 부하에 따라 리플리카 수를 조정하며, 롤링 업데이트와 롤백은 하루에도 여러 번 발생합니다. 이런 특성 때문에 단순히 CPU와 메모리 사용률 같은 정적 지표만 확인해서는 문제를 제대로 이해하기 어렵습니다. 쿠버네티스 환경에서는 반드시 이벤트와 성능 지표를 같은 시간축에서 함께 해석해야 합니다. 예를 들어 특정 시점에 오류율이 급증했다면, 원인은 단순한 리소스 부족일 수도 있습니다. 그러나 API Server 지연이나 etcd 병목, 혹은 롤링 업데이트 과정에서 트래픽 전환이 매끄럽지 않아 발생한 문제일 가능성도 있습니다. 만약 Pod 재시작이나 CrashLoopBackOff 이벤트가 성능 저하와 같은 시점에 발생했다면, 이는 추측이 아니라 근거 있는 원인 분석으로 이어질 수 있습니다. 또한 서비스 간 통신에서 병목을 찾으려면 서비스 메쉬 지표나 eBPF 기반 네트워크 관측이 효과적입니다. 이들은 동서 트래픽의 RTT, 오류율, 지연 분포를 보여주어 호출 경로상의 문제 지점을 명확히 드러냅니다. 여기에 HPA 동작이나 롤백 시점을 성능 지표와 함께 기록하면, 배포가 실제 성능 저하의 원인이었는지도 빠르게 확인할 수 있습니다. 결국 쿠버네티스 모니터링은 지표와 이벤트를 분리해 보는 것이 아니라, 하나의 시간선에서 연결해 해석해야 합니다. 그래야 단순히 “문제가 있다”라는 수준에 머무르지 않고, “이 시점, 이 이벤트, 이 서비스가 원인이다”라는 실행 가능한 결론으로 이어질 수 있습니다. 3) 클라우드 계정·리전·비용·보안을 하나의 기준으로 관리할 수 있어야 한다 하이브리드 클라우드는 유연성을 제공하지만, 동시에 운영 복잡성과 관리 부담을 크게 높입니다. 사업자마다 지표 체계와 콘솔이 다르고, 계정과 리전이 분산되면 운영자는 조각난 정보를 이어 붙이는 데 많은 시간을 소모하게 됩니다. 이러한 문제를 줄이려면 반드시 메타데이터 규칙을 정의하고 이를 일관되게 적용해야 합니다. 클라우드 계정과 리전 인벤토리는 자동으로 동기화되어야 하며, 모든 리소스에는 팀·서비스·환경 정보가 태그로 부여되어야 합니다. 비용, 성능, 가용성 지표는 이 태그를 기준으로 정렬·비교되어야 하며, 이를 통해 특정 서비스나 팀 단위의 문제를 빠르게 좁혀갈 수 있습니다. 비용 관리 또한 단순히 총액 확인을 넘어 예산·예측·이상 비용 감지까지 하나의 화면에서 제공되어야 실제 운영과 의사결정에 도움이 됩니다. 보안 역시 운영과 별도로 다루지 않고 같은 시각에서 관리해야 합니다. 퍼블릭 버킷 노출, 과도한 보안그룹 개방, 장기간 미사용 액세스 키와 같은 항목은 운영 대시보드에 함께 표시되어야 하며, 이를 통해 비용·성능·보안을 종합적으로 고려한 균형 잡힌 결정을 내릴 수 있습니다. 또한 재해복구 관점에서는 리전 간 지표 정합성과 복구 목표치(RTO, Recovery Time Objective·복구 시간 목표 / RPO, Recovery Point Objective·복구 시점 목표) 달성 여부를 주기적으로 점검해야 합니다. 이러한 데이터가 체계적으로 관리될 때 실제 장애 상황에서도 신속하게 대응할 수 있습니다. 결국 하이브리드 클라우드 모니터링은 각 사업자의 시스템을 따로따로 보는 것이 아니라, 하나의 기준과 규칙으로 통합 관리해야만 진정한 효과를 발휘합니다. 4) 운영 자동화와 알림 체계가 효과적으로 갖춰져 있어야 한다 모니터링의 목적은 데이터를 보여주는 것이 아니라 문제를 신속히 해결하는 데 있습니다. 따라서 알림 체계는 단순히 많은 경고를 쏟아내는 것이 아니라, 운영자가 즉시 판단하고 대응할 수 있을 만큼 충분한 정보를 담아야 합니다. 정적 임계치만으로는 환경 변화를 따라가기 어렵습니다. 시스템은 정상 상태를 스스로 학습해 기준선을 조정할 수 있어야 하며, 유사한 성격의 이벤트는 상관관계 분석을 통해 하나의 사건으로 묶여야 합니다. 이렇게 해야 알림 소음을 줄이고, 운영자가 진짜 중요한 신호에 집중할 수 있습니다. 알림은 단순한 메시지가 아니라 증거를 함께 제공해야 합니다. 예를 들어 “CPU 사용률 초과”라는 경고만으로는 부족합니다. 같은 시점의 로그, 트레이스 링크, 최근 배포 이력, 리소스 스냅샷 등이 함께 제시되어야 운영자가 알림에서 곧바로 확인과 조치로 이어질 수 있습니다. 전달 방식 또한 중요합니다. 메신저 알림이나 모바일 푸시처럼 실제 대응이 이루어지는 채널을 사용해야 하며, 에스컬레이션은 시간과 역할에 따라 명확히 정의되어야 합니다. 교대 근무 체계와 연동된 프로세스까지 갖춰져야 운영 공백을 최소화할 수 있습니다. 궁극적으로는 탐지 → 증거 수집 → 조치 → 복구 확인까지 이어지는 과정이 표준 절차로 자리 잡아야 합니다. 사건 종료 후에는 포스트모템이 자동 기록되어 재발 방지로 이어져야 하며, 이러한 체계가 반복될수록 평균 대응 시간(MTTA)과 평균 복구 시간(MTTR)은 꾸준히 단축됩니다. 운영 자동화와 알림 체계가 제대로 작동할 때, 모니터링은 단순한 관찰을 넘어 실질적인 운영 성과로 연결됩니다. 클라우드와 쿠버네티스 환경은 앞으로도 더 확장되고 다양해질 것입니다. 서비스는 더 많은 리전에 걸쳐 배포되고, 애플리케이션은 더 많은 마이크로서비스로 쪼개지며, 운영자는 더 많은 데이터와 알림에 둘러싸이게 될 것입니다. 이 상황에서 단편적인 모니터링만으로는 대응 속도와 품질을 보장할 수 없습니다. 지금 필요한 것은 데이터를 연결된 시각으로 읽어내고, 이벤트와 지표를 하나의 시간선에서 해석하며, 클라우드 리소스를 일관된 규칙으로 관리하고, 알림을 실제 조치로 이어주는 운영 체계입니다. 이 네 가지는 기술적으로는 별개의 영역처럼 보이지만, 실제 운영에서는 긴밀히 맞물려 작동해야만 효과가 있습니다. 결국 모니터링의 목표는 단순히 상태를 보여주는 것이 아니라, 문제 해결과 서비스 안정성을 보장하는 데 있습니다. 하이브리드 클라우드와 쿠버네티스 환경에서 이 네 가지 관점을 충실히 반영한다면, 복잡성을 줄이고, 장애 대응 시간을 단축하며, 미래의 확장성까지 확보할 수 있습니다.
2025.09.25
기술이야기
복잡한 네트워크 트래픽, Zenius NMS·TMS·NPM으로 정확하게 분석하기
기술이야기
복잡한 네트워크 트래픽, Zenius NMS·TMS·NPM으로 정확하게 분석하기
오늘날 기업의 IT 인프라는 클라우드, 가상화, 마이크로서비스(Kubernetes)로 빠르게 전환되고 있습니다. 서비스는 점점 더 세분화되고 연결 구조는 복잡해지면서, 단일 지점에서 발생한 문제라도 전체 서비스 품질에 즉각적인 영향을 미칠 수 있습니다. 그러나 기존의 네트워크 모니터링 방식은 주로 장비 단위에 국한되어 있어, 트래픽 증가나 지연 같은 현상이 발생했을 때 원인을 신속하고 정확하게 파악하기가 쉽지 않습니다. 이러한 환경에서는 단순한 장비 레벨 모니터링을 넘어, 인터페이스 → 트래픽 흐름 → 프로세스 단위까지 네트워크를 다각도로 관찰하는 체계가 필요합니다. Zenius의 NMS, TMS, NPM은 각각의 레벨에서 데이터를 수집·분석함으로써, 네트워크 전반을 단계적으로 추적하고 문제 지점을 빠르게 규명할 수 있도록 돕습니다. 이번 글에서는 세 가지 솔루션을 연계하여 실제 운영 환경에서 어떻게 트래픽 원인을 분석할 수 있는지를 구체적으로 살펴보겠습니다. Zenius NMS·TMS·NPM: 각 솔루션의 특징과 차이점 Zenius NMS, TMS, NPM의 정의와 역할을 먼저 정리해보겠습니다. 각각의 솔루션은 모두 네트워크 트래픽을 모니터링하고 분석하는 기능을 제공하지만, 적용되는 관점과 수집 방식, 그리고 활용 목적에서 분명한 차이가 있습니다. Zenius NMS(Network Management System)는 SNMP를 기반으로 라우터, 스위치 등 네트워크 장비의 물리 인터페이스 관점에서 트래픽을 모니터링합니다. 이를 통해 장비별 포트 사용량, bps/pps, 에러 발생 여부 등을 실시간으로 확인할 수 있으며, 네트워크 전반의 기본적인 상태를 빠르게 파악하는 데 유용합니다. 반면 Zenius TMS(Traffic Management System)는 NetFlow, sFlow, IPFIX와 같은 Flow 데이터를 활용하여, 네트워크를 경유하는 IP·Port 단위 트래픽 흐름을 분석합니다. 스위치를 경유하는 트래픽에 대해 bps/pps와 같은 기본 지표를 확인할 수 있을 뿐 아니라, 애플리케이션별·서비스별·포트별로 트래픽을 분류하고 TopN 분석을 제공하기 때문에, 백본이나 라우터 구간에서 어떤 서비스가 대역폭을 가장 많이 사용하는지 직관적으로 파악할 수 있습니다. 