반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
최신이야기
검색
기술이야기
쿠버네티스 모니터링 툴 선택 시 필수 고려사항 4가지
기술이야기
쿠버네티스 모니터링 툴 선택 시 필수 고려사항 4가지
쿠버네티스(K8s, Kubernetes)는 IT 인프라에서 필수적인 컨테이너 오케스트레이션 플랫폼으로 자리 잡았습니다. 하지만 구성 요소가 복잡하고 변화가 빠른 환경이기 때문에, 안정적인 운영과 장애 대응을 위한 모니터링 툴을 필요로 합니다. 이를 통해 클러스터 상태를 실시간으로 파악하고, 장애를 신속히 감지하며, 운영을 효율적으로 최적화할 수 있습니다. 하지만 모든 쿠버네티스 모니터링 툴이 동일한 수준의 기능과 성능을 제공하는 것은 아닙니다. 운영 환경에 적합하지 않은 툴을 선택하면 오히려 관리가 더 어려워지고, 비용이 증가하며, 장애 발생 시 신속한 대응도 어려워집니다. 효과적인 쿠버네티스 관리 체계를 구축하기 위해 쿠버네티스 모니터링 툴을 선택할 때 고려해야 할 네 가지 핵심 요소를 살펴보겠습니다. 쿠버네티스 모니터링 툴의 핵심 요소① 멀티 클러스터 및 하이브리드 클라우드 환경 지원 많은 기업이 쿠버네티스를 멀티 클러스터 환경에서 운영하고 있으며, 특히 하이브리드 및 멀티 클라우드 환경에서는 개별 클러스터를 따로 관리하는 방식이 운영 복잡성을 증가시키고 효율성을 저하시킬 수 있습니다. 따라서, 클러스터 간 연계성을 강화하고 중앙 집중형 관리 체계를 구축하는 것이 중요합니다. - 통합 대시보드를 통한 멀티 클러스터 관리 개별 클러스터 단위로 모니터링하면 운영이 복잡해지므로, 모든 클러스터의 상태를 단일 인터페이스에서 통합적으로 관리할 수 있어야 합니다. 이를 통해 개별 확인이 아닌 전체 운영 상황을 한눈에 파악하고, 클러스터 간 리소스를 효율적으로 관리할 수 있으며 장애 대응 속도도 향상시킬 수 있습니다. - 클라우드별 성능 모니터링 지원 AWS EKS, Azure AKS, GCP GKE, OpenShift 등 다양한 클라우드 환경에서 운영되는 쿠버네티스 클러스터의 특성을 고려한 솔루션이 필요합니다. 각 클라우드의 성능 모니터링 기능을 지원해야 하며, 이기종 클러스터 간 일관된 관리가 가능해야 합니다. - 클러스터 간 네트워크 및 서비스 연관성 분석 기능 단일 클러스터 내부의 리소스 모니터링을 넘어, 클러스터 간 통신 및 애플리케이션 트랜잭션 흐름을 분석할 수 있는 기능이 중요합니다. 서비스 연결 상태, 분산된 애플리케이션의 성능 이상 징후를 조기에 감지할 수 있습니다. 쿠버네티스 모니터링 툴의 핵심 요소② 실시간 장애 탐지 및 장애 자동 대응 지원 쿠버네티스는 장애 발생 시 자동 복구(Self-Healing) 메커니즘을 통해 파드(Pod)를 복구합니다. 그러나 장애 감지와 복구에는 일정 시간이 소요되며, 복구 지연, 리소스 불균형, 네트워크 라우팅 지연 등의 문제가 발생할 수 있습니다. 특히, 노드 장애 시 새로운 노드로 파드를 재배치하는 과정에서 리소스 부족이나 스케줄링 지연이 발생할 수 있으며, 서비스 연결이 일시적으로 영향을 받을 수도 있습니다. 따라서 실시간 장애 감지 및 자동 대응 체계를 구축하는 것이 중요합니다. - 정교한 장애 감지 시스템 단순히 CPU 및 메모리 사용률을 모니터링하는 수준을 넘어, 서비스 응답 지연, 애플리케이션 장애, 네트워크 이상 징후 등을 탐지할 수 있는 복합 장애 감지 기능이 필요합니다. 이를 통해 성능 저하가 발생하기 전에 조기에 문제를 인지하고 대응할 수 있어야 합니다. - 다양한 알림 및 대응 체계 장애가 발생했을 때 단순한 로그 기록만 남기는 것이 아니라, 이메일, SMS, 푸시 알림 등 다양한 채널을 활용한 즉각적인 경고 전송이 가능해야 합니다. 이를 통해 운영자는 실시간으로 문제를 인지하고 신속하게 대응할 수 있습니다. - 자동화된 장애 대응 지원 쿠버네티스의 자동 복구 및 오토스케일링(Auto-Scaling) 기능이 원활히 작동하도록 지원해야 합니다. 장애 발생 시 실시간 탐지 및 원인 분석을 통해 자동 복구를 트리거하고, 사전 정의된 정책에 따라 적절한 조치를 수행할 수 있어야 합니다.또한, 리소스 부족 감지 시 오토 스케일링이 정상적으로 작동하는지 모니터링하고, 운영자가 신속하게 대응할 수 있도록 인사이트를 제공해야 합니다. 쿠버네티스 모니터링 툴의 핵심 요소③ 서비스 관점까지 고려한 모니터링 지원 쿠버네티스 환경에서는 노드, 파드, 컨테이너 등의 인프라 리소스를 모니터링하는 것만으로는 운영의 안정성을 보장할 수 없습니다. 실제 애플리케이션의 성능과 서비스 품질을 측정하고 분석하는 것이 더욱 중요합니다. 특히, 애플리케이션 레벨에서의 성능 저하 원인을 신속하게 파악하고 대응할 수 있는 모니터링 체계가 필요합니다. - 애플리케이션 성능 모니터링 툴과의 연계 지원 애플리케이션 성능 모니터링(APM, Application Performance Monitoring)과의 연계를 통해 애플리케이션 트랜잭션, 데이터베이스 쿼리 지연 시간 등을 분석할 수 있어야 합니다. 이를 통해 서비스 성능 병목을 신속하게 식별하고 최적화할 수 있습니다. - 서비스 흐름에 대한 분석 기능 쿠버네티스 환경에서는 마이크로서비스 아키텍처(MSA) 기반의 서비스 간 호출 관계가 복잡하게 이루어집니다. 따라서, 서비스 간 트랜잭션 흐름을 실시간으로 추적하고 분석할 수 있는 기능이 필요합니다. 이를 통해 특정 서비스의 성능 저하가 전체 시스템에 미치는 영향을 정확히 파악하고 최적화할 수 있습니다. - 네트워크 성능까지 포함한 모니터링 지원 클러스터 내부 네트워크뿐만 아니라, 외부 시스템과의 연결 상태까지 모니터링하여 지연(Latency)이나 패킷 손실(Packet Loss) 발생 원인을 추적할 수 있어야 합니다. 이를 통해 네트워크 장애가 애플리케이션 성능에 미치는 영향을 분석하고, 최적의 대응 방안을 마련할 수 있습니다. 쿠버네티스 모니터링 툴의 핵심 요소④ 효율적인 운영을 위한 자동화 및 확장성 쿠버네티스 환경에서는 클러스터 크기와 워크로드가 지속적으로 증가할 가능성이 높습니다. 이에 따라, 모니터링 솔루션이 점진적인 확장성을 고려하여 설계되었는지 확인하는 것이 필요합니다. 특히, 대규모 환경에서도 안정적인 성능을 유지하고, 운영 자동화를 통해 관리 부담을 최소화할 수 있는 기능이 중요합니다. - 대규모 환경에서도 원활한 모니터링 지원 쿠버네티스 환경이 확장되더라도 모니터링 솔루션 자체가 과도한 리소스를 소비하지 않고, 성능 저하 없이 운영될 수 있어야 합니다. 이를 위해 대규모 클러스터에서도 효율적인 데이터 수집 및 분석이 가능하도록 설계된 분산 아키텍처와 최적화된 리소스 사용 전략이 필요합니다. - 자동화된 감시 템플릿 및 운영 정책 지원 새로운 노드 또는 클러스터가 추가될 때, 일일이 개별 설정을 변경할 필요 없이 사전 정의된 감시 정책이 자동으로 적용될 수 있어야 합니다. 이를 통해 운영자의 개입 없이도 일관된 모니터링 체계를 유지하고, 관리 효율성을 극대화할 수 있습니다. - 사용자 정의 모니터링 기능이 제공 조직마다 중요한 모니터링 지표가 다를 수 있으므로, 필요한 지표를 직접 설정하고 대시보드를 맞춤 구성할 수 있어야 합니다. 특정 애플리케이션 또는 서비스의 핵심 성능 지표(KPI)를 집중적으로 모니터링할 수 있도록 유연한 사용자 정의 기능을 제공하는지 확인해야 합니다. 쿠버네티스 관리에서 궁극적으로 중요한 것은 운영 환경의 가시성을 확보하고, 문제 발생 시 신속하게 대응할 수 있는 체계를 구축하는 것입니다. 이를 위해서는 앞서 언급한 네 가지 요소를 기준으로 쿠버네티스 모니터링 툴의 기능을 평가하고, 현재 운영 방식과 비교하여 실질적인 개선이 가능한지를 검토하는 과정이 필요합니다. 쿠버네티스 환경이 점점 더 복잡해지고 있는 만큼, 멀티 클러스터 운영 지원, 실시간 장애 감지 및 자동 대응, 애플리케이션 중심의 모니터링, 운영 자동화 및 확장성 확보와 같은 요소를 충족하는 관리 툴을 선택하는 것이 중요합니다. Zenius K8s는 복잡한 쿠버네티스 환경을 효율적으로 관리할 수 있도록 필수적인 기능을 갖춘 솔루션입니다. 다양한 고객 사이트에서 안정성을 검증받았으며, 쿠버네티스 운영을 보다 예측 가능하고 안정적으로 유지하는 데 효과적인 대안이 될 수 있습니다.
