반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
최신이야기
검색
기술이야기
쿠버네티스 모니터링 솔루션, Zenius K8s의 주요기능과 특장점
기술이야기
쿠버네티스 모니터링 솔루션, Zenius K8s의 주요기능과 특장점
많은 기업이 Kubernetes(K8s)를 통해 애플리케이션을 대규모로 배포하고 관리하면서, 이에 맞는 모니터링 솔루션의 중요성이 더욱 커지고 있습니다. 멀티 클러스터 환경이 확산되고 애플리케이션과 인프라 요소가 긴밀히 연결된 IT 인프라에서는, 리소스 상태를 실시간으로 파악하고 신속하게 대응할 수 있는 모니터링이 필요하기 때문입니다. 이러한 상황에서 Zenius K8s는 멀티 클러스터 통합 관리, 애플리케이션 성능 분석, 연관 장비 모니터링 등 다양한 기능을 제공합니다. Kubernetes 환경을 더욱 효과적으로 관리하게 해주는 Zenius K8s의 주요기능과 특장점을 알아보겠습니다. Zenius K8s의 주요기능 [1] 멀티 클러스터 통합 모니터링 쿠버네티스 환경에서는 여러 클러스터를 동시에 관리해야 할 상황이 빈번하게 발생합니다. Zenius K8s는 멀티 클러스터 환경을 단일 화면에서 통합해서 관리할 수 있는 기능을 제공하여, 운영자가 각 클러스터의 상태를 손쉽게 모니터링할 수 있도록 지원합니다. 특히, 자동 생성되는 Topology Map은 클러스터 내부 구성 요소(Node, Pod, Container) 간의 관계를 직관적으로 시각화합니다. 이를 통해 운영자는 각 구성 요소의 연관성과 의존성을 명확히 이해할 수 있으며, 잠재적인 문제를 빠르게 식별할 수 있습니다. 이러한 시각적 도구는 운영자가 복잡한 구조를 보다 체계적으로 관리하는 데 중요한 역할을 합니다. [전체 클러스터 운영 요약 화면 예시] Zenius K8s는 또한, 클러스터별 주요 성능 지표를 요약한 화면과 세부 데이터를 확인할 수 있는 상세 데이터 화면을 제공합니다. 요약 화면에서는 클러스터 간의 성능 차이를 비교 분석할 수 있으며, 세부 데이터 화면에서는 개별 클러스터 내 특정 구성 요소의 성능 문제를 심층적으로 분석할 수 있습니다. 예를 들어, 특정 클러스터에서 리소스 사용량이 급증하는 현상을 요약 화면에서 확인한 후, 상세 데이터 화면으로 전환해 어떤 Pod나 노드가 문제의 원인인지 정확히 파악할 수 있습니다. 이러한 데이터 기반의 접근 방식은 운영자가 적절한 대응 조치를 빠르게 취할 수 있도록 합니다. [2] 지능형 장애 탐지 및 신속한 대응 지원 Zenius K8s는 쿠버네티스의 기본 이벤트 관리 기능을 확장하여, Kubernetes 자체 이벤트와 Zenius 전용 이벤트를 구분해 보다 세부적으로 체계화된 장애 관리 기능을 제공합니다. 각 이벤트에 대해 임계값과 심각도를 운영자 정의할 수 있어, 운영자는 환경에 적합한 기준으로 장애를 감지하고 우선순위를 설정할 수 있습니다. Zenius K8s의 다채널 알림 시스템은 푸시 앱, 이메일, 문자 등 다양한 방식으로 장애 정보를 즉시 전달하여 운영자가 신속하게 대응할 수 있도록 합니다. 단순히 알림을 보내는 것에 그치지 않고, 장애 발생 시점부터 종료 시점까지의 전체 상황을 기록하고 분석할 수 있어, 운영자는 문제 해결뿐만 아니라 유사 상황에 대한 재발 방지 대책을 수립할 수 있습니다. 또한, Zenius K8s는 발생한 장애 이벤트에 대한 상세 로그와 이력 데이터를 제공하여, 운영자가 근본 원인을 신속히 파악할 수 있도록 지원합니다. 이를 기반으로 장애 발생 원인과 영향을 체계적으로 분석하고, 동일한 문제가 재발하지 않도록 최적의 운영 환경을 설계할 수 있습니다. [이벤트 현황관리 화면 예시] [3] 실시간 로그 모니터링 및 분석 운영 환경에서 발생하는 로그는 문제의 원인을 파악하고 성능을 최적화하는 데 중요한 데이터를 제공합니다. Zenius K8s는 컨테이너 기반 애플리케이션의 동작, 오류, 디버깅 로그는 물론, Kubernetes 이벤트 로그(Kubelet, API Server 등)까지 실시간으로 수집하고 분석할 수 있는 기능을 제공합니다. 이 기능은 운영자가 시스템의 전반적인 상태를 심층적으로 모니터링하고, 잠재적 문제를 사전에 발견할 수 있도록 지원합니다. Zenius K8s의 실시간 로그 모니터링은 시점별 데이터 분석 기능을 통해 특정 기간 동안 발생한 로그 데이터를 확인하고, 문제 발생 시점과 원인을 빠르게 추적할 수 있도록 돕습니다. 운영자는 실시간으로 발생하는 로그를 모니터링하며, 필요할 경우 보고서 형태로 데이터를 내보내어 팀 내 공유나 추가 분석에 활용할 수 있습니다. 이 기능은 장애 대응 시간을 단축시키는 동시에, 문제 해결을 위한 협업을 효율적으로 지원합니다. 또한, Zenius K8s의 실시간 로그 분석 기능을 통해 운영자는 현재 발생하고 있는 로그를 실시간으로 확인하여 상황에 따라 빠르게 조치를 취할 수 있습니다. 이 기능은 운영 환경에서 투명성을 강화하고, 예기치 않은 장애로 인한 서비스 중단을 최소화하는 데 중요한 역할을 합니다. [4] 효율적인 리소스 활용 지원 Zenius K8s는 클러스터와 주요 구성 요소(Node, Pod, Container)의 CPU, 메모리, 네트워크 사용량을 실시간으로 추적하여, 자원이 비효율적으로 사용되거나 과부하가 발생할 가능성을 사전에 감지할 수 있는 모니터링 기능을 제공합니다. 운영자는 이를 통해 특정 구성 요소가 리소스를 과도하게 소모하고 있는지 빠르게 확인할 수 있으며, 이를 기반으로 적절한 조치를 취할 수 있습니다. 예를 들어, 특정 Pod가 비정상적인 메모리 사용량을 보일 경우, Zenius K8s는 이를 즉각 감지하여 경고를 제공하고, 운영자가 문제를 해결할 수 있도록 도와줍니다. 이러한 기능은 리소스의 낭비를 줄이고, 시스템의 안정성을 높이는 데 중요한 역할을 합니다. 또한, 쿠버네티스의 자동 확장 기능에 따라 생성되는 파드(Pod)에 대해 Zenius K8s는 자동으로 모니터링을 수행합니다. 이를 통해 새로 생성된 파드의 상태와 리소스 사용량을 실시간으로 추적하여 운영자는 추가적인 설정 없이도 전체 시스템의 상태를 효율적으로 관리할 수 있습니다. Zenius K8s의 특장점 Zenius는 K8s는 위에 살펴본 주요기능에 더해서, 복잡한 쿠버네티스 환경을 더욱 효과적으로 운영하고 관리할 수 있도록 지원할 수 있는 세 가지 특장점을 가지고 있습니다. [1] 확장성 있는 구조를 바탕으로 한 연관 장비 통합 모니터링 Zenius는 K8s 모니터링을 포함하여 SMS, NMS, APM, DBMS등 총 23개의 포인트 솔루션을 연계할 수 있는 Framework으로 구성되어 있습니다. 따라서 운영자는 Kubernetes 클러스터는 물론 컨테이너 오케스트레이션, 서비스 모니터링, 네트워크 관리, 애플리케이션 성능 분석까지 한 시스템에서 일괄적으로 모니터링하고 관리할 수 있습니다. 이러한 확장성은 운영자가 새로운 모니터링 대상을 손쉽게 추가하고, 기존 인프라와 새로운 인프라를 유기적으로 통합하여 대규모 환경에서도 일관된 관리 체계를 유지할 수 있도록 합니다. 예를 들어, Kubernetes 클러스터와 네트워크 장비를 연결해 네트워크 병목 현상이 클러스터 및 애플리케이션 성능에 미치는 영향을 파악할 수 있습니다. 이러한 통합 모니터링은 대규모 환경에서도 일관성을 유지하며, 복잡한 IT 환경에서 발생하는 문제의 근본 원인을 효율적으로 분석할 수 있도록 지원합니다. Zenius K8s는 또한, 서버, 네트워크 장비, 애플리케이션 등 IT 인프라 전반에 대한 성능 데이터를 통합적으로 제공합니다. 이를 통해 특정 장비나 네트워크에서 발생한 성능 저하가 클러스터 및 애플리케이션 운영에 미치는 영향을 직관적으로 파악할 수 있습니다. 이처럼 전체 IT 인프라를 아우르는 통합 모니터링 기능은 운영자에게 단순히 데이터를 제공하는 것을 넘어, 서비스 안정성과 문제 해결의 정확성을 높이는데 기여합니다. [2] APM 연계를 통한 애플리케이션 심층 분석 쿠버네티스는 애플리케이션을 컨테이너화하여 자동화된 배포, 확장, 관리를 가능하게 함으로써 서비스의 안정성과 효율성을 높이는 데 주로 활용됩니다. 따라서 쿠버네티스 모니터링 솔루션은 APM(Application Performance Management)과의 연계가 중요합니다. Zenius K8s는 APM과의 강력한 연계를 통해 Kubernetes 환경 내에서 운영 중인 애플리케이션의 성능을 세밀하게 분석할 수 있도록 지원합니다. 이를 통해 애플리케이션이 처리하는 트랜잭션 속도와 같은 주요 성능 지표는 물론, 지연 발생 구간, 병목 현상 등을 실시간으로 모니터링하고 분석하여 문제의 근본 원인을 신속히 진단할 수 있도록 합니다. 특히, APM 연계를 통해 애플리케이션의 전체 트랜잭션 흐름을 시각화함으로써 개별 트랜잭션에서 발생하는 성능 저하나 지연이 클러스터 성능에 미치는 영향을 파악할 수 있습니다. 예를 들어, 특정 트랜잭션에서 비정상적인 지연이 발생할 경우, APM 솔루션은 이를 실시간으로 탐지하여 해당 구간에 대한 세부적인 성능 데이터를 제공합니다. 이를 통해 트랜잭션 지연의 원인을 파악하고, 최적화 작업을 통해 성능을 개선할 수 있습니다. 또한, Zenius K8s는 트랜잭션 병목 현상의 위치와 원인을 명확히 규명할 수 있는 분석 도구를 포함하고 있어, 특히 마이크로서비스 구조의 복잡한 애플리케이션에서 병목 구간을 체계적으로 최적화할 수 있습니다. 이와 같은 심층적인 성능 분석 기능은 단순히 자원 사용 모니터링을 넘어, 애플리케이션 내부에서 발생하는 성능 이슈를 구체적으로 진단하는 데 중점을 둡니다. [3] 메타정보와 변경 이력 관리의 편의성 Zenius K8s는 Kubernetes 오브젝트에 대한 상세한 메타정보를 명령어 입력 없이 직관적으로 조회할 수 있는 고급 메타정보 뷰어를 제공합니다. 운영자는 각 오브젝트의 이름, 라벨(Label), 주석(Annotation) 등 주요 메타정보를 빠르게 확인할 수 있어 오브젝트 상태를 명확히 이해할 수 있습니다. 이 기능은 클러스터의 모든 오브젝트에 대해 체계적인 정보를 제공하며, 특히 동적이고 복잡한 Kubernetes 환경에서 유용하게 활용됩니다. [K8s 구성 요소 별 메타 정보 조회 화면 예시] 또한, Zenius K8s는 구성 변경 이력 관리 기능을 포함하여 이전에 수행된 구성 변경 사항을 시각적으로 한눈에 확인할 수 있도록 지원합니다. 예를 들어, 운영자는 특정 시점에서 이루어진 설정 변경이 클러스터 성능에 미친 영향을 파악하거나, 문제 발생 시 원인을 추적하여 신속히 복구할 수 있습니다. 이를 통해 변경 이력 내역을 단계별로 조회할 수 있습니다. Zenius K8s의 메타정보 및 변경 이력 관리 기능은 구성 변경이 빈번하게 발생하는 대규모 Kubernetes 환경에서 특히 중요한 역할을 합니다. 구성 요소가 많고 자주 변경되는 환경에서는 변화에 따른 혼선이 발생하기 쉬운데, 이 기능은 구성 내역의 투명성을 제공하고, 불필요한 문제를 예방하며, 신속한 문제 해결을 가능하게 합니다. 운영자는 변경 이력을 기반으로 각 오브젝트의 최신 상태와 과거 설정 내역을 체계적으로 관리하여 안정적인 운영을 유지할 수 있습니다. [메타 정보 이력 추적 및 변경 사항 조회 화면 예시] Zenius K8s는 멀티 클러스터 관리, 실시간 모니터링, 장애 탐지 및 대응, 자원 활용 최적화 등 Kubernetes 운영에서 필수적인 기능을 제공합니다. 특히, Framework 기반 구조를 통해 SMS, NMS, APM, DBMS와 같은 다양한 포인트 솔루션과 연계가 가능하여, 컨테이너 오케스트레이션부터 네트워크 관리, 애플리케이션 성능 분석까지 포괄적인 모니터링과 관리를 지원합니다. 특히, APM 연계 기능은 애플리케이션의 트랜잭션 속도, 병목 현상, 지연 발생 구간 등 주요 성능 지표를 실시간으로 모니터링하고 분석할 수 있도록 하여, 문제의 근본 원인을 빠르게 진단하고 최적화할 수 있도록 돕습니다. 연관 장비 모니터링 기능은 서버, 네트워크 장비 등 IT 인프라 전반의 상태를 통합적으로 분석하여, 각 요소가 Kubernetes 클러스터와 애플리케이션 성능에 미치는 영향을 정확히 파악할 수 있도록 지원합니다. Zenius K8s는 이러한 기능들을 통해 운영자가 복잡한 IT 환경에서도 안정적이고 효율적인 관리 체계를 구축할 수 있도록 도와주는 유용한 솔루션입니다.