마지막으로 Zenius NPM(Network Performance Monitoring)은 eBPF 기술을 기반으로 서버 및 컨테이너 환경의 커널 레벨 통신을 모니터링합니다. 단순 트래픽량뿐만 아니라 Latency, RTT, Jitter, Retransmit 등 정밀한 성능 지표까지 수집할 수 있어, Kubernetes나 MSA 기반 서비스처럼 복잡한 구조에서 세밀한 원인 분석이 가능합니다. 정리하자면, NMS는 장비·인터페이스 레벨, TMS는 네트워크 경로·서비스 레벨, NPM은 서버·프로세스 레벨에서 각각 네트워크를 해석합니다. 이 세 가지를 유기적으로 결합하면, 물리적 인터페이스 → 네트워크 경로 → 커널 기반 통신까지 다층적으로 추적할 수 있어, 복잡한 네트워크 환경에서 발생하는 트래픽 문제를 효과적으로 해결할 수 있습니다. 이제 각 솔루션이 실제로 어떻게 연계되어 활용되는지, 구체적인 기능 구성 및 분석 절차를 하나씩 살펴보겠습니다. NMS·TMS·NPM 기반 트래픽 분석 기능 구성 및 확인 절차 본격적으로 NMS·TMS·NPM 기반 트래픽 분석 절차를 살펴보겠습니다. 이번 사례는 쿠버네티스(K8s) 기반 WAS 서비스의 트래픽 흐름을 추적하며, 각 구간을 어떤 방식으로 점검할 수 있는지를 단계별로 살펴보겠습니다. [Step 1] 운영환경과 트래픽 흐름 구간 확인 먼저 운영환경의 기본 구성도를 확인하고 분석 대상이 되는 구간을 정리합니다. 본 사례에서는 DB POD → WAS POD → Worker Node → 내부 L3 → 백본 → 방화벽으로 이어지는 흐름을 점검 대상으로 삼습니다. 이러한 흐름을 명확히 정의해두면 이후 어떤 도구와 지표를 중점적으로 확인해야 할지 쉽게 구분할 수 있습니다. [Step 2] 구간별 모니터링 체계 구성 다음으로 각 구간을 어떤 방식으로 수용하고 분석할지 체계를 구성합니다. - 내부 L3, 백본, 방화벽은 SNMP를 통해 NMS에 연계하여 인터페이스 단위 트래픽을 수집합니다. - 백본은 NetFlow, sFlow 등의 Flow 데이터를 TMS에 수용해 애플리케이션 및 서비스 흐름을 분석합니다. - Worker Node는 Agent 기반으로 NPM에 연결해 POD 간 세밀한 통신 현황을 추적합니다. 이렇게 구성하면 서버, 네트워크 장비, 서비스 경로까지 계층별로 입체적인 모니터링이 가능합니다. [Step 3] 구간별 상세 분석 ① POD ↔ WAS POD DB POD와 WAS POD 사이의 통신은 [NPM > 모니터링 > 트래픽 > View, 필터 조건 검색] 경로를 통해 확인합니다. 여기서 IP와 Port를 기준으로 필터링하면, 해당 세션의 트래픽량뿐 아니라 Latency, RTT, Jitter, Retransmit 같은 세밀한 성능 지표를 함께 살펴볼 수 있습니다. 또한, [NPM > 모니터링 > 트래픽현황 > View, 필터 조건 검색] 메뉴를 이용하면 DB POD Port를 기준으로 실제 트래픽 흐름이 어떻게 연결되는지를 시각적으로 파악할 수 있습니다. ② WAS POD ↔ Worker Node ↔ 내부 L3 그다음에는 [NPM > 모니터링 > 트래픽현황] 화면에서 Worker Node 전체 기준으로 트래픽을 점검합니다. 이 과정에서는 상위 트래픽 발생 호스트, 송수신 바이트, Latency, Jitter 추이를 시간대별로 확인할 수 있어, 특정 시점에서 발생한 지연 현상을 이벤트와 연관 지어 분석하기에 적합합니다. ③ Worker Node ↔ 내부 L3 내부 L3 구간은 [NMS > 모니터링 > 장비 > 인터페이스] 메뉴에서 확인합니다. bps, pps, 에러 발생 여부 같은 항목을 중심으로 살펴보면 링크의 안정성과 과부하 여부를 빠르게 점검할 수 있습니다. 또한, [NMS > 모니터링 > 성능 > 인터페이스] 메뉴를 활용하면 시간대별 bps/pps 그래프를 통해 트래픽 패턴 변화를 확인할 수 있으며, 이는 NPM에서 관측한 Latency나 Jitter 지표와 교차 검증하는 데 도움이 됩니다. ④ 내부 L3 ↔ 백본 ↔ 방화벽 마지막으로 백본 구간은 TMS를 통해 흐름을 분석합니다. [TMS > TopN > 어플리케이션] 메뉴에서 HTTPS, PostgreSQL 등 주요 애플리케이션별 트래픽 분포를 확인할 수 있으며, [TMS > TopN > 트래픽, Port] 화면에서는 IP와 Port를 기준으로 어떤 서비스가 대역폭을 점유하고 있는지 빠르게 파악할 수 있습니다. [ TMS > TopN > 트래픽, Port ] IP, Port 등 다양한 기준의 백본 경유 트래픽 분석 결국, NPM은 POD·서버 간 세밀한 지연과 통신 성능을, NMS는 네트워크 장비 인터페이스 단위 안정성을, TMS는 서비스 및 애플리케이션 흐름을 각각 보여줍니다. 이렇게 다층적인 분석을 통해, 단일 구간이 아닌 전체 서비스 경로를 종합적으로 추적할 수 있으며, 이는 재현이 어려운 네트워크 장애 원인 파악에 큰 도움이 됩니다. 활용 예시 “특정 Worker Node 트래픽 급증” 원인 추적하기 쿠버네티스(K8s) 환경의 서비스는 일반적으로 다수의 POD가 상호 연결되어 하나의 서비스를 제공합니다. 이러한 구조에서는 특정 Worker Node의 트래픽이 급격히 증가했을 때, 기존의 일반 모니터링 도구(SMS) 만으로는 증가 원인을 정확히 분석하기 어렵습니다. SMS는 대개 NIC 단위 트래픽 수준까지만 보여주기 때문입니다. 따라서 Zenius NPM을 활용해 OS(커널) 관점에서 IP·Port 기준의 세밀 분석을 수행해야만, 어떤 POD·세션·포트가 원인인지 구체적으로 밝혀낼 수 있습니다. 1) NPM으로 포트/세션 단서 포착 먼저 [NPM > 모니터링 > 트래픽 > View, 필터 조건 검색]에서 문제의 Worker Node를 기준으로 플로우 목록을 정렬합니다. 다수의 POD에서 동일 포트(예: 8081) 로 통신하는 패턴이 확인되면, 수집 트래픽 증가 가능성이 높습니다. → 8081은 Zenius APM 데이터 수집 포트이므로, APM 수집량 증가에 따른 네트워크 사용량 상승을 1차 가설로 설정합니다. 2) NPM 트래픽 맵으로 대상·방향 확정 다음으로 [NPM > 모니터링 > 트래픽현황 > View, 필터 조건 검색]에서 RemotePort = 8081로 필터링합니다. 트래픽 맵을 통해 어떤 POD들이 8081 수집 지점으로 트래픽을 보내는지와 연결 방향을 직관적으로 확인할 수 있습니다. 본 사례에서는 4개의 POD에서 동일 포트로 집중되는 흐름이 나타났고, 추가 8081 통신 대상은 확인되지 않았습니다. 3) K8s에서 트래픽 발생 POD 상태 교차 검증 이제 [Zenius K8s > 모니터링 > 파드]에서 트래픽 발생 POD(예: 192.168.0.216) 를 선택해 상태와 자원 사용률(CPU/메모리), 네트워크(bps) 를 확인합니다. 본 사례에서는 상태가 정상이고 Limit 대비 사용률도 안정적이어서, 트래픽 증가는 장애가 아닌 정상적인 수집 과정에서 발생한 현상으로 판단할 수 있습니다. 4) APM 지표로 맥락 검증 마지막으로 [Zenius APM > 모니터링] 대시보드에서 요청 건수, 응답 시간, 동시 사용자 등의 애플리케이션 지표를 확인합니다. NPM에서 포착된 8081 증가 시점과 APM 지표가 동조하면, 네트워크 증가는 APM 수집 트래픽 증가(정상 동작)로 판단할 수 있습니다. 반대로 APM 지표가 평온한데 8081만 치솟는다면, 이는 수집 설정이나 라우팅 구성의 이상을 의심해야 합니다. 이 경우, 동일 조건을 재현해 문제를 다시 발생시켜 보고, 원인이 확인되면 수집 주기·라우팅·리소스 할당 등을 조정(튜닝)하여 최적화할 수 있습니다. NPM–NMS–TMS–K8s–APM을 유기적으로 연결해, 특정 Worker Node 트래픽 급증 이슈를 포트/세션 단서 포착 → 흐름 확인 → POD 상태 교차 검증 → 애플리케이션 지표로 맥락 확인의 순서로 좁혀가는 방법을 살펴봤습니다. 핵심은 커널 레벨의 정밀 지표(NPM)로 원인을 가설화하고, 맵/인터페이스/서비스 흐름을 통해 이를 빠르게 검증하는 것입니다. 이 흐름을 표준 운영 절차로 적용하면, 재현이 어려운 상황에서도 원인 구간의 신속한 특정과 실질적인 조치(설정·라우팅·리소스 튜닝)도 가능합니다. 이번 글에서는 Zenius NMS·TMS·NPM을 통해 네트워크 트래픽을 다층적으로 분석하는 방법을 살펴보았습니다. 각 솔루션이 담당하는 관점과 역할은 다르지만, 함께 연계해 활용하면 장애 원인을 더 빠르고 정확하게 파악할 수 있습니다. 복잡해지는 인프라 환경에서 이런 분석 체계를 마련해 두는 것이 안정적인 서비스 운영의 핵심입니다.