2025.02.28
기술이야기
APM 솔루션의 필수 조건 4가지
기술이야기
APM 솔루션의 필수 조건 4가지
클라우드, 마이크로서비스, 컨테이너 기반 아키텍처가 확산되면서 기존의 단순한 인프라 모니터링 방식으로는 애플리케이션 성능을 효과적으로 관리하기 어려운 상황입니다. 따라서 서비스 운영의 가시성을 확보하고, 실시간 성능 분석 및 장애 예측이 가능한 애플리케이션 성능 모니터링(APM, Application Performance Monitoring) 솔루션의 중요성이 더욱 커지고 있습니다. 애플리케이션의 안정적인 운영과 최적의 성능 유지를 지원하기 위한 APM 솔루션(툴)의 필수 조건을 4가지로 나누어 자세히 살펴보겠습니다. 1. 쿠버네티스 환경에 대한 모니터링 마이크로서비스 아키텍처(MSA)와 컨테이너 기반 운영 방식이 확산되면서, 이를 효과적으로 관리하기 위한 쿠버네티스 도입이 증가하고 있습니다. 개별 서버의 리소스(CPU, 메모리, 네트워크) 관리에 초점을 맞춘 VM중심의 모니터링 방식과는 달리, 쿠버네티스 환경에서는 컨테이너 기반의 애플리케이션 트랜잭션 흐름과 마이크로서비스 간 호출 관계를 분석하는 것이 더욱 중요합니다. 이에 따라 APM 솔루션은 Prometheus, OpenTelemetry, Zenius K8s 등의 모니터링 도구와 연계하여, 쿠버네티스 환경의 주요 데이터를 실시간으로 수집·분석하고 서비스 지연이나 장애 발생 구간을 정확히 파악할 수 있어야 합니다. 구체적으로는 클러스터 상태 모니터링을 통해 노드 및 네트워크 리소스 사용량을 추적하고, CPU·메모리 활용률을 분석하여 리소스 과부하나 불균형을 조기에 감지해야 합니다. 또한, Pod 및 컨테이너 성능 분석을 통해 배포 상태, 재시작 횟수, 요청 처리량(TPS), 응답 지연 시간(Latency), 리소스 사용량 등을 실시간으로 추적하여, 특정 컨테이너의 과부하나 반복적인 장애를 신속하게 감지하고 원인을 분석할 수 있어야 합니다. 특히, 컨테이너 기반 애플리케이션은 서비스 간 동적 확장과 배포가 빈번하게 이루어지므로, 단순한 개별 리소스 모니터링을 넘어 컨텍스트 기반의 성능 분석이 요구됩니다. 이와 함께, 서비스 호출 관계 및 트랜잭션 흐름 분석을 지원하여 마이크로서비스 간 API 호출 패턴, 응답 시간, 실패율을 추적하고 트랜잭션 병목 구간을 분석해야 합니다. 이를 통해 서비스 간 통신에서 발생하는 성능 저하나 장애 원인을 효과적으로 파악하고 대응할 수 있어야 합니다. 2. 애플리케이션 성능 데이터에 대한 상세한 모니터링 APM 솔루션은 단순한 시스템 리소스 모니터링을 넘어, 애플리케이션 성능을 종합적으로 분석하고 최적화할 수 있는 정밀한 모니터링 기능을 갖춰야 합니다. 특히 트랜잭션 성능, 데이터베이스 최적화, 애플리케이션 내부 리소스 활용도까지 심층적으로 분석함으로써, 성능 병목을 사전에 감지하고 신속한 대응이 가능해야 합니다. 이를 위해 APM 솔루션은 TPS(초당 트랜잭션 처리량), 응답 지연 시간(Latency), 트랜잭션 대기 시간(Queueing Time), 슬로우 쿼리 탐지, GC(Garbage Collection) 활동, 코드 실행 시간 등 핵심 지표를 실시간으로 모니터링해야 합니다. 이러한 데이터 분석을 통해 애플리케이션의 특정 구간에서 발생하는 성능 저하 문제를 빠르게 식별하고, 최적의 성능을 유지할 수 있도록 지원해야 합니다. APM 솔루션은 또한, 실시간 트랜잭션 추적(Distributed Tracing), 마이크로서비스 간 호출 관계 분석, 데이터베이스 성능 최적화, JVM 메모리 사용량 및 GC 상태 모니터링, 네트워크 I/O 추적 등의 기능을 제공하여 애플리케이션의 운영 환경을 종합적으로 분석할 수 있어야 합니다. 특히, AI 기반 이상 탐지 및 머신러닝 기반의 패턴 분석 기능을 활용하면 성능 저하나 장애 발생 가능성을 조기에 감지하고 사전 대응이 가능해집니다. 이러한 애플리케이션 성능과 관련한 세부 데이터 모니터링 기능은 단순한 장애 감지를 넘어, 애플리케이션 성능을 지속적으로 최적화하고 운영 안정성을 유지하는 중요한 요소입니다. 3. 사용자 맞춤형 실시간 대시보드 제공 애플리케이션 성능을 효과적으로 분석하려면, 방대한 데이터를 직관적으로 시각화할 수 있는 맞춤형 실시간 대시보드가 필요합니다. APM 솔루션의 대시보드는 단순한 데이터 시각화를 넘어, 운영자가 핵심 성능 지표를 실시간으로 분석하고 신속한 의사 결정을 내릴 수 있도록 지원해야 합니다. 이를 위해 APM 솔루션은 운영자의 필요에 맞게 대시보드를 자유롭게 구성할 수 있는 맞춤형 실시간 모니터링 기능을 제공해야 합니다. 트랜잭션 지연 현황, 오류 발생률, 서비스 응답 시간 등을 실시간으로 시각화하고, 필요한 데이터를 운영자가 직접 선택하여 배치할 수 있도록 커스터마이징 기능을 지원해야 합니다. 또한, Real-Time Topology Map을 활용하여 마이크로서비스 간 트랜잭션 흐름과 네트워크 관계를 시각적으로 표현함으로써, 특정 서비스 장애가 연관 서비스에 미치는 영향을 한눈에 파악할 수 있어야 합니다. Dual Monitoring View 기능을 통해 애플리케이션 서비스 레벨과 개별 인프라 리소스 레벨을 동시에 모니터링함으로써, 장애 원인을 신속하게 진단할 수 있도록 지원해야 합니다. 더 나아가, 성능 이상이 감지될 경우 자동으로 경고를 표시하고, 운영자가 우선적으로 대응해야 할 항목을 강조하여 실시간 대응력을 높일 수 있어야 합니다. WYSIWYG 방식의 Drag & Drop 기반 대시보드 구성 기능을 제공하면, 운영자가 필요에 따라 주요 성능 지표를 자유롭게 배치하고, 이를 템플릿으로 저장하여 운영 효율을 높일 수 있습니다. 4. 효과적인 장애 사전 방지 및 분석 기능 최근 IT 환경에서는 장애를 사전에 감지하고 대응하는 능력의 중요성이 부각되고 있습니다. APM 솔루션은 AI 및 머신러닝 기반 분석 등을 활용해 성능 저하와 장애를 조기에 탐지하고 자동 대응할 수 있어야 합니다. 먼저, 이상 탐지(Anomaly Detection) 기능을 통해 트랜잭션 응답 시간, CPU 사용량, SQL 실행 속도, 네트워크 레이턴시, API 오류율 등 주요 지표의 급격한 변화를 실시간으로 감지해야 합니다. 머신러닝 기반 분석을 적용하면 정적인 임계값 설정을 넘어 비정상적인 패턴을 조기에 탐지하여 운영자의 대응 시간을 단축할 수 있습니다. 또한, 장애 패턴 학습 기능을 통해 트랜잭션 흐름, 리소스 사용 패턴, 서비스 호출 빈도 변화 등을 분석하고 유사한 조건이 감지될 경우 사전 경고를 제공해야 합니다. 이를 통해 운영자는 반복적인 장애를 예방하고 선제적으로 대응할 수 있습니다. 그리고Snapshot 기반 장애 분석 기능을 활용하여 장애 발생 시점의 리소스 사용량, 실행 중이던 SQL 쿼리, 트랜잭션 상태 등을 저장하고 재현(Replay)하여 근본 원인을 분석해야 합니다. 이를 통해 운영자는 장애 발생 원인을 명확히 파악하고, 재발 방지를 위한 최적화 전략을 수립할 수 있습니다. 이와 같이, APM 솔루션이 AI 기반의 패턴 학습과 자동 대응 기능을 갖춘다면, 장애를 사전에 감지하고 예방하여 운영 안정성을 높일 수 있습니다. 효과적인 APM 솔루션은 단순한 성능 모니터링을 넘어, 다양한 환경을 아우르는 가시성과 세부적인 성능 분석, 실시간 대시보드, 그리고 사전 장애 예방 기능을 갖춰야 합니다. 기업이 복잡한 IT 환경에서도 안정적인 서비스를 제공하려면, 이러한 핵심 요건을 충족하는 APM 솔루션을 도입하는 것이 꼭 필요합니다.
2025.02.18
기술이야기
DB 관리 툴, Zenius DBMS의 주요기능과 특장점
기술이야기
DB 관리 툴, Zenius DBMS의 주요기능과 특장점
대다수의 기업들이 정형 데이터와 비정형 데이터를 모두 효과적으로 처리하기 위해 RDBMS(Relational Database Management System, 관계형 데이트베이스 관리 시스템)와 NoSQL(Not Only SQL, 비관계형 데이터베이스)을 함께 활용하는 경우가 많아지고 있습니다. 하지만 두 시스템 간의 구조적 차이로 인해 데이터 동기화, 쿼리 최적화, 리소스 과다 사용 같은 문제가 발생하기 쉽습니다. 특히, 실시간으로 상태를 모니터링하고 장애를 예측하는 작업은 생각보다 까다롭고 많은 시간과 노력을 요구합니다. 이런 복잡한 문제를 해결하려면 다양한 DBMS를 통합적으로 관리하면서 잠재적인 문제를 사전에 식별할 수 있는 체계적인 DBMS 모니터링 솔루션이 필요합니다. Zenius DBMS는 RDBMS와 NoSQL을 포함한 여러 이기종 데이터베이스를 한 플랫폼에서 관리할 수 있도록 돕는 솔루션으로, 성능 저하나 장애 발생 시 원인을 빠르게 파악하고 대응할 수 있게 해줍니다. DB 관리 툴, Zenius DBMS가 구체적으로 어떤 기능과 장점을 가지고 있는지 자세히 살펴보겠습니다. DB 관리 툴, Zenius DBMS 주요 기능 세 가지 1. 이기종 DBMS 통합 모니터링 다양한 DBMS(Oracle, MySQL, MongoDB 등)를 사용하는 기업 환경에서 각 데이터베이스를 개별적으로 관리하는 것은, 많은 시간과 자원을 소모하게 만듭니다. 관리자는 각 DBMS의 상태를 따로 점검하고 문제 발생 시 여러 시스템을 오가며 원인을 찾아야 하기 때문에 장애 대응 속도 또한 느려질 수 있습니다. 이러한 문제를 해결하기 위해 Zenius DBMS는 Oracle, MongoDB, Tibero 등 국내외 주요 벤더사의 주요 DBMS를 포함해 다양한 데이터베이스를 단일 플랫폼에서 통합적으로 모니터링할 수 있는 기능을 제공합니다. 이러한 통합 기능을 통해 데이터베이스 상태를 한눈에 파악할 수 있고, 장애 대응 시간도 크게 단축할 수 있습니다. 2. DBMS 별 상세 성능 모니터링과 특화 View DB관리 툴, Zenius DBMS는 RDBMS와 NoSQL 환경 모두에서 성능, 세션, 저장장치 상태를 깊이 분석할 수 있는 상세 정보를 제공합니다. 그러나 관리 화면이 각 DBMS의 고유 특성을 반영하지 못할 경우, 중요한 정보를 놓치거나 문제 상황에서 빠르게 대처하기 어려워질 수 있습니다. 이와 같은 한계를 극복하기 위해 Zenius DBMS는 DBMS별로 최적화된 상세 정보 UI를 지원하여 직관적이고 효과적인 관리 환경을 제공합니다. 예를 들어 Oracle 환경에서는 테이블스페이스 사용량과 글로벌 캐시(Global Cache) 상태를, MySQL은 세션과 메모리 사용량을, MongoDB와 Redis는 데이터베이스 상태와 세션 정보를 실시간으로 확인할 수 있습니다. 이처럼 Zenius DBMS는 데이터베이스별 특성을 반영한 화면 구성을 통해 관리자는 각 데이터베이스의 주요 지표를 빠르게 파악하고, 데이터 처리 과정에서 발생할 수 있는 문제를 사전에 감지하여 신속히 대응할 수 있습니다. 특히 Oracle RAC(Real Application Cluster) 환경은 다수의 서버가 하나의 데이터베이스를 공유하며 작업을 분산 처리하는 특성상 데이터 동기화와 자원 관리의 복잡성이 매우 높습니다. 이러한 복잡성이 높은 환경을 효율적으로 관리하기 위해 Zenius DBMS는 글로벌 캐시(Global Cache), I/O, 잠금(Lock) 상태를 실시간으로 추적하고, 클러스터 인스턴스를 체계적으로 매핑하여 잠재적인 문제를 조기에 발견하고 신속히 대응할 수 있도록 지원합니다. 이러한 기능은 클러스터 환경에서 발생할 수 있는 병목 현상이나 동기화 문제를 조치할 수 있게 하며, 장애로 인한 데이터 손실 위험을 줄이고, 운영 안정성을 높이는 데 도움을 줍니다. 3. 장애 관리 및 감시 설정 장애 관리는 데이터베이스 관리자에게 가장 큰 부담 중 하나입니다. 느린 쿼리나 세션 과부하로 인해 발생한 성능 저하가 즉시 해결되지 않으면, 서비스 중단이나 데이터 손실로 이어질 위험이 커질 수 있습니다. 이러한 문제를 해결하기 위해 Zenius DBMS는 데이터베이스 운영 중 발생할 수 있는 느린 쿼리, 세션 과부하, Lock 문제와 같은 주요 장애를 설정된 임계 값에 따라 자동으로 감지하며, 관리자에게 알림을 제공하여 신속하게 조치할 수 있게 도움을 줍니다. 또한 데이터베이스의 저장공간이 부족하면 새로운 데이터를 추가하지 못하는 상황이 발생할 수 있습니다. 이를 방지하기 위해 Zenius DBMS는 테이블스페이스 사용량을 지속적으로 모니터링하여, 저장공간 부족으로 인한 문제를 미리 예방합니다. DB 관리 툴, Zenius DBMS가 가진 특별한 장점은?! IT 인프라를 구성하는 네트워크, 서버, 애플리케이션, 데이터베이스는 데이터 전달, 자원 관리, 성능, 안정성, 보안 등 여러 측면에서 상호 유기적으로 연동되어 작동합니다. 예를 들어, 네트워크 트래픽 과부하로 서버 응답 시간이 지연되면 데이터베이스의 처리 속도가 감소할 수 있고, 반대로 데이터베이스의 과도한 쿼리는 네트워크와 서버 자원을 과도하게 소모하여 전체 시스템 성능에 병목 현상을 초래할 수 있습니다. 이러한 상황에서 클라우드 도입이 가속화되고, 가상머신(VM)과 마이크로서비스 아키텍처(MSA)의 활용이 증가하면서 IT 인프라 구성 요소 간의 상호 의존성과 복잡성은 점점 더 높아지고 있습니다. 따라서 DBMS 관리에만 초점을 맞출 경우, 네트워크와 서버에서 발생하는 문제나 데이터베이스 간 상호작용을 효과적으로 파악하기 어려워 근본적인 장애 원인 분석과 대응에 한계가 생길 수 있습니다. 이는 운영 효율성을 저하시킬 뿐만 아니라, 장애 대응 시간 증가로 인해 비즈니스 연속성에도 큰 영향을 미칠 위험이 있습니다. 이러한 문제를 해결할 수 있도록 Zenius DBMS는 Framework 구조로 구성되어 있습니다. 이를 통해 데이터베이스와 연관된 서버, 네트워크, 애플리케이션 등의 모든 IT 인프라를 단일 플랫폼에서 통합해서 모니터링 할 수 있습니다. 따라서 운영자는 Zenius DBMS를 통해 데이터베이스 성능 병목 현상을 신속히 식별하고, 장애 발생 시 근본 원인을 정확히 분석하며, 서버와 네트워크를 포함한 IT 인프라 전체의 성능을 한눈에 파악할 수 있습니다. 이번 시간에 살펴본 것처럼 RDBMS와 NoSQL을 혼합해 사용하는 기업 환경이 증가하면서, 다양한 DBMS 상태를 통합적으로 관리할 수 있는 모니터링 솔루션의 필요성이 더욱 커지고 있습니다. 이러한 요구에 맞춰 Zenius DBMS는 이기종 DBMS를 한 화면에서 통합해서 모니터링 할 수 있을 뿐 아니라 각 데이터베이스의 특성을 반영한 최적화된 뷰를 통해 주요 성능 데이터를 실시간으로 파악할 수 있는 기능을 갖추고 있습니다. 특히 타 솔루션과 비교하여 Zenius DBMS의 큰 장점 중 하나는 IT 인프라 전반을 통합해서 관리할 수 있다는 것입니다. 이를 통해 네트워크, 서버, 데이터베이스 간의 상호작용을 효과적으로 관리할 수 있어, 복합적인 장애의 원인을 신속히 분석하고 문제에 빠르게 대응할 수 있습니다. 이제 Zenius DBMS를 활용해 복잡한 데이터베이스 환경에서도 안정적이고 효율적인 관리를 경험해 보시길 바랍니다!