2024.11.21
기술이야기
효과적인 네트워크 성능 모니터링을 위한 4가지 핵심 지표
기술이야기
효과적인 네트워크 성능 모니터링을 위한 4가지 핵심 지표
현대 IT 인프라에서 네트워크는 모든 데이터의 흐름을 책임지는 중추적인 역할을 담당합니다. 네트워크 장비가 제대로 작동하지 않는다면, 서비스의 중단이나 성능 저하 문제로 이어질 수 있어 비즈니스의 연속성에 큰 영향을 미치는 요인이 되는데요. 이러한 문제를 예방하기 위해서는 네트워크 장비의 상태를 면밀히 모니터링하고, 이상 징후를 신속히 파악하는 것이 중요합니다. 그렇다면 어떤 네트워크 성능 지표를 확인해야 잠재적인 문제를 예측할 수 있을까요? │bps, pps : 데이터 속도와 트래픽 측정 단위 먼저 네트워크 성능 모니터링에서 기본적으로 활용되는 지표로는 bps와 pps가 있습니다. BPS와 bps는 초당 처리된 트래픽의 Byte와 bit입니다. BPS는 Byte per second의 약자로 초당 처리된 Byte를 말하며, 소문자로 표기된 bps는 bit per second의 약자로 초당 처리된 bit를 말합니다. Byte와 bit 중 더 큰 단위인 Byte를 사용하는 Byte per second가 주로 대문자로 표기됩니다. pps는 packet per second의 약자로 초당 처리된 패킷의 수입니다. 패킷의 크기는 최소 64 Byte에서 1,500 Byte까지도 될 수 있는데요. 그 이유는 하나의 패킷 내에 얼마나 큰 용량의 데이터가 담겨있느냐에 따라 1 패킷의 크기는 달라지기 때문입니다. bps와 pps는 데이터 전송량을 측정하는 지표로 네트워크 병목 현상이나 성능 저하가 발생했을 때 기본적인 원인 분석에 활용됩니다. 예를 들어 bps가 높다면 대역폭 문제를, pps가 높으면 네트워크 장비의 패킷 처리 능력을 의심해 볼 수 있습니다. 또한 두 지표의 트래픽 패턴을 분석하여 보안 위협을 조기에 발견할 수 있어, 네트워크 모니터링의 기본 지표로 활용됩니다. │Discard, Error : 네트워크 장비 장애인지와 밀접한 지표 다음으로 Discard와 Error는 네트워크에서 발생하는 장애를 분석하는 데 중요한 지표입니다. Discard는 네트워크 장비가 자원 관리와 트래픽 조절을 위해 의도적으로 발생시키는 값입니다. 즉 네트워크 장비의 트래픽 과부하, 큐 오버플로우, QoS 정책 등으로 인해 일부 패킷이 우선순위에 따라 의도적으로 버려지는 경우입니다. 이렇게 패킷을 의도적으로 버리는 이유는 버퍼와 같이 장비에 한정된 자원을 보호하기 위한 조치입니다. Error는 패킷이 손상되거나 잘못된 데이터로 인해 발생하는 오류입니다. 주로 물리적 연결 문제, 신호 간섭 CRC 오류 등 하드웨어 결함으로 인해 나타납니다. Error는 네트워크 안정성에 치명적일 수 있기 때문에, 발생 원인을 신속히 파악하고 물리적 문제를 해결하는 것이 중요합니다. │네트워크 핵심 지표를 효과적으로 확인하는 방법 앞서 설명한 BPS, bps, pps, Discard, Error와 같은 성능 지표를 통해 네트워크 관리자들은 문제 상황을 감지할 수 있습니다. 그러나 어느 지표에서 이상이 발생했는지, 그리고 여러 네트워크 장비 중 어떤 장비에 장애가 발생했는지를 신속하게 파악하는 것은 쉽지 않습니다. 이러한 이유로 많은 기업이 네트워크의 성능과 전체 상태를 직관적으로 파악할 수 있는 NMS(Network Management System) 도입을 검토하고 있는데요. NMS는 BPS, bps, pps, Discard, Error 등 주요 성능 지표는 물론, 네트워크 장비의 운영 현황을 다양한 뷰(View)를 통해 직관적으로 제공합니다. 또한 임계치 기반의 장애 감시 정책 설정과 다양한 분석 기능을 통해 장애 상황을 신속하게 감지하고 조치를 취할 수 있습니다. [그림1] Zenius NMS 전체 요약 View [그림2] 인터페이스 In/Out bps Top5 대표적인 예시로 Zenius NMS를 통해 살펴본다면, 전체 요약 View에서는 가장 높은 트래픽을 유발하는 인터페이스 및 장비별 In/Out BPS Top5를 제공해 네트워크 관리자들이 해당 장비와 인터페이스를 빠르게 식별할 수 있습니다. 이 외에도 자원 사용 현황, 점검 필요 여부, 이벤트 현황 등 네트워크 자원의 운영 상황을 한 화면에서 모니터링할 수 있어 관제의 효율성을 높일 수 있습니다. [그림3] 개별장비별 상세 요약 View 각 장비별 상세 요약 View에서는 인터페이스별 Up/Down 상태를 포트 색상과 점멸 효과로 직관적으로 확인할 수 있는데요. 트래픽이 몰리는 양에 따라 점멸이 빠르게 일어나 인터페이스가 원활하게 운영되는지 쉽게 파악할 수 있습니다. 또한 각 인터페이스의 성능 현황을 리스트 형식으로 확인할 수 있습니다. 성능 항목명을 클릭해 Top/Bottom 순으로 정렬할 수 있어 사용자 필요에 따라 유연하게 활용할 수 있습니다. [그림4] 감시 정책 설정 및 Zenius 스마트 진단 Zenius NMS는 감시 정책 설정을 통해 효과적인 장애 감지 기능을 제공하는데요. 이벤트를 감시할 시간, 요일, 심각도, 임계치 설정하여 정의된 항목에 따라 이벤트를 감시할 수 있습니다. 송수신 bps·pps, CPU·Mem 사용률, Discard, Error 같은 항목 이외에도 다양한 성능 항목을 감시할 수 있습니다. 특히 Discard와 Error 같은 주요 항목은 장비에 관련 감시설정이 등록되어 있지 않다면, 스마트 진단 기능을 통해 별도 설정 없이도 자동으로 감지 및 통보됩니다. 이러한 효과적인 장애 감지 기능은 네트워크 운영의 안정성을 크게 높여줍니다. [그림5] Topology Map 마지막으로 토폴로지 맵(Topology Map)에서는 네트워크 트래픽을 기반으로 IT 자원 간의 연결 상태와 운영 현황을 시각화합니다. 색상과 점멸 효과로 이벤트 발생 장비를 즉시 파악할 수 있으며, 트래픽 흐름을 통해 병목 구간을 효과적으로 모니터링할 수 있습니다. 이번 시간에는 네트워크 안정성을 위해 확인해야 하는 주요 성능 지표와 NMS 솔루션을 활용한 효과적인 모니터링 방법을 알아보았습니다. 빠른 장애 감지와 안정성 강화를 지원하는 Zenius NMS와 같은 네트워크 관리 솔루션을 통해 네트워크를 안정적으로 관리하시기 바랍니다!
2024.11.15
회사이야기
브레인즈컴퍼니가 주목받은, BIXPO 2024 생생 후기
회사이야기
브레인즈컴퍼니가 주목받은, BIXPO 2024 생생 후기
한국전력공사가 주최하고 브레인즈컴퍼니가 참가한 'BIXPO 2024'가 지난 11월 6일(수)부터 8일(금)까지 진행됐습니다. 올해로 10주년을 맞이한 BIXPO 2024는 '에너지 미래로 향하는 여정'이라는 주제로 국내외를 대표하는 기업들과 기관들이 모여 최신 기술과 솔루션을 공유하는 자리였습니다. 이번 BIXPO 2024는 국제컨퍼런스, 국제발명특허대전, 신기술 전시회 등 다양한 프로그램으로 구성되어 있어 에너지 산업의 미래를 이끌 혁신 기술들을 한눈에 볼 수 있었습니다. 관람객들에게 다양한 볼거리와 체험 기회를 제공하여 관련 산업에 대한 이해를 높였습니다. 특히 이번 행사에서 주목을 받은 프로그램 중 하나는 신기술 전시회로 브레인즈컴퍼니, 한국전력공사, LS ELECTRIC, 효성중공업, IBM 등 150여 개의 국내외 기업이 참가하여 총 200개의 부스를 운영하며 많은 참관객의 이목을 끌었습니다. 신기술 전시회는 ▲재생에너지 확대와 친환경 연료전환을 다룬 '청정성(Carbon-free)' ▲차세대 전력 그리드의 운영 디지털화 및 예방 진단 고도화를 중심으로 한 '안정성(Stability)' ▲건축, 산업, 수송 분야의 효율화를 위한 '효율성(Efficiency)'이라는 세 가지 테마로 구성되어, 각 주제에 맞는 최신 기술과 제품들에 대한 자세한 소개와 시연이 진행됐습니다. 이번 BIXPO에서 브레인즈컴퍼니는 '효율성' 테마에 포함되어 전시부스를 운영하며 Zenius EMS, APM, SIEM, ITSM 등 주요 제품을 소개했습니다. 브레인즈컴퍼니 부스에서 제니우스를 접한 관람객분들은 K8s와 CMS 등 MSA 환경을 비롯해, 멀티 및 하이브리드 클라우드까지 모두 통합하여 모니터링할 수 있는 기능에 큰 관심을 보여주셨습니다. 한 관람객은 "각 지사별 IDC뿐만 아니라 클라우드로 이전한 시스템의 운영 현황까지 파악할 수 있는 솔루션이 필요했는데, 단일 플랫폼에서 실시간으로 인프라 상태를 모니터링하고 문제 발생 시 빠르게 대응할 수 있도록 지원하는 점이 인상적이다. 제품 기본 화면도 잘 구성되어 있고, 맞춤형 대시보드도 눈에 띈다"라고 소감을 전했습니다. 다른 관람객은 "최근 쿠버네티스 도입 후 활용에 어려움이 있었는데, Zenius의 쿠버네티스 모니터링 솔루션에 대한 자세한 설명을 듣고 그간의 고민에 대한 답이 담겨있다는 생각이 들었다. 긍정적으로 도입을 검토할 예정이다"라고 소감을 전했습니다. 또한 퍼블릭 클라우드, 프라이빗 클라우드, 하이브리드 클라우드 환경 모두를 모니터링할 수 있는 Zenius CMS에 대한 관심도 높았습니다. 이번 BIXPO에서는 브레인즈컴퍼니와 오랜 관계를 이어온 고객사들도 다수 방문해 자리를 빛내주셨습니다. 10년 이상 Zenius 제품을 사용해 온 한 고객은 "전시회에서 오랜 파트너를 만나 반가웠고, 새롭게 출시된 제니우스의 기능들과 향후 발전 방향성에 대해 깊이 있는 대화를 나눌 수 있어 의미 있는 시간이었다"라고 전했습니다. 브레인즈컴퍼니는 앞으로도 다양한 활동을 통해 지능형 IT 인프라 통합관리 솔루션 제니우스를 알릴 예정입니다.
2024.11.11
회사이야기
[2024 K-ICT WEEK in BUSAN]에서 큰 호응 얻은 브레인즈컴퍼니
회사이야기
[2024 K-ICT WEEK in BUSAN]에서 큰 호응 얻은 브레인즈컴퍼니
브레인즈컴퍼니가 9월 10일(화)부터 12일(목)까지 부산 벡스코(BEXCO)에서 열린 [2024 K-ICT WEEK in BUSAN] 참가하여 큰 호응을 얻었습니다. 많은 참관객들과 교류했던 생생한 현장의 분위기를 그대로 담아왔습니다! 부산광역시와 과학기술정보통신부 등이 함께 주최한 2024 K-ICT WEEK in BUSAN은 인공지능(AI), 클라우드, 양자정보기술 등을 아우르는 동남권 최대 ICT 행사입니다. 올해는 200여 개의 국내외 기업이 참여하며, 총 489개 부스에서 다양한 기술과 솔루션을 선보였는데요. 주목할 만한 프로그램으로는 클라우드 콘퍼런스가 있었습니다. 마이크로소프트(MS), 카카오엔터프라이즈 등 클라우드 기술을 선도하는 기업들이 최신 기술과 트렌드를 주제로 기조 강연을 진행했습니다. 또한 양자정보기술, 세미나, AI 교육관, 국내외 바이어 상담회, 기업 투자 상담회(IR 데모데이) 등도 마련되어 많은 관심을 받았습니다. 특히 올해는 메타버스 플랫폼을 활용한 가상 전시장이 운영되어, 참관객들이 실제 AI 기술이 적용된 환경을 직접 체험할 수 있었습니다. 더불어 실내 내비게이션 서비스를 제공해 방문객들이 전시장을 편리하게 둘러볼 수 있었습니다. 브레인즈컴퍼니는 이번 대규모 행사에서 전시부스 운영을 통해 Zenius EMS, APM, SIEM, ITSM 등 주요 제품들을 소개했습니다. 다양한 기관과 기업의 관계자들과 적극적으로 소통할 수 있는 시간이었습니다. 또한 자회사인 에이프리카의 MLOps 솔루션 '치타'와 클라우드 통합 관리 솔루션인 '세렝게티(Serengeti)'도 이번 전시회를 통해 함께 소개됐습니다. 부스를 방문해 준 참가자들 중 몇몇 분은 "서버, 네트워크 등 핵심 IT 인프라를 한눈에 모니터링할 수 있는 제품을 찾고 있었다. 분산된 IT 인프라를 어떻게 하면 효과적으로 통합 관리할 수 있을지 오랫동안 고민했는데, 이번 기회를 통해 실질적인 해결책을 찾은 것 같다"라며 좀 더 상세한 자료와 미팅을 요청하셨습니다. 또 다른 참가자는 "현재 오픈소스 모니터링을 사용하고 있지만, 대규모 인프라에서는 리소스 소모가 크고, 디테일한 기능이 부족해서 아쉬움을 느끼고 있었다. 반면 Zenius는 대규모 IT 인프라 환경에도 안정적인 관리와 더 다양한 지표와 고급 기능을 제공해, 보다 효과적인 모니터링이 가능할 것 같다"라는 구체적인 소감도 전했습니다. "대시보드가 깔끔하고 직관적이다"라는 참가자들의 반응도 이어졌습니다. Zenius 대시보드는 주요 IT 인프라를 한눈에 볼 수 있도록 고객별 상황과 니즈에 맞춰 제작되어, 많은 참관객들에게 좋은 반응을 얻었습니다. 이번 박람회 기간동안 수백여 명의 기관과 기업 관계자분들이 부스를 방문해 Zenius에 큰 관심을 보여주셨습니다. 앞으로도 다양한 지역에서 고객들과 직접 소통하며, 더 나은 IT 솔루션을 제공할 수 있도록 최선을 다하겠습니다. 브레인즈컴퍼니에 대한 많은 관심과 성원 부탁드립니다!