2025.09.23
기술이야기
eBPF로 구현하는 TCP 상태 추적 기반 네트워크 모니터링
기술이야기
eBPF로 구현하는 TCP 상태 추적 기반 네트워크 모니터링
예전에는 네트워크 성능을 모니터링할 때 tcpdump로 패킷을 캡처하거나, netstat으로 연결 상태를 확인하거나, NetFlow/sFlow 기반 분석을 많이 사용했습니다. 하지만 네트워크 환경이 복잡해지고 암호화 트래픽이 늘어나면서, 그리고 컨테이너·MSA 환경으로 서비스가 쪼개지면서 기존 방식의 패킷 기반 모니터링은 점점 한계를 드러냈습니다. 성능 부하는 커지고, 세부 가시성은 부족했습니다. 이 문제를 해결해 준 게 바로 eBPF(extended Berkeley Packet Filter)입니다. eBPF는 커널 내부 함수에 직접 훅(Hook)을 걸어서 데이터를 가져올 수 있기 때문에, 서비스에 큰 영향을 주지 않고도 운영 환경에서 실시간 성능 분석이 가능합니다. 쉽게 말해, 예전에는 netstat으로 “포트가 지금 어떤 상태인지”만 볼 수 있었다면, eBPF를 쓰면 “그 포트의 상태가 어떻게 변하고 있는지”까지 관찰할 수 있습니다. 그래서 최근 클라우드 네이티브 환경이나 초저지연 서비스 운영에서는 eBPF가 차세대 네트워크 모니터링 기술로 주목받고 있습니다. eBPF란? eBPF는 커널 안에서 안전하게 실행되는 작은 프로그램으로, 네트워크·시스템 동작을 실시간으로 추적하는 데 강점을 가집니다. 네트워크 모니터링 관점에서 자주 쓰이는 기능은 다음과 같습니다. • kprobe/kretprobe: 커널 함수 진입·종료 시점 후킹 • tracepoint: 커널 이벤트 발생 시점 후킹 • BPF Map: 커널과 사용자 공간 간 데이터 공유 • BPF Helper 함수: 커널 리소스 접근 API eBPF는 Verifier(검증기)가 프로그램의 안전성을 보장하지 못하면 로드를 거부합니다. 과거에는 Verifier가 루프의 종료를 판별하지 못해 루프 사용이 전혀 허용되지 않았지만, 최근에는 단순 반복문은 사용할 수 있게 되었습니다. 또한 BTF(BPF Type Format)와 CO-RE(Compile Once – Run Everywhere) 기술 덕분에, 커널 버전이 달라져도 동일한 eBPF 프로그램을 별도 빌드 과정 없이 그대로 운용할 수 있습니다. eBPF 사용 방법 제가 공부하면서 가장 흥미로웠던 예제는 BCC 툴셋에 포함된 **tcpstates**입니다. TCP 연결 상태 변화를 추적하는 예제인데, 구조를 간단히 정리하면 다음과 같습니다. • bpf.c: 커널에서 실행되는 함수 중 “어떤 걸 관찰할지”와 “관찰 시 어떤 데이터를 수집할지” 정의 • .h: 커널과 유저 공간이 공유하는 데이터 구조체 정의 • .c: 수집된 데이터를 가공해서 사용자에게 출력 예를 들어, tcpstates.bpf.c에서는 커널 tracepoint inet_sock_set_state를 후킹해서 TCP 상태 변화를 잡아냅니다. 아래 코드를 보면 이해가 쉬우실 겁니다. int handle_set_state(struct trace_event_raw_inet_sock_set_state *ctx) { struct sock *sk = (struct sock *)ctx->skaddr; __u16 family = ctx->family; __u16 sport = ctx->sport; __u16 dport = ctx->dport; __u64 *tsp, delta_us, ts; struct tcpstates_t tcpstates = {}; if (ctx->protocol != IPPROTO_TCP) return 0; ts = bpf_ktime_get_ns(); tcpstates.skaddr = (__u64)sk; tcpstates.ts_us = ts / 1000; tcpstates.pid = bpf_get_current_pid_tgid() >> 32; tcpstates.oldstate = ctx->oldstate; tcpstates.newstate = ctx->newstate; tcpstates.family = family; tcpstates.sport = sport; tcpstates.dport = dport; bpf_get_current_comm(&tcpstates.task, sizeof(tcpstates.task)); if (family == AF_INET) { bpf_probe_read_kernel(&tcpstates.saddr, sizeof(tcpstates.saddr), &sk->__sk_common.skc_rcv_saddr); bpf_probe_read_kernel(&tcpstates.daddr, sizeof(tcpstates.daddr), &sk->__sk_common.skc_daddr); } else { /* family == AF_INET6 */ bpf_probe_read_kernel(&tcpstates.saddr, sizeof(tcpstates.saddr), &sk->__sk_common.skc_v6_rcv_saddr.in6_u.u6_addr32); bpf_probe_read_kernel(&tcpstates.daddr, sizeof(tcpstates.daddr), &sk->__sk_common.skc_v6_daddr.in6_u.u6_addr32); } // 상태가 변경되면 유저 공간에 알리는 부분 bpf_perf_event_output(ctx, &events, BPF_F_CURRENT_CPU, &tcpstates, sizeof(tcpstates)); return 0; } 핵심 로직은 단순합니다. 커널에서 inet_sock_set_state가 호출되면 handle_set_state 함수가 실행되고, 이때 변경된 TCP 상태를 잡아내 사용자 공간으로 전달합니다. 언뜻 보면 복잡해 보일 수 있지만, 사실 bpf.c의 역할은 데이터를 가공하는 것이 아니라 수집하는 것입니다. 결국 중요한 것은 “내가 원하는 값이 구조체의 어디에 들어 있는지”를 정확히 찾아내는 일입니다. 그 값을 Map에 담아 사용자 공간으로 넘기면 됩니다. netstat으로 보이는 출력은 아래와 같죠. Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name tcp 0 0 192.168.0.10:22 192.168.0.55:54321 ESTABLISHED 2048/sshd: user@pts/0 netstat은 사용자가 명령어를 실행한 시점의 상태만 스냅샷 형태로 보여줍니다. 그래서 LISTEN, ESTABLISHED, CLOSE_WAIT처럼 비교적 오래 유지되는 상태만 주로 확인할 수 있습니다. 반면 tcpstates를 활용하면 커널 내부에서 발생하는 모든 TCP 상태 변화를 이벤트 단위로 추적할 수 있습니다. 덕분에 기존 툴로는 관찰하기 어려웠던 3-way handshake와 4-way handshake 과정까지 실제로 확인할 수 있다는 점이 흥미로웠습니다. 조금 더 실무적으로 활용하자면, CLOSE_WAIT이 비정상적으로 쌓이는 경우 커넥션 누수를 빠르게 탐지할 수 있고, TIME_WAIT이나 FIN_WAIT2 패턴을 분석하면 리소스 사용량 문제를 조기에 파악할 수 있습니다. 관측용 예제지만, 확장하면 운영 환경에서도 충분히 유용한 진단 도구가 될 수 있습니다 다음으로 유저 공간의 tcpstates.c는 커널 eBPF 프로그램이 보낸 이벤트를 받아서 보기 좋게 출력하는 역할을 합니다. 흐름은 단순합니다. ①eBPF 오브젝트 열기 (tcpstates_bpf__open()) ②프로그램 커널 로드 (tcpstates_bpf__load()) ③훅 부착 (tcpstates_bpf__attach()) ④필요 시 cgroup 필터 등록 (open(), bpf_map_update_elem()) ⑤주기적으로 Map을 읽거나 이벤트를 받아 상태 출력 현재는 TCP 상태 변경 이벤트가 발생할 때마다 화면에 출력하는 방식으로 동작하지만, 필요하다면 일정 주기마다 netstat을 호출하듯이 현재 상태를 스냅샷 형태로 출력하도록 구현할 수도 있습니다. 마무리하며 이처럼 간단한 코드만으로도 tcpdump나 netstat보다 훨씬 세밀하게 네트워크 흐름을 분석하는 프로그램을 만들 수 있습니다. tcpstates 같은 예제는 단순하지만, eBPF의 장점을 잘 보여줍니다. • 저부하 eBPF는 패킷 전체를 캡처하지 않고, 연결 상태나 세션 정보 같은 핵심 메타데이터만 선택적으로 수집합니다. 이로 인해 CPU와 메모리 사용 부담이 최소화되며, 운영 중인 서비스에 성능 저하를 거의 일으키지 않습니다. 즉, 실서비스 환경에서도 안정적으로 적용 가능한 경량 모니터링 방식입니다. • 높은 가시성 단순히 IP와 포트 수준의 정보만 보여주는 데 그치지 않고, 프로세스명·PID·서비스 단위까지 트래픽을 구분할 수 있습니다. 이를 통해 “어떤 서비스가 얼마만큼의 네트워크 자원을 소비하는지”를 즉시 파악할 수 있으며, 서비스별 자원 사용 현황을 보다 세밀하게 모니터링할 수 있습니다. • 확장성 기본적인 송·수신량 분석을 넘어, RTT(왕복 지연시간), 재전송률, 패킷 드롭률 등 다양한 지표를 손쉽게 확장할 수 있습니다. 필요한 메트릭을 커널 훅(Hook)에 연결해 Map에 저장하기만 하면, 곧바로 시각화와 분석에 활용할 수 있습니다. 이 덕분에 환경 변화나 분석 요구에도 유연하게 대응 가능한 구조를 제공합니다. 브레인즈컴퍼니 역시 이 기술을 Zenius NPM(Network Performance Monitoring)에 적용하면서 기존 방식으로는 확인하기 어려웠던 세밀한 성능 데이터를 확보할 수 있었습니다. 이를 통해 단순한 모니터링을 넘어 서비스 간 통신 병목을 실시간으로 파악하고, 장애 분석 시간을 크게 줄일 수 있는 솔루션을 완성할 수 있었던 점이 큰 성과였습니다. 앞으로도 이러한 경험을 바탕으로 eBPF 활용을 더 넓혀가고자 합니다.
