반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
최신이야기
검색
기술이야기
클라우드(Cloud) 관리와 AWS가 뭔가요?
기술이야기
클라우드(Cloud) 관리와 AWS가 뭔가요?
오늘날 IT 인프라 운영환경은 매우 복잡해졌어요. 갑작스러운 환경 변화에 따라 신속한 대응도 필요한 시점이죠. 이러한 현상으로 많은 기업들이 온프레미스(On-premise) 환경에서 클라우드(Cloud) 환경으로 전환하는 추세이기도 해요. 클라우드 컴퓨팅 서비스 중에는 여러 벤더가 있는데요. 대표적으론 Amazon Web Services(AWS), Microsoft Azure, Google Cloud Platform(GCP)가 있어요. 그중 ‘AWS’는 국내 클라우드 시장에서 3년 간 70% 내외의 시장점유율로, 1위를 차지했는데요(*클라우드 서비스 분야 실태조사(2022), 공정거래위원회) 이처럼 높은 점유율을 가진 1) AWS의 주요 서비스를 살펴보고 2) 하이브리드 클라우드 모니터링이 필요한 이유는 무엇인지 3) AWS의 각종 서비스를 모니터링할 수 있는 제니우스(Zenius)도 함께 소개해 드릴게요! AWS(Amazon Web Services)란? AWS는 ‘Amazon Web Services’의 약어로, 아마존 닷컴이 제공하는 클라우드 컴퓨팅 플랫폼 및 서비스의 집합이에요. AWS에서 제공하는 여러 가지 서비스를 이용하면, 기업 및 개인이 필요한 컴퓨팅 리소스를 유연하게 확장하고 관리할 수 있죠. AWS 주요 서비스는 다음과 같아요! AWS 주요 서비스 ▪Amazon VPC(Amazon Virtual Private Cloud) 격리된 네트워크 환경을 구성하게 해주는 서비스예요. AWS의 동일 계정이나, 서로 다른 계정 간에 격리된 네트워크를 연결할 수 있도록 다양한 옵션들을 제공해 줘요. ▪Amazon EC2(Amazon Elastic Compute Cloud) AWS에서 가장 많이 사용되는 컴퓨팅 서비스예요. 가상 서버를 호스팅 할 때 사용하죠. 리눅스나 윈도우 환경 등 다양한 인스턴스 유형을 지원하고, 필요에 따라 성능을 조정할 수 있어요. 생성 가능한 인스턴스 타입은 리전 별 차이가 있으나, 100개~300개에 이를 정도로 방대하답니다. ▪AWS Lambda AWS에서 제공하는 서버리스 컴퓨팅 플랫폼이에요. 여기서 ‘서버리스’란 개발자가 서버의 존재를 신경 쓸 필요가 없다는 뜻이에요. AWS에서는 서버 인프라에 대한 프로비저닝, 유지관리 등을 대신 처리해 주죠. 이처럼 개발자가 비즈니스 로직에 집중하여 코드를 실행하게 해줘요. ▪Amazon S3 AWS에서 제공하는 스토리지 서비스예요. S3는 파일시스템이 아닌 오브젝트 스토리지 서비스로, 모든 파일에 API를 통해 접근 가능해요. 무제한적인 확장성, 높은 가용성과 내구성을 제공하며 단일 파일을 최대 5TB까지 업로드할 수 있어요. ▪Amazon EBS(Amazon Elastic Block Store) EC2 인스턴스에 장착하여 사용할 수 있는 가상 저장 장치에요. EBS를 연결하여 파일을 저장하면, EC2 인스턴스와 관계없이 데이터를 영구적으로 보관 가능해요. 이 밖에도 AWS에서 제공하는 서비스는 매우 방대한대요. 아래 URL로 접속 시, 필요한 서비스 목록 확인이 가능하답니다! 🔍 더 많은 AWS 서비스가 궁금하다면? 온프레미스와 AWS의 차이 온프레미스 방식은, 클라우드 컴퓨팅 서비스가 나오기 전까지 기업에서 전통적으로 사용한 ‘일반적인 인프라 구축 방식’이에요. 온프레미스 환경에서 서버를 운영하면, 호스팅 서비스를 이용하거나 서버를 직접 구매 또는 임대하죠. 그다음 데이터 센터(IDC, Internet Data Center) 또는 기업 전산실에 설치하여 운영해요. 하지만 물리적인 서버를 직접 설치할 경우, 많은 시간과 비용이 소모되어 이를 위한 운영 공간과 인력이 필요할 수 있어요. 예시를 들어 볼게요. 대형 콘서트 예매, 대학교 수강신청, 입시 원서 접수 등 단기간에 트래픽이 급증했다가 감소되는 경우를 생각해 볼까요? 이때 ‘온프레미스 방식’으로 시스템을 구축한다면, 매우 많은 비용 낭비가 발생하게 될 거예요. 반면 AWS의 경우는 어떨까요? 인터넷이 연결된 어디에서든 쉽게 인프라를 구축하고, 사용한 만큼 비용을 지불할 수 있어요. 큰 이벤트를 처리한 후 생성된 리소스를 간편하게 삭제할 수 있죠. 이처럼 온프레미스 방식과 대비한다면, 남는 자원에 대한 비용 고민이 없어지겠죠? 하이브리드 클라우드 모니터링이 필요한 이유 이처럼 AWS는 매우 유연하고 확장성 있는 클라우드 서비스예요. 하지만 모든 서비스를 AWS를 이용해서 서비스하는 것은 한계가 있는데요. 이유는 다음과 같아요. ▪보안 및 규정 준수 민감한 데이터나 규정 준수가 필요한 업무의 경우, 사설 클라우드나 온프레미스 환경의 자체 데이터 센터를 통해 운영하려는 경향이 있어요. ▪비용 효율 AWS는 사용한 만큼 비용을 지불하기 때문에, 예측할 수 없는 트래픽 증가 등에 대응하기에 좋아요. 하지만 서비스에 따라 온프레미스 환경에서 운영하는 것이 비용 측면에서 더 효율적인 경우가 있죠. 이처럼 많은 기업이 AWS를 이용한 클라우드 서비스로 전환하는 추세지만, 당분간 온프레미스 방식과 결합한 하이브리드 클라우드 운영환경이 많은 편이에요. 그렇다면 이러한 하이브리드 클라우드 운영 환경을 모니터링할 수 있는 방법이 없을까요? 바로 ‘제니우스’를 활용한다면 가능해요! 제니우스를 이용한 하이브리드 클라우드 모니터링 구성도 제니우스 하이브리드 클라우드 모니터링 프로세스를 간략히 소개할게요! 우선 클라우드 환경 단계에서는 AWS 서비스를 이용하여 구축된 클라우드 환경 정보를 RestAPI 방식으로 수집해요. CMS Manager는 AWS 클라우드 환경에서 수집한 정보를 취합 후 스토리지에 저장해 주죠. EMS Manager는 온프레미스 환경에서 수집한 정보를 취합 후 스토리지에 저장해 줘요. Web UI에서는 스토리지에 저장된 데이터를 이용하여, 사용자에게 모니터링 정보를 제공한답니다! 제니우스에서 AWS 모니터링하기 제니우스를 이용한 ‘하이브리드 클라우드 모니터링 구성’을 좀 더 자세히 살펴볼까요? ▪CMS > 모니터링 > 요약 : 위 그림은 AWS 통합 요약 페이지인데요. EC2, RDS, VPC 등 과금 현황까지 통합 모니터링할 수 있어요. ▪EMS > 토폴로지 > 클라우드 맵 : 리전 별 자동 구성형 클라우드 맵 페이지에서는, AWS 리전 별 이용하는 서비스와 연관관계를 클라우드 맵이 자동으로 구성해 줘요. ▪CMS > 클라우드서비스 > EC2 > 주요 성능 지표 : 주요 성능지표 모니터링 페이지에서는 AWS 콘솔에 접속하지 않고, AWS 주요 성능 지표에 대한 모니터링 추이를 확인할 수 있어요. ▪EMS > 오버뷰 : 오버뷰를 통한 온프레미스 + AWS 통합 모니터링 페이지에서는, AWS 모니터링 항목과 온프레미스 환경 모니터링 항목의 통합 현황판을 확인할 수 있어요. 이처럼 AWS와 온프레미스 환경은 물론, 더 다양한 환경의 인프라 모니터링을 위해 제니우스를 사용을 해보는 건 어떨까요?