2024.09.30
기술이야기
서버 모니터링 솔루션의 필수조건과 최신 트렌드
기술이야기
서버 모니터링 솔루션의 필수조건과 최신 트렌드
안정적인 IT 서비스 운영을 위해서 서버 모니터링 솔루션을 도입, 운영하는 경우가 많습니다. 디지털 전환과 클라우드 컴퓨팅의 확산, IoT와 AI 기술의 발전으로 인해서 더욱 다양한 IT 서비스가 운용되고 그를 뒷받침할 서버 시스템의 수도 점증하면서 서버 모니터링 솔루션의 중요성은 더욱 높아질 것으로 예상됩니다. │서버 모니터링 솔루션이 갖춰야 할 필수조건은? 서버 모니터링 솔루션 활용의 가장 큰 목적은 서버의 성능, 안정성을 실시간으로 파악해서 이상 상황이나 장애를 사전에 예방하거나 빠르게 대응하는 것입니다. 그리고 이 목적을 이루기 위해서는 아래와 같은 조건을 반드시 갖추고 있어야 합니다. · 실시간 모니터링 서버의 성능, 가용성, 보안 상태를 실시간으로 모니터링할 수 있는 기능은 서버 모니터링 솔루션의 핵심 요소입니다. 실시간 모니터링을 통해 관리자는 서버의 현재 상태를 즉시 파악하고, 시스템에서 발생하는 문제를 조기에 발견할 수 있습니다. 예를 들어, CPU 사용률이 급격히 증가하거나 네트워크 트래픽이 비정상적으로 많아지는 경우, 실시간 모니터링을 통해 문제를 즉시 감지하고 대응할 수 있습니다. 이를 통해 다운타임을 최소화하고, 서비스를 중단없이 제공할 수 있습니다. · 광범위한 성능 데이터 수집 서버 모니터링 솔루션은 다양한 성능 지표를 수집할 수 있어야 합니다. 여기에는 CPU 사용률, 메모리 사용량, 디스크 I/O, 네트워크 트래픽 등의 하드웨어관련 데이터뿐만 아니라 애플리케이션과 관련한 데이터도 포함됩니다. 예를 들어, 데이터베이스 쿼리 응답 시간, 웹 서버의 요청 처리 시간 등 애플리케이션의 성능을 상세히 분석할 수 있는 데이터가 여기에 포함됩니다. 이러한 데이터를 통해 시스템의 전반적인 상태를 정확히 파악하고, 서버의 병목 현상을 식별하며 성능을 최적화할 수 있습니다. · 경고 및 알림 기능 서버 모니터링 솔루션은 설정된 임계 값을 초과하거나 이상 징후가 발견되었을 때 즉시 관리자에게 알림을 보내는 기능을 갖춰야 합니다. 이메일, SMS, 푸시 알림 등 다양한 경고 수단을 지원하여, 문제가 발생했을 때 신속하게 대응할 수 있도록 해야 합니다. 예를 들어, 서버의 디스크 사용량이 90%를 초과하거나 네트워크 지연 시간이 급격히 증가할 때, 서버 모니터링 시스템의 경고 알림을 통해 관리자는 즉시 문제를 인지하고 조치를 취할 수 있습니다. 이를 통해 심각한 장애로 발전하기 전에 문제를 해결할 수 있습니다. · 확장성과 유연성 기업의 성장에 따라 추가되는 서버와 애플리케이션을 신속히 모니터링할 수 있도록 확장성이 있어야 합니다. 이는 특히 클라우드 환경에서 중요합니다. 클라우드 인프라를 사용 중인 기업이 수시로 서버를 추가하거나 제거하는 상황이 빈번하게 발생하기 때문입니다. 또한, 대규모 환경에서도 안정적으로 작동하며, 여러 데이터 센터와 클라우드 리전에서 발생하는 데이터도 효율적으로 처리할 수 있어야 합니다. · 대시보드 및 시각화 도구 서버의 상태를 직관적으로 이해할 수 있도록 다양한 대시보드와 시각화 도구를 제공해야 합니다. 이는 관리자가 시스템 상태를 한눈에 파악하고, 문제의 원인과 영향을 빠르게 분석할 수 있게 합니다. 예를 들어, 실시간 대시보드를 통해 서버의 현재 상태를 모니터링하고, 트렌드 분석을 통해 장기적인 성능 변화를 파악할 수 있습니다. 세부적이고 다양한 차트와 그래프는 데이터를 시각적으로 표현하여, 복잡한 데이터를 쉽게 이해하고 분석할 수 있도록 도와줍니다. 대시보드 및 시각화도구 예시(Zenius SMS) · 로그 관리 및 분석 서버와 애플리케이션 로그를 수집하고 분석할 수 있는 기능은 문제의 근본 원인을 파악하고 보안 위협을 탐지하는 데 필수적입니다. 로그 데이터는 실시간 모니터링과 보완되어, 시스템 이벤트의 연속성과 이슈 발생의 맥락을 이해하는 데 도움을 줍니다. 예를 들어, 서버의 로그를 통해 특정 시간에 발생한 오류를 분석하고, 이를 통해 시스템의 취약점을 식별하고 개선할 수 있습니다. 또한, 로그 데이터를 기반으로 보안 위협을 탐지하고 대응할 수 있습니다. · 자동화된 대응 서버 모니터링 솔루션은 문제가 발생했을 때 자동으로 대응하는 기능을 제공해야 합니다. 예를 들어, 서버 재부팅, 서비스 재시작, 자원 확장 등의 자동화된 조치를 지원하여, 인적 오류를 줄이고 문제 해결 시간을 단축할 수 있습니다. 이러한 자동화된 대응은 설정된 조건에 따라 다양한 조치를 자동으로 수행하여, 관리자의 개입 없이도 문제를 해결할 수 있도록 합니다. 이는 시스템의 안정성과 신뢰성을 높이는 데 기여합니다. · 유연한 통합 서버 모니터링 솔루션은 다른 IT 관리 도구와 쉽게 통합할 수 있어야 합니다. 예를 들어, CI(지속적 통합)/CD(지속적 배포) 프로세스, ITSM(Information Technology Service Management), 클라우드나 마이크로 서비스 아키텍처 관리 솔루션 등과의 연동이 필요합니다. 이는 모니터링 데이터의 활용 범위를 넓히고, 전체 IT 환경의 효율성을 높이는 데 도움을 줍니다. 또한 서버 뿐 아니라 네트워크, DB, 애플리케이션 모니터링 툴과의 통합도 가능해야 합니다. · 보안 서버 모니터링 솔루션을 통해 비정상적인 활동을 실시간으로 감지하여 보안위협을 예방할 수 있어야 합니다. 이와 동시에 서버 모니터링 솔루션 자체의 보안도 중요합니다. 데이터 암호화, 접근 제어, 감사 로그 등의 보안 기능을 갖추고 있어야 합니다. 이를 통해 모니터링 시스템이 외부 위협으로 부터 안전하게 운영될 수 있습니다. 이와 더불어 각 사용자의 필요에 맞추어 세부적인 기능을 조정할 수 있는 기능과 지속적인 원활한 업그레이드와 기술 지원도 서버 모니터링 솔루션이 갖춰야할 중요한 조건입니다. │서버 모니터링 솔루션의 최신 트렌드는? 서버 모니터링 솔루션은 기술의 발전과 변화하는 비즈니스 요구에 발맞추어 빠르게 진화하고 있습니다. 대표적인 최근의 변화와 트렌드를 알아보겠습니다. · 클라우드 네이티브 기반 모니터링 클라우드 네이티브 기반의 서버 모니터링 솔루션은 클라우드 인프라의 복잡성과 변화하는 특성을 효과적으로 관리할 수 있습니다. 클라우드 서비스 제공업체의 API와 통합되어 인프라 상태를 실시간으로 파악하고 자동으로 조정할 수 있어, 서비스 중단을 최소화하고 사용자 경험을 높여주기 때문에, 많은 기업이 클라우드 네이티브 기반의 서버 모니터링 솔루션을 채택하고 있습니다. · 인공지능 및 머신러닝 기반 모니터링 인공지능과 머신러닝 기술이 서버 모니터링 솔루션에 적용되고 있습니다. 이를 통해 대용량 로그 데이터를 빠르게 분석하여 문제의 근본 원인을 빠르게 파악하고 자동으로 대응할 수 있습니다. 서버 모니터링 솔루션은 AI와 ML을 기반으로 정확하고 자동화된 예측과 분석, 대응이 가능한 효과적이고 신뢰도 높은 IT 인프라 관리 솔루션으로 발전하고 있습니다. · 마이크로서비스 아키텍처(MSA) 환경 모니터링 MSA 환경에서의 서버 모니터링 솔루션은 분산 시스템 내 각 마이크로서비스를 개별적으로 모니터링하고, 실시간 데이터 수집 및 분석을 통해 문제를 즉시 발견 및 대응하며, 자동화된 경고 시스템으로 빠른 문제 해결을 지원하고 있습니다. 또한 Docker와 Kubernetes 같은 컨테이너 및 오케스트레이션 도구와의 통합도 중요한 트렌드로 자리잡고 있습니다. · 자동화된 대응 및 자가 치유 문제가 발생했을 때 자동으로 대응하는 시스템이 도입되고 있습니다. 예를 들어, 서버가 과부하 상태일 때 자동으로 서버를 확장하거나, 특정 오류가 발생했을 때 자동으로 재부팅하는 등의 기능이 포함됩니다. 이러한 자동화된 대응은 시스템의 가용성과 안정성을 높이는 데 기여합니다. 또한 자가 치유 기능은 시스템이 자동으로 문제를 감지하고 수정하는 능력을 갖추게 하여, 관리자의 개입 없이도 안정적인 운영을 가능하게 합니다. · 통합 모니터링 다양한 모니터링 툴과 시스템을 통합하여 중앙 집중형 대시보드에서 모든 인프라와 애플리케이션을 모니터링하는 것이 중요해지고 있습니다. 따라서 통합된 뷰를 통한 모니터링의 효율성이 높아지고 있습니다. 예를 들어 관리자는 다양한 모니터링 솔루션에서 수집된 데이터를 통합된 대시보드에서 한눈에 확인할 수 있습니다. 이러한 대시보드는 문제 발생 시 원인을 신속히 파악하고, 적합한 조치를 취할 수 있도록 도와줍니다. · 비용 및 자원 최적화 비용 및 자원 최적화는 지속해서 서버 모니터링 솔루션의 핵심 요소로 꼽히고 있습니다. 따라서 서버 모니터링 솔루션은 서버 자원의 사용 패턴을 분석하고, 불필요한 자원 낭비를 줄이며, 자원을 효율적으로 배분할 수 있는 기능에 중점을 맞춰서 발전하고 있습니다. · 보안 중심 모니터링 보안 위협이 증가함에 따라 보안 중심의 모니터링이 중요해지고 있습니다. 따라서 서버 모니터링 솔루션 자체의 기능을 강화하거나, SIEM(Security Information and Event Management)과 같은 보안전문 솔루션과의 연동을 통해 보안 로그와 이벤트 데이터를 분석하여 잠재적인 보안 위협에 빠르게 대처하는 사례가 늘고 있습니다. 이와 같이 서버 모니터링 솔루션은 클라우드나 마이크로 시스템 아키텍처와 같은 시스템의 환경의 변화에 따라, 인공지능과 같은 기술적 진화에 따라, 또한 보안이나 비용절감과 같은 사용자들의 니즈의 변화에 따라 다양한 방향으로 진화, 발전하고 있습니다. 고객 서버 시스템 환경이나 서비스의 특성이나 고객의 특정 니즈에 따라 최신 트랜드를 잘 반영한 솔루션을 선택하여 서버 시스템의 운용 효율과, IT 서비스의 안정성을 제고하는 것이 IT 운용 부서의 주요 과제 중의 하나가 되고 있습니다.
2024.08.05
기술이야기
하이브리드 클라우드 모니터링, 왜 필요한가?
기술이야기
하이브리드 클라우드 모니터링, 왜 필요한가?