2025.09.18
기술이야기
For power plant operation big data collecton and storage solution
기술이야기
For power plant operation big data collecton and storage solution
Today, corporations are facing increasingly complex management environments as IT infrastructure continues to grow and evolve. In response, the need for an integrated management system that ensures both scalability and flexibility has become essential. Zenius-SMS enhances operational efficiency by providing integrated management of distributed servers, rapid fault handling, and comprehensive analysis and reporting. Zenius-NMS supports geographically distributed network systems with optimal status maintenance and efficient management through real-time monitoring, failure management, and in-depth reporting. The datasheets for Zenius EMS, SMS, and NMS — advanced IT infrastructure management solutions tailored for power plants — are available below. Zenius EMS datasheet Zenius SMS datasheet Zenius NMS datasheet
2025.09.18
기술이야기
이상 징후 탐지 솔루션, Zenius AI의 주요기능과 특장점
기술이야기
이상 징후 탐지 솔루션, Zenius AI의 주요기능과 특장점
IT 인프라의 복잡성과 운영 환경이 점점 더 고도화됨에 따라, 시스템 장애를 사전에 탐지하고 선제적으로 대응하는 기술의 중요성이 크게 부각되고 있습니다. 기존의 장애 관리 방식은 주로 장애 발생 이후에 원인을 분석하고 복구 조치를 취하는 사후 대응(Post-Mortem Response) 중심이었습니다. 그러나 이러한 접근 방식은 서비스 다운타임 증가, 운영 비용 상승, 장애의 반복 발생과 같은 문제를 야기하며, 기업의 디지털 운영 안정성을 위협합니다. Zenius AI는 이러한 한계를 극복하기 위해 머신러닝 기반의 이상징후 탐지 및 장애 예측 기능을 제공하는 이상 징후 탐지 솔루션입니다. 대규모 IT 인프라 환경에서 수집되는 로그, 메트릭, 이벤트 데이터를 실시간으로 분석하여 정상 패턴에서 벗어나는 이상 징후를 조기에 감지하고, 잠재적인 장애를 사전에 예측할 수 있도록 지원하는 Zenius AI의 주요기능과 특장점을 자세히 알아보겠습니다. 이상 징후 탐지 솔루션, Zenius AI의 주요 기능 Zenius AI는 IT 운영 환경에서 이상징후를 실시간으로 감지하고 대응할 수 있도록 설계된 AI 기반의 모니터링 솔루션입니다. 이 솔루션은 데이터 수집 및 관리, AI 모델 학습 및 예측, 이상징후 감지 및 대응, 대시보드 시각화 및 운영관리의 네 가지 핵심 기능을 제공합니다. 1) 데이터 수집 및 관리 Zenius AI는 Kafka 기반의 고성능 메시징 시스템과 OpenSearch 기반의 스토리지 및 검색 엔진을 통해, 대규모 로그 및 메트릭 데이터를 실시간으로 안정적이고 유실 없이 수집할 수 있도록 설계되었습니다. 이를 통해 시스템 전반에서 발생하는 다양한 이벤트 및 상태 정보를 정밀하게 추적하고, 이상징후 탐지에 최적화된 정제된 학습용 데이터셋을 구축할 수 있습니다. 특히 Zenius EMS(Enterprise Monitoring System)와의 직접적인 연동 기능을 제공함으로써, 서버, 네트워크, 애플리케이션 등 다양한 IT 인프라에서 생성되는 실시간 성능 데이터를 효과적으로 수집할 수 있습니다. 이를 통해 기존 IT 운영 환경과 유기적으로 연결된 데이터 수집·분석 체계를 구현할 수 있으며, 수집된 데이터를 기반으로 한 AI 기반 이상징후 탐지 및 선제적 대응 체계 구축이 가능해집니다. 또한, 데이터 수집 단계에서부터 AI 학습 및 예측 모델 구축에 이르기까지 전체 파이프라인이 긴밀하게 통합되어 있어, 운영 효율성과 데이터 신뢰성을 동시에 확보할 수 있는 것이 Zenius AI의 큰 강점입니다. 2) AI 모델 학습 및 예측 Zenius AI는 시계열 데이터 기반의 정밀한 이상징후 탐지를 위해 Amazon Web Services(AWS)에서 제공하는 DeepAR 시계열 예측 모델을 활용합니다. DeepAR은 다수의 시계열 데이터를 동시에 처리하고, 시간 축을 따라 변화하는 패턴을 학습하여 정상 범위를 벗어나는 이상 징후를 사전에 감지할 수 있도록 지원합니다. 이를 통해 단순 임계값 기반 감지를 넘어선 지능형 예측 분석이 가능해집니다. 또한, Zenius AI는 AutoGluon 기반의 AutoML 기능을 통합하여 모델 개발 전반을 자동화합니다. 하이퍼파라미터 최적화, 특성 선택, 다양한 알고리즘 기반 학습 등을 자동으로 수행하고, 정확도 기준에 따라 최적의 모델을 자동으로 선택함으로써 분석 정확도와 효율성을 동시에 향상시킵니다. 데이터의 특성과 계절성이 반영된 학습 모델은, 각 서비스에 맞는 맞춤형 예측 알고리즘으로 적용되며, 모델 자동 배포, 버전 관리, 스케줄 기반 재학습 기능을 통해 지속적으로 개선되고 고도화됩니다. 3) 이상 징후 감지 및 대응 Zenius AI는 머신러닝 기반의 시계열 예측 모델을 활용하여, 시간에 따라 변화하는 메트릭 데이터의 정상적인 흐름을 학습하고, 예측값과 실제 관측값 간의 오차를 분석함으로써 예상 범위를 벗어나는 이상징후를 조기에 감지합니다. 이 방식은 단순한 임계치 설정을 넘어서, 모델이 정상 상태를 스스로 학습하고 예외 상황을 자동으로 판별함으로써, 더 높은 민감도와 신뢰성을 갖춘 예측 기반 감지 체계를 구현합니다. 또한, 감지된 이상징후에 대해 이벤트의 심각도를 자동 분류하고, 사전에 정의된 조건에 따라 이메일, 문자, 사운드 등 다양한 채널을 통한 실시간 알림을 제공함으로써, 운영자가 신속하게 대응할 수 있도록 지원합니다. 뿐만 아니라, Zenius AI는 메트릭 기반 탐지 외에도 로그 기반 이상징후 감지 기능을 제공합니다. 특히, 로그가 정상적으로 수집되지 않거나 누락될 경우를 실시간으로 탐지하는 로그 미수집 감지 기능을 통해, 분석에 필요한 데이터의 공백을 사전에 차단하고 이상 탐지 누락을 방지할 수 있습니다. 이 기능은 장애의 근본 원인을 조기에 식별하는 데 중요한 역할을 하며, 호스트 단위의 로그 수집 현황을 시각화하여 운영자가 이상 상황을 한눈에 파악하고 조치할 수 있도록 지원합니다. 4) 대시보드 및 시각화 기능 Zenius AI는 실시간 이상징후 감지 결과를 직관적으로 파악할 수 있도록, 고도화된 대시보드 및 시각화 기능을 제공합니다. 서비스 그룹, 호스트, 모델별로 논리적으로 구성된 시각화 컴포넌트를 통해, 운영자는 전체 IT 인프라의 상태와 이상징후 발생 현황을 한눈에 파악할 수 있으며, 각종 지표에 대한 심층 분석도 즉각적으로 수행할 수 있습니다. 또한, WYSIWYG(What You See Is What You Get) 기반의 시각 보고서 생성 기능을 통해, 이상징후 탐지 결과와 예측 데이터를 시각적으로 정리하고, 이를 분기별 보고서, 사용자 정의 통계 리포트 등 다양한 형식으로 출력할 수 있어 IT 운영팀 및 경영진과의 효율적인 커뮤니케이션과 의사결정을 지원합니다. 운영관리 측면에서는 사용자 권한 및 알림 통보 설정 기능이 포함되어 있어, 역할 기반 접근 제어(RBAC)를 통해 사용자별 접근 권한을 세밀하게 관리할 수 있습니다. 장애 또는 이상 이벤트 발생 시에는 이메일, 문자, 사운드 알람 등 다양한 매체를 통해 실시간 경보를 전송하고, 알림의 심각도, 전송 시간대, 수신자 그룹 등을 세분화하여 설정할 수 있어 운영의 유연성과 대응 속도를 크게 향상시킵니다. 이상 징후 탐지 솔루션, Zenius AI의 특장점 Zenius AI는 실시간 데이터 분석 역량과 AI 기반 모델 최적화 기능을 결합한 차세대 이상징후 탐지 솔루션으로, 기존 시스템 대비 한층 정교하고 신속한 대응 체계를 제공합니다. 이를 통해 IT 운영 환경에서 보다 신뢰도 높은 장애 예측과 효율적인 운영 관리가 가능해집니다. 첫째, Zenius AI는 초고속 인덱싱 및 검색 성능을 통해 대규모 로그 데이터를 실시간으로 분석할 수 있습니다. 최대 162만 EPS(Events Per Second)의 로그 인덱싱 처리 속도를 제공하며, 1TB 규모의 로그도 단 0.02초 내에 검색할 수 있어, 장애 발생 시 즉각적인 원인 진단과 대응이 가능합니다. 또한, 대용량 환경에서도 로그 유실 없이 안정적인 저장 및 분석이 가능하여, 운영 신뢰성과 가용성을 크게 향상시킵니다. 둘째, Zenius AI는 AI 기반의 자동화된 모델 관리 기능을 갖추고 있어, 모델의 학습, 최적화, 배포를 전 과정 자동화할 수 있습니다. 수작업 없이도 성능을 지속적으로 개선할 수 있으며, 스케줄 기반 학습 관리를 통해 최신 데이터를 반영한 정기적 모델 업데이트가 가능합니다. 또한, Zenius EMS(Enterprise Monitoring System) 및 다양한 3rd Party 시스템과의 연동 기능을 통해 기존 IT 인프라와 유기적으로 통합된 분석 환경을 구현할 수 있습니다. 셋째, 머신러닝 기반의 이상징후 조기 탐지 및 대응 체계를 통해 서비스 장애를 사전에 감지하고 신속하게 대응할 수 있습니다. 예측값과 실제값의 오차 기반 분석을 통해 정밀한 이상징후를 탐지하며, 장애 패턴 분석 기능을 통해 유사 장애의 반복 가능성을 최소화합니다. 이를 통해 운영자는 보다 체계적이고 선제적인 장애 대응이 가능하며, 전체 IT 서비스의 안정성과 연속성을 효과적으로 유지할 수 있습니다. Zenius AI는 AI 기반의 이상징후 탐지를 통해 IT 운영의 효율성을 높이고, 장애를 사전에 방지할 수 있도록 지원합니다. 머신러닝 기반의 학습과 장애 패턴 분석을 통해 장애 재발 가능성을 최소화하고, 선제적인 예방 및 대응 체계를 구축함으로써 장애 원인을 조기에 차단할 수 있습니다. 이를 통해 서비스 다운타임을 최소화하고, 안정적인 운영 환경을 유지하여 서비스품질과 신뢰도를 향상시킵니다. 또한, Zenius AI는 운영 비용 절감과 IT 생산성 향상에도 기여합니다. 장애 처리에 소요되는 인력과 시간을 절감해 운영팀이 핵심 업무에 집중할 수 있도록 돕고, 자동화된 감지 및 대응 시스템을 통해 전반적인 운영 부담을 효과적으로 완화합니다. 이상 징후 탐지 솔루션 Zenius AI도입을 통해 IT 운영의 안정성과 효율성을 강화하고, 보다 신뢰도 높은 서비스 환경을 구축하시기 바랍니다.