2023.11.16
회사이야기
2023년 상반기 협력업체 상생 세미나 성료…”신규 기능 소개, 상생 지속 도모”
회사이야기
2023년 상반기 협력업체 상생 세미나 성료…”신규 기능 소개, 상생 지속 도모”
지난 21일 본사 8층 대회의실에서 ‘2023년 상반기 협력업체 상생 세미나’를 진행했습니다. 브레인즈컴퍼니는 급변하는 IT인프라 시장 환경에 적극 대응하고 협력사와의 협력을 더욱 강화하기 위해 협력업체 상생 세미나를 운영하고 있습니다. 올해부터 세미나를 상, 하반기 2회 실시하기로 하였는데요, 기존에 EMS를 설치 및 활용하는 교육 중심에서 제니우스의 새로운 기능을 소개하는 중심으로 세미나에 변화를 주었습니다. 이날 행사는 먼저 프리세일즈팀에서 회사 소개를 하였고, 이어서 Technical Consulting 팀 정채린 차장이 제니우스 8.0의 신규 기능을 소개하였는데요, 20개 이상의 신규 기능에는 WNMS, ERMS, 웹토폴로지 등이 포함되어 있습니다. 그리고 막간을 이용해 통합로그관리, Zenius LogManager을 소개하는 시간도 가졌습니다. WNMS는 분산된 AP 장비의 상태를 한 곳에서 통합 모니터링할 수 있을 뿐만 아니라, AP 장비의 Up/Down 링크, WAN Traffic 등을 실시간으로 모니터링하고, AP 장비의 부하를 효율적으로 컨트롤하도록 접속자 수, 사용자 수, 최대 동시접속자 수 등의 근거데이터를 모니터링하고 자료로 확보할 수 있습니다. ERMS(Event Relation Management System)은 문제 원인 추적을 위한 이벤트의 연관성을 분석하는 기능입니다. 기존 서비스맵의 기능에 AND/OR, 이상 등의 다양한 연산조건 및 통보기능을 추가하여 개별적 이벤트가 아닌 복합적인 이상 상황을 감지할 수 있습니다. 웹토폴로지는 기존에는 CS 형식으로 제공되었던 토폴로지맵의 활용도를 높이기 위해 Web기반으로 구현하여 오버뷰와 함께 활용할 수 있도록 구현하였습니다. 마지막은 클라우드 모니터링을 소개하고 시현을 통해 클라우드 가상화 자원을 모니터링하여 가상 자원의 적절한 운영 효율성을 향상시킬 수 있는지 선 보였습니다. 이번 세미나에는 영진인포텍, 한신정보, 시원 등 협력업체 관계자뿐만 아니라 디와이, 더존비즈온 같은 고객사에서도 참여했습니다. 참여한 협력업체는 이런 형식의 세미나가 자주 있었으면 좋겠다, 그리고 정기적인 온라인 교육을 희망한다는 의견을 주셨습니다. 반면 참여한 고객사는 제니우스 8.0으로 업그레이드를 결정하는 데 많은 도움이 되었다고 합니다. 세미나를 주관한 소감은 “제품 중심으로 소개하는 세미나는 처음인데 예상보다 질문이 많았고 관심이 뜨거운 것을 보고 앞으로 제품을 소개하는 기회를 자주 가지면 좋겠다”입니다. 참여해 주신 모든 분께 감사 인사 전합니다.
2023.06.23
기술이야기
서버 모니터링의 두 가지 방식
기술이야기
서버 모니터링의 두 가지 방식
이번 블로그에서는 일반적으로 서버 모니터링 소프트웨어들이 널리 쓰고 있는 서버 모니터링의 두 가지 방식에 대해서 논의하고 그 차이점을 알아보겠습니다. 지난 블로그에서 언급했듯이, 서버 모니터링은 컴퓨터 서버의 성능을 관찰하고 분석해 최적의 상태로 실행되고 있는지 확인하는 작업입니다. 이 프로세스에는 일반적으로 CPU 사용률, 메모리 사용량, 디스크 I/O, 네트워크 트래픽 및 응용 프로그램 성능과 같은 다양한 메트릭에 대한 데이터를 수집하는 소프트웨어 도구의 사용이 포함됩니다. 서버 모니터링 소프트웨어는 데이터 수집 후 추세, 패턴 및 이상 현상을 식별하기 위해 데이터를 분석합니다. 분석을 통해 잠재적인 문제가 심각해지기 전에 식별하고 서버 관리자가 시정 조치를 취할 수 있도록 합니다. 예를 들어, CPU 사용률이 지속적으로 높은 경우 서버의 성능이 부족해 더 많은 리소스를 할당해야 할 수 있음을 나타낼 수 있습니다. 또는 디스크 I/O가 느린 경우 서버의 저장소가 과부하됐거나 최적화가 필요함을 나타낼 수 있습니다. 서버 모니터링 소프트웨어에는 관리자가 서버 성능을 파악하는데 도움이 되는 대시보드, 경고 및 보고 기능이 포함되는 경우가 많습니다. 대시보드는 핵심 성과 지표의 실시간 보기를 제공하는 동시에 특정 임계값을 초과하거나 문제가 감지되면 관리자에게 알림을 보냅니다. 서버 관리자는 보고 기능을 통해 시간 경과에 따른 성능 추세 및 문제에 대한 보고서를 생성할 수 있으며, 이를 통해 용량 계획 및 리소스 할당 결정을 알리는데 사용할 수 있습니다. 서버 모니터링은 일반적으로 에이전트 없는 서버 모니터링과 에이전트 기반 서버 모니터링, 이 두 가지 주요 접근 방식이 있습니다. 두 가지 모두 장단점이 있으며 어떤 것을 선택하느냐는 특정 요구 사항과 선호도에 따라 달라집니다. 에이전트 기반 서버 모니터링 에이전트 기반 서버 모니터링에는 모니터링하려는 각 서버에 ‘에이전트’라고 하는 별도의 서버용 모니터링 소프트웨어를 설치해 데이터를 수집하는 방식을 말합니다. 에이전트는 서버에서 다양한 성능 메트릭에 대한 데이터를 수집해 모니터링 시스템으로 다시 보냅니다. 이 접근 방식은 에이전트 없는 모니터링보다 더 상세하고 세분화된 데이터와 기능을 제공합니다. 또, 데이터를 암호화하고 보안 채널을 사용해 데이터를 전송하므로 일반적으로 에이전트 없는 모니터링보다 더 안전합니다. 에이전트 기반 서버 모니터링의 주요 기능은 다음과 같습니다. ∙ 성능 모니터링: 에이전트는 CPU, 메모리, 디스크 사용률, 네트워크 트래픽 등의 정보를 수집할 수 있습니다. 