최근 하이브리드 클라우드가 점점 더 중요한 역할을 하고 있습니다. 하이브리드 클라우드(Hybrid Cloud)는 온프레미스 환경과 프라이빗 클라우드, 퍼블릭 클라우드를 결합한 클라우드 환경을 의미하는데요. 쉽게 말해 필요에 따라 자체 인프라와 외부 클라우드 서비스를 동시에 사용할 수 있는 클라우드 환경입니다. 2024년까지 하이브리드 클라우드 시장은 연평균 22% 성장하여 약 3조 원 규모에 이를 것으로 예상될 정도로 각광받고 있습니다. 그렇다면 하이브리드 클라우드가 점점 더 주목을 받는 이유는 무엇일까요? │하이브리드 클라우드가 각광받는 이유 하이브리드 클라우드가 점점 더 주목을 받는 이유는 유연함 때문입니다. 기업들은 중요한 데이터를 프라이빗 클라우드에 저장하고, 일시적으로 많은 자원이 필요한 작업은 퍼블릭 클라우드를 사용하여 두 가지 클라우드의 장점을 모두 누릴 수 있습니다. 보안과 성능을 유지하면서도 필요한 만큼 자원을 사용할 수 있는 것이죠. 즉 프라이빗 클라우드의 퍼블릭 클라우드를 잘 조화하면 기업은 최적의 IT 환경을 구축할 수 있습니다. 하이브리드 클라우드의 이러한 장점은, 기업들이 경쟁력을 유지하고 빠르게 변화하는 시장 환경에 대응하는 데 큰 도움이 됩니다. 특히 클라우드 서비스 제공업체(CSP)의 다양한 서비스와 솔루션을 활용하면, 하이브리드 클라우드를 더욱 효과적으로 운영할 수 있는데요. 다음 내용을 통해 주요 클라우드 서비스 제공업체에 대해 좀 더 자세히 알아보겠습니다. │주요 클라우드 서비스 제공업체(CSP) 특징 클라우드 서비스 제공업체(CSP)으로 대표적으로 AWS(Amazon Web Services)와 마이크로소프트(Microsoft Azure)가 있습니다. 다음 내용을 통해 각각의 주요 특징을 살펴보겠습니다. Amazon Web Services (AWS) AWS는 서버, 스토리지, 데이터베이스, 네트워크 등 다양한 IT 인프라 서비스를 제공하는 아마존의 클라우드 플랫폼입니다. "AWS의 서버가 먹통이 되면, 시장에 혼돈이 온다."는 말이 있을 정도로 많은 기업이 AWS를 사용하고 있죠. AWS의 주요 특징은 아래와 같이 정리해 볼 수 있는데요. AWS의 주요 특징 1. AWS의 글로벌 인프라 AWS는 CSP 중 전 세계에서 가장 많은 리전을 보유하고 있습니다. 31개의 리전과 99개의 가용 영역을 운영하여, 사용자가 원하는 리전을 선택해 지연 시간을 단축할 수 있습니다. 다양한 지역에서 리전을 운영하는 만큼, 서비스 제공 범위가 넓고 안정성도 높습니다. 또한 엣지 로케이션을 통해 콘텐츠를 빠르게 전달하여 사용자 경험을 개선합니다. AWS는 CSP의 선두주자로서 AWS는 IaaS(인프라 서비스) 영역에서 시장 점유율이 가장 높고 안정적인 서비스를 제공합니다. 2. API 기반 서비스 AWS의 모든 서비스는 API를 통해 제어할 수 있으며, 다양한 프로그래밍 언어에서 사용 가능한 코드를 제공하여 다른 서비스를 연동할 수 있습니다. API Gateway라는 서비스를 통해 외부 애플리케이션과의 통신을 안전하게 관리할 수도 있죠. 3. 다채로운 서비스 AWS는 단순히 서버와 저장소를 제공하는 것을 넘어 S3(객체 스토리지), EC2(가상 서버), Lambda(서버리스 컴퓨팅), RDS(관계형 데이터베이스) 등 다양한 주요 서비스를 지원합니다. 최근에는 머신러닝과 AI 서비스까지 제공하고 있습니다. Microsoft Azure Microsoft Azure는 마이크로소프트가 제공하는 클라우드 컴퓨팅 플랫폼으로, AWS 다음으로 많은 기업들이 사용하고 있습니다. 애저라고도 많이 불리죠. 특히 PaaS(Platform as a Service)와 SaaS(Software as a Service) 분야에서 1위를 달리는 퍼블릭 클라우드라고 할 수 있습니다. Azure의 주요 특징은 다음과 같은데요. Microsoft Azure 주요 특징 1. Microsoft 제품과의 통합성 Azure의 가장 큰 장점은 Microsoft 제품과 쉽게 연동된다는 점입니다. 예를 들어 Office 365와 통합되며, 최근에는 생성형 AI 서비스인 Copilot 과의 통합으로 주목받고 있습니다. Microsoft 제품을 많이 사용하는 기업들에게 매우 유용하죠. 2. 웹 서비스에 집중 Azure는 특히 웹 서비스에 강점을 가지고 있습니다. 인프라(IaaS)에서는 다양한 유형을 수용하면서도, 애플리케이션 플랫폼(PaaS) 측면에서는 웹 서비스에 집중하고 있는데요. PC 웹, 모바일, API 등 모든 접속 유형을 하나의 앱 서비스에서 지원하며 가상 머신, 컨테이너, 서버리스 등 다양한 구성 방식을 제공합니다. 이처럼 AWS와 Microsoft Azure는 각각 고유한 강점을 가지고 있으며, 기업의 필요에 따라 적절한 서비스를 선택하여 사용할 수 있는데요. 하지만 이러한 다양한 클라우드 서비스의 특징과 이점을 제대로 활용하기 위해서는 클라우드 서비스 모니터링이 필수적입니다. 클라우드 인프라는 자원 사용량과 트래픽이 시시각각 변동되므로, 실시간 모니터링 없이는 문제를 사전에 발견하고 대응하기 어렵기 때문인데요. 다음 내용을 통해 어떤 솔루션이 필요한지 살펴보도록 하겠습니다. │하이브리드 클라우드 모니터링이 필요한 이유 앞서 언급한 내용처럼 AWS, Azure, GCP 등 다양한 퍼블릭 클라우드의 서비스 상태와 성능 지표를 확인하기 위해서는, 클라우드 서비스 모니터링 솔루션이 필요합니다. 물론 AWS의 *CloudWatch1처럼 자체적인 퍼블릭 클라우드 모니터링 도구들도 있는데요. * CloudWatch1 : AWS 클라우드 리소스를 모니터링하고 관리하는 서비스 통합적인 IT 환경에서 발생할 수 있는 다양한 문제를 예방하고 효율적으로 관리하기 위해서는, 퍼블릭 클라우드나 프라이빗 클라우드뿐만 아니라 온프레미스 인프라까지 함께 모니터링할 수 있는지 살펴보아야 합니다. 대표적인 사례로 Zenius CMS 솔루션을 통해, 어떤 방식으로 클라우드 서비스를 모니터링할 수 있는지 살펴보겠습니다. 하이브리드 클라우드의 통합 모니터링 Zenius CMS는 물리적인 서버, 네트워크 장비, DB와 같은 온프레미스 인프라와 퍼블릭 클라우드를 통합적으로 모니터링합니다. 사용자는 한 플랫폼 안에서 전체 인프라의 상태를 종합적으로 신속하게 장애를 파악할 수 있기 때문에, 다양한 환경에서 발생하는 성능 저하와 장애를 빠르게 식별하고 그 원인을 정확히 분석할 수 있죠. CloudWatch와 Alert History를 사용한 데이터 수집 Zenius CMS는 AWS의 CloudWatch나 Azure의 Alert History 같은 API를 사용해서 다양한 모니터링 데이터를 제공합니다. 예를 들어 CloudWatch가 기본적으로 제공하는 성능 지표뿐만 아니라 특정 서비스에 관심이 있다면, 그 서비스만 타겟으로 설정해서 모니터링할 수 있습니다. 이렇게 하면 사용하는 지역의 주요 서비스들만 선택해서 볼 수 있어, 필요한 정보를 더욱 쉽게 확인할 수 있는 장점이 있습니다. Billing(과금) 서비스 정보 제공 Zenius CMS를 통해 클라우드 자원의 사용량을 실시간으로 확인하여 예산을 더 잘 관리하고, 예상치 못한 과금이 발생하는 것을 막을 수 있습니다. 또한 비용이 어떻게 발생하는지 투명하게 파악할 수 있어 필요할 때 적절히 조정할 수 있죠. 자동 경고 기능을 통해 특정 비용 한도를 초과할 때 즉시 알림을 받아 효율적으로 관리할 수 있습니다. 이번 시간에는 하이브리드 클라우드 모니터링이 왜 중요해지고 있는지 중점적으로 알아보았습니다. 특히 클라우드 인프라는 자원 사용량이 수시로 변하기 때문에 실시간 모니터링이 중요합니다. 더불어 다양한 인프라를 통합 관리할 수 있는 온프레미스 환경도 함께 구축되어 있어야, 클라우드 인프라에 문제가 발생했을 때 빠르고 정확하게 대응할 수 있죠. 이제 하이브리드 클라우드 통합 관리와 온프레미스 환경 관제가 모두 가능한 Zenius CMS로, 클라우드 서비스를 더욱 효율적으로 관리해 보세요!
2024.07.29
기술이야기
SIEM을 도입해야 하는 5가지 이유
기술이야기
SIEM을 도입해야 하는 5가지 이유
IT 산업의 발전에 따라 다양한 장비와 시스템에서 매일 엄청난 양의 로그가 만들어지고 있습니다. 보안 장비, 서버, 미들웨어 등에서 생성되는 로그들이 대표적입니다. 이러한 로그들을 모두 취합하여 관리하게 되면, 1년 동안 저장되는 데이터는 테라바이트(TB) 단위의 디스크 용량이 필요한데요. 이는 인프라 관리에 있어 큰 부담이 될 수 있겠죠. 이때 통합 로그 관리 시스템인 SIEM(Security Information and Event Management)이 해결책이 될 수 있습니다. 그렇다면 SIEM은 무엇일까요? SIEM은 보안 정보 관리(SIM, Security Information Management)와 보안 이벤트 관리(SEM, Security Event Management)의 이점을 결합한 로그 관리 도구입니다. 즉 수집한 로그를 통해 정보를 분석하여 보안상 위협이 되는 이벤트를 실시간으로 감지하는 솔루션이라고 할 수 있죠. 그래서 이번 시간에는 SIEM이 왜 필요한지, 그리고 어떤 특장점이 있는지 알아보도록 하겠습니다. │SIEM, 왜 필요할까? SIEM이 필요한 가장 큰 이유는 빅데이터 처리와 보안적 측면에서 설명할 수 있습니다. 빅데이터 로그는 보안 사고가 발생한 근거를 찾아내는 중요한 증거 자료로 활용됩니다. 예를 들어 대형 온라인 쇼핑몰에서는 수많은 거래가 이루어지며 해커의 침입 시도가 발생할 수 있는데요. 이러한 기록이나 비정상적인 접근을 실시간으로 감지하여 문제가 생기기 전에 미리 대응할 수 있습니다. 이처럼 보안 위협에 효과적으로 대응하려면, 수집한 로그 데이터에 대한 체계적인 분석이 필요합니다. 관리되지 않은 로그는 IT 시스템의 장애나 문제 발생 시 원인을 찾아내기 어렵기 때문이죠. 따라서 로그 분석을 위해 로그를 정규화하여 저장하고, 효율적으로 관리하기 위한 로그 압축 보관 툴이 필요합니다. 또한 시스템 로그와 애플리케이션 로그 등 각 IT 인프라에서 발생하는 수많은 로그들은 빅데이터의 영역에 속합니다. 따라서 이를 중앙집중적으로 처리하여 효과적으로 분석하고 관리하는 도구가 필요하죠. │SIEM의 주요구성 SIEM은 네트워크 범위의 로그를 수집하고, 저장하며, 분석하는 기능을 갖고 있는데요. SIEM의 구성도 그림을 통해 좀 더 자세히 살펴보겠습니다. 로그 수집 SIEM은 서버, 네트워크, 보안장비, 클라우드 등 다양한 IT 인프라에서 발생하는 로그 데이터를 Syslog나 SNMP 등을 이용해 로그와 이벤트를 모아 Collector에 수집합니다. 이를 위해 직접 대상 장비에 Agent/Agentless 방식을 활용하거나, 클라우드의 경우 API 연동을 통해 다양한 방식으로 로그를 수집하죠. 실시간으로 발생되는 로그 수집은 물론, 방화벽/IDS/IPS 등 다양한 보안 장비에 대한 로그 데이터 수집이 필요합니다. 로그 저장 로그 수집뿐만 아니라 로그 저장 역시 중요합니다. 주로 ELK Stack을 활용하거나 수집 로그에 대한 분산 처리/저장 엔진을 활용하여, 로그를 저장하게 되는데요. 주로 관계형 데이터베이스에 자제적으로 저장하는 경우가 많습니다. 인덱싱 속도와 효율을 높이기 위해 ELK Stack을 활용하여, 로그를 저장하는 것 역시 좋은 대안이 될 수 있죠. 로그 분석 로그를 수집하고 저장한 다음 단계는 로그를 분석하는 것입니다. 이때 중요한 과정이 '파싱(Parsing)'입니다. 파싱은 비정형 로그 데이터를 쿼리가 가능한 구조화된 형태로 변환하는 과정입니다. 쉽게 말해, 파싱은 비정형 로그 데이터를 자르고 인덱스를 추가하여(key-value 형식으로) 보다 쉽게 식별할 수 있습니다. 이처럼 파싱을 통해 로그를 유형별로 분류하고, 정규화 및 표준화 작업을 거쳐, 분석에 필요한 정제된 로그를 추출합니다. 이렇나 정제된 로그는 분석 과정에서 매우 유용하게 사용됩니다. 시각화 및 리포팅 수집된 로그의 핵심 지표와 요약 이벤트를 설정하여, 시각화해서 볼 수 있습니다. 또한 사용자 정의 기반의 대시보드를 통해, 다양한 컴포넌트를 활용한 로그 데이터의 시각화와 리포팅 기능 역시 제공해야 합니다. │SIEM 도입 시 얻을 수 있는 5가지 앞에서도 SIEM에 대한 이점을 잠깐 언급했지만, 사실 이밖에도 여러 특장점이 있는데요. 그 중 대표적으로 5가지를 소개해 드릴게요. 첫째, 보안 수준의 강화 기존의 ESM(Enterprise Security Management)과는 다르게 SIEM은, 많은 양의 로그 데이터를 상관 분석하여 보안 위협을 찾아낼 수 있습니다. 기업 내 정보시스템의 보안 이벤트를 관리해서, 내부와 외부를 가리지 않고 기업 전반의 통합 보안 관리가 가능해지죠. 둘째, 통합 로그 관리 [그림] Zenius SIEM : 요약뷰 다양한 레거시 인프라와 클라우드에서 발생하는 로그를 하나의 플랫폼으로 일원화하여, 로그 관리가 훨씬 쉬워집니다. 장기간 데이터를 저장하고 모든 인프라에서 발생하는 로그를 파싱하여 관리하면, 관리 포인트를 한 곳으로 모을 수 있어 기업에서는 비용과 시간을 크게 절약할 수 있습니다. 셋째, 인덱싱을 통한 로그 검색 [그림] Zenius SIEM : 호스트 및 로그유형 트리 검색 기능 호스트 및 로그 유형 별로 검색어와 조건을 설정해서 로그를 검색할 수 있습니다. 특정 시간대나 특정 검색어를 통해, 대용량의 로그 중 일부만을 추출하여 분석할 수 있어 로그 분석이 훨씬 용이해집니다. 넷째, 보안 감시 설정 및 상관 분석 [그림] Zenius SIEM : 상관분석 감시설정 수집된 다양한 로그들의 상관관계를 분석하면 더 가치 있고 유의미한 이벤트를 확인할 수 있습니다. 예를 들어 방화벽 접속 로그에서 유해 IP나 등록되지 않은 IP로의 접근을 이벤트로 설정하면, 유해 IP를 실시간으로 확인할 수 있습니다. 또한 보안 위협 상황과 거래 이상 탐지 등 시나리오 기반으로 이벤트를 정의하고 자동으로 탐지할 수 있는 상관 분석 기능도 사용할 수 있습니다. 다섯째, 컴플라이언스 준수를 위한 측면 최근 몇 년간 기업들이 고객의 개인정보를 더 잘 보호하도록 법이 강화되었습니다. 특히 해킹과 개인정보 침해 사건이 늘어나면서 기업들이 보안을 철저히 해야 할 필요성이 커졌는데요. SIEM을 이용하면 이러한 보안 요구사항을 충족하는 데 큰 도움이 됩니다. KISA에서 권고하는 정보보호 및 개인정보보호 관리체계(ISMS-P)에서는 서버, 보안 시스템 등에 대한 사용자 접속 기록과 시스템 로그를 6개월 이상 저장하고, 이를 안전하게 관리해야 한다고 명시하고 있습니다. 또한 개인정보보호법과 정보통신망법에 따르면 로그는 1년 이상 보관해야 하고, 위조나 변조를 막기 위해 물리적인 서버에 저장하고 정기적으로 백업을 해야 하죠. 하지만 SIEM 시스템을 도입하면 이러한 법적 요구사항을 쉽게 준수할 수 있습니다. 따라서, 기업은 고객의 개인정보를 안전하게 보호하고, 침해사고 발생 시 빠르게 대응할 수 있습니다. 이번 시간에는 SIEM이 왜 중요하고, 어떤 특장점이 있는지 자세히 알아보았습니다. 요즘 기업에서는 보안 관련 요소들을 각각 관리하는 것이 쉽지 않습니다. 특히 규모가 큰 기업이나 보안이 중요한 공공기관의 경우에는 통합 관리 시스템이 꼭 필요하죠. 따라서, Zenius SIEM과 같은 솔루션을 통해 로그 관리를 안정적이고 효율적으로 해보는 건 어떨까요? 🔍더보기 Zenius SIEM으로 로그 관리하기
2024.07.29
기술이야기
오픈소스 APM만으로 완벽한 웹 애플리케이션 관리, 가능할까?
기술이야기
오픈소스 APM만으로 완벽한 웹 애플리케이션 관리, 가능할까?