2025.04.03
기술이야기
쿠버네티스 모니터링 툴 선택 시 필수 고려사항 4가지
기술이야기
쿠버네티스 모니터링 툴 선택 시 필수 고려사항 4가지
쿠버네티스(K8s, Kubernetes)는 IT 인프라에서 필수적인 컨테이너 오케스트레이션 플랫폼으로 자리 잡았습니다. 하지만 구성 요소가 복잡하고 변화가 빠른 환경이기 때문에, 안정적인 운영과 장애 대응을 위한 모니터링 툴을 필요로 합니다. 이를 통해 클러스터 상태를 실시간으로 파악하고, 장애를 신속히 감지하며, 운영을 효율적으로 최적화할 수 있습니다. 하지만 모든 쿠버네티스 모니터링 툴이 동일한 수준의 기능과 성능을 제공하는 것은 아닙니다. 운영 환경에 적합하지 않은 툴을 선택하면 오히려 관리가 더 어려워지고, 비용이 증가하며, 장애 발생 시 신속한 대응도 어려워집니다. 효과적인 쿠버네티스 관리 체계를 구축하기 위해 쿠버네티스 모니터링 툴을 선택할 때 고려해야 할 네 가지 핵심 요소를 살펴보겠습니다. 쿠버네티스 모니터링 툴의 핵심 요소① 멀티 클러스터 및 하이브리드 클라우드 환경 지원 많은 기업이 쿠버네티스를 멀티 클러스터 환경에서 운영하고 있으며, 특히 하이브리드 및 멀티 클라우드 환경에서는 개별 클러스터를 따로 관리하는 방식이 운영 복잡성을 증가시키고 효율성을 저하시킬 수 있습니다. 따라서, 클러스터 간 연계성을 강화하고 중앙 집중형 관리 체계를 구축하는 것이 중요합니다. - 통합 대시보드를 통한 멀티 클러스터 관리 개별 클러스터 단위로 모니터링하면 운영이 복잡해지므로, 모든 클러스터의 상태를 단일 인터페이스에서 통합적으로 관리할 수 있어야 합니다. 이를 통해 개별 확인이 아닌 전체 운영 상황을 한눈에 파악하고, 클러스터 간 리소스를 효율적으로 관리할 수 있으며 장애 대응 속도도 향상시킬 수 있습니다. - 클라우드별 성능 모니터링 지원 AWS EKS, Azure AKS, GCP GKE, OpenShift 등 다양한 클라우드 환경에서 운영되는 쿠버네티스 클러스터의 특성을 고려한 솔루션이 필요합니다. 각 클라우드의 성능 모니터링 기능을 지원해야 하며, 이기종 클러스터 간 일관된 관리가 가능해야 합니다. - 클러스터 간 네트워크 및 서비스 연관성 분석 기능 단일 클러스터 내부의 리소스 모니터링을 넘어, 클러스터 간 통신 및 애플리케이션 트랜잭션 흐름을 분석할 수 있는 기능이 중요합니다. 서비스 연결 상태, 분산된 애플리케이션의 성능 이상 징후를 조기에 감지할 수 있습니다. 쿠버네티스 모니터링 툴의 핵심 요소② 실시간 장애 탐지 및 장애 자동 대응 지원 쿠버네티스는 장애 발생 시 자동 복구(Self-Healing) 메커니즘을 통해 파드(Pod)를 복구합니다. 그러나 장애 감지와 복구에는 일정 시간이 소요되며, 복구 지연, 리소스 불균형, 네트워크 라우팅 지연 등의 문제가 발생할 수 있습니다. 특히, 노드 장애 시 새로운 노드로 파드를 재배치하는 과정에서 리소스 부족이나 스케줄링 지연이 발생할 수 있으며, 서비스 연결이 일시적으로 영향을 받을 수도 있습니다. 따라서 실시간 장애 감지 및 자동 대응 체계를 구축하는 것이 중요합니다. - 정교한 장애 감지 시스템 단순히 CPU 및 메모리 사용률을 모니터링하는 수준을 넘어, 서비스 응답 지연, 애플리케이션 장애, 네트워크 이상 징후 등을 탐지할 수 있는 복합 장애 감지 기능이 필요합니다. 이를 통해 성능 저하가 발생하기 전에 조기에 문제를 인지하고 대응할 수 있어야 합니다. - 다양한 알림 및 대응 체계 장애가 발생했을 때 단순한 로그 기록만 남기는 것이 아니라, 이메일, SMS, 푸시 알림 등 다양한 채널을 활용한 즉각적인 경고 전송이 가능해야 합니다. 이를 통해 운영자는 실시간으로 문제를 인지하고 신속하게 대응할 수 있습니다. - 자동화된 장애 대응 지원 쿠버네티스의 자동 복구 및 오토스케일링(Auto-Scaling) 기능이 원활히 작동하도록 지원해야 합니다. 장애 발생 시 실시간 탐지 및 원인 분석을 통해 자동 복구를 트리거하고, 사전 정의된 정책에 따라 적절한 조치를 수행할 수 있어야 합니다.또한, 리소스 부족 감지 시 오토 스케일링이 정상적으로 작동하는지 모니터링하고, 운영자가 신속하게 대응할 수 있도록 인사이트를 제공해야 합니다. 쿠버네티스 모니터링 툴의 핵심 요소③ 서비스 관점까지 고려한 모니터링 지원 쿠버네티스 환경에서는 노드, 파드, 컨테이너 등의 인프라 리소스를 모니터링하는 것만으로는 운영의 안정성을 보장할 수 없습니다. 실제 애플리케이션의 성능과 서비스 품질을 측정하고 분석하는 것이 더욱 중요합니다. 특히, 애플리케이션 레벨에서의 성능 저하 원인을 신속하게 파악하고 대응할 수 있는 모니터링 체계가 필요합니다. - 애플리케이션 성능 모니터링 툴과의 연계 지원 애플리케이션 성능 모니터링(APM, Application Performance Monitoring)과의 연계를 통해 애플리케이션 트랜잭션, 데이터베이스 쿼리 지연 시간 등을 분석할 수 있어야 합니다. 이를 통해 서비스 성능 병목을 신속하게 식별하고 최적화할 수 있습니다. - 서비스 흐름에 대한 분석 기능 쿠버네티스 환경에서는 마이크로서비스 아키텍처(MSA) 기반의 서비스 간 호출 관계가 복잡하게 이루어집니다. 따라서, 서비스 간 트랜잭션 흐름을 실시간으로 추적하고 분석할 수 있는 기능이 필요합니다. 이를 통해 특정 서비스의 성능 저하가 전체 시스템에 미치는 영향을 정확히 파악하고 최적화할 수 있습니다. - 네트워크 성능까지 포함한 모니터링 지원 클러스터 내부 네트워크뿐만 아니라, 외부 시스템과의 연결 상태까지 모니터링하여 지연(Latency)이나 패킷 손실(Packet Loss) 발생 원인을 추적할 수 있어야 합니다. 이를 통해 네트워크 장애가 애플리케이션 성능에 미치는 영향을 분석하고, 최적의 대응 방안을 마련할 수 있습니다. 쿠버네티스 모니터링 툴의 핵심 요소④ 효율적인 운영을 위한 자동화 및 확장성 쿠버네티스 환경에서는 클러스터 크기와 워크로드가 지속적으로 증가할 가능성이 높습니다. 이에 따라, 모니터링 솔루션이 점진적인 확장성을 고려하여 설계되었는지 확인하는 것이 필요합니다. 특히, 대규모 환경에서도 안정적인 성능을 유지하고, 운영 자동화를 통해 관리 부담을 최소화할 수 있는 기능이 중요합니다. - 대규모 환경에서도 원활한 모니터링 지원 쿠버네티스 환경이 확장되더라도 모니터링 솔루션 자체가 과도한 리소스를 소비하지 않고, 성능 저하 없이 운영될 수 있어야 합니다. 이를 위해 대규모 클러스터에서도 효율적인 데이터 수집 및 분석이 가능하도록 설계된 분산 아키텍처와 최적화된 리소스 사용 전략이 필요합니다. - 자동화된 감시 템플릿 및 운영 정책 지원 새로운 노드 또는 클러스터가 추가될 때, 일일이 개별 설정을 변경할 필요 없이 사전 정의된 감시 정책이 자동으로 적용될 수 있어야 합니다. 이를 통해 운영자의 개입 없이도 일관된 모니터링 체계를 유지하고, 관리 효율성을 극대화할 수 있습니다. - 사용자 정의 모니터링 기능이 제공 조직마다 중요한 모니터링 지표가 다를 수 있으므로, 필요한 지표를 직접 설정하고 대시보드를 맞춤 구성할 수 있어야 합니다. 특정 애플리케이션 또는 서비스의 핵심 성능 지표(KPI)를 집중적으로 모니터링할 수 있도록 유연한 사용자 정의 기능을 제공하는지 확인해야 합니다. 쿠버네티스 관리에서 궁극적으로 중요한 것은 운영 환경의 가시성을 확보하고, 문제 발생 시 신속하게 대응할 수 있는 체계를 구축하는 것입니다. 이를 위해서는 앞서 언급한 네 가지 요소를 기준으로 쿠버네티스 모니터링 툴의 기능을 평가하고, 현재 운영 방식과 비교하여 실질적인 개선이 가능한지를 검토하는 과정이 필요합니다. 쿠버네티스 환경이 점점 더 복잡해지고 있는 만큼, 멀티 클러스터 운영 지원, 실시간 장애 감지 및 자동 대응, 애플리케이션 중심의 모니터링, 운영 자동화 및 확장성 확보와 같은 요소를 충족하는 관리 툴을 선택하는 것이 중요합니다. Zenius K8s는 복잡한 쿠버네티스 환경을 효율적으로 관리할 수 있도록 필수적인 기능을 갖춘 솔루션입니다. 다양한 고객 사이트에서 안정성을 검증받았으며, 쿠버네티스 운영을 보다 예측 가능하고 안정적으로 유지하는 데 효과적인 대안이 될 수 있습니다.