이를 이용해 서버의 성능을 모니터링하고, 부하가 높아지면 적시에 대처할 수 있습니다. ∙ 로그 모니터링: 에이전트는 서버에서 발생하는 로그를 수집할 수 있습니다. 이를 이용해 서버에서 발생한 이벤트의 원인 파악에 도움을 줄 수 있습니다. ∙ 보안 모니터링: 에이전트는 서버 내부의 보안 상태를 모니터링할 수 있습니다. 예를 들어, 악성 코드 감지, 사용자 로그인 상태, 파일 권한 등을 체크해 보안 위협을 조기에 감지할 수 있습니다. ∙ 애플리케이션 모니터링: 에이전트는 서버에 설치된 애플리케이션의 상태를 모니터링할 수 있습니다. 예를 들어, 웹 서버에서는 HTTP 요청, 응답 코드, 응답 속도 등을 모니터링해 애플리케이션의 상태를 파악할 수 있습니다. ∙ 자동화된 조치: 에이전트는 모니터링 데이터를 기반으로 자동화된 조치를 수행할 수 있습니다. 예를 들면, CPU 부하가 높아지면 자동으로 스케일 업 또는 스케일 아웃을 수행할 수 있습니다. 에이전트 리스 서버 모니터링 에이전트가 없는 서버 모니터링은 서버 자체에 소프트웨어를 설치할 필요가 없습니다. 대신 모니터링 소프트웨어가 별도의 서버나 워크스테이션에 설치되고, SNMP 또는 WMI와 같은 네트워크 프로토콜을 사용해 대상 서버에서 데이터를 원격으로 수집합니다. 이 접근 방식은 각 서버에 소프트웨어 에이전트를 설치하고 관리할 필요가 없어 일반적으로 설정 및 유지 관리가 더 쉽고 빠릅니다. 또, 에이전트 기반보다 같은 자원을 이용해서 더 많은 수의 서버를 모니터링할 수 있어 경제적입니다. 대신 기능이 제한적이고 프로토콜이 의존해 데이터를 수집하기 때문에 보안 문제가 발생할 수 있습니다. 에이전트 리스 서버 모니터링의 주요 기능은 다음과 같습니다. ∙ 원격 모니터링: 에이전트 없는 모니터링 도구는 원격 데이터 센터, 지사 또는 클라우드 환경에 있는 서버를 포함해 모든 곳에 있는 서버를 원격으로 모니터링할 수 있습니다. 이러한 유연성을 통해 조직의 전체 서버 인프라를 중앙집중식으로 모니터링하고 관리할 수 있습니다. ∙ 확장성: 에이전트 없는 모니터링은 서버 인프라 또는 워크로드 요구사항의 변화를 수용하기 위해 쉽게 확장 또는 축소할 수 있습니다. 추가 에이전트 소프트웨어 설치 또는 구성 없이 모니터링 시스템에 추가 서버를 추가할 수 있습니다. ∙ 포괄적인 모니터링: 에이전트 없는 모니터링은 서버 성능 메트릭을 추적하고 문제를 식별하며, 실시간 경고를 제공함으로써 관리자가 서버 인프라의 상태를 유지하고 중요한 애플리케이션과 서비스가 원활하게 실행되도록 합니다. ∙ 손쉬운 유지 관리 및 업데이트: 에이전트 없는 모니터링을 사용하면 모니터링 되는 각 시스템에서 에이전트 소프트웨어를 관리하고 업데이트할 필요가 없습니다. 이는 유지보수를 단순화하고 모니터링 시스템을 항상 최신 상태로 유지합니다. Zenius(제니우스)의 서버 모니터링 브레인즈컴퍼니의 지능형 IT 인프라 통합관리 소프트웨어 ‘Zenius(제니우스)’는 고객의 시스템 상황에 따라 에이전트 기반 및 리스 방식 모두 가능합니다. 에이전트 기반의 통합 모니터링 소프트웨어 ‘Zenius SMS’는 HTML5 기반 Web UI와 토폴로지 맵을 통해 서버 성능과 상태 및 서버 간 연관관계를 직관적으로 파악합니다. 특히, Zenius SMS는 애플리케이션 단위에 성능이나 로그를 세밀하게 모니터링 및 분석이 가능합니다. Zenius SMS의 주요 기능은 아래와 같습니다. Zenius SMS의 주요 서버 모니터링 기능 1. 프로세스: 프로세스 상태(Up/Down) 및 성능 모니터링(CPU/MEM) 2. 로그: 프로세스나 시스템 로그와 같은 각종 로그 모니터링 3. GPU: GPU의 상태 및 성능 모니터링 4. 보안: 서버의 보안 취약점 점검 5. 자동화: 모니터링 데이터를 기반으로 자동화된 조치 수행 6. 기타: 코어별 온도 모니터링, 서비스 포트별 네트워크 상태, S/W 목록, 환경변수, 계정, 그룹, 스케쥴링, 공유폴더 현황 등 ‘Zenius SMS’ 도입을 통해 체계화된 서버 통합관리를 할 수 있습니다. 반복적이고 수동적인 업무는 자동화돼 업무 효율성을 향상시키며, 객관적인 데이터를 기반으로 정확한 성능 현황 및 비교분석이 가능합니다. 이는 곧 서비스 연속성 확보로 이어지며, 향후 고객 만족도 향상을 기대할 수 있습니다. 반면, 고객 서버에 에이전트 탑재가 불가능한 경우에는 에이전트 리스 방식으로도 사용 가능합니다. 브레인즈컴퍼니의 에이전트 리스 제품으로는 ‘Zenius VMS’가 있습니다. ‘Zenius VMS’는 VMware, Citrix Xen Server, Hyper-V와 같은 서버 가상화 환경에서 호스트 서버와 게스트 서버의 리소스 할당 및 사용 현황, 관계 등을 통합적으로 관제합니다. ‘Zenius VMS’는 프라이빗 클라우드 환경을 모니터링하는데 효과적입니다. Open API로 프라이빗 클라우드 인프라와 통신해, 가상머신의 상태 및 성능, 스토리지 활용도 및 네트워크 트래픽과 같은 환경의 다양한 측면에 대한 데이터를 수집합니다. 수집된 데이터를 분석해 잠재적 문제를 나타낼 수 있는 경향, 패턴 및 이상 현상을 식별하고, 크게 CPU, 메모리, 디스크, MIB 이 4가지 정보를 기본적으로 제공합니다. ‘Zenius VMS’는 VM 상세 관리를 위해 SMS 추가 확장이 용이한 제품입니다. VMS를 통해 호스트-게스트 간 연관관계 기반의 모니터링을 시행하고, 별도로 가상화 서버에 SMS 모듈을 추가해 보다 다양한 모니터링 항목으로 정밀하게 관리함으로써 효과적인 통합관리 환경을 조성할 수 있습니다.