지난 글을 통해 옵저버빌리티(Observability) 중요성과 APM 차이점을 자세히 살펴보았습니다(자세히 보기). 옵저버빌리티는 APM 한계성을 극복하는 방법은 맞지만, 어느 하나가 더 나은 방법이라기 보단 조직이나 사용자 상황에 따라 적합한 선택해야 하는 것이 주요 포인트였습니다. 하지만 상용 APM 제품은 다소 높은 구매 비용으로 인해, 규모가 작은 기업의 경우 부담이 될 수 있는데요. 이 때 오픈소스 APM 솔루션이 효과적인 대안이 될 수 있는데요. 따라서 이번 시간에는 주요 오픈소스 APM 알아보고, APM 상용 제품과는 어떤 차이점이 있는지 살펴보겠습니다. │오픈소스(Open Source) 소프트웨어란? 오픈소스(Open Source)란 개발 핵심 소스 코드를 공개하여 누구나 접근하고, 수정하여, 배포할 수 있는 소프트웨어를 말합니다. 얼핏 자유 소프트웨어와 비슷하게 느껴질 수 있지만 조금 다른 의미를 가지는데요. 자유 소프트웨어는 사용자의 '자유'를 강조하지만, 오픈소스는 소스 코드의 '접근성과 협업'을 중시합니다. 대표적으로 관계형 데이터베이스인 MySQL, 웹 브라우저인 Firefox, 컨테이너 가상화 플랫폼인 Docker가 대표적인 오픈소스 소프트웨어라고 할 수 있습니다. 현재 국내 디지털플랫폼 정부 구축 정책 기조에 따르면, 오픈소스 소프트웨어는 여러가지 장점을 갖고 있는데요. 오픈소스 장점 오픈소스의 첫번 째 장점은 진입 비용이 낮다는 점입니다. 공개된 소스를 기반으로 수정과 배포가 가능하기 때문에 새로운 기반 기술을 만들어 갈 경우, 비용을 줄일 수 있습니다. 두 번째 장점은 MSA 아키텍처의 기술적 토대가 오픈소스에 기반한다는 점입니다. 최근 소프트웨어 개발 환경은 오픈소스 의존도가 높아지고 있는데요. 이는 오픈소스가 특정 벤더에 종속되지 않아 독립성을 보장한다는 점에서, 오픈소스의 가장 큰 장점이라고 할 수 있습니다. 그에 반해 오픈소스 단점도 명확한데요. 오픈소스 단점 첫 번째 단점은 상용 소프트웨어와 비교해 매뉴얼이 빈약한 경우가 많다는 점입니다. 이에 따라 실제 개발 단계에서 운영이 지연될 가능성이 높아지죠. 두 번째 단점으로는 기술 지원 체계는 오픈소스 커뮤니티에 의존하고 있기 때문에, 유지보수에 큰 어려움이 따른다는 점입니다. 물론 특정 벤더에 종속되지 않는 독립성을 취할 수 있지만, 지속적인 기술지원은 어렵죠. 그렇다면 현재 국내에서 가장 많이 사용하는 오픈소스 APM 소프트웨어는 무엇인지, 자세히 살펴보겠습니다. │오픈소스 APM 종류 오픈소스 APM 종류는 다양하지만 대표적으로 Scouter, Pinpoint, Prometheus & Grafana에 대해 알아보겠습니다. 1. Scouter 첫 번째로 소개해 드릴 오픈소스 APM은 스카우터(Scouter)입니다. 스카우터는 LG CNS에서 만든 오픈소스 APM 소프트웨어로, 자바를 사용하는 애플리케이션과 컴퓨터 시스템 성능을 모니터링합니다. 이 소프트웨어는 Window, Linux, Mac 등 다양한 운영체제(OS)에서 사용할 수 있으며, 주로 이클립스 플랫폼에서 개발되었습니다. 즉 여러 환경에서 자바 애플리케이션 데이터를 수집하고, 성능 상태를 효과적으로 할 수 있다는 점이 스카우터의 주요 기능입니다. 1-1. Scouter 아키텍처 Scouter는 주로 네 가지 주요 컴포넌트로 구성되어 있는데요. 자세히 살펴보도록 하겠습니다. Java Agent Java 기반의 웹 애플리케이션(예: Tomcat, JBoss, Resin)과 스탠드얼론 Java 애플리케이션을 모니터링하는 모듈입니다. 이 에이전트는 웹 애플리케이션 서버(WAS)에 설치되어 애플리케이션 성능 정보(예: 메소드 실행 시간, 사용자 요청 처리 시간 등)를 수집하고 Scouter 서버로 전송합니다. Host Agent 이 에이전트는 운영 체제(예: Linux, Unix, Windows 등)에 설치되어 시스템 하드웨어 리소스 사용 상태를 모니터링합니다. CPU 사용률, 메모리 사용량, 디스크 I/O와 같은 정보를 수집하여 Scouter Server로 보내주는 역할을 합니다. Scouter Server(Collector) 이 서버는 Java Agent와 Host Agent로부터 데이터를 수집해 저장합니다. 사용자는 클라이언트를 통해 이 데이터에 접근할 수 있으며, 이를 통해 애플리케이션의 성능을 모니터링하고 분석할 수 있습니다. Scouter Client 사용자는 Scouter Client를 통해 서버에 접속하여, 서버로부터 수집된 데이터를 조회할 수 있습니다. 이 클라이언트는 다양한 성능 지표를 기반으로 한 시각적인 대시보드를 제공하여, 애플리케이션과 시스템 성능 상태를 효과적으로 모니터링할 수 있게 도와줍니다. 1-2. Scouter 주요기능 출처ⓒ tistory_chanchan-father Scouter의 주요기능 중 하나는 'XLog'인데요. 이 기능은 트랜잭션 응답 시간을 시각적으로 표현하여 시스템 성능을 모니터링하는 데 유용합니다. 액티브 서비스가 종료될 때마다 XLog 차트에 점으로 나타나기 때문에, 개발자는 트랜잭션 처리 시간을 간편하게 확인할 수 있습니다. 각 점을 클릭하여 관련 트랜잭션의 자세한 정보를 얻을 수 있으며, 시스템 분석과 성능 개선 작업에도 도움을 줍니다. 2. Pinpoint 두 번째로 소개해 드릴 오픈소스 APM는 '핀포인트(Pinpoint)'입니다. 핀포인트는 네이버에서 2012년 7월부터 개발을 시작해, 15년 초에 배포한 오픈소스 APM 솔루션입니다. 핀포인트는 MSA를 위한 국산 오픈소스 APM으로 각광 받아왔습니다. 2-1. Pinpoint 아키텍처 핀포인트 아키텍처는 다음과 같은 네 가지 주요 구성요소는 이루어져 있는데요. 아래 내용을 통해 자세히 살펴보겠습니다. Agent 핀포인트의 에이전트는 애플리케이션 서버에 java-agent 형태로 추가되어, 애플리케이션 성능 데이터를 실시간으로 수집합니다. 이 에이전트는 수집한 데이터를 Collector로 전송하며, 이 과정을 통해 성능 모니터링과 문제 해결에 필요한 중요 정보를 제공합니다. Collector Agent로부터 받은 프로파일링 데이터를 수집하고 처리하는 역할을 합니다. Collector는 이 데이터를 구조화하여 빅데이터 데이터베이스인 HBase로 전송합니다. 이를 통해 데이터가 안정하게 저장되고 필요할 때 쉽게 접근할 수 있습니다. HBase Hbase는 분산 데이터베이스로서, 핀포인트 시스템에서 성능 데이터를 저장하고 검색하는 중심적인 역할을 합니다. 대규모 데이터 볼륨을 효율적으로 처리할 수 있는 구조로 설계되어 있으며, 수집된 데이터의 신속한 처리와 안정적인 저장을 보장합니다. Web UI 웹 인터페이스를 통해 사용자에게 데이터를 시각적으로 제공하는 구성 요소입니다. 이 데이터는 핀포인트 에이전트가 애플리케이션 서버에서 수집한 정보를 기반으로 생성됩니다. 이렇게 수집된 데이터는 서버를 통해 Web UI로 전송되면, 사용자는 UI를 통해 다양한 형태의 성능 지표를 조회하고 분석할 수 있습니다. 이러한 구성을 통해 네이버 핀포인트는 애플리케이션 성능 문제를 진단하고 해결하는 데 필요한 정보를 제공합니다. 2-2. Pinpoint 주요기능 그 다음으로 핀포인트의 대표적인 주요 기능에 대해 자세히 알아보겠습니다. 서버맵 이 기능은 분산 환경에서 각 노드 간의 트랜잭션 흐름을 시각적으로 표현하여, 트랜잭션 성공/실패와 응답 시간 분포를 실시간으로 모니터링할 수 있습니다. 이를 통해 시스템 부하 상태와 성능 병목 지점을 식별할 수 있죠. 콜스택 콜스택(Call Stack) 기능은 트랜잭션의 세부 실행 과정을 추적하여, 성능 문제 원인을 분석하고, 코드 최적화를 지원합니다. 이 기능은 각 콜스택에서 소요되는 시간과 발생하는 예외 상황까지 자세히 보여주어, 성능 병목 현상 진단에 도움을 줍니다. 트랜잭션 필터 사용자는 트랜잭션 필터 기능을 이용해 응답 시간이 긴 트랜잭션, 특정 사용자나 IP 주소에서 발생한 트랜잭션 등을 세부적으로 필터링하여 분석할 수 있습니다. 이는 특정 조건에 따른 트랜잭션의 세부 사항을 더 깊이 이해하는 데 유용합니다. Application Inspector 이 기능은 애플리케이션 성능 지표를 시간별/일별로 분석하며 CPU 사용률, 메모리 사용량, JVM 상태 등을 체계적으로 관리하는 기능을 제공합니다. 이를 통해 애플리케이션의 전반적인 성능 관리가 가능합니다. 3. Prometheus 세 번째로 소개해 드릴 오픈소스 APM는 '프로메테우스(Prometheus)'입니다. 프로메테우스는 관제 대상으로부터 모니터링 메트릭 데이터를 저장하고, 검색할 수 있는 시스템인데요. 무엇보다 CNCF 재단으로부터 '클라우드 네이티브에 적합한 오픈소스 모니터링'으로 각광 받아 쿠버네티스(Kubernetes, K8s) 이후 두번째로 졸업한 프로젝트입니다. 프로메테우스는 CNCF 졸업 인증서를 받은 이후 시장에서 많은 주목을 받았습니다. 구조가 간단해서 운영이 쉽고, 다양한 모니터링 시스템과 연계할 수 있는 여러 플러그인을 보유하고 있기 때문이죠. 이러한 장점은 클라우드 네이티브를 위한 기초적인 오픈소스로 각광 받게 되었습니다. 3-1. Prometheus 아키텍처 프로메테우스에서 가장 큰 특징은 에이전트(Agent)가 아닌, 메트릭(Metric)을 통해 데이터를 수집한다는 점입니다. 메트릭이란 이전 시간에도 살펴봤듯이, 현재 상태를 보기 위한 시계열 데이터를 의미합니다. 프로메테우스는 이러한 메트릭 수집을 위해 다양한 수집 도구를 사용하는데요. 좀 더 자세히 살펴보도록 하겠습니다. Application 위 아키텍처에서 수집하고자 하는 대상은, 애플리케이션으로 표현됩니다. 주로 MySQL DB과 Tomcat과 같은 웹 서버까지 다양한 서버와 WAS가 모니터링 대상이 됩니다. 프로메테우스는 이를 주로 Target System으로 표현하고 있습니다. Pulling 프로메테우스에서는 각 Target System에 대한 메트릭 데이터 수집을 풀링(Pulling) 방식을 통해 데이터를 수집합니다. 프로메테우스는 앞서 언급했듯 별도의 에이전트로 데이터를 수집하지 않습니다. Prometheus Server에서 자체적인 Exporter를 통해 메트릭 읽는 방식을 사용하죠. 보통 모니터링 시스템 에이전트는, 모니터링 시스템으로 메트릭을 보내는 푸쉬(Push) 방식을 사용합니다. 특히 푸쉬 방식은 서비스가 오토 스케일링 등과 같이 환경이 가변적일 경우 유리한데요. 풀링 방식의 경우 모니터링 대상이 가변적으로 변경될 경우, 모니터링 대상의 IP 주소를 알 수 없기 때문에 정확한 데이터 수집이 어려워집니다. Service Discovery 이처럼 정확한 데이터 수집을 해결하기 위한 방안이 서비스 디스커버리(Service Discovery) 방식입니다. 서비스 디스커버리는 현재 운영 중인 대상 목록과 IP 주소를 동적으로 수집하는 프로세스입니다. 예를 들어 file_sd, http_sd 방식부터 디스커버리 전용 솔루션인 Consul을 사용하죠. Exporter Exporter는 모니터링 대상 시스템에서 데이터를 수집하는 역할을 합니다. 별도의 에이전트는 아니지만, 에이전트와 비슷하게 데이터를 수집하는 역할을 합니다. HTTP 통신을 통해 메트릭 데이터를 수집하며, Exporter를 사용하기 어려울 경우 별도 Push gateway를 사용합니다. Prometheus Server 프로메테우스 서버는 데이터 수집, 저장, 쿼리를 담당하는 중앙 구성 요소입니다. HTTP 프로토콜을 사용하는 것이 특징이며, Exporter가 제공하는 HTTP 엔드포인트에 접속해 메트릭 데이터를 수집합니다. Alert Manager 사용자에게 알람을 주는 역할을 담당합니다. Prometheus는 타 오픈소스 모니터링 솔루션과 달리 Alert Manager UI 기능을 제공하여 일부 제한된 데이터를 시각화할 수 있습니다. 하지만 시각화 기능이 제한적이므로, 보통 Grafana라는 오픈소스 대시보드 툴을 사용하여 UI를 보완합니다. 3-2. Grafana '그라파나(Grafana)'에 좀 더 자세히 설명한다면, 데이터 분석을 시각화하기 위한 오픈소스 대시보드 도구입니다. 다양한 플러그인을 이용해 프로메테우스와 같은 모니터링 툴과 *그라파이트(Graphite)1, *엘라스틱서치(Elasticsearch)2, *인플럭스DB(InfluxDB)3 와 같은 데이터베이스와 연동하여 사용자 맞춤형 UI를 제공합니다. 특히 방대한 데이터를 활용해 맞춤형 대시보드를 쉽게 만들 수 있는 것이 그라파나의 큰 장점이죠. *1. Graphite: 시계열 데이터를 수집하고 저장하며, 이를 그래프로 시각화하는 모니터링 도구 *2. Elasticsearch: 다양한 유형의 문서 데이터를 실시간으로 검색하고 분석하는 분산형 검색 엔진 *3. InfluxDB: 시계열 데이터의 저장과 조회에 특화된 고성능 데이터베이스 그라파나의 주요 특징은 플러그인 확장을 통한 데이터 시각화와 템플릿 지원으로, 다른 사용자 대시보드 템플릿을 쉽게 가져와 사용할 수 있다는 점입니다. 이처럼 Promeheus 장점은 Exporter를 통한 다양한 메트릭 데이터 수집과 3rd Party 솔루션과 연계가 수월하다는 점입니다. 오픈소스로 IT 인프라를 구성하는 기업의 경우 Prometheus와 Grafana를 연계하여, 서비스 운영현황을 모니터링 할 수 있습니다. 지금까지 오픈소스 APM가 무엇이고, 각각의 아키텍처와 주요 기능은 무엇인지 살펴보았는데요. 그렇다면 상용 APM 제품과, 오픈소스 APM는 어떤 차이점이 있을까요? │상용 APM 제품 vs 오픈소스 APM 제품 앞에서 소개해 드린 오픈소스 APM 중, 대표적으로 프로메테우스와 핀포인트를 상용 APM 제품과 비교해 보겠습니다. Prometheus vs 상용 APM 제품 우선 프로메테우스를 대표하는 장점은 유연한 통합성입니다. 마이크로서비스가 대세 기술로 자리 잡으면서, 인스턴스를 자주 확장하거나 축소하는 것이 자유로운 요즘인데요. 만약 이 작업을 수동으로 관리한다면 매우 어려울 수 있습니다. 하지만 프로메테우스를 사용하면 이런 문제를 해결할 수 있죠. 