2024.12.31
기술이야기
네트워크 모니터링 솔루션, Zenius NMS 자세히 보기
기술이야기
네트워크 모니터링 솔루션, Zenius NMS 자세히 보기
최근 네트워크 환경은 클라우드 기술의 발전과 활용 확대, IoT 디바이스의 증가, 그리고 5G와 같은 고속 네트워크 기술의 발전으로 인해 더욱 복잡해지고 있습니다. 이러한 변화로 인해 단순히 네트워크 이상 유무를 확인하는 수준을 넘어, 실시간 통합 모니터링, 장애 관리, 트래픽 분석, 보안 위협 탐지 및 대응과 같은 고도화된 기능을 제공하는 네트워크 모니터링 솔루션의 중요성이 더욱 부각되고 있습니다. 이러한 상황에서 Zenius NMS는 네트워크 전체를 통합적으로 관리할 수 있는 솔루션으로, 고도화된 실시간 모니터링과 장애 예측 분석 기능을 제공하며 많은 기관과 기업에서 활용되고 있습니다. Zenius NMS의 주요 특징과 장점은 무엇인지 지금부터 자세히 알아보겠습니다. 네트워크 모니터링 솔루션, Zenius NMS의 주요기능 [1] 직관적인 통합 모니터링 Zenius NMS는 네트워크 상태를 한눈에 파악할 수 있도록 설계된 통합 모니터링 시스템과 시각화 도구를 제공합니다. Topology Map 기능은 네트워크 연결 상태를 직관적으로 가시화하여 전체 네트워크 구조와 상태를 한눈에 파악할 수 있도록 돕습니다. 장애 및 트래픽 상태를 색상과 점멸 효과로 표시해 문제 발생 지점을 신속히 파악할 수 있도록 지원합니다. 또한, 다수의 Topology Map을 멀티 슬라이드 쇼로 관리할 수 있는 기능을 통해 다양한 네트워크 환경에서 실시간 상태를 직관적으로 모니터링하고, 복잡한 연결 관계를 효율적으로 파악할 수 있습니다. Auto Map은 네트워크 연결 상태를 자동으로 분석하고 장비 간 연관 관계를 즉시 시각화하여 관리 작업의 자동화와 운영 효율성을 높입니다. 이와 함께, 관심 인터페이스 그룹 모니터링 기능은 설정된 주요 인터페이스 그룹의 성능 추이를 비교 분석하여 특정 네트워크 구간에 대한 집중 모니터링을 지원합니다. 마지막으로, 통합 대시보드는 주요 성능 지표와 네트워크 상태를 하나의 화면에서 제공하며, 일/주/월 단위 성능 추이 그래프로 장기적인 네트워크 상태를 분석할 수 있도록 지원합니다. 이러한 다양한 기능들은 운영자가 신속하고 정확한 의사결정을 내릴 수 있도록 뒷받침합니다. [2] 실시간 장애 관리와 예방 지원 Zenius NMS는 장애를 사전에 예방하고, 발생 시 신속히 대응할 수 있는 실시간 장애 관리 기능을 제공합니다. 과거 성능 데이터를 분석하여 동적 임계치를 설정함으로써 장애 발생 가능성을 사전에 파악하고 선제적인 조치를 가능하게 합니다. 장애 발생 시 Root Cause 분석을 활용해 주요 원인을 빠르게 식별하고 해결책을 제시하며, 네트워크 장비 간 관계를 분석하여 비효율적인 이벤트를 필터링함으로써 문제 분석의 정확성과 속도를 높입니다. 또한, 장애 처리 이력을 관리하여 조치 내역과 관련 파일을 기록하고, 이를 Knowledge DB로 활용해 유사 장애에 신속히 대응할 수 있습니다. SMS, Email, Push 알림 등 다양한 경로를 통해 장애 정보를 전달하여 즉각적인 대응을 지원합니다. 이러한 통합적인 장애 관리 기능을 통해 Zenius NMS는 서비스 중단 시간을 최소화하며 네트워크 운영의 안정성과 신뢰성을 강화합니다. [3] 주요 항목에 대한 실시간 모니터링 Zenius NMS는 네트워크 성능 데이터를 실시간으로 수집하고 분석하며, 구성 변경 사항을 체계적으로 관리하여 안정적인 운영 환경을 제공합니다. 이를 통해 초 단위로 bps, pps, CPU/MEM 사용률 등 주요 성능 지표를 수집하여 네트워크 상태를 실시간으로 모니터링할 수 있습니다. 또한, L4 장비의 Virtual/Real Server 세션 정보와 라우팅 테이블 상태를 모니터링하고, 인터페이스 연결 정보(IP/MAC 등)를 제공함으로써 네트워크 병목 현상을 사전 식별하여 대응할 수 있습니다. SNMP 방식으로 수집되지 않는 항목은 CLI 명령어와 스크립트를 활용해 사용자 정의 항목으로 등록 및 관리할 수 있습니다. Configuration 백업 및 변경 관리 기능을 통해 설정 변경 시 자동 백업과 변경 내역 비교가 가능하여 구성의 신뢰성과 변경 관리의 체계성을 강화합니다. 이러한 기능들은 네트워크 성능을 최적화하고, 병목 현상이나 구성 오류를 사전에 예방함으로써 운영의 안정성을 높여줍니다. [4] 네트워크 보안 및 접근 관리 Zenius NMS는 네트워크 보안을 강화하기 위해 다양한 기능을 제공합니다. 행정안전부 권고사항(국가 표준 기준)을 기반으로 보안 취약점을 자동 점검하고, 점검 결과에 따라 구체적인 보안 조치 가이드를 제공하여 네트워크 보안성을 강화합니다. 비인가 명령어 실행 차단, 허용된 IP와 시간대 설정을 지원하는 금지 명령어 통제 및 세션 접속 시간 관리 기능을 통해 네트워크 보안을 한층 더 강화합니다. 또한, 네트워크 장비 접근 기록을 저장하고 조회하며, 작업 내역을 녹화/재생할 수 있는 접근 이력 감사 기능은 철저한 보안 관리와 감사를 가능하게 합니다. 더불어서, 특정 IP에서만 장비 접근을 허용하는 IP 기반 접근 제한 기능을 통해 네트워크 무결성을 유지하고 외부 위협으로부터 네트워크를 보호합니다. 이러한 통합적인 보안 관리 기능은 네트워크 운영의 안정성을 높이고 무결성을 유지시켜 줍니다. 네트워크 모니터링 솔루션, Zenius NMS만의 장점 IT 인프라를 효과적으로 관리하려면 네트워크를 포함한 모든 구성 요소를 통합적으로 관리하는 것이 중요합니다. 이는 데이터 흐름, 리소스 배분, 애플리케이션 성능이 IT 인프라 구성 요소 간의 상호작용과 연결성에 크게 의존하기 때문입니다. 특히, 클라우드, 가상화(VM), 쿠버네티스와 같은 기술의 빠른 확산으로 IT 환경은 더욱 복잡해지고, 구성 요소 간 상호 연관성은 강화되고 있습니다. 따라서 이러한 복잡성을 제대로 관리하지 못하면 서비스 품질이 저하되고 운영 비용이 증가할 수밖에 없습니다. 이러한 상황에서 Zenius NMS는 프레임워크 기반 구조를 통해 네트워크 모니터링을 넘어 IT 인프라 전반의 구성 요소를 통합해서 관리할 수 있는 솔루션을 제공합니다. Zenius NMS는 온프레미스뿐 아니라 클라우드, VM, 컨테이너 기반 환경에 대한 모니터링을 지원합니다. 또한 네트워크와 연관된 서버, 애플리케이션, 데이터베이스 등을 실시간으로 통합해서 모니터링할 수 있습니다. 이를 통해 운영자는 네트워크 병목 현상, 비효율적인 자원 활용, 그리고 성능 저하와 같은 문제를 사전에 감지하고 예방할 수 있습니다. 특히, 장애 가능성을 조기에 파악함으로써 서비스 중단 위험을 줄이고, 안정적인 운영이 가능합니다. 장애가 발생하더라도 실시간 원인 분석 및 대응 프로세스를 통해 복구 시간을 최소화할 수 있으며, 인프라 운영 전반에 대한 종합적인 가시성을 제공하여 신속하고 정확한 의사결정을 지원합니다. 이를 통해 복잡한 IT 환경에서도 운영 효율성을 높이고 서비스 안정성을 유지할 수 있습니다. 네트워크 모니터링 솔루션, Zenius NMS 자세히 보기 이와 함께 Zenius NMS는 네트워크 모니터링에 특화된 다양한 장점을 제공합니다. 특히, 사용자의 상황과 필요에 따라 설정을 조정할 수 있는 Topology Map과 대시보드 기능은 네트워크 구성 요소의 상태와 연결 관계를 직관적으로 시각화하여 장애 발생 시 신속한 원인 분석과 대응을 지원합니다. 또한, 실시간 이벤트 필터링과 멀티 슬라이드 쇼 기능을 통해 대규모 네트워크 환경에서도 주요 성능 지표와 장애 상황을 효율적으로 모니터링할 수 있어 운영 효율성을 극대화합니다. Zenius NMS의 운영 요약 View는 주요 네트워크 성능과 상태를 종합적으로 제공하며, 엑셀 Export 기능을 통해 체계적이고 신속한 데이터 분석 및 보고를 지원합니다. 그리고 SDN(소프트웨어 정의 네트워크) 모니터링 기능을 통해 네트워크 장비별 상세 성능 데이터를 심층적으로 분석하고, 연결 관계 및 장애 상태를 정밀하게 파악할 수 있도록 지원합니다. Zenius NMS는 클라우드, 가상화, 컨테이너 환경 등 복잡한 IT 인프라를 통합적으로 관리할 수 있는 네트워크 모니터링 솔루션입니다. Topology Map, SDN 모니터링, 보안 취약점 점검 등 고도화된 기능을 통해 네트워크의 복잡성을 효과적으로 관리하며 안정적이고 효율적인 운영을 지원합니다. 다양한 산업군에서의 성공적인 활용 사례를 통해 신뢰성을 입증한 Zenius NMS는 복잡한 IT 환경에서도 믿을 수 있는 솔루션입니다.