2023.05.09
기술이야기
IT 인프라 모니터링 트렌드
기술이야기
IT 인프라 모니터링 트렌드
EMS란? EMS는 Enterprise Management System의 약자로, 여러 기업과 기관의 IT서비스를 이루는 다양한 IT Infrastructure를 통합적으로 모니터링하는 시스템을 의미합니다. 해외에서는 일반적으로 ITIM(IT Infra Management)이라는 용어로 많이 사용되고 있지만, 국내에서는 EMS라는 용어로 통용되고 있습니다. EMS는 IT인프라의 데이터를 실시간으로 수집 및 분석할 뿐만 아니라, 수집된 데이터를 활용해 비즈니스의 가치를 창출할 수 있습니다. 글로벌 IT분야 연구자문 기업인 “가트너(Gartner)”에서는 ITIM, 즉 EMS를 데이터센터, Edge, IaaS(Infrastructure as a Service), PaaS(Platform as a Service) 등에 존재하는 IT인프라 구성요소의 상태와 리소스 사용률을 수집하는 도구로 정의하며, 컨테이너, 가상화시스템, 서버, 스토리지, 데이터베이스, 라우터, 네트워크 스위치 등에 대한 실시간 모니터링이 가능해야 한다고 서술합니다. <사진 설명: 가트너의 ITIM 정의를 도식화한 그림> 이러한 EMS는 초기에는 기업 전산실에 물리적인 형태로 존재하는 서버, 네트워크의 리소스관리를 중심으로 모니터링해 왔습니다. 서버의 CPU, Memory 등의 리소스 정보를 수집하거나, 네트워크 장비의 트래픽 정보를 모니터링하고 임계치를 기반으로 이벤트 감지하는 역할이 대부분이었으며, 이 정도 수준에서도 충분한 IT 인프라 관리가 이뤄질 수 있었습니다. 그러나 가상화(Virtualization)라는 개념이 생겨나고 다양한 IT 인프라들이 기업 전산실에서 클라우드(Cloud) 환경으로 전환됨에 따라, EMS의 모니터링 분야도 조금씩 바뀌어 가고 있습니다. 많은 기업들이 효율적인 리소스 사용과 비용 절감을 목표로 VMware와 같은 가상화 시스템을 도입해 운영하게 됐으며, 모니터링 부문도 이에 대응하기 위해 가상화 리소스에 대한 관리 영역으로 확장됐습니다. 가상화 환경을 이루는 하이퍼바이저(Hypervisor)와 가상머신(Virtual Machine)의 연관성을 추적하고, 각 가상머신들이 사용하고 있는 리소스를 실시간으로 분석해 효율적인 자원 배분, 즉 프로비저닝(Provisioning)을 위한 근거 데이터를 제공할 수 있도록 하고 있습니다. 더 나아가 VMware, Hyper-V 등의 다양한 가상화 플랫폼에서 가상머신을 생성하고 삭제하고, 실제로 가상머신에 CPU, Memory 등과 같은 리소스를 할당해 줄 수 있는 컨트롤 영역까지 제공하는 제품을 개발하는 벤더사들이 많아지고 있습니다. 이러한 가상화 기술을 기반으로 현대에는 IT 인프라들이 대부분 클라우드 환경으로 전환하고 있는 추세입니다. 클라우드 환경으로의 전환 클라우드(Cloud)란, 언제 어디서나 필요한 컴퓨팅 자원을 필요한 시간만큼 인터넷을 통해 활용할 수 있는 컴퓨팅 방식으로, 최근 기업들은 각자의 목적과 상황에 맞게 AWS, MS Azure와 같은 Public Cloud 및 OpenStack, Nutanix 등을 활용한 Private Cloud 등의 환경으로 기업의 전산설비들을 마이그레이션 하고 있습니다. 클라우드로의 전환과 기술의 발전에 따라, EMS의 IT 인프라 모니터링은 더 이상 *On-Premise 환경에서의 접근이 아닌, Cloud 환경, 특히 MSA(Micro Service Architecture)를 기반으로 하는 클라우드 네이티브(Cloud Native) 관점에서의 IT 운영 관리라는 새로운 접근이 필요하게 됐습니다. (*On-Premise : 기업이 서버를 클라우드 환경이 아닌 자체 설비로 보유하고 운영하는 형태) 클라우드 네이티브란, 클라우드 기반 구성요소를 클라우드 환경에 최적화된 방식으로 조립하기 위한 아키텍처로서, 마이크로서비스 기반의 개발환경, 그리고 컨테이너 중심의 애플리케이션 구동환경 위주의 클라우드를 의미합니다. 클라우드 네이티브는 IT비즈니스의 신속성을 위해 도커(Docker)와 같은 컨테이너를 기반으로 애플리케이션이 운영되므로, EMS는 컨테이너의 성능, 로그, 프로세스 및 파일시스템 등 세부적인 관찰과 이상징후를 판단할 수 있는 기능들이 요구되고 있습니다. 자사 제품인 Zenius SMS에서는 이러한 변화에 따라 Docker에 대한 모니터링 기능을 기본적으로 제공하고 있습니다. Docker 컨테이너가 생성되면 자동으로 관리대상으로 등록되며, Up/Down 뿐만 아니라, CPU, Memory, Network 및 Process의 정보를 실시간으로 모니터링하고 발생되는 로그들을 통합관리 할 수 있도록 합니다. <사진 설명: Zenius-SMS에서 제공하고 있는 Docker 컨테이너 모니터링 기능> 또, 복원력과 탄력성을 위해 쿠버네티스와 같은 오케스트레이션 도구를 활용해 컨테이너를 스핀업하고, 예상되는 성능에 맞게 효율적으로 리소스를 맵핑하고 있으며, 이러한 기술에 대응하기 위해 EMS는 쿠버네티스(Kubernetes), 도커스웜(Docker Swarm) 등의 오케스트레이터들의 동작여부를 직관적으로 관찰하는 제품들이 지속적으로 출시되고 있는 상황입니다. 이와 더불어 컨테이너, 오케스트레이터의 동적 연결관계를 실시간으로 모니터링하고, 파드(POD), 클러스터, 호스트 및 애플리케이션의 관계를 표현하는 역할의 중요성이 점차 커져가고 있습니다. 통합 모니터링(Monitoring) EMS 모니터링의 또 다른 변화로는 통합(Integration)의 역할이 더더욱 강해지고 있다는 것입니다. IT 서비스가 복잡해지고 다양해짐에 따라 IT 인프라의 관리 범위도 점차 증가하면서, 다양한 IT 인프라들을 융합하고 관리하기 위한 노력들이 관찰되고 있습니다. 데이터독(Datadog), 스플렁크(SPLUNK)와 같은 장비 관점의 모니터링 벤더들은 APM과 같은 애플리케이션 모니터링 시장으로, 앱다이나믹스(AppDynamics), 다이나트레이스(Dynatrace), 뉴렐릭(NewRelic)과 같은 애플리케이션 모니터링 시장의 강자들은 인프라 장비 관점의 모니터링 시장으로의 융합이 확인되고 있습니다. 자사 제품인 Zenius 역시 서버, 네트워크 중심의 관리에서 애플리케이션, 데이터베이스 등의 시장으로 관리 범위를 확장해 나가고 있는 추세입니다. IT 서비스의 영속성을 유지하기 위해서는 IT 서비스를 구성하는 다양한 요소들을 실시간으로 모니터링하고 연관관계를 추적해 문제 원인을 찾아내는 것이 중요하기 때문에 다양한 IT 요소들을 통합적으로 모니터링하는 것 뿐만 아니라, 상호 연관관계를 표현하고 추적할 수 있는 기능들이 지속적으로 요구되고 있습니다. 모니터링의 트렌드는 서버, 네트워크 등의 독립적인 개체에 대한 모니터링 아닌 IT 서비스를 중심으로 기반 요소들을 모두 통합적으로 모니터링하고, 각 상호간의 의존성과 영향도를 파악해 RCA(Root Cause Analysis) 분석을 가능하게 하고 이를 통해 IT 서비스의 연속성을 보장할 수 있는 통찰력을 확보하게끔 하는 방향으로 흘러가고 있습니다. Zenius는 서버, 네트워크, 애플리케이션, 데이터베이스 및 각종 로그들의 정보를 시각적으로 통합 모니터링할 수 있는 오버뷰(Overview) 도구와 IT 서비스 레벨에서 인프라들의 연관관계를 정의하고 다양한 조건(Rule)에 따라 서비스 이상유무와 원인분석이 가능한 서비스 맵(Service Map) 도구를 기본적으로 제공하고 있습니다. <사진 설명: Zenius 오버뷰 화면> <사진 설명: Zenius 서비스맵 화면> 앞서 언급했듯이, 클라우드 환경으로 전환함에 따라 통합적 관리 요구는 더욱 높아지고 있습니다. IT 인프라에 대한 통합 뿐만 아니라, AD(Active Directory), SAP 및 AWS, Azure, GCP 등의 다양한 서비스의 주요 지표까지 연계하고 하나의 시스템으로 통합 모니터링하기 위한 노력들이 관찰되고 있습니다. 