프로메테우스는 쿠버네티스와 같은 여러 서비스 디스커버리 시스템과 통합되어, 쿠버네티스 클러스터 내의 모든 노드와 파드에 발생하는 매트릭을 자동으로 수집할 수 있습니다. 이러한 기능은 마이크로서비스 환경에서 효율적으로 모니터링 할 수 있습니다. 하지만 한계점도 있는데요. 바로 실시간 데이터 확인이 어렵다는 점입니다. 프로메테우스는 풀링(Pulling) 주기를 기반으로 메트릭 데이터를 수집하기 때문에, 순간적인 스냅샷 기능이 없습니다. 수집된 데이터는 풀링하는 순간 스냅샷 데이터라고 볼 수 있죠. 이러한 단점은 APM에서 일반적으로 지원하는 실시간성 트랜잭션 데이터를 대체하기 어렵습니다. 반면에 상용 APM 제품은 어떨까요? 대표적으로 Zenius APM 사례를 통해 살펴보겠습니다. Zenius APM은 에이전트가 자동으로 메트릭을 수집하여 서버로 전송하여, 데이터를 실시간으로 처리할 수 있습니다. 또한 에이전트가 푸쉬(Push) 방식이기 때문에, 데이터의 지연이 풀링 방식에 비해 적고 데이터가 더 정확하게 수집되죠. 또한 Raw Data 기반의 실시간 과거 데이터를 통해 정밀한 장애 원인 분석이 가능합니다. 과거 시점 스냅샷 기능도 있어 문제 발생 시점을 정확히 파악하여, 문제 해결 시간을 단축시킬 수 있죠. Pinpoint 장단점 vs 상용 APM 제품 그 다음으로는 핀포인트를 대표하는 장점에 대해 알아 보겠습니다. 핀포인트 장점으로는 클라우드 환경에서 뛰어난 가시성을 보여준다는 점입니다. 클라우드에서의 웹 애플리케이션 서버(WAS)는 유연성과 확장성이 뛰어나지만, 복잡한 시스템 구조로 인해 모니터링이 어려울 수 있는데요. 핀포인트는 이러한 환경에서, 각 가상 서버의 성능을 실시간으로 파악하고 문제를 신속하게 진단하는데 큰 도움을 줍니다. 그에 반해 핀포인트에 단점은 다양한 기능이 부족합니다. 핀포인트는 JVM 기반 데이터의 모니터링이 일부 제한되는데요. 대시보드의 'Inspector'와 같은 일부 기능이 지원되지 않아, 이용에 어려움이 있습니다. 또한 다수 트랜잭션이 동시에 실행될 때 특정 트랜잭션이 오래 걸리거나 에러가 발생할 경우, 그 원인을 파악하기 어렵습니다. 이는 세부적인 콜백 정보를 충분히 제공하지 않았기 때문이죠. 그렇다면 상용 APM 제품은 어떨까요? 이번에도 Zenius APM를 통해 자세히 살펴보겠습니다. Zenius APM은 다양한 트랜잭션 모니터링 기능을 제공하는데요. 이를 통해 사용자는 트랜잭션 성능을 실시간으로 파악하고, 잠재적 문제를 빠르게 진단할 수 있습니다. 또한 이 시스템은 대량으로 동시 접속자를 대량으로 관리할 수 있어, 피크 타임에 발생할 수 있는 성능 저하를 사전에 감지하고 대응할 수 있도록 지원합니다. 비교표 구분 Zenius APM Prometheus Pinpoint Scouter 기술지원 벤더 지원을 통한 빠른 초기 설정, 기술지원 용이 오픈소스 기반의 기술지원 불가로 초기 학습 필요 오픈소스 기반의 기술 지원 불가로 초기 학습 필요 오픈소스 기반의 기술 지원 불가로 초기 학습 필요 사용자 인터페이스 실시간 트랜잭션 처리, 액티브 서비스 모니터링, 동시 접속 사용자 수 등, 사용자 정의 실시간 모니터링 상황판 구성 Grafana 플러그인 연계로 다양한 컴포넌트 모니터링 가능 토폴로지 일부 모니터링 불가, 제한적으로 사용자 동시 접속자 수 모니터링 가능, 사용자 정의 기반 모니터링 불가 기능 제한에 따른 간소화된 UI 제공, 사용자 정의 기반 모니터링 불가 컨테이너 모니터링 가능 가능 가능 불가 쿠버네티스 모니터링 가능 가능 불가 불가 연관 인프라 정보 모니터링 연관된 WAS 서버, DB서버, DB확인, 해당 인프라 상세 정보 제공 불가 재한적으로 연관 인프라 모니터링 제공 불가 Raw Data 과거 시점 재현 초 단위 데이터를 기준으로 장애 발생시점 등 과거 상황을 그대로 재현함 불가 불가 불가 리포팅 사용자 정의 기반 리포팅 서비스 제공 써드 파티를 이용한 제한적인 리포팅 기능 제공 불가 불가 이번 시간에는 주요 오픈소스 APM와 상용 APM 차이점을 살펴보았습니다. 각 솔루션은 분명한 장단점을 갖고 있으며, 모든 상황에 완벽한 솔루션은 없습니다. 그러나 여기서 주목해야 할 것은, APM의 핵심이 '트랜잭션을 얼마나 효과적으로 모니터링할 수 있는가'라는 점입니다. 이 측면에서 오픈소스 APM은 한계가 있으나, 상용 APM 제품은 이를 효과적으로 수행할 수 있습니다. 물론 비용 면에서 오픈소스 APM와 비교해, 상용 APM 제품이 부담스러울 순 있습니다. 하지만 트랜잭션 모니터링 관리의 중요성을 고려한다면, 이러한 투자는 가치가 있습니다. 더 나아가 심층적인 실시간 데이터 모니터링, 신속한 데이터 처리, 전문적인 기술적인 기술 지원, 보다 복잡한 시스템 환경에서 효과적인 트랜잭션 관리를 우선시 한다면 Zenius APM 제품이 더더욱 적합할 것입니다. 🔍더보기 Zenius APM 더 자세히 보기 📝함께 읽으면 더 좋아요 • APM에서 꼭 관리해야 할 주요 지표는? • APM의 핵심요소와 주요기능은? • 옵저버빌리티 vs APM, 우리 기업에 맞는 솔루션은?
2024.07.26
기술이야기
좋은 대시보드(Dashboard) 설계를 위한 4가지 핵심 가이드
기술이야기
좋은 대시보드(Dashboard) 설계를 위한 4가지 핵심 가이드
급변하는 IT 환경에서 우리는 많은 데이터를 접하고 있습니다. 이러한 방대한 데이터를 효율적으로 관리하고 시각화하기 위해 '대시보드'가 등장한 후 널리 활용되고 있습니다. 대시보드(Dashboard)는 필요한 데이터를 통합하여 시각화하는 화면으로, 사용자에게 중요한 정보를 한눈에 보여주는 도구입니다. 2023년 가트너(Gartner) 연구에 따르면, 전 세계 기업 72%가 데이터 시각화 도구를 사용하고 있기도 합니다. 데이터 시각화 도구를 활용한 기업이 비활용 기업에 비해 의사 결정 속도가 5배 빠르다는 연구 결과도 나왔죠. 그렇다면 기업운영에 있어 대시보드가 왜 중요한지, 좀 더 자세히 살펴보겠습니다. │대시보드(Dashboard), 왜 중요할까요? 대시보드가 중요한 이유는 여러 가지 있지만, 그중에서도 가장 핵심적인 이유는 다음과 같습니다. 첫째, 대시보드는 빠르고 정확한 의사 결정을 가능하게 합니다. 대시보드는 실시간으로 데이터를 시각화하고 중요한 정보를 즉각적으로 제공하여, 빠르고 정확한 의사 결정을 가능하게 합니다. 예를 들어 서버의 성능 문제나 네트워크 장애를 실시간으로 감지하고 즉각적으로 대응할 수 있습니다. 이는 기업이 비즈니스 연속성을 유지하고, 예기치 않은 문제로 인한 손실을 최소화할 수 있게 도와주죠. 둘째, 대시보드는 전체적인 상황을 한눈에 파악할 수 있게 합니다. 여러 출처에서 수집된 데이터를 하나의 화면에 통합하여 보여주기 때문에, 전체적인 상황을 한눈에 파악할 수 있습니다. 이를 통해 데이터 간의 관계를 쉽게 분석하고, 복잡한 문제를 효율적으로 해결할 수 있죠. 이는 전략적 계획 수립과 운영 효율성을 높이는 데 매우 중요한 역할을 합니다. 위에서 살펴본 두 가지 핵심 이유로 인해서 대시보드는, 기업의 비즈니스 경쟁력 확보를 위한 핵심 도구로 자리 잡고 있습니다. │어떤 종류의 대시보드가 있을까요? 대시보드 종류는 매우 다양한데요. IT 인프라 통합 관리 대시보드 기준에서, 대표적으로 세 가지 대시보드 유형을 살펴보겠습니다. 서비스형 대시보드 [그림] Zenius 서비스형 대시보드 일반적으로 많이 사용하는 서비스형 대시보드는 IT 서비스 성능 상태를 실시간으로 모니터링할 수 있게 도와줍니다. CPU, 메모리 사용량, 디스크 I/O, 네트워크 트래픽 등을 한눈에 확인할 수 있죠. 이를 통해 성능 저하나 장애가 발생하면 즉각 알림을 받아 빠르게 대응할 수 있습니다. 또한 클라우드와 온 프레미스 환경 모두 사용 가능해 유연성이 뛰어납니다. 지도형 대시보드 [그림] Zenius 지도형 대시보드 지도형 대시보드는 여러 지역에 분산된 IT 인프라를 한 지도에서 통합적으로 보여줍니다. 서버, 데이터 센터, 네트워크 장비 위치와 상태를 지도 위에 표시해 한눈에 파악할 수 있죠. 이때 특정 지역에서 문제가 발생하면 즉시 감지하고 대응할 수 있습니다. 또한 지리적 데이터를 바탕으로 장애 패턴을 분석하여 효율적인 관리가 가능하며, 실제 지리 정보 시스템(GIS)와 연동해 정교한 위치 기반 관리도 가능합니다. 이러한 기능 덕분에 이 대시보드는, 특히 글로벌 기업이나 여러 지사와 데이터 센터를 운영하는 조직에서 유용하게 사용됩니다. 구성도형 대시보드 [그림] Zenius 구성형 대시보드 구성도형 대시보드는 네트워크 자원의 상태와 관계를 시각적으로 표현해 줍니다. 이를 통해 네트워크 장비 간의 트래픽 흐름을 실시간으로 모니터링하고, 병목 지점이나 장애 발생 지점을 쉽게 찾아낼 수 있습니다. 또한 각 장비의 상태, 성능 지표, 로그 데이터를 시각적으로 제공해 문제를 조기에 발견하고 해결할 수 있도록 도와줍니다. 더 나아가 네트워크 트래픽을 분석해 최적화 방안을 도출할 수 있으며, 다양한 네트워크 인프라를 지원해 유연한 관리가 가능합니다. 하지만 이러한 대시보드는 '어떻게 구현하고 설계했느냐'에 따라서 좋은 대시보드가 될 수도, 그렇지 못할 수도 있는데요. 그렇다면 좋은 대시보드를 만들기 위해 어떤 점을 고려해야 할까요? 다음 내용을 통해 자세히 살펴보겠습니다. │좋은 대시보드를 만들기 위한 고려사항 핵심 데이터 우선 제공 우선 좋은 대시보드를 만들기 위해 가장 먼저 고려해야 할 점은, 시각화할 대상과 데이터를 명확히 파악해야 한다는 것입니다. 어떤 데이터가 가장 중요한지, 결정하는 것이 우선이죠. 반대로 너무 많은 데이터를 시각화하지 않도록 주의해야 합니다. 과도한 데이터 시각화는 사용자가 중요한 정보를 파악하는 데 어려울 수 있습니다. 따라서 핵심 데이터를 선별하여 우선적으로 표시해야 합니다. 좀 더 구체적인 사례를 통해 살펴볼게요. 대시보드는 서버, 네트워크, DB 등 기본 인프라 데이터를 수집하고 시각화해야 하는데요. 이 데이터는 CPU, 메모리, bps, 스토리지, 데이터 파일 등과 같이 시스템 성능과 운영 상태를 파악하는 필수적인 핵심 지표들입니다. 이러한 핵심 데이터를 명확하게 정의하고 제공하는 것은 대시보드 설계의 첫 번째 단계에서 중요한 요소이죠. [그림] Zenius 서비스형 대시보드 Zenius 대시보드는 이러한 기본 인프라 데이터를 우선적으로 수집하고 시각화하여, 사용자가 가장 중요한 정보를 빠르게 파악할 수 있도록 합니다. 사용자가 어떤 데이터를 가장 먼저 확인해야 하는지, 즉 우선순위를 명확히 하여 중요한 정보를 놓치지 않도록 도와주죠. 효율적이고 직관적인 정보 전달 좋은 대시보드를 만들기 위해 두 번째로 고려해야 할 점은, 사용자가 필요한 정보를 쉽고 빠르게 확인할 수 있도록 설계되어야 합니다. 데이터의 가독성을 높이는 색상과 그래픽 요소를 적절히 사용하여, 사용자 인터페이스가 직관적이고 사용하기 쉬워야 합니다. 여기서 유의할 점은 시각적 요소에 너무 몰두하지 않도록 주의해야 합니다. 디자인에만 집중하면 필요한 정보가 제대로 전달되지 않을 위험이 있기 때문이죠. 따라서 실용성과 사용성을 중시하여 사용자 중심의 인터페이스를 설계해야 합니다. 이번에도 대시보드 사례를 통해 구체적으로 살펴볼게요. Zenius는 '사용자 맞춤형 대시보드'를 제공하고 있는데요. 사용자의 모니터링 환경에 맞게 자유롭게 편집할 수 있습니다. 관리 대상이 많아지거나, 관리 목표를 변경해도 컴포넌트와 디스플레이 항목을 손쉽게 편집할 수 있습니다. 또한 Zenius의 직관적이고 유연한 편집 기능을 통해, 사용자에게 필요에 따라 색상이나 차트 유형을 쉽게 변경할 수 있도록 설계했습니다. 데이터를 가독성 있게 시각화하여 사용자가 인터페이스 직관적이고 사용하기 쉽도록 구성했죠. 외부 데이터 통합 좋은 대시보드를 만들기 위해 세 번째로 고려해야 할 점은, 기업 내 여러 솔루션의 핵심 지표를 한 화면에서 확인할 수 있도록 구성해야 합니다. 외부 데이터와의 연동으로 여러 시스템의 데이터를 통합하면, 전체 상황을 한눈에 파악할 수 있는데요. 이를 통해 분석과 의사결정을 용이하게 해줍니다. Zenius 사례를 통해 다시 한번 살펴보겠습니다. Zenius 대시보드는 3rd Party 시스템 연동을 통해, 외부 데이터를 통합하여 한 화면에서 핵심 지표를 확인할 수 있도록 설계했습니다. 이를 통해 사용자가 기업 내 다양한 솔루션 지표를 한눈에 파악할 수 있죠. 비즈니스 전반의 통합 관제 좋은 대시보드를 만들기 위해 네 번째로 고려해야 할 점은, 비즈니스 관점에서 모니터링과 이상 상황을 감지할 수 있도록 설계되어야 합니다. 조직의 전반적인 운영 상태를 실시간으로 파악하고, 문제 발생 시 신속하게 대응해야 하기 때문이죠. 또한 서비스 단위로 인프라를 구성하여, 비즈니스 문제 여부를 즉각적으로 파악할 수 있도록 해야 합니다. 다시 Zenius 사례를 통해 살펴볼게요. Zenius 대시보드는 수집된 다양한 정보를 바탕으로, 최상위 레벨에서 비즈니스 관점 모니터링과 이상 상황을 감지할 수 있는 화면을 제공합니다. 다양한 컴포넌트와 차트, 다이나믹한 요소들을 적용하여 시각적인 효과를 극대화할 수 있죠. 이번 시간에는 대시보드가 왜 필요한지, 좋은 대시보드를 구현하기 위해서는 어떠한 점들을 고려해야 하는지 알아보았습니다. 하지만 이러한 좋은 대시보드를 성공적으로 구현하기 위해서는, 전문가의 도움이 필요합니다. 데이터를 시각화하여 구성하는 것은 보는 이에 따라 관점이 다르고 다양하여, 하나부터 열까지 구성하는 것이 어려울 수 있기 때문이죠. 또한 조직 상황이나 사용자 관점마다 중요한 데이터가 다르고 시각화해야 하는 방식도 다를 수 있습니다. 따라서 제니우스(Zenius)와 같이 수많은 구축 노하우를 보유하고 있고, 고객의 상황에 따라 최적화된 대시보드 구현이 가능한 솔루션 활용을 통해 비즈니스 경쟁력을 확보하시기 바랍니다. 🔍더보기 Zenius Dashboard 더 자세히 보기
2024.07.26
기술이야기
옵저버빌리티(Observability) vs APM, 우리 기업에 맞는 솔루션은?!