2024.12.24
기술이야기
웹 애플리케이션 모니터링 솔루션, Zenius APM의 주요기능과 특장점
기술이야기
웹 애플리케이션 모니터링 솔루션, Zenius APM의 주요기능과 특장점
웹 애플리케이션은 이제 단순한 서비스 제공 도구를 넘어 기업의 경쟁력을 좌우하는 중요한 요소로 자리 잡았습니다. 웹 애플리케이션의 성능은 사용자 경험의 품질을 결정짓는 중요한 요소이기 때문에, 매출 증가와 브랜드 신뢰도 형성에 직접적인 영향을 미칩니다. 그러나 트랜잭션 처리량이 급격히 증가하고, 데이터의 양과 복잡성이 더해지면서, 웹 애플리케이션의 안정적이고 효율적인 운영을 위해 실시간 모니터링과 정교한 성능 관리가 반드시 필요합니다. Zenius APM은 이러한 복잡한 요구를 충족시킬 수 있는 솔루션으로, 웹 애플리케이션의 성능 최적화와 운영 안정성 강화를 위한 다양한 기능을 제공합니다. 특히, 실시간 모니터링, 심층 분석, 장애 관리와 같은 핵심 역량을 기반으로 IT 환경의 복잡성을 효과적으로 관리하고 운영 효율성을 높일 수 있도록 돕습니다. Zenius APM이 제공하는 주요 기능과 특장점을 자세히 살펴보겠습니다. Zenius APM의 주요기능 [1] 효과적인 실시간 모니터링 Zenius APM은 웹 애플리케이션의 성능을 실시간으로 모니터링하여 운영자가 시스템 상태를 시각적으로 파악하고, 잠재적 문제를 조기에 발견해 신속히 대응할 수 있도록 지원합니다. 우선 Zenius APM의 대시보드는 사용자별로 맞춤 설정이 가능합니다. WYSIWYG 방식을 채택하여 운영자가 원하는 모니터링 항목을 직관적으로 구성할 수 있습니다. 운영자는 드래그 앤 드롭으로 모니터링 항목을 배치하고, 데이터 포인트를 중심으로 상황판을 제작해 각자의 운영 환경에 최적화된 대시보드를 손쉽게 구축할 수 있습니다. Real-Time Topology Map은 트랜잭션의 흐름과 병목 구간을 시각적으로 보여주는 기능입니다. 응답 시간과 처리량을 색상과 노드로 표시하며, 문제 발생 지점을 직관적으로 파악할 수 있도록 설계되었습니다. 병목 구간이나 성능 저하가 발견될 경우, 해당 노드를 클릭하여 상세한 분석 화면으로 즉각 이동할 수 있어 문제를 신속히 해결할 수 있습니다. Zenius APM이 제공하는 주요 모니터링 항목으로는 트랜잭션 응답 시간과 병목 구간, JVM 힙 메모리와 CPU 사용량, JDBC 연결 상태와 SQL 실행 건수, 동시 접속 사용자 수와 TPS(초당 트랜잭션 처리량) 등이 있습니다. 이러한 지표를 통해 운영자는 성능 최적화와 안정성을 효과적으로 관리할 수 있습니다. [2] 장애 관리 지원 Zenius APM은 웹 애플리케이션의 안정적인 운영을 위해 장애를 사전에 방지하고, 발생한 장애를 신속하고 정확하게 분석할 수 있는 기능을 제공합니다. 우선, 장애 정책 기반 이벤트 감지 기능을 통해 서비스 처리량(TPS), 응답 시간, JVM 자원 사용률 등 주요 성능 지표에 임계치를 설정할 수 있습니다. 임계치가 초과되면 SMS, 이메일, Push App 등을 통해 실시간 경고를 전송하여 운영자가 즉각적으로 대응할 수 있도록 지원합니다. 또한, Snapshot 분석 기능은 장애가 발생한 시점의 성능 데이터를 Raw 데이터 기반으로 재현하여 문제를 정밀하게 분석할 수 있도록 도와줍니다. 이를 통해 장애의 정확한 원인을 파악하고, 향후 동일한 문제가 발생하지 않도록 사전에 대비할 수 있습니다. 이와 더불어, 통합 이벤트 관리 기능은 발생한 이벤트 이력을 체계적으로 기록하고 관리합니다. 이를 통해 장애 처리 과정을 명확히 추적할 수 있으며, 과거 데이터를 기반으로 유사한 상황이 발생했을 때 신속하고 효과적인 대처가 가능합니다. 이벤트 관리 시스템은 처리 상태, 발생 시간, 지속 시간, 장애 유형 등의 세부 정보를 저장하며, 운영자는 이를 활용하여 문제 해결 프로세스를 최적화할 수 있습니다. [3] 다양한 성능 분석 지원 Zenius APM은 다양한 성능 분석 도구를 통해 운영자가 애플리케이션 성능 데이터를 심층적으로 이해하고, 데이터 기반의 최적화된 결정을 내릴 수 있도록 지원합니다. 주제별 성능 분석은 애플리케이션 및 데이터베이스 성능을 심층적으로 이해하고 개선하는 데 중요한 역할을 합니다. 애플리케이션 분석은 호출 건수, 실패 건수, 응답 시간 등을 통해 애플리케이션 상태를 종합적으로 파악할 수 있도록 돕습니다. 반면, SQL 분석은 데이터베이스 쿼리 호출 빈도, 평균 응답 시간, 실패 건수 등 세부 데이터를 제공하여 비효율적인 SQL 쿼리를 식별하고 데이터베이스 성능을 최적화할 수 있도록 지원합니다. 또한, 품질 이슈 분석은 Exception과 Error 발생 원인을 트랜잭션 데이터와 연관시켜 문제를 효과적으로 해결할 수 있도록 돕습니다. 특히, 자동 연관 분석은 SQL, 애플리케이션, 트랜잭션 데이터를 연결하여 성능 문제의 원인과 연관성을 시각적으로 표현합니다. 이를 통해 복잡한 데이터를 직관적으로 이해하고, 문제 해결에 필요한 핵심 정보를 빠르게 파악할 수 있습니다. 마지막으로, 기간별 증감 추이 비교 기능은 특정 기간 동안의 호출 건수, 응답 시간 등의 데이터를 비교하여 성능 변화 추이를 명확히 파악할 수 있습니다. 이를 기반으로 성능 저하의 원인을 식별하고, 구체적인 시스템 개선 방향을 도출할 수 있습니다. [4] 사용자 맞춤형 통계 및 보고서 Zenius APM은 사용자 맞춤형 데이터 시각화와 보고서 생성을 통해 운영자가 필요한 정보를 효율적으로 제공하며, 데이터 기반 의사결정을 지원합니다. 통계 템플릿 기능은 Zenius APM이 제공하는 대표적인 사용자 편의 도구 중 하나로, 방문자 수, 시스템 자원 사용률, 트랜잭션 처리 건수 등 35개 이상의 주요 성능 지표를 기반으로 템플릿을 저장하고 재활용할 수 있습니다. 이를 통해 운영자는 빈번히 사용하는 보고서 양식을 템플릿화함으로써 반복적인 작업 시간을 줄이고, 데이터 분석과 의사결정에 더 많은 시간을 할애할 수 있습니다. 또한, 다양한 유형의 보고서를 생성할 수 있는 기능은 Zenius APM의 또 다른 강점입니다. 성능 비교, 이벤트 발생 현황 분석, 자원 증설 필요성 평가 등 다양한 보고서를 통해 운영 상황을 종합적으로 분석하고, 개선 방안을 도출할 수 있습니다. 이러한 맞춤형 통계와 보고서는 운영자에게 명확하고 유용한 인사이트를 제공하여, 효율적이고 전략적인 시스템 운영을 가능하게 합니다. 이러한 맞춤형 통계와 보고서는 단순한 데이터 시각화 도구를 넘어, 운영자가 운영 상태를 명확히 이해하고 전략적인 결정을 내릴 수 있도록 지원하는 중요한 역할을 합니다. Zenius APM의 특장점 지능형 IT 인프라 통합 관리 솔루션인 Zenius의 핵심 구성 요소인 Zenius APM은 다양한 IT 자원의 연관성을 체계적으로 분석하며, 효율적이고 신뢰할 수 있는 모니터링 환경을 제공합니다. EMS Framework를 기반으로 구축된 Zenius APM은 웹 애플리케이션과 서버, 네트워크 등 다양한 인프라를 중앙에서 집중적으로 모니터링할 수 있는 기능을 지원합니다. 또한, 하드웨어와 미들웨어를 포함한 이기종 인프라를 통합 관리하기 위한 도구를 제공하며, Overview와 Service Map을 통해 시스템 전반의 상호작용을 명확히 파악할 수 있습니다. 특히, 서버와 DBMS를 비롯한 IT 인프라 전반의 상호작용을 분석하여 장애의 원인과 영향을 신속히 파악하고, 이를 바탕으로 심층적이고 효율적인 관리를 지원합니다. 이러한 기능을 통해 운영자는 문제를 조기에 발견하고 신속히 해결할 수 있으며, 안정적이고 효율적인 IT 환경을 유지할 수 있습니다. 또한 최근 많이 활용되는 쿠버네티스 모니터링 솔루션(Zenius K8s)과의 연계를 통해 컨테이너 기반의 마이크로서비스 아키텍처 및 분산 환경에서도 뛰어난 관리 성능을 발휘합니다. 쿠버네티스 클러스터의 POD와 컨테이너 상태를 실시간으로 모니터링하며, 자동 스케일링과 같은 클라우드 네이티브 기능을 통해 변화가 잦은 환경에서도 안정적인 서비스 운영을 보장합니다. 또한 Zenius APM은 장애가 발생한 특정 시점(예: 예외 발생 또는 오류 시점)의 애플리케이션 성능 정보를 정밀하게 재현할 수 있습니다. Raw 데이터 기반의 스냅샷 분석을 활용하여 과거의 실시간 운영 상태를 정확히 복원하며, 이를 통해 문제의 원인을 신속하고 정밀하게 파악할 수 있습니다. 사용자가 필요에 따라 분석 항목과 화면 구성을 선택적으로 조정할 수 있어, 상황에 맞춘 유연하고 효율적인 분석이 가능합니다. Zenius APM은 세분화된 장애 심각도 설정과 SMS, 이메일, Push 알림 등 다양한 방식으로 장애 발생을 빠르게 알립니다. 또한, 에스컬레이션 통보 기능을 통해 운영자는 중요한 장애가 누락되지 않도록 관리하며 대응 시간을 단축할 수 있습니다. 이와 더불어, 애플리케이션과 인스턴스를 논리적으로 그룹화하여 비즈니스 관점에서 실시간 서비스 성능을 모니터링할 수 있도록 지원합니다. 이를 통해 인스턴스 관점과 비즈니스 관점의 실시간 듀얼(Dual) 모니터링 환경을 제공하며, 실제 서비스와 연계된 성능 관리를 더욱 효과적으로 수행할 수 있습니다. Zenius APM은 복잡한 IT 환경에서 웹 애플리케이션의 성능을 최적화하고 운영 안정성을 보장하는 데 필요한 모든 기능을 제공합니다. 실시간 모니터링, 장애 관리, 성능 분석, 그리고 사용자 맞춤형 보고서 기능은 운영자가 문제를 사전에 예방하고 효율적으로 대처할 수 있는 기반을 마련합니다. 이를 통해 기업은 안정적이고 효율적인 IT 운영을 실현하며 비즈니스 경쟁력을 강화할 수 있습니다.
2024.11.29
기술이야기
효과적인 쿠버네티스 모니터링을 위한 6가지 고려사항
기술이야기
효과적인 쿠버네티스 모니터링을 위한 6가지 고려사항
컨테이너 오케스트레이션 플랫폼인 쿠버네티스(Kubernetes, K8s)는 자동화된 확장성과 자가 복구 기능을 통해 서비스의 안정성과 운영 효율성을 높이는 장점이 있습니다. 따라서 다양한 마이크로서비스 아키텍처(MSA)와 클라우드 환경에서 널리 활용되고 있습니다. 그러나 쿠버네티스는 파드(Pod), 노드(Node), 네트워크 등 각 요소가 끊임없이 동적으로 변화하며 상호작용하는 복잡한 구조이기 때문에, 체계적이고 세밀한 모니터링 없이는 운영에 어려움을 겪을 수 있습니다. 그렇다면 효과적인 쿠버네티스 모니터링을 위한 필수 고려사항은 무엇인지 6가지로 나눠서 알아보겠습니다. [1] 파드 및 컨테이너 모니터링 파드(Pod)와 컨테이너는 쿠버네티스에서 애플리케이션이 실행되는 가장 기본적인 단위이자 핵심 구성 요소입니다. 따라서 애플리케이션의 가용성과 성능을 안정적으로 유지하기 위해서는 각 파드와 컨테이너의 상태를 정밀하게 모니터링 하는 것이 중요합니다. 파드가 제대로 스케줄링되지 않거나, 컨테이너가 크래시 루프(CrashLoopBackOff) 상태에 빠지면 애플리케이션 성능이 저하되거나 서비스가 중단될 수 있습니다. 이러한 문제를 사전에 방지하려면 각 파드의 CPU, 메모리 사용량, 네트워크 I/O와 같은 자원 사용 현황을 실시간으로 모니터링하는 체계가 필요합니다. 특히, 자원 사용량을 지속적으로 추적하여 비정상적인 사용 패턴이나 과부하 상태를 사전에 감지하는 것이 중요합니다. 또한, 쿠버네티스의 오토스케일링(Auto-Scaling) 기능과 연계된 모니터링 솔루션을 통해 파드가 실시간 트래픽 변화에 맞춰 자동으로 확장 또는 축소될 수 있도록 설정하는 것이 자원 효율성 측면에서도 유리합니다. 이와 같은 종합적인 모니터링 솔루션은 파드와 컨테이너의 상태 변화에 대한 정확한 정보를 제공하고, 문제가 발생하기 전에 이를 사전에 탐지하고 대응할 수 있는 능력을 제공합니다. [2] 클러스터와 노드 상태 모니터링 쿠버네티스 클러스터는 다수의 노드로 구성된 분산 시스템으로, 각 노드는 파드(Pod)를 실행하는 주체로서 클러스터 전반의 성능과 안정성에 중요한 영향을 미칩니다. 