데이터독(Datadog)의 경우, 500개 이상의 시스템, 애플리케이션 및 서비스들의 지표들을 손쉽게 통합 관리할 수 있다고 돼있습니다. <사진 설명: 데이터독 홈페이지 캡처> 이처럼 IT 서비스의 복잡성과 다양화에 따라 관리해야 될 서비스와 지표들은 점점 늘어나고 있으며, 기업의 현황에 맞게 컴포넌트 기반으로 손쉽게 지표들을 통합할 수 있는 기능과 도구들이 요구되고 있습니다. AI 기반의 예측&자동화 모니터링의 세번째 변화로는 ’AI 기반의 예측과 자동화’입니다. IT 인프라 및 서비스의 주요 지표를 모니터링하는 것도 중요하지만, 축적된 데이터를 기반으로 미래의 상황을 예측 및 이상탐지해 사전에 대비할 수 있는 체계를 갖추는 일은 모니터링 시장에서 중요한 이슈로 자리잡고 있습니다. 현재의 AIOps(AI for IT Operations)를 표방하는 모니터링 기술들은 서버, 네트워크, 애플리케이션, 데이터베이스 등의 주요 지표들을 실시간으로 수집하고, 저장된 데이터를 기반으로 AI 알고리즘 또는 통계기법을 통해 미래데이터를 예측하며 장애 발생가능성을 제공하고 있습니다. 이와 같은 기술을 통해 미래 성능 값을 예측해 IT 인프라의 증설 필요성 등을 판단하고, 장애 예측으로 크리티컬한 문제가 발생되기 전에 미리 조치를 취할 수 있도록 해 효율적인 의사결정을 할 수 있도록 합니다. Zenius도 4차 산업혁명 및 디지털 뉴딜시대가 도래함에 따라 미래예측 기능을 최신 버전에 탑재했으며, 이를 통해 IT운영자가 미래 상황에 유연하고 선제적으로 대응할 수 있도록 합니다. Zenius에서는 서버, 네트워크, 애플리케이션 등 다양한 IT 인프라의 미래 성능 값, 패턴 범위, 이상 범위 등을 예측해 IT 운영자에게 제시합니다. <사진 설명: 인공지능(AI) 기반 미래데이터 예측 화면> 다만, 인공지능 기술을 통해 장애 발생 가능성을 탐지하는 기능 외에, 어디에 문제가 발생됐는지 알려주는 기능은 모니터링 시장에 과제로 남아있고, 이를 제공하기 위한 여러 업체들의 노력이 보이고 있습니다. 이제는 EMS에서 보편적인 것이 됐지만, 모바일 기기를 통해 시∙공간적 제약 없는 모니터링이 이뤄지고 있습니다. 다양한 기종의 스마트폰, 태블릿PC 등을 이용해 운영콘솔(Console) 뿐만 아니라, 회의 등 시간을 잠시 비우더라도 IT 인프라에 대한 연속적인 모니터링이 모바일기기를 통해 가능해졌습니다. <사진 설명: 다양한 기기를 통한 모니터링>
2022.09.05
기술이야기
Java APM 기반 기술에 대한 간략한 설명
기술이야기
Java APM 기반 기술에 대한 간략한 설명
몇 년 전부터 미국 실리콘밸리에서 불어온 스타트업 광풍이 인플레이션과 경기 침체가 동시에 예상되는 최악의 전망 속에서 조금 사그러드는 모습입니다. 그러나 빠른 속도로 퍼지기 시작한 IT 관련 유행들은 아마 꽤 오랜 시간 우리들 근처에 남아 그 영향이 지속되지 않을까 예상해봅니다. 그 중 한 부분을 차지하는 것이 새로운 혹은 인기가 급상승한 Go, Python, R, Julia, Kotlin, Rust, Swift 등의 컴퓨터 언어들입니다. 이렇게 많은 언어들이 새로 등장해 번쩍번쩍하는 장점을 뽐내고 있는 와중에도, 아직 세상의 많은 부분, 특히 ‘엔터프라이즈 IT’라 불리는 영역에서 여전히 가장 많이 사용되는 것은 Java입니다. 절대적이지는 않지만 컴퓨터 언어의 인기 순위 차트인 TIOBE 인덱스에 따르면, 2022년 6월 현재도 Java의 인기는 Python, C의 뒤를 잇는 3위입니다. Java 역시 Java 9부터는 십 수년간 고수하던 백워드 컴패티빌리티 정책을 포기하고 여러가지 반짝거리는 장점을 받아들이면서 버전업을 계속해, 올해 9월에는 Java 19가 나올 예정입니다. 그러나 아직도 우리나라 ‘엔터프라이즈 IT’에서 가장 많이 쓰이는 버전, 그리고 작년까지는 세계에서 가장 많이 쓰이는 버전은 Java 8이었습니다. 이렇게 많은 Java 어플리케이션의 성능을 모니터링하고 관리할 수 있는 솔루션을 통상적으로 APM(Application Performance Management)이라고 합니다. 위에서 서술한 것처럼 다른 컴퓨터 언어들의 인기가 올라가고 사용되는 컴퓨터 언어가 다양해지면서 많은 APM 제품들이 Java외의 다른 컴퓨터 언어로 작성된 어플리케이션도 지원하는 경우가 늘어나고 있으나, 이 글에서는 APM을 Java 어플리케이션의 성능을 모니터링하고 관리할 수 있는 솔루션으로 한정하도록 하겠습니다. 어플리케이션의 성능을 보다 깊이 모니터링하는데 필수적인 것이 Trace[i]입니다. Trace는 어플리케이션이 실행되는 과정에 중요하다고 생각되는 부분에서 중요하다고 생각되는 어플리케이션의 상태를 기록으로 남긴 것입니다. 전통적인 어플리케이션에서는 실행 Thread를 따라가면서 순차적인 Trace가 남게 되고 유행에 맞는 MSA(Micro-Service Architecture) 어플리케이션에서는 서로 연관됐지만 직선적이지는 않은 형태의 Trace가 남게 됩니다. 이러한 Trace를 수집하고 추적하고 분석하는 것이 APM의 주요 기능 중 하나입니다. 그런데, 여기서 문제가 하나 생깁니다. Trace는 누가 남길 것인가 하는 문제입니다. 개발 리소스가 충분하고 여유가 있는 경우, 개발시 성능에 대한 부분에 신경을 써서 개발자들이 Trace를 남기며 이를 분석하고 최적화하는 것이 정례화, 프로세스화 돼있겠지만, 많은 경우 개발 리소스를 보다 중요한 목표 달성을 위해 투입하는 것도 모자랄 지경인 것이 현실입니다. 아무리 분석 툴인 APM이 좋아도, 분석할 거리가 되는 Trace가 없으면 무용지물이 돼 버립니다. 그래서 APM에는 미리 정해진 중요한 시점에 어플리케이션에서 아무 것도 하지 않더라도 자동으로 Trace를 남기도록 하는 기능이 필수적으로 필요합니다. Java 어플리케이션의 경우 이러한 기능은 Java Bytecode Instrumentation이라고 하는 기반 기술을 사용해 구현됩니다. 서론이 매우 길어졌지만, 이 글에서는 Java Bytecode Instrumentation에 대해 조금 상세히 살펴보도록 하겠습니다. Java Bytecode Instrumentation을 명확히 이해하려면, 먼저 Java가 아니라 C, C++, Rust등의 언어들로 작성된 프로그램이 어떤 과정을 거쳐서 실행되는가, 그리고 Java 프로그램은 어떤 과정을 거쳐서 실행되는가를 살펴보는 것이 도움이 됩니다. Java가 세상에 나오기 이전에는 ‘컴퓨터 학원’이나 고등학교 ‘기술’ 과목, 그리고 대학의 ‘컴퓨터 개론’ 등에 반드시 이런 내용이 포함돼 있었지만 요즘은 그렇지도 않은 것 같습니다. 컴퓨터에서 프로그램을 실행시키는 것은 CPU, 즉 Central Processing Unit입니다. 지금 이 글을 작성하고 있는 컴퓨터의 CPU는 Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz입니다. CPU는 메모리의 프로그램이 있는 영역을 읽어 들여, 미리 정해진 값에 따라 정해진 동작을 수행하게 됩니다. 