2025.02.28
기술이야기
APM 솔루션의 필수 조건 4가지
기술이야기
APM 솔루션의 필수 조건 4가지
클라우드, 마이크로서비스, 컨테이너 기반 아키텍처가 확산되면서 기존의 단순한 인프라 모니터링 방식으로는 애플리케이션 성능을 효과적으로 관리하기 어려운 상황입니다. 따라서 서비스 운영의 가시성을 확보하고, 실시간 성능 분석 및 장애 예측이 가능한 애플리케이션 성능 모니터링(APM, Application Performance Monitoring) 솔루션의 중요성이 더욱 커지고 있습니다. 애플리케이션의 안정적인 운영과 최적의 성능 유지를 지원하기 위한 APM 솔루션(툴)의 필수 조건을 4가지로 나누어 자세히 살펴보겠습니다. 1. 쿠버네티스 환경에 대한 모니터링 마이크로서비스 아키텍처(MSA)와 컨테이너 기반 운영 방식이 확산되면서, 이를 효과적으로 관리하기 위한 쿠버네티스 도입이 증가하고 있습니다. 개별 서버의 리소스(CPU, 메모리, 네트워크) 관리에 초점을 맞춘 VM중심의 모니터링 방식과는 달리, 쿠버네티스 환경에서는 컨테이너 기반의 애플리케이션 트랜잭션 흐름과 마이크로서비스 간 호출 관계를 분석하는 것이 더욱 중요합니다. 이에 따라 APM 솔루션은 Prometheus, OpenTelemetry, Zenius K8s 등의 모니터링 도구와 연계하여, 쿠버네티스 환경의 주요 데이터를 실시간으로 수집·분석하고 서비스 지연이나 장애 발생 구간을 정확히 파악할 수 있어야 합니다. 구체적으로는 클러스터 상태 모니터링을 통해 노드 및 네트워크 리소스 사용량을 추적하고, CPU·메모리 활용률을 분석하여 리소스 과부하나 불균형을 조기에 감지해야 합니다. 또한, Pod 및 컨테이너 성능 분석을 통해 배포 상태, 재시작 횟수, 요청 처리량(TPS), 응답 지연 시간(Latency), 리소스 사용량 등을 실시간으로 추적하여, 특정 컨테이너의 과부하나 반복적인 장애를 신속하게 감지하고 원인을 분석할 수 있어야 합니다. 특히, 컨테이너 기반 애플리케이션은 서비스 간 동적 확장과 배포가 빈번하게 이루어지므로, 단순한 개별 리소스 모니터링을 넘어 컨텍스트 기반의 성능 분석이 요구됩니다. 이와 함께, 서비스 호출 관계 및 트랜잭션 흐름 분석을 지원하여 마이크로서비스 간 API 호출 패턴, 응답 시간, 실패율을 추적하고 트랜잭션 병목 구간을 분석해야 합니다. 이를 통해 서비스 간 통신에서 발생하는 성능 저하나 장애 원인을 효과적으로 파악하고 대응할 수 있어야 합니다. 2. 애플리케이션 성능 데이터에 대한 상세한 모니터링 APM 솔루션은 단순한 시스템 리소스 모니터링을 넘어, 애플리케이션 성능을 종합적으로 분석하고 최적화할 수 있는 정밀한 모니터링 기능을 갖춰야 합니다. 특히 트랜잭션 성능, 데이터베이스 최적화, 애플리케이션 내부 리소스 활용도까지 심층적으로 분석함으로써, 성능 병목을 사전에 감지하고 신속한 대응이 가능해야 합니다. 이를 위해 APM 솔루션은 TPS(초당 트랜잭션 처리량), 응답 지연 시간(Latency), 트랜잭션 대기 시간(Queueing Time), 슬로우 쿼리 탐지, GC(Garbage Collection) 활동, 코드 실행 시간 등 핵심 지표를 실시간으로 모니터링해야 합니다. 이러한 데이터 분석을 통해 애플리케이션의 특정 구간에서 발생하는 성능 저하 문제를 빠르게 식별하고, 최적의 성능을 유지할 수 있도록 지원해야 합니다. APM 솔루션은 또한, 실시간 트랜잭션 추적(Distributed Tracing), 마이크로서비스 간 호출 관계 분석, 데이터베이스 성능 최적화, JVM 메모리 사용량 및 GC 상태 모니터링, 네트워크 I/O 추적 등의 기능을 제공하여 애플리케이션의 운영 환경을 종합적으로 분석할 수 있어야 합니다. 특히, AI 기반 이상 탐지 및 머신러닝 기반의 패턴 분석 기능을 활용하면 성능 저하나 장애 발생 가능성을 조기에 감지하고 사전 대응이 가능해집니다. 이러한 애플리케이션 성능과 관련한 세부 데이터 모니터링 기능은 단순한 장애 감지를 넘어, 애플리케이션 성능을 지속적으로 최적화하고 운영 안정성을 유지하는 중요한 요소입니다. 3. 사용자 맞춤형 실시간 대시보드 제공 애플리케이션 성능을 효과적으로 분석하려면, 방대한 데이터를 직관적으로 시각화할 수 있는 맞춤형 실시간 대시보드가 필요합니다. APM 솔루션의 대시보드는 단순한 데이터 시각화를 넘어, 운영자가 핵심 성능 지표를 실시간으로 분석하고 신속한 의사 결정을 내릴 수 있도록 지원해야 합니다. 이를 위해 APM 솔루션은 운영자의 필요에 맞게 대시보드를 자유롭게 구성할 수 있는 맞춤형 실시간 모니터링 기능을 제공해야 합니다. 트랜잭션 지연 현황, 오류 발생률, 서비스 응답 시간 등을 실시간으로 시각화하고, 필요한 데이터를 운영자가 직접 선택하여 배치할 수 있도록 커스터마이징 기능을 지원해야 합니다. 또한, Real-Time Topology Map을 활용하여 마이크로서비스 간 트랜잭션 흐름과 네트워크 관계를 시각적으로 표현함으로써, 특정 서비스 장애가 연관 서비스에 미치는 영향을 한눈에 파악할 수 있어야 합니다. Dual Monitoring View 기능을 통해 애플리케이션 서비스 레벨과 개별 인프라 리소스 레벨을 동시에 모니터링함으로써, 장애 원인을 신속하게 진단할 수 있도록 지원해야 합니다. 더 나아가, 성능 이상이 감지될 경우 자동으로 경고를 표시하고, 운영자가 우선적으로 대응해야 할 항목을 강조하여 실시간 대응력을 높일 수 있어야 합니다. WYSIWYG 방식의 Drag & Drop 기반 대시보드 구성 기능을 제공하면, 운영자가 필요에 따라 주요 성능 지표를 자유롭게 배치하고, 이를 템플릿으로 저장하여 운영 효율을 높일 수 있습니다. 4. 효과적인 장애 사전 방지 및 분석 기능 최근 IT 환경에서는 장애를 사전에 감지하고 대응하는 능력의 중요성이 부각되고 있습니다. APM 솔루션은 AI 및 머신러닝 기반 분석 등을 활용해 성능 저하와 장애를 조기에 탐지하고 자동 대응할 수 있어야 합니다. 먼저, 이상 탐지(Anomaly Detection) 기능을 통해 트랜잭션 응답 시간, CPU 사용량, SQL 실행 속도, 네트워크 레이턴시, API 오류율 등 주요 지표의 급격한 변화를 실시간으로 감지해야 합니다. 머신러닝 기반 분석을 적용하면 정적인 임계값 설정을 넘어 비정상적인 패턴을 조기에 탐지하여 운영자의 대응 시간을 단축할 수 있습니다. 또한, 장애 패턴 학습 기능을 통해 트랜잭션 흐름, 리소스 사용 패턴, 서비스 호출 빈도 변화 등을 분석하고 유사한 조건이 감지될 경우 사전 경고를 제공해야 합니다. 이를 통해 운영자는 반복적인 장애를 예방하고 선제적으로 대응할 수 있습니다. 그리고Snapshot 기반 장애 분석 기능을 활용하여 장애 발생 시점의 리소스 사용량, 실행 중이던 SQL 쿼리, 트랜잭션 상태 등을 저장하고 재현(Replay)하여 근본 원인을 분석해야 합니다. 이를 통해 운영자는 장애 발생 원인을 명확히 파악하고, 재발 방지를 위한 최적화 전략을 수립할 수 있습니다. 이와 같이, APM 솔루션이 AI 기반의 패턴 학습과 자동 대응 기능을 갖춘다면, 장애를 사전에 감지하고 예방하여 운영 안정성을 높일 수 있습니다. 효과적인 APM 솔루션은 단순한 성능 모니터링을 넘어, 다양한 환경을 아우르는 가시성과 세부적인 성능 분석, 실시간 대시보드, 그리고 사전 장애 예방 기능을 갖춰야 합니다. 기업이 복잡한 IT 환경에서도 안정적인 서비스를 제공하려면, 이러한 핵심 요건을 충족하는 APM 솔루션을 도입하는 것이 꼭 필요합니다.
2025.02.18
기술이야기
옵저버빌리티(Observability) vs APM, 우리 기업에 맞는 솔루션은?!
기술이야기
옵저버빌리티(Observability) vs APM, 우리 기업에 맞는 솔루션은?!