각 노드의 CPU, 메모리, 디스크 I/O, 네트워크 대역폭 등 주요 리소스 사용량을 실시간으로 모니터링함으로써 리소스 과부하나 잠재적 장애를 사전에 감지하고 예방할 수 있습니다. 특히, 노드 간 리소스 사용의 불균형은 클러스터 전체 성능에 부정적인 영향을 미칠 수 있으며, 특정 노드에서 발생하는 비정상적인 리소스 소모는 장애의 전조로 볼 수 있습니다. 예를 들어, CPU나 메모리 자원의 지속적인 고갈, 네트워크 트래픽의 급격한 증가 등은 장애를 유발할 수 있는 주요 지표로, 이를 사전에 감지하고 신속하게 대응하는 것이 중요합니다. 이를 위해 각 노드의 메트릭 데이터를 분석하고, 비정상적인 패턴을 자동으로 탐지할 수 있는 쿠버네티스 모니터링 솔루션을 도입하는 것이 필요합니다. 이러한 솔루션은 클러스터 내 모든 노드의 상태를 실시간으로 모니터링하고, 비정상적인 리소스 사용을 빠르게 인식할 수 있게 해줍니다. 또한, 자동화된 경고 시스템을 통해 잠재적인 문제가 발생하기 전에 관리자에게 즉시 알림을 제공하며, 리소스 사용 추세를 기반으로 한 예측 분석 기능을 통해 향후 발생할 수 있는 문제를 미리 방지할 수 있도록 지원합니다. [3] 네트워크 모니터링 쿠버네티스는 내부 네트워크와 외부 네트워크 간 통신이 빈번하게 이루어지는 복잡한 분산 시스템입니다. 파드 간의 통신 오류나 클러스터 외부와의 연결 문제는 애플리케이션 성능 저하로 이어질 수 있기에, 네트워크 상태를 정밀하게 모니터링해야 합니다. 주요 모니터링 지표로는 네트워크 지연(latency), 패킷 손실(packet loss), 네트워크 인터페이스 속도와 대역폭 등이 있으며, 이러한 지표들은 애플리케이션 가용성과 성능에 직접적인 영향을 미칠 수 있습니다. 특히 서비스 메시(Service Mesh)와 같은 고급 네트워크 구성 요소를 도입한 환경에서는 네트워크 복잡성이 더욱 증가하므로, 네트워크 트래픽 경로를 시각화하고 트래픽 흐름을 분석할 수 있는 고도화된 모니터링 솔루션이 필요합니다. 이러한 시스템을 통해 비정상적인 트래픽 패턴이나 병목 현상을 사전에 감지하고, 네트워크 문제를 신속하게 해결할 수 있는 역량을 확보하는 것이 중요합니다. 특히, 네트워크 모니터링은 전체 클러스터의 안정성과 애플리케이션 성능을 보장하는 데 중요한 역할을 합니다. [4] 로그 및 메트릭 수집과 분석 모니터링의 핵심은 적절한 로그와 메트릭 데이터를 수집하고 이를 분석하여 시스템 상태를 지속적으로 파악하는 데 있습니다. 쿠버네티스는 클러스터 내에서 발생하는 다양한 이벤트를 로그로 기록하고, 각 파드, 컨테이너, 노드에서 발생하는 자원 사용량과 성능 관련 데이터를 메트릭으로 제공합니다. 이러한 로그와 메트릭을 실시간으로 수집하고 분석함으로써, 문제가 발생했을 때 그 원인을 빠르게 파악하고 대응할 수 있습니다. 예를 들어, 특정 파드에서 반복적으로 발생하는 에러 로그는 애플리케이션의 특정 기능이 문제가 있음을 시사하며, 이를 통해 운영자는 그 원인을 정확히 파악할 수 있습니다. 또한, 성능 저하가 발생할 때 메트릭 데이터를 분석하여 CPU, 메모리, 네트워크 등 리소스 부족이 원인인지 식별할 수 있습니다. 이러한 정보가 실시간으로 제공되기 때문에, 운영자는 문제를 조기에 발견하고 빠르게 대응할 수 있으며, 그 결과 시스템 장애나 성능 저하를 미연에 방지할 수 있습니다. 또한, 실시간으로 로그와 메트릭 변화를 추적하고 모니터링 솔루션의 경고 알림 기능 등을 활용하면, 문제를 사전에 예측하고 조치를 취할 수 있습니다. [5] 자동화 기능과의 긴밀한 연동 쿠버네티스의 주요 기능 중 하나는 자동화된 확장과 자가 치유(Self-Healing) 기능으로, 이를 통해 클러스터의 안정성과 가용성을 유지할 수 있습니다. 자동화된 확장은 클러스터 상태를 실시간으로 모니터링하여 자원이 부족할 때 자동으로 새로운 파드를 생성하고, 부하를 분산함으로써 성능 저하를 방지합니다. 또한 자가 치유 기능은 장애가 발생한 파드나 노드를 감지하여, 파드를 자동으로 재시작하거나 장애가 발생한 파드들을 다른 건강한 노드로 이동시키는 역할을 합니다. 이러한 기능이 원활하게 작동하려면, 모니터링 솔루션이 클러스터의 상태를 정확하게 파악하고, 자원 사용 현황 및 노드 상태에 대한 신뢰할 수 있는 데이터를 제공해야 합니다. 이를 위해 모니터링 솔루션은 높은 확장성과 안정성을 보장할 수 있는 설정이 필수적입니다. 예를 들어, 파드의 자원 부족이 발생하면 이를 실시간으로 감지하여 적절한 확장 작업이 즉시 이루어질 수 있도록 지원해야 합니다. 결과적으로, 쿠버네티스의 자동화 기능이 성공적으로 활용되려면 쿠버네티스 모니터링 솔루션과의 긴밀한 연동이 반드시 필요합니다. [6] 보안 및 규정 준수 분산 아키텍처를 기반으로 하는 쿠버네티스 클러스터는 외부 공격에 더욱 취약할 수 있으며, 다양한 보안 위협에 노출될 가능성이 존재합니다. 이러한 위협을 효과적으로 방어하기 위해서는 네트워크 트래픽 모니터링을 통해 비정상적인 활동이나 의심스러운 트래픽 패턴을 신속히 감지하고, 보안 정책 위반, 의도치 않은 구성 변경, 혹은 취약점 발견 시 자동으로 경고를 발송하는 보안 모니터링 체계가 필요합니다. 이와 함께, 컨테이너 이미지의 보안 취약점 분석을 사전에 실시하여 악성 코드나 알려진 취약점으로부터 클러스터를 보호하고, 이를 기반으로 하는 보안 스캔 자동화가 중요합니다. 또한, 클러스터 전반에서 발생하는 모든 활동을 실시간으로 감사(Audit) 및 기록하여 컴플라이언스 요구사항을 충족시키는 중앙 집중형 로그 관리 시스템이 필요합니다. 이러한 감사 로그는 규정 준수를 위한 기본적인 요소일 뿐만 아니라, 보안 사고 발생 시 원인 분석 및 대응을 위한 핵심 자료로 활용될 수 있습니다. 쿠버네티스와 같은 분산 시스템을 성공적으로 운영하기 위해서는 그 안에서 발생하는 다양한 이벤트를 실시간으로 모니터링하는 것이 매우 중요합니다. 6가지 고려사항을 통해 클러스터의 상태를 세밀하게 추적하고 분석함으로써, 예상치 못한 문제를 미리 발견하고 대비할 수 있습니다. 특히, 노드나 파드의 자원 소모가 비정상적으로 급증할 때 이를 빠르게 인식하고 조치를 취함으로써, 시스템의 성능 저하를 방지할 수 있습니다. 또한, 네트워크 상태와 보안 위협에 대한 철저한 모니터링은 전체 서비스의 가용성을 높이는 데 큰 도움이 됩니다. 이처럼 체계적인 모니터링 전략을 통해 쿠버네티스 환경에서의 안정성을 확보할 수 있으며, 서비스 중단 없이 원활한 운영을 이어갈 수 있습니다.
2024.10.24
기술이야기
옵저버빌리티(Observability) vs APM, 우리 기업에 맞는 솔루션은?!
기술이야기
옵저버빌리티(Observability) vs APM, 우리 기업에 맞는 솔루션은?!
지난 글을 통해 웹 애플리케이션을 전반적으로 모니터링하고 관리하기 위한 좋은 도구인, APM의 핵심요소와 기능에 대해서 알아봤습니다(지난 글 보기). APM은 분명 좋은 도구이지만 문제 원인이 애플리케이션, 웹, WAS, DB가 아닌 특정한 시스템 오류이거나 클라우드 네이티브 환경에서의 장애일 경우 문제 발생 원인을 명확히 밝히기 어려울 수 있습니다. 따라서 이번 시간에는 APM의 한계성은 무엇이고, 이를 보완하기 위한 방법은 무엇인지 자세히 살펴보겠습니다. │APM 한계성 불과 얼마 전까지만 해도 예상치 못한 장애를 탐지하고 분석하는 것은, 기존 APM만으로 충분했었습니다. 기존에는 모놀리식 구조로 되어있어 애플리케이션이 적은 수로 구성되어 있었고, Web-WAS-DB가 모두 단일 구조로 구성되어 있었기 때문입니다. 하지만 현재 대다수 기업들은 MSA 환경에서 서비스를 구축하고, DevOps 구조로 업무를 진행하는 경우가 많습니다. 즉 클라우드 네이티브 환경에서는 기존 모놀리식 구조의 APM의 한계가 하나둘씩 보이기 시작한 것이죠. 이러한 이유로 클라우드 네이티브 방식에는 서비스 장애 원인을 분석하기 위한 새로운 모니터링 툴이 필요했습니다. 이때 등장하는 것이 바로 옵저버빌리티(Observability)입니다. │Observability란? 그렇다면 Observability란 무엇일까요? 옵저버빌리티는 IT 인프라에 대한 근본적인 장애 원인을 분석하기 위한 방법론입니다. 관찰 가능성이라고 표현되기도 하죠. Obsevability는 비교적 최근에 사용한 용어이지만, 옵저버빌리티를 위한 고민은 오래전부터 지속되어왔습니다. 시스템이 내가 의도한 대로 작동하고 있을까? 예상치 못한 장애 탐지와 장애 근본 원인은 어떻게 분석할 수 있을까? IT 인프라 운영 환경에 문제가 발생했을 때, 문제 식별을 위해 필요한 객관적인 지표는 어떻게 도출할 수 있을까? 하지만 소프트웨어 애플리케이션에서 Observability는, 위와 같은 고민이 발생하거나 겪어보지 못했던 현상이 생길 때 이를 이해하고 설명할 수 있는 지표를 분석해 줍니다. │Obsevability의 등장배경 및 필요성 앞에서 옵저버빌리티가 무엇인지 살펴봤는데요. 이어서 Observability가 등장하게 된 이유와 필요성에 대해 자세히 살펴보겠습니다. MSA 전환에 따른 복잡성 증가 옵저버빌리티가 등장하게 된 첫 번째 이유는, 모놀리식 아키텍처에서 MSA 환경으로 전환함에 따라 복잡성이 증가했기 때문입니다. 우선 그림을 통해 자세히 살펴보겠습니다. [그림(왼)]은 모놀리식 아키텍처를 나타내는데요. 애플리케이션의 모든 구성 요소가 하나의 인프라로 통합되어 있는 형태입니다. 배포가 간단하며, 확장성이 쉽고, E2E 테스트가 용이하다는 장점이 있습니다. 하지만 조그마한 수정 사항이 있으면, 다시 구성 환경을 빌드하고 배포해야 한다는 단점이 있습니다. 또한 일부 오류가 전체 아키텍처에 영향을 미친다는 치명적인 단점도 존재하죠. 반면 [그림(오)]에 해당하는 MSA(Micro Service Architecture)는 하나의 큰 애플리케이션을 여러 개의 작은 애플리케이션으로 쪼개어, 변경과 조합이 가능합니다. 작은 서비스의 독립적 배포라는 강력한 장점을 앞세워 Netflix, PAYCO와 같은 다양한 기업들이 앞다투어 MSA를 받아들였습니다. 여기서 문제는 MSA로 변화함에 따라 통합 테스트나 E2E 테스트 검증이 필요해졌는데요. 이처럼 여러 서비스의 API를 검증해야 하므로, 복잡성이 증가하고 많은 시간과 비용이 소모되었습니다. 무엇보다 각 서비스 별로 자체적인 데이터베이스가 있어, 트랜잭션에 대한 파악이 어려워지기도 했죠. 따라서 기존 APM이 담당하는 트랜잭션 모니터링의 복잡성은 더욱 증가했고, Observability의 필요성이 대두되었습니다. DevOps와 클라우드 네이티브 환경으로서의 전환 옵저버빌리티가 등장하게 된 두 번째 이유는, DevOps와 클라우드 네이티브 환경으로 전환하기 위해 필요한 도구이기 때문입니다. DevOps의 핵심은 소프트웨어의 개발(Deployment)과 운영(Operation)을 분리하는 것이 아닌, 하나로 통합된 업무 처리 방식으로 진행됩니다. 이때 관리하는 서비스 전반에 대한 가시성이 충분히 확보되지 않으면, DevOps 조직은 근본적인 원인을 찾는 데 어려움을 겪게 됩니다. 이러한 어려움을 해결하기 위해서는 서비스를 구성하는 아키텍처부터 트랜잭션까지 가시성이 확보되어야 합니다. 이를 통해 DevOps의 목표인 지속적인 개발과 운영의 통합을 만들어낼 수 있죠. 또한 Observability는 클라우드 네이티브 환경으로 전환하기 위한 필수 조건입니다. 