이때 어떤 값이 어떤 동작을 수행하는지 규정해 놓은 것을 Machine Language라고 합니다. Machine Language는 100% 숫자의 나열이므로 이를 좀더 사람이 읽기 쉬운 형태로 1:1 매핑 시킨 것이 Assembly Language입니다. (그렇다고 읽기가 많이 쉬워지지는 않습니다.) 이 글에서는 이 두 단어를 구분없이 혼동해 사용합니다. C, C++, 그리고 나온 지 벌써 10년이나 된 Go, 요즘 인기가 계속 상승하고 있는 Rust 등의 언어로 작성된 프로그램은, 이들 언어로 작성된 소스 코드를 Machine Language로 미리 변환해서[ii] 실행 파일을 만들고 이를 실행하게 됩니다. 이 변환을 수행하는 것을 Compile한다라고 하고 이 변환을 수행하는 프로그램을 Compiler라고 부릅니다. 한편, 소스 코드를 완전히 Machine Language로 변환시킨 실행 파일을 실행하는 것이 아니라 Interpreter라 불리우는 프로그램이 소스 코드를 읽으면서 그 의미에 맞게 동작을 수행시키는 언어들도 있습니다. ‘스크립트 언어’라 불리는 bash, Perl, PHP, Ruby, Python 등이 이에 해당되면, 요즘은 잘 쓰이지 않지만 그 옛날 Bill Gates가 직접 Interpreter를 만들기도 했던 BASIC 등이 이에 해당합니다. 본론으로 돌아가보겠습니다. 그렇다면, Java 프로그램은 어떤 방식으로 실행이 되는가? 기본적으로는 Interpreter 방식이라고 생각해도 이 글의 주제인 Java Bytecode Instrumentation을 이해하는 데는 무리가 없습니다.[iii] 여기에 더해 Java의 실행 방식에는 몇 가지 큰 특징이 있습니다. 첫째로, Java는 소스 파일을 직접 읽어 들이면서 실행하는 것이 아니라 소스 파일을 미리 변환시킨 Java Class File을 읽어 들이면서 실행합니다. 하나의 Java Class File에는 하나의 Java Class 내용이 모두 포함됩니다. 즉, Class의 이름, public/private/internal 여부, 부모 클래스, implement하는 interface 등의 Class에 대한 정보, Class의 각 필드들의 정보, Class의 각 메서드[iv]들의 정보, Class에서 참조하는 심볼과 상수들, 그리고 이 글에서 가장 중요한 Java로 작성된 각 메서드의 내용을 Java Bytecode 혹은 JVM Bytecode라고 하는 중간 형태의 수열로 변환시킨 결과 등이 Java Class File에 들어가게 됩니다. 이 Java Bytecode는 실제 실행 환경인 CPU 및 Machine 아키텍처에 무관합니다. 똑같은 Java 소스 코드를 Windows에서 Compile해 Java Class File로 만들건, Linux에서 Compile해 Java Class File로 만들건 그 내용은 100% 동일하게 되고 이 점은 C, C++, Rust 등 Compiler 방식의 언어와 큰 차이점입니다. Java의 가장 큰 마케팅 캐치프레이즈 “Write Once, Run Anywhere”는 이를 표현한 것입니다. 둘째, Java Bytecode는 일반적인 CPU의 Machine Language와 많은 유사점을 지닙니다.[v] 어찌 보면 Java Bytecode는 실제 존재하지는 않지만 동작하는 가상의 CPU의 Machine Language라고 볼 수 있는 것입니다. 이러한 이유에서 Java Class File을 읽어 들여 실행시키는 프로그램을 JVM이라고 (Java Virtual Machine) 부릅니다. Java 소스 파일을 Java Class File로 변환시키는 프로그램을 Java Compiler라고 부르며, 가장 많이 쓰는 Java Compiler는 JDK(Java Development Kit)에 포함된 javac라고 하는 프로그램입니다.[vi] JVM은 JDK에 포함된 java라고 하는 프로그램을 가장 많이 씁니다. 한편 사용 빈도는 그렇게 높지 않지만, Java Class File을 사람이 알아볼 수 있는 형태로 변환해서 그 내용을 보고 싶은 경우도 있습니다. 이런 일을 하는 프로그램을 Java Bytecode Disassembler[vii]라고 부르며, JDK에는 Java Bytecode Disassembler인 javap가 포함돼 있습니다. 혹은, Eclipse나 Intellij IDEA 같은 IDE에서 Java Class File을 로드하면 사람이 알아볼 수 있는 형태로 변환해 보여줍니다. Java Bytecode의 실제 예를 한번 살펴보도록 하겠습니다. 설명을 간단히 하기 위해, 클래스나 메서드 선언 등은 다 제외하고, 오직 메서드의 내용에만 집중하면, System.out.println(“Hello, World.”); 라는 Java 프로그램은 다음과 같은 Java Bytecode로 변환됩니다. (전통적으로 16진수로 표시합니다.) b2 00 0b 12 09 b6 00 0f b1 이를 javap를 사용해, 혹은 JVM Reference[viii]를 보고 좀더 사람이 보기 쉬운 형태로 표현하면 다음과 같습니다. 0: getstatic #11 // Field java/lang/System.out:Ljava/io/PrintStream; 3: ldc #9 // String Hello World 5: invokevirtual #15 // Method java/io/PrintStream.println: (Ljava/lang/String;)V 8: return JVM Reference의 Chapter 7을 참고하면, Java Bytecode를 javap의 결과에 어떻게 대응되는지를 알 수 있습니다. javap의 결과를 조금 더 살펴봅시다. 먼저 콜론 앞의 숫자는 인스트럭션의 offset으로서 Bytecode 시퀀스의 0번째, 3번째, 5번째, 8번째를 의미합니다. 0번째의 getstatic은 그 다음 숫자에 해당하는 필드를 스택의 맨 위에 저장하도록 합니다. 3번째의 ldc는 “Hello, World”라는 상수값을 스택의 맨 위에 저장하도록 합니다. 5번째의 invokevirtual은 println 메서드를 호출하고, 8번째의 return은 메서드에서 리턴해 호출한 곳으로 실행을 넘깁니다. Java 프로그램은 (정확히는 Java 소스 코드로 작성된 프로그램을 Compile한 결과) 통상적으로 많은 수의 Java Class File로 이뤄집니다. JVM은 이러한 Java Class File을 한꺼번에 읽어 들이는 것이 아니라 실행을 하다가 필요한 순간이 되면 그 때 읽어 들입니다. JVM은 이 로딩 과정에 사용자가 개입할 여지를 남겨 뒀는데, 이것이 Java Bytecode Instrumentation입니다. 이에 대한 개요는 https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html에 설명돼 있습니다. 요약해서 설명하면 다음과 같습니다. (1)사용자는 미리 정해진 규약대로 Java Agent라는 프로그램을 작성하고 이를 JVM 실행시에 옵션으로 명기합니다. (2)JVM은 Java Class File을 읽어 들여서 JVM이 처리하기 좋은 형태로 저장하기 전에, 그 파일 내용을 Java Agent의 ClassFileTransformer 클래스의 transform 메서드[ix]에 전달합니다. (3)JVM은 Java Class File의 원래 내용이 아니라 (2)의 메서드가 반환하는 결과를 저장하고 실행합니다. 이 과정을 Java Bytecode Instrumentation이라고 합니다. 