기술이야기
옵저버빌리티(Observability) vs APM, 우리 기업에 맞는 솔루션은?!
지난 글을 통해 웹 애플리케이션을 전반적으로 모니터링하고 관리하기 위한 좋은 도구인, APM의 핵심요소와 기능에 대해서 알아봤습니다(지난 글 보기). APM은 분명 좋은 도구이지만 문제 원인이 애플리케이션, 웹, WAS, DB가 아닌 특정한 시스템 오류이거나 클라우드 네이티브 환경에서의 장애일 경우 문제 발생 원인을 명확히 밝히기 어려울 수 있습니다. 따라서 이번 시간에는 APM의 한계성은 무엇이고, 이를 보완하기 위한 방법은 무엇인지 자세히 살펴보겠습니다. │APM 한계성 불과 얼마 전까지만 해도 예상치 못한 장애를 탐지하고 분석하는 것은, 기존 APM만으로 충분했었습니다. 기존에는 모놀리식 구조로 되어있어 애플리케이션이 적은 수로 구성되어 있었고, Web-WAS-DB가 모두 단일 구조로 구성되어 있었기 때문입니다. 하지만 현재 대다수 기업들은 MSA 환경에서 서비스를 구축하고, DevOps 구조로 업무를 진행하는 경우가 많습니다. 즉 클라우드 네이티브 환경에서는 기존 모놀리식 구조의 APM의 한계가 하나둘씩 보이기 시작한 것이죠. 이러한 이유로 클라우드 네이티브 방식에는 서비스 장애 원인을 분석하기 위한 새로운 모니터링 툴이 필요했습니다. 이때 등장하는 것이 바로 옵저버빌리티(Observability)입니다. │Observability란? 그렇다면 Observability란 무엇일까요? 옵저버빌리티는 IT 인프라에 대한 근본적인 장애 원인을 분석하기 위한 방법론입니다. 관찰 가능성이라고 표현되기도 하죠. Obsevability는 비교적 최근에 사용한 용어이지만, 옵저버빌리티를 위한 고민은 오래전부터 지속되어왔습니다. 시스템이 내가 의도한 대로 작동하고 있을까? 예상치 못한 장애 탐지와 장애 근본 원인은 어떻게 분석할 수 있을까? IT 인프라 운영 환경에 문제가 발생했을 때, 문제 식별을 위해 필요한 객관적인 지표는 어떻게 도출할 수 있을까? 하지만 소프트웨어 애플리케이션에서 Observability는, 위와 같은 고민이 발생하거나 겪어보지 못했던 현상이 생길 때 이를 이해하고 설명할 수 있는 지표를 분석해 줍니다. │Obsevability의 등장배경 및 필요성 앞에서 옵저버빌리티가 무엇인지 살펴봤는데요. 이어서 Observability가 등장하게 된 이유와 필요성에 대해 자세히 살펴보겠습니다. MSA 전환에 따른 복잡성 증가 옵저버빌리티가 등장하게 된 첫 번째 이유는, 모놀리식 아키텍처에서 MSA 환경으로 전환함에 따라 복잡성이 증가했기 때문입니다. 우선 그림을 통해 자세히 살펴보겠습니다. [그림(왼)]은 모놀리식 아키텍처를 나타내는데요. 애플리케이션의 모든 구성 요소가 하나의 인프라로 통합되어 있는 형태입니다. 배포가 간단하며, 확장성이 쉽고, E2E 테스트가 용이하다는 장점이 있습니다. 하지만 조그마한 수정 사항이 있으면, 다시 구성 환경을 빌드하고 배포해야 한다는 단점이 있습니다. 또한 일부 오류가 전체 아키텍처에 영향을 미친다는 치명적인 단점도 존재하죠. 반면 [그림(오)]에 해당하는 MSA(Micro Service Architecture)는 하나의 큰 애플리케이션을 여러 개의 작은 애플리케이션으로 쪼개어, 변경과 조합이 가능합니다. 작은 서비스의 독립적 배포라는 강력한 장점을 앞세워 Netflix, PAYCO와 같은 다양한 기업들이 앞다투어 MSA를 받아들였습니다. 여기서 문제는 MSA로 변화함에 따라 통합 테스트나 E2E 테스트 검증이 필요해졌는데요. 이처럼 여러 서비스의 API를 검증해야 하므로, 복잡성이 증가하고 많은 시간과 비용이 소모되었습니다. 무엇보다 각 서비스 별로 자체적인 데이터베이스가 있어, 트랜잭션에 대한 파악이 어려워지기도 했죠. 따라서 기존 APM이 담당하는 트랜잭션 모니터링의 복잡성은 더욱 증가했고, Observability의 필요성이 대두되었습니다. DevOps와 클라우드 네이티브 환경으로서의 전환 옵저버빌리티가 등장하게 된 두 번째 이유는, DevOps와 클라우드 네이티브 환경으로 전환하기 위해 필요한 도구이기 때문입니다. DevOps의 핵심은 소프트웨어의 개발(Deployment)과 운영(Operation)을 분리하는 것이 아닌, 하나로 통합된 업무 처리 방식으로 진행됩니다. 이때 관리하는 서비스 전반에 대한 가시성이 충분히 확보되지 않으면, DevOps 조직은 근본적인 원인을 찾는 데 어려움을 겪게 됩니다. 이러한 어려움을 해결하기 위해서는 서비스를 구성하는 아키텍처부터 트랜잭션까지 가시성이 확보되어야 합니다. 이를 통해 DevOps의 목표인 지속적인 개발과 운영의 통합을 만들어낼 수 있죠. 또한 Observability는 클라우드 네이티브 환경으로 전환하기 위한 필수 조건입니다. 기업에서 운영 중인 서비스/IT 인프라가 클라우드 네이티브 환경으로 전환되면서, 이전에 발생하지 않았던 모든 장애 가능성에 대한 인지를 위해 Observability가 선행되어야 합니다. │Observability와 Monitoring 차이점 그렇다면 기존의 모니터링(Monitoring)과 옵저버벌리티(Observability)의 차이점은 무엇일까요? 기존의 모니터링 역할은 IT 인프라의 '정상 작동 확인'을 위한 도구 역할에 초점이 맞춰져 있었습니다. 모니터링 구성 요소인 대시보드와 사용자 알람을 통해 가시성을 확보하고, 장애를 쉽게 감지할 수 있었죠. 즉 모니터링은 인프라 성능 지표, 구성 관리, 사용자 알람에 주 목적을 둔 IT 운영 담당자에 포커스를 맞춘 도구입니다. Observability는 기존 모니터링이 맡는 알람(Alerting), 메트릭(Metric) 외에도 로그(시스템, 애플리케이션), 트레이스, 디버깅과 같은 작업이 가능합니다. 이를 통해 앞으로 발생할 수 있는 장애를 미리 예측하고, 발생한 장애에 대한 근본적인 원인을 찾아내는 데 초점이 맞춰져 있습니다. │Observability 확보를 위한 핵심 구성 요소 옵저버빌리티는 앞서 언급했듯이 메트릭(Metric), 로깅(Logging), 트레이싱(Tracing) 등 작업이 가능한데요. 좀 더 자세히 살펴보겠습니다. Metric 모니터링 분야에서 Metric(메트릭)이란, 인프라 혹은 서비스 성능과 상태를 나타내는 지표입니다. 여기서 중요한 점은 단순히 현재 상태를 보기 쉽게 표현하는 것에서 더 나아가 '시계열 데이터' 형태로 변화하는 데이터를 보여줘야 합니다. 예를 들어 CPU 사용률, 메모리 사용률, 스레드 사용률과 같이 시간이 지남에 따라 어떻게 변화하는지 효율적으로 보여줄 수 있어야 하죠. 또한 메트릭은 여러 AI 분석툴과 오픈소스와 결합하여, 직관적인 파라미터를 통해 시계열 데이터의 다양한 패턴을 자동 감지할 수 있어야 합니다. 운영자와 개발자에게 필요한 리소스를 선택할 수 있도록 성능 예측하는 지표도 필요합니다. Logging Logging(로깅)은 운영 중인 시스템과 애플리케이션에서 발생하는 다양한 이벤트와 에러 등을 기록하는 과정입니다. Observability는 여기서 더 나아가 클라우드 시스템의 모든 로그를 수집하여, 해당 로그를 통해 문제 원인을 식별할 수 있어야 합니다. 물론 각 로그 스트림은 단일 인스턴스에 대한 이벤트를 알려주기 때문에, 마이크로 서비스 환경에서 전체적인 문제 원인을 파악하기 어려울 수 있습니다. 하지만 중앙 집중식 로깅을 사용하면, 애플리케이션 로그를 한곳에 저장할 수 있습니다. 이를 통해 여러 서비스로 구성된 MSA 환경에서 로그를 효과적으로 검색하고 모니터링할 수 있죠. 이러한 작업을 하기 위해서 ELK Stack1 과 같은 로그 수집 활용 도구가 필요한데요. 이 도구는 로그 관리를 단순화화여, 전체 시스템 문제를 더 쉽게 분석할 수 있도록 도와줍니다. *ELK Stack1: Elastic Search. Logstash, Kibana의 약자로 데이터를 수집하고 분석하는 도구 모음 Tracing 트레이싱은 애플리케이션 실행 정보를 기록하는 '특별한 로깅' 방식을 의미합니다. 사실 로깅과 트레이싱을 구분하는 것에 큰 의미는 없습니다. 하지만 Observability 관점에서 트레이싱은, 전체 로그 중 문제를 일으키는 특정 로그들을 시각화하고 이를 선택적으로 관찰하는데 의미가 있습니다. Debugging Observability에서 말하는 디버깅은, 시스템과 서비스 성능을 확인하고 검사할 수 있는 다양한 도구입니다. 장애 원인을 찾을 경우 그 장애 원인뿐만 아니라, 연관관계를 가진 여러 인프라와 애플리케이션을 함께 보여줄 수 있어야 하죠. RUM RUM은 Real User Monitoring 약자로, 사용자의 인터랙션을 추적하여 웹사이트나 애플리케이션 성능을 실시간으로 모니터링하는 기술입니다. 옵저버빌리티는 앞서 언급했듯, 더 이상 IT 인프라 운영자를 위한 도구가 아닙니다. DevOps를 위한 통합적인 가시성을 제공하는 도구이죠. 따라서 운영자와 개발자를 위한 '실제 사용자 관점'에서 모니터링을 제공해야 합니다. 이처럼 옵저버빌리티 시스템은 애플리케이션의 전체적인 상태를 깊이 있게 파악하고, 문제 원인을 분석하는 데 중점을 두는 접근 방식입니다. 그렇다면 애플리케이션 성능 관리 시스템인 APM 도구와는 어떤 차이점이 있을까요? │APM과 Observability 차이점 어떻게 보면 APM과 Observability는 비슷해 보이지만, 문제 원인과 인프라를 분석하는 시각에 따라서 다양한 차이점을 지니고 있습니다. 우선 첫 번째 차이점으로는 모니터링 목적 대상에 따른 차이가 있습니다. APM은 E2E(End-to-End) 성능 구간에 주목합니다. WEB-WAS-DB에 걸친 이 과정을 실제 서비스 사용자의 *액티브 서비스2에 초점을 맞춰, 애플리케이션 성능을 분석하고 모니터링하죠. *액티브 서비스: 현재 시점에서 사용자에게 제공되고 있는 상태 Observability는 APM에서 주목하는 E2E보다, 더 많은 범위를 모니터링합니다. 시스템 인프라, WAS, DB에 대한 정밀 성능 분석과 장애 감지는 물론. 운영 중인 인프라와 서비스를 통합하여 문제 원인을 찾는 데 집중합니다. [그림] Zenius-APM 사용자 정의 실시간 모니터링 상황판 따라서 두 번째 차이점으로는, 측정하는 지표에도 많은 차이가 있는데요. APM은 사용자 요청에 따른 응답 시간과 응답 분포, 액티브 서비스 상태, 트랜잭션 처리율, 이슈 중심으로 '사용자 요청' 관점에 따라 주요 지표를 확인할 수 있습니다. Observability는 사용자의 요청 관점이 아닌, 발생할 수 있는 '모든 이벤트 지표'에 주목합니다. 보다 더 전방위적인 모니터링이 가능하죠. 또한 옵저버빌리티는 기존 APM에서 발생하는 주요 장애 원인뿐 아니라, 예측하지 못한 장애를 객관적인 지표로 보여줍니다. 정리한다면 인프라와 서비스를 분석하고 장애를 탐지한다는 점에서 APM과 Observability는 동일한 역할을 갖지만, 결국 사용자가 무엇을 더 초점에 맞추느냐에 따라 사용 목적은 아래와 같이 달라질 수 있습니다. 우리 기업은 Observability가 맞을까, APM가 맞을까? APM Type Observability Type 애플리케이션 성능 최적화가 필요한 경우 애플리케이션 코드 내의 문제를 식별하고 해결하는 데 중점을 둘 경우 MSA 환경이 아닌 모놀리식 아키텍처에서 서비스를 구성하고 있는 경우 MSA 환경에서의 분산 시스템을 통해 서비스를 구성하는 경우 단순한 애플리케이션 성능을 넘어 전체 IT 인프라 환경에 대한 통찰력 확보가 필요한 경우 인프라 운영자, 개발자, 보안담당자 모두가 통합 모니터링 환경이 필요한 경우 이번 글에서는 옵저버빌리티의 중요성과 APM의 차이점을 자세히 살펴보았습니다. 결론적으로 옵저버빌리티와 APM 중 어느 하나를 더 좋다고 할 수 없으며, 각 조직의 요구사항과 사용 편의성에 맞춰 선택해야 합니다. 그러나 점점 복잡해지는 IT 환경을 고려한다면, 옵저버빌리티를 기반으로 한 Zenius-APM과 같은 도구를 활용하여 좀 더 효율적으로 웹 애플리케이션을 관리해 보는 것은 어떨까요? 🔍더보기 Zenius APM 더 자세히 보기 📝함께 읽으면 더 좋아요 • APM에서 꼭 관리해야 할 주요 지표는?! • APM의 핵심요소와 주요기능은?!