기업에서 운영 중인 서비스/IT 인프라가 클라우드 네이티브 환경으로 전환되면서, 이전에 발생하지 않았던 모든 장애 가능성에 대한 인지를 위해 Observability가 선행되어야 합니다. │Observability와 Monitoring 차이점 그렇다면 기존의 모니터링(Monitoring)과 옵저버벌리티(Observability)의 차이점은 무엇일까요? 기존의 모니터링 역할은 IT 인프라의 '정상 작동 확인'을 위한 도구 역할에 초점이 맞춰져 있었습니다. 모니터링 구성 요소인 대시보드와 사용자 알람을 통해 가시성을 확보하고, 장애를 쉽게 감지할 수 있었죠. 즉 모니터링은 인프라 성능 지표, 구성 관리, 사용자 알람에 주 목적을 둔 IT 운영 담당자에 포커스를 맞춘 도구입니다. Observability는 기존 모니터링이 맡는 알람(Alerting), 메트릭(Metric) 외에도 로그(시스템, 애플리케이션), 트레이스, 디버깅과 같은 작업이 가능합니다. 이를 통해 앞으로 발생할 수 있는 장애를 미리 예측하고, 발생한 장애에 대한 근본적인 원인을 찾아내는 데 초점이 맞춰져 있습니다. │Observability 확보를 위한 핵심 구성 요소 옵저버빌리티는 앞서 언급했듯이 메트릭(Metric), 로깅(Logging), 트레이싱(Tracing) 등 작업이 가능한데요. 좀 더 자세히 살펴보겠습니다. Metric 모니터링 분야에서 Metric(메트릭)이란, 인프라 혹은 서비스 성능과 상태를 나타내는 지표입니다. 여기서 중요한 점은 단순히 현재 상태를 보기 쉽게 표현하는 것에서 더 나아가 '시계열 데이터' 형태로 변화하는 데이터를 보여줘야 합니다. 예를 들어 CPU 사용률, 메모리 사용률, 스레드 사용률과 같이 시간이 지남에 따라 어떻게 변화하는지 효율적으로 보여줄 수 있어야 하죠. 또한 메트릭은 여러 AI 분석툴과 오픈소스와 결합하여, 직관적인 파라미터를 통해 시계열 데이터의 다양한 패턴을 자동 감지할 수 있어야 합니다. 운영자와 개발자에게 필요한 리소스를 선택할 수 있도록 성능 예측하는 지표도 필요합니다. Logging Logging(로깅)은 운영 중인 시스템과 애플리케이션에서 발생하는 다양한 이벤트와 에러 등을 기록하는 과정입니다. Observability는 여기서 더 나아가 클라우드 시스템의 모든 로그를 수집하여, 해당 로그를 통해 문제 원인을 식별할 수 있어야 합니다. 물론 각 로그 스트림은 단일 인스턴스에 대한 이벤트를 알려주기 때문에, 마이크로 서비스 환경에서 전체적인 문제 원인을 파악하기 어려울 수 있습니다. 하지만 중앙 집중식 로깅을 사용하면, 애플리케이션 로그를 한곳에 저장할 수 있습니다. 이를 통해 여러 서비스로 구성된 MSA 환경에서 로그를 효과적으로 검색하고 모니터링할 수 있죠. 이러한 작업을 하기 위해서 ELK Stack1 과 같은 로그 수집 활용 도구가 필요한데요. 이 도구는 로그 관리를 단순화화여, 전체 시스템 문제를 더 쉽게 분석할 수 있도록 도와줍니다. *ELK Stack1: Elastic Search. Logstash, Kibana의 약자로 데이터를 수집하고 분석하는 도구 모음 Tracing 트레이싱은 애플리케이션 실행 정보를 기록하는 '특별한 로깅' 방식을 의미합니다. 사실 로깅과 트레이싱을 구분하는 것에 큰 의미는 없습니다. 하지만 Observability 관점에서 트레이싱은, 전체 로그 중 문제를 일으키는 특정 로그들을 시각화하고 이를 선택적으로 관찰하는데 의미가 있습니다. Debugging Observability에서 말하는 디버깅은, 시스템과 서비스 성능을 확인하고 검사할 수 있는 다양한 도구입니다. 장애 원인을 찾을 경우 그 장애 원인뿐만 아니라, 연관관계를 가진 여러 인프라와 애플리케이션을 함께 보여줄 수 있어야 하죠. RUM RUM은 Real User Monitoring 약자로, 사용자의 인터랙션을 추적하여 웹사이트나 애플리케이션 성능을 실시간으로 모니터링하는 기술입니다. 옵저버빌리티는 앞서 언급했듯, 더 이상 IT 인프라 운영자를 위한 도구가 아닙니다. DevOps를 위한 통합적인 가시성을 제공하는 도구이죠. 따라서 운영자와 개발자를 위한 '실제 사용자 관점'에서 모니터링을 제공해야 합니다. 이처럼 옵저버빌리티 시스템은 애플리케이션의 전체적인 상태를 깊이 있게 파악하고, 문제 원인을 분석하는 데 중점을 두는 접근 방식입니다. 그렇다면 애플리케이션 성능 관리 시스템인 APM 도구와는 어떤 차이점이 있을까요? │APM과 Observability 차이점 어떻게 보면 APM과 Observability는 비슷해 보이지만, 문제 원인과 인프라를 분석하는 시각에 따라서 다양한 차이점을 지니고 있습니다. 우선 첫 번째 차이점으로는 모니터링 목적 대상에 따른 차이가 있습니다. APM은 E2E(End-to-End) 성능 구간에 주목합니다. WEB-WAS-DB에 걸친 이 과정을 실제 서비스 사용자의 *액티브 서비스2에 초점을 맞춰, 애플리케이션 성능을 분석하고 모니터링하죠. *액티브 서비스: 현재 시점에서 사용자에게 제공되고 있는 상태 Observability는 APM에서 주목하는 E2E보다, 더 많은 범위를 모니터링합니다. 시스템 인프라, WAS, DB에 대한 정밀 성능 분석과 장애 감지는 물론. 운영 중인 인프라와 서비스를 통합하여 문제 원인을 찾는 데 집중합니다. [그림] Zenius-APM 사용자 정의 실시간 모니터링 상황판 따라서 두 번째 차이점으로는, 측정하는 지표에도 많은 차이가 있는데요. APM은 사용자 요청에 따른 응답 시간과 응답 분포, 액티브 서비스 상태, 트랜잭션 처리율, 이슈 중심으로 '사용자 요청' 관점에 따라 주요 지표를 확인할 수 있습니다. Observability는 사용자의 요청 관점이 아닌, 발생할 수 있는 '모든 이벤트 지표'에 주목합니다. 보다 더 전방위적인 모니터링이 가능하죠. 또한 옵저버빌리티는 기존 APM에서 발생하는 주요 장애 원인뿐 아니라, 예측하지 못한 장애를 객관적인 지표로 보여줍니다. 정리한다면 인프라와 서비스를 분석하고 장애를 탐지한다는 점에서 APM과 Observability는 동일한 역할을 갖지만, 결국 사용자가 무엇을 더 초점에 맞추느냐에 따라 사용 목적은 아래와 같이 달라질 수 있습니다. 우리 기업은 Observability가 맞을까, APM가 맞을까? APM Type Observability Type 애플리케이션 성능 최적화가 필요한 경우 애플리케이션 코드 내의 문제를 식별하고 해결하는 데 중점을 둘 경우 MSA 환경이 아닌 모놀리식 아키텍처에서 서비스를 구성하고 있는 경우 MSA 환경에서의 분산 시스템을 통해 서비스를 구성하는 경우 단순한 애플리케이션 성능을 넘어 전체 IT 인프라 환경에 대한 통찰력 확보가 필요한 경우 인프라 운영자, 개발자, 보안담당자 모두가 통합 모니터링 환경이 필요한 경우 이번 글에서는 옵저버빌리티의 중요성과 APM의 차이점을 자세히 살펴보았습니다. 결론적으로 옵저버빌리티와 APM 중 어느 하나를 더 좋다고 할 수 없으며, 각 조직의 요구사항과 사용 편의성에 맞춰 선택해야 합니다. 그러나 점점 복잡해지는 IT 환경을 고려한다면, 옵저버빌리티를 기반으로 한 Zenius-APM과 같은 도구를 활용하여 좀 더 효율적으로 웹 애플리케이션을 관리해 보는 것은 어떨까요? ?더보기 Zenius APM 더 자세히 보기 ?함께 읽으면 더 좋아요 • APM에서 꼭 관리해야 할 주요 지표는?! • APM의 핵심요소와 주요기능은?!
2024.07.24
기술이야기
쿠버네티스를 통해 본 컨테이너 오케스트레이션
기술이야기
쿠버네티스를 통해 본 컨테이너 오케스트레이션
‘쿠버네티스(kubernetes)’는 2013년 구글에서 공개한 이후 컨테이터 오케스트레이션 도구의 표준으로 자리 잡았습니다. CNCF의 1호 졸업 프로젝트이기도 한 쿠버네티스는 지속적인 릴리즈를 거쳐 꽤 성숙한 제품이 됐는데요. 쿠버네티스는 컨테이너화된 어플리케이션을 자동으로 배포하고 스케일링 및 관리하기 위한 컨테이너 오케스트레이션 도구라고 간단하게 정의할 수 있습니다. 일반적으로 컨테이너를 사용할 때 ‘도커(Docker)’를 많이 사용한다는 이야기를 들으셨을 것입니다. 도커는 컨테이너를 쉽게 만들고, 내려받고, 공유할 수 있도록 사용되는 컨테이너 플랫폼입니다. 온프레미스 환경 아래의 배포에서 가상환경의 배포로 발전하고 더 나아가 컨테이너 환경 아래에서 리소스를 관리하게 되면서, 도커는 컨테이너 런타임의 표준으로 자리 잡았습니다. 이미지 출처 ⓒ https://kubernetes.io/ko 컨테이너 환경의 배포는 온프레미스 환경과 가상화 환경의 배포보다 관리는 용이하지만, 컨테이너 수가 많아지게 되면서 부하 분산과 안정적인 배포를 위해 관리해야 할 필요성이 지속적으로 증가하였습니다. 이 때 등장하는 것이 컨테이너의 오케스트레이션 도구라고 할 수 있는 쿠버네티스입니다. 이번 시간에는 컨테이너 오케스트레이션의 주요 도구인 쿠버네티스를 통해 컨테이너 오케스트레이션에 대해 알아보고자 합니다. │쿠버네티스의 주요 목적 쿠버네티스의 주요 목적을 이해하려면 컨테이너 오케스트레이션의 개념을 먼저 짚고 넘어가야 합니다. 컨테이너 오케스트레이션 위키피디아의 정의에 따르면 ‘컴퓨터 리소스 자원과 애플리케이션 및 서비스에 대한 자동화된 설정 및 관리’를 의미합니다. 이를 컨테이너에 적용하면, 여러 컨테이너에 대한 프로세스를 최적화하고 적절한 자원의 할당과 자동으로 컨테이너를 생성하고 배포할 수 있도록 해야 합니다. 소수 사용자를 위한 비교적 단순한 컨테이너 앱은 보통 별도의 오케스트레이션이 필요하지 않을 수 있습니다. 관리자가 각 컨테이너 별 리소스 자원을 할당하면 그만이겠죠. 하지만 만약 앱의 기능과 사용자 수가 사소한 수준 이상이라면, 컨테이너 오케스트레이션 시스템을 사용하지 않고 직접 해결하기 어려워집니다. 무엇보다 아키텍처의 트렌드가 모놀리식(Monolithic Architecture)에서 마이크로서비스(Microservice Architecture)로 변화하는 과정에서 컨테이너의 수는 계속 증가할 것이고 무중단 서비스, 즉 고가용성을 제공해야 하는 환경이라면 컨테이너 오케스트레이션은 원활한 서비스 구성을 위한 필수 요소라고 할 수 있습니다. 마이크로서비스 아키텍처 환경에서는 애플리케이션의 세부 기능들이 작은 서비스 단위로 분리되어 있습니다. 이 각각의 서비스를 구현하는데 컨테이너 기술이 가장 흔하게 이용되는데요, 다수의 컨테이너를 관리하는 상황이라면 위의 4가지 이슈에 대한 해답을 찾아야 합니다. │쿠버네티스의 핵심 아키텍처 앞서 살펴본 4가지 이슈를 해결하기 위해 쿠버네티스는 아래와 같은 네 가지 핵심 아키텍처로 구성되어 있습니다. ① 선언적 구성 기반의 배포 환경 쿠버네티스는 동작을 지시하는 개념보다는 원하는 상태를 선언하는 개념을 주로 사용합니다. 즉 사용자가 설정한 원하는 상태(Desired State)와 현재의 상태(Current State)가 일치하는지를 지속적으로 체크하면서 업데이트합니다. 결과적으로 ‘이렇게 되어야 해!’ 라는 선언적 방식으로 명령을 주면 쿠버네티스는 이를 해석하여 컨테이너들을 자동으로 관리하게 됩니다. ② 기능 단위의 분산 쿠버네티스에서는 각각의 기능들이 모두 독립적인 컴포넌트로 분산되어 있습니다. 앞으로 후술할 쿠버네티스 ‘APIserver’를 통해 내부 컴포넌트들을 컨트롤 하고 있습니다. ③ 클라스터 단위의 중앙 제어 쿠버네티스는 가용할 수 있는 리소스를 클러스터 > 노드 > 파드 단위로 추상화 하여 관리합니다. 각각의 클러스터를 통해 노드를 관리하고 노드 안의 컨테이너를 효율적으로 관리할 수 있습니다. ④ API 기반의 네트워킹 쿠버네티스의 구성 요소들은 오직 ‘APIserver’를 통해서만 상호 접근이 가능한 구조를 가지고 있습니다. 