사용자는 Java Bytecode Instrumentation을 구현해, 즉 Java Agent를 잘 작성헤 무엇이든 원하는 바를 달성할 수 있는 것입니다![x] 이러한 Java Bytecode Instrumentation은 APM, 그리고 Aspect-Oriented Programming의 기반 기술이 됩니다. 우리나라에서 Java로 프로그래밍을 한다고 하면 누구나 다 알고 있을 것 같은 Spring Core의 핵심 요소 중의 하나가 Aspect-Oriented Programming입니다. 예를 들어 Spring에서 @Transaction 이라고 annotation된 메서드가 있으면, Spring은 그 메서드의 맨 처음에 transaction을 시작하는 코드, 정상적으로 return하기 직전에는 transaction을 commit하는 코드, 그리고 익셉션에 의해 메서드를 빠져 나가기 직전에는 transaction을 rollback하는 코드를 삽입해 주게 되는데 이를 Java Bytecode Instrumentation을 이용해 구현하는 것입니다. 그럼, Java Agent에 거의 무조건적으로 필요한 기능은 무엇일까요? Java Agent는 Java Class File 내용을 그대로 전달받기 때문에 이를 해석할 수 있어야 무언가를 할 수 있습니다. 불행히도, java 스탠다드 라이브러리에는 Java Bytecode를 직접 다루는 기능은 없습니다.[xi] 그래서 de facto standard로 사용되는 것이 asm이라는 라이브러리입니다. 이 라이브러리는 수많은 java 라이브러리와 어플리케이션에 포함돼 있습니다. 그러나 asm이 훌륭한 라이브러리이긴 하지만, 이를 직접 사용하려면 각 상황에 맞게 코드를 삽입하는 프로그램을 작성해서 사용해야 하므로 자유도가 떨어집니다. 그래서 Zenius APM에서는 asm을 사용하되 삽입될 코드를 설정 파일에서 지정할 수 있는 suji(Simple Universal Java Instrumentor)[xii]라고 이름 붙인 라이브러리를 직접 만들어 사용하고 있습니다. suji를 사용하면 yaml 형식의 설정 파일에서, 어떤 클래스의 어떤 메서드의 어느 부분에 삽입할 것인지에 대한 조건과 삽입될 코드를 yaml의 list 형태로 지정하는 것만으로 (이는 Lisp와 비슷한 방식으로, 이렇게 하면 파싱 과정을 생략하면서 쉽게 코드를 넣을 수 있습니다.) Java Bytecode Instrumentation을 손쉽게 처리할 수 있습니다. 예를 들어, Zenius APM에서 JDBC getConnection을 처리하기 위해서 다음과 같은 부분이 설정 파일에 포함돼 있습니다. JDBC.DataSource.getConnection: IsEnabled: true ClassChecker: [ HasInterface, javax/sql/DataSource ] MethodName: getConnection IsStatic: false IsPublic: true IsDeclared: false ReturnType: Ljava/sql/Connection; Locals: [ Ljava/lang/Object;, Ljava/lang/Object; ] AtEntry: - [ INVOKE, dataSourceGetConnection, l1, [] ] AtExit: - [ INVOKE, poolGetConnectionEnd, l2, [ l1, ^r, true ] ] - [ LOAD, l2 ] - [ CAST, Ljava/sql/Connection; ] - [ STORE, ^r ] AtExceptionExit: - [ INVOKE, endByException, null, [ l1, ^e ] ] 간략하게 설명하면, Class가 만약 javax.sql.DataSource를 implement하고 메서드가 스태틱이 아니고 public이면서 java.sql.Connection을 리턴하는 getConnection이라는 이름을 가진 경우에 메서드 시작 시, 리턴 시, 그리고 익셉션에 의해 메서드를 나갈 때 위의 예제에 규정된 코드를 삽입하라는 의미입니다. 이상으로 Java Bytecode Instrumentation에 대한 간략한 설명을 마칩니다. 다음에는 실제로 APM이 중점적으로 추적하고 분석하는 것은 어떤 것들인가에 대해 설명하겠습니다. -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- [i] Sridharan, Distributed Systems Observability, O’Reilly, 2018의 Chapter 4. The Three Pillars of Observability 참조. 번역본은 없는 듯합니다. [ii] 이 외에 여러가지 과정을 거치지만 이 글의 목적과는 무관하므로 과감하게, 자세한 설명은 생략합니다. [iii] 실제로는 Java 프로그램이 100% 이렇게 interpret되어 실행되는 것은 아닙니다. 특정 메쏘드 혹은 메쏘드의 일부분이 자주 실행돼 interpret하는 것보다 미리 컴퓨터(=CPU)가 바로 실행할 수 있는 형태(=Machine Language)로 변환(=compile)해 놓는 것이 더 낫다고 JVM이 판단하는 경우, 미리 이런 변환 과정을 한번 거쳐 그 결과를 기억해 놓고, 그 기억된 결과를 컴퓨터(=CPU)가 바로 실행합니다. 이렇게 변환하는 과정을 Just-In-Time Compile 혹은 JIT라고 합니다. 또 이 때문에 JVM을 단순한 interpreter로 부를 수는 없는 것입니다. [iv] 국립국어원은 메서드가 맞는 표기라고 합니다. [v] 물론 많은 차이점도 지닙니다. (1) JVM은 register가 존재하지 않고 오로지 stack에만 의존한다. (2) JVM은 Class, Method의 개념을 포함하고 있지만 일반적인 범용 CPU에는 그런 상위 개념은 없습니다. [vi] 보통 IDE를 써서 개발을 하기 때문에, javac를 직접 사용하거나 Java Class File을 직접 다룰 일은 잘 없고, jar 파일이 이 글을 읽는 여러분에게 훨씬 더 익숙할 지도 모릅니다. Jar 파일은 그냥 zip으로 압축된 파일이니 그 압축을 한번 풀어 보길 바란다. 확장자가 class인 수많은 파일을 찾을 수 있을 것입니다. [vii] Assembly는 Assemble의 명사형이며, Assemble의 반대말은 Disassemble입니다. [viii] JVM에 대한 모든 것은 The Java Virtual Machine Specification에 나와 있습니다. 이 중 'Chapter 6. The Java Virtual Machine Instruction Set'를 참고하면 각각의 instruction에 대해 상세히 알 수 있습니다. [ix] https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/ClassFileTransformer.html#transform-java.lang.ClassLoader-java.lang.String-java.lang.Class-java.security.ProtectionDomain-byte:A- [x] 쉽다고는 하지 않았습니다. 또 몇가지 제약 사항은 있습니다. [xi] 참고로 최근에는 asm을 대체할 수 있는 기능을 스탠다드 라이브러리에 넣을 계획이 진행되고 있습니다. https://openjdk.org/jeps/8280389 [xii] 명명이 아이돌 그룹 출신 모 여배우와 관계가 아주 없지는 않음을 조심스럽게 밝혀 둡니다.