지난 글을 통해 웹 애플리케이션을 전반적으로 모니터링하고 관리하기 위한 좋은 도구인, APM의 핵심요소와 기능에 대해서 알아봤습니다(지난 글 보기). APM은 분명 좋은 도구이지만 문제 원인이 애플리케이션, 웹, WAS, DB가 아닌 특정한 시스템 오류이거나 클라우드 네이티브 환경에서의 장애일 경우 문제 발생 원인을 명확히 밝히기 어려울 수 있습니다. 따라서 이번 시간에는 APM의 한계성은 무엇이고, 이를 보완하기 위한 방법은 무엇인지 자세히 살펴보겠습니다. │APM 한계성 불과 얼마 전까지만 해도 예상치 못한 장애를 탐지하고 분석하는 것은, 기존 APM만으로 충분했었습니다. 기존에는 모놀리식 구조로 되어있어 애플리케이션이 적은 수로 구성되어 있었고, Web-WAS-DB가 모두 단일 구조로 구성되어 있었기 때문입니다. 하지만 현재 대다수 기업들은 MSA 환경에서 서비스를 구축하고, DevOps 구조로 업무를 진행하는 경우가 많습니다. 즉 클라우드 네이티브 환경에서는 기존 모놀리식 구조의 APM의 한계가 하나둘씩 보이기 시작한 것이죠. 이러한 이유로 클라우드 네이티브 방식에는 서비스 장애 원인을 분석하기 위한 새로운 모니터링 툴이 필요했습니다. 이때 등장하는 것이 바로 옵저버빌리티(Observability)입니다. │Observability란? 그렇다면 Observability란 무엇일까요? 옵저버빌리티는 IT 인프라에 대한 근본적인 장애 원인을 분석하기 위한 방법론입니다. 관찰 가능성이라고 표현되기도 하죠. Obsevability는 비교적 최근에 사용한 용어이지만, 옵저버빌리티를 위한 고민은 오래전부터 지속되어왔습니다. 시스템이 내가 의도한 대로 작동하고 있을까? 예상치 못한 장애 탐지와 장애 근본 원인은 어떻게 분석할 수 있을까? IT 인프라 운영 환경에 문제가 발생했을 때, 문제 식별을 위해 필요한 객관적인 지표는 어떻게 도출할 수 있을까? 하지만 소프트웨어 애플리케이션에서 Observability는, 위와 같은 고민이 발생하거나 겪어보지 못했던 현상이 생길 때 이를 이해하고 설명할 수 있는 지표를 분석해 줍니다. │Obsevability의 등장배경 및 필요성 앞에서 옵저버빌리티가 무엇인지 살펴봤는데요. 이어서 Observability가 등장하게 된 이유와 필요성에 대해 자세히 살펴보겠습니다. MSA 전환에 따른 복잡성 증가 옵저버빌리티가 등장하게 된 첫 번째 이유는, 모놀리식 아키텍처에서 MSA 환경으로 전환함에 따라 복잡성이 증가했기 때문입니다. 우선 그림을 통해 자세히 살펴보겠습니다. [그림(왼)]은 모놀리식 아키텍처를 나타내는데요. 애플리케이션의 모든 구성 요소가 하나의 인프라로 통합되어 있는 형태입니다. 배포가 간단하며, 확장성이 쉽고, E2E 테스트가 용이하다는 장점이 있습니다. 하지만 조그마한 수정 사항이 있으면, 다시 구성 환경을 빌드하고 배포해야 한다는 단점이 있습니다. 또한 일부 오류가 전체 아키텍처에 영향을 미친다는 치명적인 단점도 존재하죠. 반면 [그림(오)]에 해당하는 MSA(Micro Service Architecture)는 하나의 큰 애플리케이션을 여러 개의 작은 애플리케이션으로 쪼개어, 변경과 조합이 가능합니다. 작은 서비스의 독립적 배포라는 강력한 장점을 앞세워 Netflix, PAYCO와 같은 다양한 기업들이 앞다투어 MSA를 받아들였습니다. 여기서 문제는 MSA로 변화함에 따라 통합 테스트나 E2E 테스트 검증이 필요해졌는데요. 이처럼 여러 서비스의 API를 검증해야 하므로, 복잡성이 증가하고 많은 시간과 비용이 소모되었습니다. 무엇보다 각 서비스 별로 자체적인 데이터베이스가 있어, 트랜잭션에 대한 파악이 어려워지기도 했죠. 따라서 기존 APM이 담당하는 트랜잭션 모니터링의 복잡성은 더욱 증가했고, Observability의 필요성이 대두되었습니다. DevOps와 클라우드 네이티브 환경으로서의 전환 옵저버빌리티가 등장하게 된 두 번째 이유는, DevOps와 클라우드 네이티브 환경으로 전환하기 위해 필요한 도구이기 때문입니다. DevOps의 핵심은 소프트웨어의 개발(Deployment)과 운영(Operation)을 분리하는 것이 아닌, 하나로 통합된 업무 처리 방식으로 진행됩니다. 이때 관리하는 서비스 전반에 대한 가시성이 충분히 확보되지 않으면, DevOps 조직은 근본적인 원인을 찾는 데 어려움을 겪게 됩니다. 이러한 어려움을 해결하기 위해서는 서비스를 구성하는 아키텍처부터 트랜잭션까지 가시성이 확보되어야 합니다. 이를 통해 DevOps의 목표인 지속적인 개발과 운영의 통합을 만들어낼 수 있죠. 또한 Observability는 클라우드 네이티브 환경으로 전환하기 위한 필수 조건입니다. 기업에서 운영 중인 서비스/IT 인프라가 클라우드 네이티브 환경으로 전환되면서, 이전에 발생하지 않았던 모든 장애 가능성에 대한 인지를 위해 Observability가 선행되어야 합니다. │Observability와 Monitoring 차이점 그렇다면 기존의 모니터링(Monitoring)과 옵저버벌리티(Observability)의 차이점은 무엇일까요? 기존의 모니터링 역할은 IT 인프라의 '정상 작동 확인'을 위한 도구 역할에 초점이 맞춰져 있었습니다. 모니터링 구성 요소인 대시보드와 사용자 알람을 통해 가시성을 확보하고, 장애를 쉽게 감지할 수 있었죠. 즉 모니터링은 인프라 성능 지표, 구성 관리, 사용자 알람에 주 목적을 둔 IT 운영 담당자에 포커스를 맞춘 도구입니다. Observability는 기존 모니터링이 맡는 알람(Alerting), 메트릭(Metric) 외에도 로그(시스템, 애플리케이션), 트레이스, 디버깅과 같은 작업이 가능합니다. 이를 통해 앞으로 발생할 수 있는 장애를 미리 예측하고, 발생한 장애에 대한 근본적인 원인을 찾아내는 데 초점이 맞춰져 있습니다. │Observability 확보를 위한 핵심 구성 요소 옵저버빌리티는 앞서 언급했듯이 메트릭(Metric), 로깅(Logging), 트레이싱(Tracing) 등 작업이 가능한데요. 좀 더 자세히 살펴보겠습니다. Metric 모니터링 분야에서 Metric(메트릭)이란, 인프라 혹은 서비스 성능과 상태를 나타내는 지표입니다. 여기서 중요한 점은 단순히 현재 상태를 보기 쉽게 표현하는 것에서 더 나아가 '시계열 데이터' 형태로 변화하는 데이터를 보여줘야 합니다. 예를 들어 CPU 사용률, 메모리 사용률, 스레드 사용률과 같이 시간이 지남에 따라 어떻게 변화하는지 효율적으로 보여줄 수 있어야 하죠. 또한 메트릭은 여러 AI 분석툴과 오픈소스와 결합하여, 직관적인 파라미터를 통해 시계열 데이터의 다양한 패턴을 자동 감지할 수 있어야 합니다. 운영자와 개발자에게 필요한 리소스를 선택할 수 있도록 성능 예측하는 지표도 필요합니다. Logging Logging(로깅)은 운영 중인 시스템과 애플리케이션에서 발생하는 다양한 이벤트와 에러 등을 기록하는 과정입니다. Observability는 여기서 더 나아가 클라우드 시스템의 모든 로그를 수집하여, 해당 로그를 통해 문제 원인을 식별할 수 있어야 합니다. 물론 각 로그 스트림은 단일 인스턴스에 대한 이벤트를 알려주기 때문에, 마이크로 서비스 환경에서 전체적인 문제 원인을 파악하기 어려울 수 있습니다. 하지만 중앙 집중식 로깅을 사용하면, 애플리케이션 로그를 한곳에 저장할 수 있습니다. 이를 통해 여러 서비스로 구성된 MSA 환경에서 로그를 효과적으로 검색하고 모니터링할 수 있죠. 이러한 작업을 하기 위해서 ELK Stack1 과 같은 로그 수집 활용 도구가 필요한데요. 이 도구는 로그 관리를 단순화화여, 전체 시스템 문제를 더 쉽게 분석할 수 있도록 도와줍니다. *ELK Stack1: Elastic Search. Logstash, Kibana의 약자로 데이터를 수집하고 분석하는 도구 모음 Tracing 트레이싱은 애플리케이션 실행 정보를 기록하는 '특별한 로깅' 방식을 의미합니다. 사실 로깅과 트레이싱을 구분하는 것에 큰 의미는 없습니다. 하지만 Observability 관점에서 트레이싱은, 전체 로그 중 문제를 일으키는 특정 로그들을 시각화하고 이를 선택적으로 관찰하는데 의미가 있습니다. Debugging Observability에서 말하는 디버깅은, 시스템과 서비스 성능을 확인하고 검사할 수 있는 다양한 도구입니다. 장애 원인을 찾을 경우 그 장애 원인뿐만 아니라, 연관관계를 가진 여러 인프라와 애플리케이션을 함께 보여줄 수 있어야 하죠. RUM RUM은 Real User Monitoring 약자로, 사용자의 인터랙션을 추적하여 웹사이트나 애플리케이션 성능을 실시간으로 모니터링하는 기술입니다. 옵저버빌리티는 앞서 언급했듯, 더 이상 IT 인프라 운영자를 위한 도구가 아닙니다. DevOps를 위한 통합적인 가시성을 제공하는 도구이죠. 따라서 운영자와 개발자를 위한 '실제 사용자 관점'에서 모니터링을 제공해야 합니다. 이처럼 옵저버빌리티 시스템은 애플리케이션의 전체적인 상태를 깊이 있게 파악하고, 문제 원인을 분석하는 데 중점을 두는 접근 방식입니다. 그렇다면 애플리케이션 성능 관리 시스템인 APM 도구와는 어떤 차이점이 있을까요? │APM과 Observability 차이점 어떻게 보면 APM과 Observability는 비슷해 보이지만, 문제 원인과 인프라를 분석하는 시각에 따라서 다양한 차이점을 지니고 있습니다. 우선 첫 번째 차이점으로는 모니터링 목적 대상에 따른 차이가 있습니다. APM은 E2E(End-to-End) 성능 구간에 주목합니다. WEB-WAS-DB에 걸친 이 과정을 실제 서비스 사용자의 *액티브 서비스2에 초점을 맞춰, 애플리케이션 성능을 분석하고 모니터링하죠. *액티브 서비스: 현재 시점에서 사용자에게 제공되고 있는 상태 Observability는 APM에서 주목하는 E2E보다, 더 많은 범위를 모니터링합니다. 시스템 인프라, WAS, DB에 대한 정밀 성능 분석과 장애 감지는 물론. 운영 중인 인프라와 서비스를 통합하여 문제 원인을 찾는 데 집중합니다. [그림] Zenius-APM 사용자 정의 실시간 모니터링 상황판 따라서 두 번째 차이점으로는, 측정하는 지표에도 많은 차이가 있는데요. APM은 사용자 요청에 따른 응답 시간과 응답 분포, 액티브 서비스 상태, 트랜잭션 처리율, 이슈 중심으로 '사용자 요청' 관점에 따라 주요 지표를 확인할 수 있습니다. Observability는 사용자의 요청 관점이 아닌, 발생할 수 있는 '모든 이벤트 지표'에 주목합니다. 보다 더 전방위적인 모니터링이 가능하죠. 또한 옵저버빌리티는 기존 APM에서 발생하는 주요 장애 원인뿐 아니라, 예측하지 못한 장애를 객관적인 지표로 보여줍니다. 정리한다면 인프라와 서비스를 분석하고 장애를 탐지한다는 점에서 APM과 Observability는 동일한 역할을 갖지만, 결국 사용자가 무엇을 더 초점에 맞추느냐에 따라 사용 목적은 아래와 같이 달라질 수 있습니다. 우리 기업은 Observability가 맞을까, APM가 맞을까? APM Type Observability Type 애플리케이션 성능 최적화가 필요한 경우 애플리케이션 코드 내의 문제를 식별하고 해결하는 데 중점을 둘 경우 MSA 환경이 아닌 모놀리식 아키텍처에서 서비스를 구성하고 있는 경우 MSA 환경에서의 분산 시스템을 통해 서비스를 구성하는 경우 단순한 애플리케이션 성능을 넘어 전체 IT 인프라 환경에 대한 통찰력 확보가 필요한 경우 인프라 운영자, 개발자, 보안담당자 모두가 통합 모니터링 환경이 필요한 경우 이번 글에서는 옵저버빌리티의 중요성과 APM의 차이점을 자세히 살펴보았습니다. 결론적으로 옵저버빌리티와 APM 중 어느 하나를 더 좋다고 할 수 없으며, 각 조직의 요구사항과 사용 편의성에 맞춰 선택해야 합니다. 그러나 점점 복잡해지는 IT 환경을 고려한다면, 옵저버빌리티를 기반으로 한 Zenius-APM과 같은 도구를 활용하여 좀 더 효율적으로 웹 애플리케이션을 관리해 보는 것은 어떨까요? ?더보기 Zenius APM 더 자세히 보기 ?함께 읽으면 더 좋아요 • APM에서 꼭 관리해야 할 주요 지표는?! • APM의 핵심요소와 주요기능은?!