2024.07.24
기술이야기
APM의 핵심요소와 주요기능은?!
기술이야기
APM의 핵심요소와 주요기능은?!
지난 글을 통해서 APM의 필요성과 '트랜잭션' 현황 파악의 중요성에 대해서 알아봤습니다. 이번 시간에는 트랜잭션을 어떤 방식으로 추적하는지 APM 동작 과정을 통해 살펴보고, APM 시스템을 최적화하는 핵심 요소와 기능은 무엇인지 자세히 알아보겠습니다. │APM 동작 과정 APM은 Client-Web Application-DBMS와 같은 구성요소 사이에 트랜잭션1을 추적할 수 있어야 합니다. 이를 통해 웹 서비스 전반적인 성능을 모니터링하고, 문제가 발생했을 때 원인을 신속하게 진단할 수 있기 때문인데요. 그렇다면 각 단계별로 APM가 어떻게 트랜잭션1을 추적하는지 좀 더 자세히 살펴보겠습니다. *트랜잭션1: 쉽게 말해 데이터베이스에 실행되는 작업 단위를 의미합니다. 트랜잭션은 작은 여러 작업들을 하나의 그룹으로 묶어 처리하기 때문에, A라는 작업에서 일부가 성공했다고 하더라도 하나의 트랜잭션 처리가 비정상적으로 종료되면 모두 실패한 것이죠. 클라이언트(Client) 웹 서비스 사용자가 이용하는 디바이스 또는 브라우저입니다. 클라이언트에서 발생하는 요청과 응답을 추적하여 페이지 로딩 시간, 사용자 활동, 에러 발생 등을 파악할 수 있습니다. 이 정보들을 통해 사용자 경험을 분석하고 개선하는데 기초 자료로 사용되죠. 웹서버(Web Server) 클라이언트 요청을 받아, 적절한 답을 생성하여 보내는 서버입니다. 이 단계에서 APM은 서버(예: Apache, Nginx) 로그와 성능 지표를 분석하여 요청 처리 시간, 데이터 전송량, 서버 오류 등 정보를 모니터링하고 기록합니다. 웹 애플리케이션 서버(WAS) WAS는 Web Application Server의 약자로, 애플리케이션에서 사용하는 데이터를 저장하고 관리하는 시스템입니다. 이 단계에서 APM은 데이터베이스 성능을 모니터링하여 DB 쿼리 실행시간과 DB 서버 부하 등을 측정하고, 성능 문제를 파악하는 데 도움을 줍니다. WAS 종류로는 WebLogic, Websphere, JEUS, Tomcat 등이 있습니다. 데이터베이스(DBMS) DBMS(Database Management System)는 기업에서 발생하는 모든 데이터를 저장하고 관리하는 소프트웨어입니다. 이 단계에서는 DB 성능 관리 솔루션을 통해, 애플리케이션 개발자가 작성한 SQL 튜닝과 DBMS 소프트웨어 병목 현상 등을 모니터링할 수 있습니다. 특히 데이터베이스는 IT 인프라에서 필수 요소입니다. 기업 서비스 대부분이 데이터베이스에 접근하여, 데이터를 조회하고 수정해야 하기 때문에 DB 관리는 매우 중요하다 할 수 있죠. 이처럼 APM은 Client-Web Server-Was-DB 각 구성요소 사이에 있는 트랜잭션을 추적하여 웹 서비스 성능을 평가할 수 있습니다. 그다음으로는 APM 시스템 전체적인 성능을 평가하고 최적화하는 핵심 요소는 무엇인지 살펴보겠습니다. │APM 성능을 최적화하는 핵심요소 APM 시스템은 크게 5가지 요소를 통해, 전체적인 성능을 최적화할 수 있습니다. 우선 Resource는 시스템 성능과 안정성을 평가하는데 중요한 역할을 하며, DataBase는 SQL 쿼리의 실행 계획이나 DB 연결 상태와 같은 세부 정보를 분석하여 데이터베이스 성능을 최적화합니다. Alert는 모니터링된 데이터에서 문제를 식별하고 사용자나 운영자에게 경고를 보내며, User 경험과 행동을 추적하여 서비스 품질을 평가합니다. WAS는 서버 내부에서 발생하는 이벤트를 모니터링하고, 서버 성능을 평가하는 역할을 합니다. Resource-Database-Alert-User-WAS 이 5가지 요소는 APM 아키텍처를 구성하는 핵심 요소이기도 한데요. 다음 내용을 통해 APM 아키텍처를 좀 더 자세히 살펴보겠습니다. │APM 아키텍처 APM 아키텍처는 Agent를 통해 WAS(관리대상) 실시간 데이터를 수집하고 → Manager에서 데이터를 수집/분석/가공 한 뒤 → 다양한 UI로 시각화합니다. 특히 꼭 기억해야 할 APM 아키텍처 핵심 3가지는 에이전트, 데이터베이스, 통신방식인데요. 좀 더 자세히 알아보겠습니다. 에이전트 APM 관리대상(예시: WebSphere, WebLogic, JBoss, JEUS, Tomcat 등)에 Agent라고 불리는 소프트웨어를 설치합니다. 그다음 모니터링 대상 시스템(WAS)에서 데이터를 수집하죠. 에이전트는 애플리케이션 내부 동작을 모니터링하고, 성능 데이터를 수집하는 역할을 합니다. 이러한 데이터를 활용하여 에이전트는 서비스 구간별 현황과 초당 처리 건수, 서비스 응답시간, 동시 접속자 수, 트랜잭션 거래량, 에러 등 상세한 지표를 제공해 주죠. 데이터베이스 수집된 데이터를 보관하고 분석하기 위해서는, 데이터베이스(DataBase)를 사용합니다. 이 데이터베이스는 대규모 데이터를 저장하고 관리하는 구조여야 하며, 분석하고 보고서를 생성하는데 필요한 데이터를 효율적으로 쿼리 할 수 있어야 합니다. 통신방식 APM 시스템은 보통 다양한 통신 프로토콜(Communication Protocol)을 사용하여, 데이터를 수집하고 전송합니다. 예를 들어 웹 소켓(WebSocket)을 통해 실시간 데이터를 전송하거나 http(s)를 사용하여 주기적으로 데이터를 전송하는 방식이 일반적입니다. 그다음으로는 APM은 어떤 주요 기능을 제공하는지 알아보도록 하겠습니다. │APM 주요기능 APM은 대표적으로 웹사이트와 소프트웨어 애플리케이션 및 서비스에서, 성능을 모니터링하고 분석하는 기능이 있는데요. 좀 더 자세한 APM 기능을 살펴보겠습니다. 실시간 성능 통합 모니터링 [그림] Zenius-APM 토폴로지 맵 APM은 Tomcat, Jboss, WebLogic, JEUS 등 다양한 애플리케이션 서버(WAS) 환경에서 실행되는 애플리케이션 통합 모니터링을 제공합니다. 시스템 간의 처리 성능과 현황 정보는 토폴로지 뷰를 통해 시각적으로 파악할 수 있죠. [그림] Zenius-APM 모니터링 상황판 또한 각 서버의 트랜잭션 처리량, 처리 속도, 자원 사용량을 실시간으로 분석하여 시스템 성능을 관리합니다. 특정 트랜잭션 실행 경로를 추적하고 분석하여, 성능 병목 현상도 식별할 수 있습니다. [그림] Zenius-APM 모니터링 서비스 응답분포 APM은 서비스 응답 분포도를 제공하여, 비정상적인 트랜잭션을 집중적으로 조회하고 분석할 수 있습니다. 장애관리 APM은 메모리 누수, 서비스 응답 지연과 같은 장애 원인을 실시간으로 추적하고 분석하는 기능을 제공합니다. Rawdata를 기반으로 장애 발생 시점을 재현하여, 문제의 근본 원인을 파악하는 데 도움을 주죠. 또한 자동 이벤트 처리는 장애 관리 규칙(Rule)에 따라 이루어지며, 문제 발생 시에는 사용자에게 즉각적인 알림을 제공합니다. 성능 분석과 통계 APM은 애플리케이션 성능을 다양한 지표(예: 성능비교, 기간비교, 증설 필요성, 시간대별 등)를 통해 분석하고, 여러 파일 형식의 보고서로 제공합니다. 또한 애플리케이션 성능 문제와 SQL 쿼리 간의 연관성을 분석하여 성능 개선 방안을 제안합니다. 다양한 환경 지원 레거시 시스템에서 클라우드 인프라에 이르기까지, APM은 다양한 IT 환경을 효과적으로 지원합니다. 또한 WAS 중심 성능 관리와 MSA(마이크로 서비스 아키텍처) 환경 모니터링을 가능하게 하는 기술을 제공하죠. 이번 시간에 알아본 내용처럼 APM은 다양한 애플리케이션 서버(WAS) 환경에서 실행되며, 트랜잭션 성능을 관리하는 통합 모니터링 제품입니다. Zenius-APM와 같이 다양한 WAS 환경에서의 통합 모니터링과 트랜잭션 처리 현황을 체계적으로 파악할 수 있는 APM을 통해, 효과적으로 웹 애플리케이션을 관리해 보세요!
2024.07.19
기술이야기
GPU 모니터링의 중요성과 솔루션 선택 기준은?!
기술이야기
GPU 모니터링의 중요성과 솔루션 선택 기준은?!
인공지능(AI), 클라우드 컴퓨팅, 가상 현실(VR) 및 증강 현실(AR), 빅데이터 분석 등 정말 다양한 분야의 기술이 고도화 됨에 따라서 GPU(Graphic Processing Unit, 그래픽 처리 장치) 시장도 빠르게 커지고 있습니다. GPU 시장은 2024년부터 2029년까지 32.9%의 CAGR(연평균 성장률)을 기록하며, 2029년에 280조 원을 돌파할 것으로 예측됩니다. GPU의 활용도가 커지면서 그와 동시에 GPU를 효율적으로 관리하는 'GPU 모니터링'의 중요성도 점점 더 부각되고 있는데요, 자세한 이유부터 살펴보겠습니다. │GPU 모니터링이 필요한 이유는?! GPU 모니터링이 필요한 가장 큰 이유는 효율적인 자원 관리와 성능 최적화입니다. GPU는 고성능을 제공하기 때문에 리소스를 많이 소모합니다. 따라서 실시간 모니터링을 통해 GPU의 사용량, 소모 전력, 온도, 메모리 사용량 등을 파악하고 대응해야 합니다. 이는 곧 시스템이 과열되거나 과부하 되는 것을 막아주고 GPU 성능을 최적의 상태로 유지시켜주기 때문이죠. 이와 더불어서 빠른 문제 진단과 해결을 위해서도 모니터링이 필요합니다. GPU 관련 문제나 오류는 단순한 시스템 성능 저하를 넘어서 서비스/비즈니스 전반의 문제로 확대될 수 있습니다. 따라서 GPU 모니터링 솔루션을 사용하여 메모리 누수 등의 이상 징후를 빠르게 발견하고 조치할 수 있어야 합니다. 또한 실시간 GPU 모니터링을 통해서 에너지 사용량 최적화하면 전체 시스템의 에너지 효율도 향상시킬 수 있습니다. 그렇다면 구체적으로 어떤 GPU 모니터링 솔루션을 선택해야 할까요?! │GPU 모니터링 솔루션 선택 방법?! GPU 솔루션 선택 시 가장 중요하게 확인해야 할 부분은, 'GPU의 특성을 고려한 모니터링이 가능한가?'입니다. GPU는 한 개 서버라 하더라도 각각의 GPU 별로 모니터링이 되어야 하고, 온도 상승에 따른 성능 저하와 'Out of memory'와 같은 문제를 신속하게 파악해야 하는 특성이 있습니다. [그림] 제니우스의 GPU 모니터링 화면 예시 예를 들어 브레인즈컴퍼니의 제니우스(Zenius) EMS는 GPU의 특성을 고려하여 GPU 별 모니터링을 제공하고 있습니다. 또한 GPU 온도의 추이 분석 및 감시 기능도 제공하여 일정치 이상으로 온도가 상승하거나 메모리가 증가하면 즉각적인 알림을 제공합니다. 이와 더불어서 프로세스 별 GPU 사용량과 OS 관점의 네트워크 트래픽, CPU 등 전반적인 상태에 대한 모니터링 기능도 함께 제공합니다. 제니우스 EMS와 같이 GPU 특성에 맞춘 모니터링 솔루션을 활용하면, GPU 성능을 최적화하고 효율도 최대한 높일 수 있습니다. GPU가 점점 더 중요한 역할을 맡고 있고, 그에 따른 비용도 크게 들어가는 만큼 모니터링 솔루션을 활용한 실시간 관리는 더 중요해지고 있습니다. 또한 GPU뿐 아니라 다른 IT 인프라도 통합 관리할 수 있는 솔루션을 사용하는 것도 경쟁력을 높일 수 있는 좋은 방법입니다. 애플리케이션, GPU, 네트워크 서버, 트래픽, 클라우드, 무선 AP 등 모든 IT 인프라 환경을 통합 관리할 수 있는 제니우스 같은 솔루션 도입을 통해 한 발 더 앞서 나가시기 바랍니다.
2024.07.15
1
2
3
4