2022.08.04
기술이야기
[ZNG 개발기] #1. ZNG와 Vue.js
기술이야기
[ZNG 개발기] #1. ZNG와 Vue.js
안녕하세요. 브레인즈컴퍼니 개발 3그룹에서 ZNG의 프론트엔드를 개발하고 있는 1년차 신입 개발자 김현수입니다. ZNG란 Zenius New Generation의 약자로, 브레인즈컴퍼니의 핵심 서비스인 제니우스의 차세대 버전을 말합니다. ZNG는 데이터베이스를 제외한 프론트엔드와 백엔드는 완전히 제로베이스에서 시작하는 장기 프로젝트이기에, 프로젝트를 진행하는 과정에서 새롭게 배운 것, 개발자로서 성장, 팀 개발 경험 등을 기록하고자 ZNG 개발기를 작성하게 됐습니다. ZNG 개발기는 달마다 개발과정에서 있었던 이슈들, 경험, 공부한 내용 등을 기술적인 내용과 함께 작성할 예정입니다. 다 함께! <사진 설명: 펭수, "렛츠고!"> 1. ZNG가 무엇인가요? ZNG는 기존 제니우스에서 발생하는 불편함을 해소하고자 탄생한 프로젝트입니다. 기존 제니우스에는 어떤 불편함이 있었고, 이를 해소하고자 ZNG는 어떤 컨셉을 목표로 개발할 것인가에 대해 알아보겠습니다. 같은 부서 선배 동료들을 쫄래쫄래 따라다니며 물어보고 배워가며 정리한 내용을 바탕으로 작성하는 글입니다. 혹시라도 틀린 부분이 있다면 알려주시면 감사하겠습니다! <사진 설명: 자환님은 아니라고 하셨다...> 제니우스는 B2B 솔루션 서비스 상품으로 사용자의 요구사항에 맞게 유연한 변경이 가능해야 합니다. 새로운 컴포넌트를 추가 한다거나, 여러 기능을 합치는 등 다양한 요구사항에 대응해야 합니다. 당연히도 현재 제니우스는 사용자의 요구사항에 맞춰 조금씩 커스텀해 서비스되고 있습니다. 그러나 효율적이지 못한 상황이 생기기도 합니다. 대체로 같은 내용의 코드를 반복해서 작성하는 상황이 그러합니다. 같은 형태를 가진 컴포넌트여도 출력하고자 하는 데이터의 종류가 다르다면 컴포넌트를 통째로 다시 만들어야 했습니다. 반복적인 작업은 개발자에게 피로감을 주게 되고 단순히 피로감을 넘어, 개발자에게 목표 의식을 저하시킬 우려가 있습니다. <사진 설명: 다양한 종류의 컴포넌트가 있다. 사용자마다 원하는 컴포넌트, 데이터가 다를 수 있다.> 이런 불편함을 해소하는 방법으로, ZNG는 코드의 재사용성을 높이기 위해 노력합니다. 각 기능끼리의 의존도는 낮추고, 독립성을 높여서 반복적인 작업을 최소화합니다. 같은 형태를 가진 컴포넌트에 대해서 데이터만 다르다면 데이터만 바꿔주면 됩니다. 사용자마다 다른 종류의 데이터를 출력하기를 원할 경우 더 빠르고 효율적인 대처가 가능합니다. 이러한 컨셉과 Vue.js의 Component를 관리하는 방법이 일치해 ZNG는 Vue.js로 개발하게 됐습니다. 2. ZNG와 Vue.js Vue.js에는 여러가지 특징이 있습니다. 그 중에서도 Vue Component에 대해서 자세히 알아보겠습니다. Vue Component Vue Component란 화면을 구성하는 하나의 블록입니다. Component는 하나의 전체 화면일수도 있고 전체 화면 중 일부분을 차지하는 또 하나의 작은 화면일수도 있습니다. 따라서 화면을 구현할 때 화면 전체를 한 번에 구현하지 않고, 부분적으로 구현해 관리하는 것이 가능합니다. Component를 활용하면 화면을 구조화해 직관적으로 개발할 수 있으며 코드의 재사용성이 올라갑니다. <사진 설명: 화면의 영역을 블록으로 쪼개 재활용 가능항 형태로 관리하는 것이 Vue Component> ZNG 기능 중 모니터링은 추출한 데이터를 그래프, 표 등을 통해 다양한 형태의 컴포넌트로 보여줍니다. 각각의 컴포넌트는 서로 다른 모양을 통해, 서로 다른 데이터를 보여줍니다. 반대로 말하면 하나의 컴포넌트에 대해서 모양, 데이터만 다르게 준다면 여러 종류의 컴포넌트를 만들 수 있습니다. 다음은 ZNG 코드 일부입니다. PCContainer는 컴포넌트를 감싸는 블록입니다. component 태그 안에 있는 ‘is’옵션에 ‘컴포넌트의 이름’을 넣어 그리고자 하는 컴포넌트를 선택할 수 있습니다. PCLineChart는 그래프를 그리는 컴포넌트입니다. highchartsOptions에 어떤 데이터를 넣느냐에 따라 원하는 그래프를 그릴 수 있습니다. <사진 설명: PCContainer> 하나의 PCContainer로 여러 모양의 컴포넌트를 그리고, 하나의 컴포넌트(PCLineChart)로 다양한 데이터를 표현할 수 있습니다. 컴포넌트를 만들기 위해 새로운 코드를 작성하지 않고, Vue Component를 통해 코드를 재사용함으로써 효율적이고 직관적인 코드를 개발할 수 있습니다. 부모와 자식 컴포넌트 관계 각 Vue Component는 데이터를 주고받을 때 부모-자식 관계를 갖는 것이 일반적입니다. <사진 설명: 부모-자식 컴포넌트> 부모는 자식에게 데이터를 전달할 수 있어야 하며, 자식은 부모에게 일어난 일을 알려야 합니다. 부모는 props를 통해 자식에게 데이터를 전달하며, 자식은 emit로 이벤트를 호출해 부모에게 데이터를 알립니다. 부모 컴포넌트와 자식 컴포넌트는 분명히 구분된 컴포넌트지만 props와 emit을 통해 의사소통이 가능합니다. ZNG는 최상단 레이아웃에서 서버로부터 데이터를 받아와 props를 통해 각 컴포넌트로 데이터를 보내줍니다. 하위 컴포넌트에서 발생한 이벤트를 통해 다시 상위 컴포넌트로 데이터를 전달해 데이터를 관리합니다. 다음은 ZNG 코드 중 일부입니다. 자식 컴포넌트는 props를 통해 부모 컴포넌트로부터 데이터를 받고, emit을 통해 부모 컴포넌트로 이벤트를 통해 알립니다. props와 emit을 통해 컴포넌트 간 의사소통을 수행하지만, 각 컴포넌트마다 코드를 분리하기 때문에 관리가 편하고 쉽게 재사용할 수 있습니다. 3. 마치며 ZNG의 개발 방향성과 이와 관련해 Vue.js의 Component 특징을 정리해봤습니다. Vue Component는 이전부터 알고 있던 개념이지만 직접 개발한 코드와 비교해보니 머릿속에 명확하게 정리되는 느낌이었습니다. 특히 코드를 다시 보면서 개념을 리마인드하는 과정이 좋았습니다. ZNG 개발기는 이제 시작입니다! 앞으로도 계속될 ZNG 개발기에 많은 관심 부탁드리며 ZNG 프로젝트를 성공적으로 수행할 때까지 응원해주세요! <사진 설명: 개발의 신이시여... 지켜봐 주세요!> [출처] https://kr.vuejs.org/ https://ko.wikipedia.org/wiki/Vue.js https://www.instagram.com/waterglasstoon/
2022.08.03
1
2