2024.07.24
기술이야기
APM에서 꼭 관리해야 할 주요 지표는?
기술이야기
APM에서 꼭 관리해야 할 주요 지표는?
웹 애플리케이션, 모바일 애플리케이션, 데스크탑 소프트웨어, 그리고 클라우드 기반 서비스까지 애플리케이션 서비스의 범위는 점점 더 광범위해지고 있습니다. 온라인 쇼핑, OTT, 게임, 금융, SNS, 기업 ERP 서비스 등 거의 모든 산업 분야에서 애플리케이션을 활용하는 가운데 애플리케이션 서비스가 원활하게 제공되지 않으면 기업은 고객의 신뢰를 잃고, 브랜드 이미지와 매출에도 큰 타격을 입게 됩니다. 이에 따라서 애플리케이션의 성능을 지속적으로 모니터링하고 문제를 신속하게 감지하고 해결하게 해주는 APM(Application Performance Monitoring)의 중요성이 빠르게 커지고 있습니다. 그렇다면 구체적으로 APM이 왜 필요한지와 APM을 통해 꼭 살펴봐야 하는 지표들에 대해서 자세히 알아보겠습니다. │APM(Application Performance Monitoring)의 필요성 앞서 언급한 것처럼 APM은 애플리케이션의 성능을 추적하여, 사용자 만족도를 높이기 위한 필수적인 도구입니다. APM이 왜 점점 더 중요해졌는지 좀 더 구체적으로 살펴볼게요. 시스템 복잡성 관리 현대 IT 환경은 마이크로서비스(MSA), 클라우드, 서버리스 컴퓨팅 등 다양한 기술을 복합적으로 사용합니다. 이로 인해 시스템은 점점 더 복잡해지고, 전통적인 모니터링 도구로는 파악하기 어려운 문제가 발생할 수 있는데요. APM은 이러한 복잡한 시스템에서 발생하는 성능 저하나 오류를 정확히 파악하고, 문제의 근원지를 신속하게 찾아내는 데 도움을 줍니다. 예를 들어 대형 은행이 APM을 통해 실시간 거래 처리 시스템의 성능 저하를 조기에 발견하고 해결하여, 고객 불편을 최소화한 사례가 있습니다. 비즈니스 효율성 및 비용절감 오늘날 기업들은 웹사이트, 모바일 앱, 클라우드 서비스 등 다양한 디지털 플랫폼을 원활하게 운영하기를 원합니다. 동시에 어떻게 하면 이 많은 플랫폼들을 효율적으로 운영하면서, 비용을 절감할지 고민하는데요. APM은 이러한 고민을 해결해 줍니다. 예를 든다면 APM은 클라우드 환경에서 비효율적으로 사용되는 리소스를 식별하고, 필요한 경우에만 리소스를 확장하거나 축소할 수 있도록 지원합니다. 이를 통해 클라우드 비용을 절감하면서도, 시스템 성능을 유지할 수 있게 도와주죠. 고객 경험 개선 다양한 웹/모바일 서비스들이 생겨나면서 소비자들은 점점 더 빠르고, 안정적이며, 개인에게 특화된 맞춤형 서비스를 원하고 있습니다. 애플리케이션의 성능을 개선할수록 사용자 만족도 역시 높아지죠. 만약 소비자 입장에서 필요한 물건을 구매하려고 할 때 버그가 발생하여 구매페이지가 넘어가지 않거나, 결제 과정에 문제가 생긴다면, 고객은 구매를 포기할 수도 있습니다. 이러한 상황에서 APM은 웹 애플리케이션의 성능을 실시간으로 감시하고 문제를 빠르게 해결해 줍니다. 이를 통해 사용자 만족도를 높이고 기업의 잠재적인 매출을 방지할 수 있습니다. 이번엔 개발자/운영자의 관점으로 보는 APM의 필요성을 살펴보겠습니다. 개발자: 개발자는 APM을 통해 애플리케이션의 성능 저하를 유발하는 코드 문제점을 상세히 파악합니다. 예를 들어 느린 데이터베이스 쿼리라던지, 비효율적인 로직, 예기치 않은 오류나 버그 등을 실시간으로 개선합니다. 운영자: 웹/모바일 서비스에 성능 저하나 장애가 발생할 경우 운영자는 APM을 사용하면 어떤 부분이 원인인지 신속하게 진단하고, 필요한 조치를 취할 수 있습니다. 예를 들어 시스템의 디스크, 네트워크, 애플리케이션 등 어느 부분이 문제인지 빠르게 파악할 수 있죠. 또한 시스템의 리소스 사용률을 분석하여, 비효율적으로 사용되는 리소스를 조정합니다. 이처럼 APM을 적극적으로 활용하는 기업은, 웹 애플리케이션 성능을 효과적으로 관리할 수 있어 고객 만족을 높일 수 있습니다. 그렇다면 APM을 통해 웹 애플리케이션을 효율적으로 관리하기 위해서는 어떤 지표를 구체적으로 확인하고 관리해야 할까요? │APM에서 꼭 확인해야 할 주요 지표들 APM으로 웹 애플리케이션을 효과적으로 관리하기 위해서는, 먼저 트랜잭션(Transaction) 처리 현황을 확인하는 것이 중요합니다. APM을 통해 사용자가 웹페이지를 조회하거나, API 호출을 통해 특정 작업을 요청할 때, 이 요청이 정상적으로 활성화되고 완료되기까지 전 과정을 살펴볼 수 있어야 하죠. 이밖에도 확인해야 할 주요 지표들이 있는데요. 좀 더 자세히 살펴보겠습니다. 트랜잭션 처리량 [그림] Zenius-APM 서비스 처리 현황 이 차트는 시스템이 일정 시간동안 처리할 수 있는 트랜잭션의 수를 말합니다. 쉽게 말해 웹 애플리케이션이 얼마나 많은 일을 할 수 있는지를 보여주는 지표이죠. 예를 든다면 온라인 쇼핑몰에는 초당 몇 건의 주문을 처리할 수 있는지를 나타냅니다. 여기서 트랜잭션 처리량이 높다는 것은 그만큼 많은 작업을 빠르게 처리할 수 있다는 것을 의미합니다. 정리한다면 시스템 부하가 증가할 경우 처리량이 어떻게 변화하는지 파악하여, 시스템이 사용자 요구와 피크 타임에 충분한 성능을 발휘할 수 있는지 확인하는데 유용합니다. 트랜잭션 상세 성능 : CPU, 힙메모리 등 [그림] Zenius-APM CPU, 힙 메모리 사용률 APM은 트랜잭션의 상세 성능인 CPU 사용률, 힙 메모리 사용률 등 같은 중요한 지표들을 측정합니다. 'CPU 사용률'은 애플리케이션이 얼마나 많은 리소스를 사용하는지를 보여줍니다. '힙 메모리 사용률'은 애플리케이션의 메모리 관리 효율성을 진단하는 지표인데요. 높은 사용률은 메모리 누수를, 낮은 사용률은 리소스 부족과 성능 저하를 나타낼 수 있죠. 이 지표를 모니터링함으로써 개발자는 메모리 관리를 최적화할 수 있습니다. 트랜잭션 응답 분포 : 응답시간 [그림] Zenius-APM 서비스 응답분포 트랜잭션 응답 분포는 사용자의 요청에 대한 시스템의 응답 시간을 말합니다. 사용자가 웹 애플리케이션에 어떤 요청을 했을 때, 시스템이 얼마나 빨리 응답하는지를 나타내주죠. 예를 들어 웹사이트에서 페이지를 클릭했을 때, 그 페이지가 얼마나 빨리 응답하는지에 대한 시간을 말합니다. 응답 시간이 짧으면 사용자는 웹사이트에 더 오래 머무르고, 더 많은 페이지를 탐색하게 해, 사용자의 이탈률을 줄일 수 있겠죠. 사용자 수 모니터링 지표 제공 : 동시 접속 사용자 수, 시간당 방문자 수, 액티브 사용자 수 [그림] Zenius-APM 동시 사용자수, 시간대별 방문자 수 등 이 지표는 웹 애플리케이션을 이용하는 사용자 활동을 측정합니다. 여기서 꼭 확인해야 하는 세 가지 지표가 있는데요. '동시 접속 사용자 수'는 특정 시점에 애플리케이션을 이용하는 사용자 수를 나타내며, 시스템의 부하를 파악하는 데 중요한 지표입니다. '시간당 방문자 수'는 한 시간 동안 애플리케이션 트래픽 패턴을 이해하는 데 도움을 주며 '액티브 사용자 수'는 일정 기간 동안 활동적으로 애플리케이션을 이용하는 사용자 수를 의미하죠. 예를 든다면 온라인 게임 서버에 동시 접속 사용자 수가 급격히 증가하는 시간대를 파악하여, 그 시간대에 서버 리소스를 늘리거나 최적화하여 끊김 없는 게임을 경험할 수 있게 하죠. 이처럼 APM은 트랜잭션을 모니터링하여, 애플리케이션의 성능을 측정하고 분석할 수 있어야 합니다. 이를 통해 웹 애플리케이션에 문제가 발생했을 때 어디서부터 해결해야 할지에 대한 방향을 잡을 수 있죠. │APM, 효과적으로 활용하고 있으신가요? 이번 시간에는 APM이 왜 점차 중요해지고, 웹 애플리케이션을 효과적으로 관리하기 위해 어떤 APM 핵심 지표를 살펴봐야 하는지 알아보았습니다. 다양한 분야에서 애플리케이션 활용이 필수가 되고 있고 AI와 클라우드 컴퓨팅 기술 채택으로 인한 복잡성이 증가하고 있습니다. 이에 따라서 Mordor Intelligence는 APM 시장의 가치가 2024년에 약 94억 달러에 이른 후 2029년까지 연평균 성장률(CAGR) 31%로 급성장할 것으로 예측했습니다. 이처럼 급격하게 중요성과 활용도가 커지는 APM. 혹시 아직 도입하지 않으셨다면 Zenius-APM과 같은 효율적인 솔루션을 통해 애플리케이션 성능을 최적화 하시기 바랍니다.
2024.07.12
1
2