마스터 노드의 ‘Kubectl’라는 컴포넌트를 거쳐 실행되는 모든 명령은 이 API 서버를 거쳐 수행되며, 워커 노드에 포함된 ‘Kubelet’, ‘Kube-proxy’ 역시 API 서버를 통해 상호작용하게 되어 있습니다. │쿠버네티스의 오케스트레이션 기능 컨테이너 오케스트레이션의 핵심은 컨테이너의 프로비저닝, 배포, 네트워킹, 확장 가용성, 라이프사이클 관리, 상태 모니터링 일체를 자동화하는 데 있습니다. 쿠버네티스가 제공하는 오케스트레이션 기능은 위의 컨테이너 관리 이슈에 대한 적절한 해결책을 제공합니다. 이미지 출처 ⓒ https://kubernetes.io/ko ① 오토스케일링 (Auto-Scaling) 쿠버네티스에서 생성하고 관리할 수 있는 가장 작은 컴퓨팅 단위를 파드(Pod)라고 부르는데요. 쿠버네티스는 각 클러스터 안에 있는 노드의 CPU와 메모리 자원에 대한 할당을 Pod를 통해 자동으로 조정합니다. 만약 부하가 증가하여 리소스를 과하게 점유하고 있다면 자동으로 파드 복제본이 실행되어 가용성을 확보할 수 있습니다. ② 스케줄링 (Scheduling) 컨테이너를 일정한 알고리즘에 기초하여 구체적으로 어떤 노드에서 움직이게 할지 배치하는 것을 스케줄링이라고 합니다. ‘Kube Scheduler’라는 컴포넌트를 통해 클러스터 내에 실행할 파드를 노드에 스케줄링 할 수 있습니다. ③ 오토 힐링 (Auto-Healing) 쿠버네티스는 사용자가 지정한 컨테이너의 상태를 지속적으로 관찰하여 비정상적인 상태를 감지하면 컨테이너를 재시작하고 스케줄링을 빠르게 재시작 할 수 있습니다. 사용자의 선언적 상태에 따라 응답하지 않은 컨테이너를 새롭게 구동 시킬 수 있습니다. ④ 분산 부하 (Load-Balancing) 하나의 서비스에 여러 개의 컨테이너가 구동 시, 서비스에 들어오는 요청을 컨테이너들 사이에 균등하게 분배하여 부하를 분산시킵니다. 이를 통해 급증하는 서비스 요청에 대해 효율적인 대응이 가능합니다. │쿠버네티스의 구성요소 쿠버네티스는 총 네 가지의 구성요소로 이루어져 있습니다. 이미지 출처 ⓒ https://kubernetes.io/ko ① 클러스터 (Cluster) CNCF 재단에 따르면 클러스터는 공통의 목표를 위해 작동하는 애플리케이션의 그룹이라고 정의하고 있습니다. 쉽게 표현하면, 클러스터는 컨테이너를 통해 실행되는 여러 서비스들의 집합이라고 할 수 있겠는데요. 클러스터의 구성 목적은 애플리케이션의 효율적인 관리에 그 목적이 있습니다. 일반적으로 컨트롤 타워 역할을 하는 마스터 노드와 컨테이너가 실행되는 워커 노드로 구성되어 있습니다. ② 마스터 노드 (Master Nodes) 마스터 노드는 클러스터 전체를 관리하는 컨트롤 타워의 역할을 합니다. 대규모의 컨테이너 관리를 위해 각 워커 노드들의 리소스 사용률을 고려하여 컨테이너 배치와 모니터링이 필요한데요. 클러스터 내에서 이 역할을 수행하는 노드를 마스터 노드라고 부릅니다. ③ 워커 노드 (Worker Nodes) 워커 노드는 마스터 노드의 컨트롤을 받아 실제 컨테이너를 실행하고 쿠버네티스 실행 환경을 관리합니다. ‘Kubelet’이라는 노드 컴포넌트를 통해 파드의 실행을 직접 관리하며 APIserver와 통신하게 됩니다. 하나의 노드는 일반적으로 여러 개의 파드로 구성됩니다. 마스터 노드를 통해 파드에 대한 스케줄링을 자동으로 처리할 수 있습니다. ④ 파드 (Pod) 쿠버네티스에서 생성하고 관리할 수 있는 가장 작은 컴퓨팅 단위입니다. 위의 그림과 같이 하나의 파드 안에 다수의 컨테이너 혹은 단일 컨테이너로 구성될 수 있는데요. 쿠버네티스는 파드를 통해 컨테이너가 동일한 리소스 및 로컬 네트워크를 공유하게 합니다. 위와 같은 방식으로 컨테이너를 그룹화하면 분산된 환경에서도 동일한 하드웨어를 공유하는 것처럼 컨테이너를 서로 통신할 수 있도록 만듭니다. 파드의 사용 목적은 단순합니다. 일반적으로 서로 다른 컨테이너들이 각기 다른 기능들을 수행하며 하나의 완전한 애플리케이션으로 이루어 지게 되는데요. 이 때, 파드를 통해 각 컨테이너들의 내부 통신이 가능하게 하고 모든 컨테이너에 동일한 환경을 제공해 줄 수 있습니다. 요약하면 파드는 컨테이너가 제공하는 모든 기능을 활용하는 동시에 프로세스가 함께 실행되는 것처럼 보이게 하는 역할을 합니다. │쿠버네티스의 주요 컴포넌트 쿠버네티스의 주요 컴포턴트를 컨트롤 플레인 컴포넌트와 노드 컴포넌트로 나눠서 살펴보겠습니다. ① 컨트롤 플레인 컴포넌트 (Control Plane Components) 마스터 노드의 컨테이너, 워커 노드의 관리는 컨트롤 플레인 컴포넌트를 통해 이루어집니다. 컨트롤 플레인 컴포넌트는 클러스터 전체의 워크로드 리소스 등 주요 구성 요소들을 배포하고 제어하는 역할을 합니다. * Kube-APIserver API서버 라는 이름에서 말해주듯이 쿠버네티스의 컴포넌트와 사용자와의 접점 역할을 맡고 있습니다. 쿠버네티스에서 클러스터의 모든 구성 요소들은 오직 API서버를 통해서만 상호 접근이 가능하도록 설계되어 있습니다. 쿠버네티스의 중앙관리자라는 표현이 어울릴지 모르겠지만, 파드의 생성부터 스케줄링, etcd와의 통신까지 쿠버네티스의 모든 동작 과정에 API서버는 쿠버네티스의 중심에 있습니다. * etcd etcd는 클러스터 안의 각 구성요소에 대한 정보가 키-값 형태로 저장된 자체적인 데이터베이스입니다. 현재 클러스터에 있는 컴포넌트가 몇 개인지, 각각의 파드들이 어떤 노드에 붙어 있는지, 어떤 컨테이너를 들고 있는지에 대한 모든 정보가 etcd에 저장됩니다. 중요한 점은 etcd가 다운된다면 클러스터는 제대로 동작하지 못하게 되므로 자체적인 백업 스케줄링은 쿠버네티스 관리에 필수 요소라고 할 수 있습니다. * kube-controller-manager 컨트롤러 매니저는 클러스터 내에 작업 중인 다양한 리소스들을 모니터링하며 사용자가 설정한 원하는 상태(Desired State)와 현재의 상태(Current State)가 일치하도록 관리하는 작업을 합니다. 주요 컨트롤러로는 파드 복제를 유지해 주는 레플리카셋(ReplicaSet), 앱 배포를 세밀하게 관리할 수 있는 디플로이먼트(Deployment) 등으로 구성되어 있으며, 하나의 패키징 된 형태를 가지고 있습니다. * Kube-Scheduler 스케줄러는 각 파드들이 어떤 노드에서 작업을 수행할지 결정해 주는 역할을 맡고 있습니다. 비유하자면 작업 장소를 선택해 주는 의사 결정만 담당하고 있으며 실질적인 배치 작업은 아래 설명할 Kubelet이 담당하고 있습니다. ② 노드 컴포넌트 (Node Components) 노드 컴포넌트는 노드에서 작동하는 파드들을 관리하기 컴포넌트입니다. 워커 노드뿐 아니라 마스터 노드에서도 존재합니다. * Kubelet Kebelet은 클러스터의 모든 노드에서 실행되는 에이전트입니다. 파드의 실행을 직접적으로 관리한다고 볼 수 있는데요. 컨테이너디(Containerd), 크라이오(CRI-O) 같은 컨테이너 런타임과도 통신이 가능하며 노드 내에 구동 중인 컨테이너에 대한 라이프사이클을 관리합니다. 본래 쿠버네티스에서는 컨테이너 생성과 실행을 위한 런타임 엔진으로 도커(Docker)를 지원해왔으나, 2022년 2월 기준으로 완전히 중단되었습니다. 물론 런타임 엔진에서 도커가 제외된다는 것이 클러스터에서 도커 자체를 사용하지 못하게 된다는 뜻은 아닙니다. * Kube-proxy Kube-proxy는 노드에서 구동되는 쿠버네티스 네트워크 프록시입니다. 쿠버네티스에서 서비스라고 불리는 내부/외부 트래픽을 어느 파드로 전달할 것인지에 대한 규칙을 생성하고 관리하는 역할을 합니다. 。。。。。。。。。。。。 쿠버네티스의 주요 오케스트레이션 기능과 쿠버네티스의 주요 구성 요소 및 컴포넌트들을 살펴보았는데요. 쿠버네티스만이 컨테이너의 관리 복잡성을 해결할 수 있는 유일한 오픈소스는 아닙니다. 아파치 소프트웨어 재단에서 개발한 ‘아파치 메소스(Apache Mesos)’, 도커에서 개발한 ‘도커 스웜(Docker Swarm)’ 등의 컨테이너 관리 오픈소스도 있지만 2024년 현재 쿠버네티스는 독점적인 위치를 차지하고 있습니다. 무엇보다 3대 퍼블릭 클라우드사인 AWS, Azure, GCP 모두 매니지드 쿠버네티스 플랫폼을 제공하고 있습니다. 국내 퍼블릭 클라우드인 kt cloud, 네이버클라우드, NHN클라우드, 가비아, 카카오클라우드, 삼성클라우드플랫폼 등 모두 각 클라우드 환경에 최적화된 쿠버네티스 서비스를 제공하고 있죠. 또한, RedHat은 쿠버네티스 기반의 오픈시프트(OpenShift)를 통해 CaaS(Container as a Service) 시장의 선점을 노리고 있습니다. 스타트업과 대기업을 가리지 않고 기업에서 운영하는 컨테이너 기반의 애플리케이션이 복잡화됨에 따라 컨테이너 오케스트레이션 관리 도구인 쿠버네티스는 이제 기업 IT 운영전략의 핵심 요소가 되었습니다. 제니우스 쿠버네티스 모니터링 화면 예시 브레인즈컴퍼니의 제니우스(Zenius) 역시 컨테이너 모니터링뿐 아니라 쿠버네티스에 대한 모니터링을 환경을 제공하고 있습니다. 멀티 클러스터 환경에서의 모든 클러스터에 대한 모니터링뿐 아니라 Object Meta 정보를 제공하며 다양한 임계치 기반의 이벤트 감시 설정으로 선제적 장애 대응이 가능합니다. ?참고 자료 쿠버네티스 공식 문서: Kubernetes Components 쿠버네티스 공식 문서: Options for Highly Available Topology 쿠버네티스 공식 문서: Container runtimes
2024.02.05
기술이야기
가트너부터 딜로이트까지, 2024 IT트렌드 총정리
기술이야기
가트너부터 딜로이트까지, 2024 IT트렌드 총정리
지난해는 AI를 중심으로 IT 전 분야에서 혁신적인 변화가 있었고, 올 2024년에는 변화의 속도가 더 빨라질 것으로 예상됩니다. 따라서 이와 같은 빠른 변화를에 얼마나 잘 대처하는지가 점점 더 중요해지고 있는데요. 변화를 더 자세하고 빠르게 파악하기 위해서 가트너, 딜로이트, 포레스터 리서치가 발표한 2024 IT 트렌드의 핵심 내용을 모아봤습니다. 。。。。。。。。。。。。 가트너, AI가 가져올 구체적인 변화에 주목하다 가트너는 AI TRiSM부터 Machine Customers까지 총 10개의 주제로 2024년 IT 트렌드를 정리했습니다. 특히 AI와 클라우드를 통한 산업에서의 구체적인 변화에 주목했는데요. 자세한 내용을 살펴보겠습니다. [1] AI TRiSM: AI의 신뢰, 위험 및 보안 관리 AI TRiSM(AI Trust, Risk, and Security Management)은 인공지능 시스템의 신뢰성, 위험, 보안을 관리하는 프레임워크입니다. AI가 윤리적이고 공정하며 투명해야 함을 의미하며, 잠재적 위험을 식별하고 완화하는 데 중점을 둡니다. 보안 관리는 AI 시스템을 사이버 공격과 데이터 유출로부터 보호합니다. AI TRiSM은 의료·금융·자율주행 차량 등, 다양한 분야에서 AI의 안전하고 책임 있는 사용을 보장하는 데 필수적입니다. 이를 통해서 AI 기술의 지속 가능한 발전과 사회적 신뢰를 유지할 수 있습니다. [2] CTEM: 지속적인 위협 노출 관리 Continuous Threat Exposure Management(CTEM)은 사이버 보안 분야에서 조직의 지속적인 위협 노출을 관리하는 전략입니다. 이 방법론은 실시간 모니터링, 자동화된 위험 평가, 적응적 대응 전략을 포함하며 장기적으로 비즈니스의 연속성을 보장하는데 기여합니다. 예를 들어 금융 서비스 회사는 네트워크와 시스템을 지속적으로 스캔하여 취약점을 탐지하고, 감지된 위협에 대해 우선순위를 매겨 신속하게 대응해야 합니다. 또한 소프트웨어 개발 회사는 개발 중인 소프트웨어와 인프라를 모니터링하여 보안 취약점을 조기에 발견하고, 자동화된 도구를 사용해 코드의 취약점을 수정해야 합니다. [3] Sustainable Technology: 지속 가능한 기술 지속 가능한 기술은 환경 영향을 줄이고 지속 가능성을 촉진하는 혁신 및 관행을 포함합니다. IIoT(산업용 사물 인터넷) 센서와 AI를 사용하여 공급망 작업을 최적화하고, 탄소 배출을 줄이며 전반적인 장비 효율성을 향상시키는 산업이 좋은 예입니다. 또한 자급자족 LED 조명, 전기 교통, 태양 에너지, 탄소 포집 및 저장 기술 등의 지속 가능한 기술과 관행도 포함됩니다. 가트너는 또한 지속 가능한 기술이 위험 감소, 운영 효율성 향상, 경쟁 우위 획득, 인재 유치, 환경 및 사회적 책임 강화와 같은 비즈니스 이점을 제공한다고 강조합니다. [4] Platform Engineering: 플랫폼 엔지니어링 플랫폼 엔지니어링은 개발자와 사용자가 쉽게 사용할 수 있는 도구, 기능 및 프로세스 세트를 제공하는 방식입니다. 사용자의 생산성을 높이고 부담을 줄이는데 중점을 둡니다. 플랫폼 엔지니어링은 사용자의 특정 요구와 비즈니스 요구에 맞게 플랫폼을 수정합니다. 전담 제품 팀은 재사용 가능한 도구와 적절한 기능을 제공하며, 사용자 친화적인 인터페이스 솔루션을 제공합니다. 자동화된 프로세스 및 의사 결정을 위한 기초를 제공하며, 복잡한 상황에서도 디지털 개발을 가속화하게 하는 Be Informed 플랫폼이 좋은 예입니다. [5] AI-Augmented Development: AI 증강 개발 소프트웨어 개발 과정에서 AI를 활용하여 개발자의 작업을 돕고, 테스트 플랫폼과 문서 작성을 지원하는 것을 뜻합니다. GitHub Copilot, Replit GhostWriter, Amazon CodeWhisperer와 같은 AI 기반 코드 생성 서비스가 좋은 예입니다. 이러한 AI 기반 코딩 도우미를 사용하여 업무의 효율을 높일 수 있지만, AI가 오류를 발생시킬 수 있고 독창적인 코드를 생성할 수 없기에 개발자의 역할은 여전히 중요합니다. [6] Industry Cloud Platforms: 산업 클라우드 플랫폼 Industry Cloud Platforms은 특정 산업에 특화된 기능을 제공하는 클라우드 서비스입니다. SaaS(Software as a Service), PaaS(Platform as a Service), IaaS(Infrastructure as a Service)를 결합하여 업계별 맞춤형 기능을 제공합니다. 구체적으로 네 가지의 서비스를 예로 들 수 있습니다. ◾ AWS for Healthcare AWS는 의료 산업에 특화된 클라우드 서비스를 제공하여 의료 데이터 관리, 환자 관리, 의료 연구 등을 지원합니다. ◾ Microsoft Cloud for Financial Services 금융 산업에 맞춤화된 클라우드 솔루션을 제공하여 은행업, 보험 업계에서 사용되고 있습니다. ◾ GCP for Retail Google은 소매 산업에 특화된 클라우드 서비스를 통해 고객 데이터 분석, 재고 관리, 전자상거래 솔루션 등을 지원합니다. ◾ IBM Cloud for Telecommunications 통신 산업에 최적화된 클라우드 서비스를 제공하여 네트워크 운영, 고객 서비스 향상, 신기술 적용 등을 지원합니다. 이러한 산업별 클라우드 플랫폼은 기업이 보다 효율적으로 운영하고 혁신을 가속화하는 데 도움을 줍니다. [7] Intelligent Applications: 지능형 애플리케이션 Intelligent Applications은 인공지능(AI)과 머신러닝 기술을 활용하여 데이터를 분석하고, 사용자 행동을 예측하는 등의 기능을 제공합니다. 자동화된 의사결정, 사용자 맞춤형 경험 제공, 그리고 비즈니스 프로세스의 효율성 향상을 위해 설계되었습니다. 예를 들어 고객 서비스를 위한 AI 기반 챗봇, 데이터 분석을 통해 사용자에게 맞춤형 추천을 제공하는 소매 애플리케이션, 또는 실시간 의료 데이터 분석을 제공하는 헬스케어 애플리케이션 등이 있습니다. Salesforce Einstein, Google Cloud AI, IBM Watson, Microsoft Azure AI가 지능형 애플리케이션에 해당합니다. [8] Democratized Generative AI: 민주화된 생성 AI Democratized Generative AI는 인공지능의 생성 능력을 널리 사용할 수 있게 하는 개념으로, 비전문가도 쉽게 사용할 수 있는 AI 도구와 플랫폼을 의미합니다. 창작물 생성, 데이터 분석, 예측 모델링 등 다양한 분야에서 사용됩니다. 구체적인 서비스나 회사로는 OpenAI의 GPT-, Google의 DeepMind, Adobe의 Sensei와 같은 플랫폼들이 이에 해당합니다. 이러한 도구들은 사용자가 복잡한 알고리즘을 직접 다루지 않고도 AI의 혜택을 누릴 수 있게 해줍니다. [9] Augmented Connected Workforce: 증강 연결된 노동력 기술을 활용하여 직원들의 작업 능력을 향상시키고 원격 협업을 강화하는 전략입니다. 가상 현실, 증강 현실, 인공지능 등을 포함하는 다양한 기술을 활용하여 직원들이 더 효율적이고 효과적으로 협업하고 작업할 수 있도록 지원합니다. Microsoft의 HoloLens와 같은 증강 현실 기기나 Slack, Microsoft Teams와 같은 협업 플랫폼이 좋은 예입니다. 이러한 기술들은 직원들이 시간과 장소의 제약 없이, 효과적으로 협업하고 작업할 수 있는 환경을 만들어줍니다. [10] Machine Customers: 기계 고객 기계나 소프트웨어가 독립적으로 결정을 내리고 트랜잭션을 수행하는 시나리오를 말합니다. 예를 들어 IoT(사물 인터넷) 기기나 자동화 시스템이 소비자 역할을 수행하여 자동으로 주문하거나, 서비스를 요청하는 것입니다. Amazone Dash의 예시 소모품의 사용량을 체크하여 필요할 때 자동으로 주문하는 Amazon의 Dash Service가 대표적인 예입니다. 이러한 기술은 자동화된 공급 체인 관리와 효율적인 재고 관리 등에 기여하며, 비즈니스와 소비자 모두에게 편리함을 제공합니다. 딜로이트, 6가지 트렌드에 주목하다 딜로이트(Deloitte)는 2024 IT 트렌드를 아래와 같은 여섯 개의 주제로 정리했습니다. [1] 공간 컴퓨팅과 메타버스 메타버스는 기업의 주요 도구로 자리 잡고 있으며, 공간 컴퓨팅 기술도 점점 더 중요한 역할을 할 예정입니다. 디지털 트윈, 5G, 클라우드, 엣지, AI 기술에 대한 투자가 이 변화를 주도하고 있습니다. [2] 생성형 AI 생성형 AI는 비즈니스를 개선하고 혁신을 촉진하는 강력한 도구로, 전략적 계획과 특정 비즈니스 요구에 초점을 맞추어 구현되고 있습니다. 기업은 이 기술을 통해 각 분야에서 높은 경쟁력을 확보할 수 있습니다. 사용자의 시청 패턴과 선호도를 분석하여, 개인화된 추천 콘텐츠를 제공하는 Netflix와 Spotify가 가장 기본적이고 좋은 예입니다. [3] 새로운 컴퓨팅 방식의 도입 비즈니스는 기존 인프라를 더 효율적으로 활용하고, 최첨단 하드웨어를 추가하여 프로세스를 가속화하고 있습니다. 일부 기업은 이전 컴퓨팅을 넘어서 클라우드, 엣지, 양자 컴퓨팅 등 새로운 컴퓨팅 방식을 모색하고 있습니다. [4] 개발자 경험 강화(DevOps를 넘어 DevEx로) 기술 인재를 유치하고 유지하기 위해 회사들은 개발자 경험에 초점을 맞추고 있습니다. Github Copilot 같은 코드 자동 완성 및 분석 도구의 도입, 통합 개발 환경(IDE) 최적화, 컨테이너화 및 오케스트레이션 도구 도입 등이 이에 해당합니다. 이러한 노력은 결국 최종 사용자의 경험을 향상시켜 비지니스 성과를 높여줄 예정입니다. [5] 합성 미디어 시대의 진실 방어 AI의 부상으로 인해 악의적인 딥페이크 콘텐츠가 증가함에 따라, 각 기업과 조직들은 유해 콘텐츠를 식별하고 잠재적 공격을 예측하기 위한 방법을 도입하고 있습니다. 특히 2024년은 미국 대통령 선거 등 중요한 이벤트가 많기에 중요한 이슈로 떠오를 예정입니다. [6] 기술적 부채에서 기술적 웰니스로 각 회사와 조직은 기존 코어 시스템, 인프라, 데이터, 애플리케이션을 포함한 노후화된 시스템을 현대화해야 합니다. 이를 위해 정기적인 점검과 예방적 관리에 중점을 두는 새로운 접근 방식이 필요합니다. 포레스터 리서치, 생성형 AI와 디지털 혁신에 주목하다 포레스터 리서치에 따르면 전 세계 기술 분야에 대한 투자는 5.3% 증가할 것으로 예상됩니다. 이 중 금융 서비스와 헬스케어가 가장 빠른 성장세를 보일 것이고, 클라우드 컴퓨팅을 포함한 IT 서비스와 소프트웨어 분야는 2027년까지 가장 높은 비중을 차지할 예정입니다. 또한 기업이 위험을 줄이고 경쟁력을 확보하기 위해선 생성형 AI, 그리고 녹색 및 디지털 혁신 등에 주목해야 합니다. 생성형 AI 생성형 AI는 2024년에 중요한 역할을 할 것으로 예상됩니다. 대형 컨설팅 회사들은 생성형 AI에 큰 규모의 투자를 할 것이며, 해당 기업들은 경쟁력을 높이기 위해 AWS, Microsoft Azure, GCP 등과 파트너십을 맺을 것으로 예상됩니다. 이제 각 기업이 생성형 AI를 활용하여 실질적인 이윤을 추구하기 시작할 것이기 때문에, 2024년을 '의도적 AI 시대(era of intentional AI)의 원년'이라고도 말할 수 있습니다. 녹색 및 디지털 혁신 데이터 센터의 에너지 효율을 높이기 위한 노력이 진전을 보이고 있습니다. 2030년까지 데이터 센터를 탄소 중립으로 만들겠다는 약속이 강화되고 있습니다. 이는 지속 가능하고 환경친화적인 기술로의 전환의 시작을 뜻합니다. 기술 리더들의 도전 기술 분야의 리더들이 인재를 발굴하고 비즈니스 전략과 기술을 조화시키는데 어려움을 겪을 것으로 예상됩니다. 또한 AI와 관련된 기술의 수요가 빠르게 증가할 것이기에, 관련된 기술과 경험을 기르는 것도 매우 중요해지고 있습니다. 마지막으로 포레스터는 기업들의 경쟁력 유지와 성장 촉진을 위해 위와 같은 트렌드를 빠르게 받아들여야 한다고 강조했습니다. 매튜 구아리니 포레스터 리서치 부사장은, "전체 기술 전략을 핵심까지 현대화하고 조직과 운영을 크게 향상시켜야 성과를 얻을 수 있다"라고 말했습니다. 。。。。。。。。。。。。 가트너, 포레스터 리서치, 딜로이트가 전망한 2024 IT 트렌드를 살펴봤습니다. 트렌드를 아는 것에서 그치는 것이 아니라 발 빠르게 대응하는 것이 가장 중요합니다. 브레인즈컴퍼니는 트렌드에 빠르고 효과적으로 대응할 수 있도록, 제니우스(Zenius)를 통해 쿠버네티스(Kubernetes)를 비롯한 프라이빗/퍼블릭/하이브리드 클라우드 환경, 온-프레미스 환경 모두를 완벽하게 관리할 수 있는 서비스를 제공하고 있습니다. 또한 브레인즈컴퍼니의 자회사인 에이프리카는 AI 비즈니스를 위한 쿠버네티스 기반의 AI 개발 통합 플랫폼 솔루션과, 멀티 클라우드 통합 관리 플랫폼(CMP) 솔루션을 제공하고 있습니다(?에이프리카 솔루션 자세히 보기). 힘차게 시작한 2024년, 올 한 해는 또 얼마나 큰 변화가 있을까요? 이 글을 읽으시는 모두가 변화에 앞서가서 성공 스토리를 만들 수 있기를 기원합니다.
2024.01.19
회사이야기
통합보안관리 솔루션 'Zenius SIEM' 국내 CC인증 획득
회사이야기
통합보안관리 솔루션 'Zenius SIEM' 국내 CC인증 획득
브레인즈컴퍼니(099390)는 차세대 통합보안관리 솔루션 'Zenius(제니우스) SIEM v2.0’이 국내 CC(Common Criteria)인증 EAL(Evaluation Assurance Level) 2등급을 획득했다고 19일 밝혔다. 국내 CC인증은 IT보안인증사무국이 IT 제품의 보안성, 안정성, 신뢰성을 검증하고 이를 인증하는 제도다. 'Zenius SIEM v2.0'은 이기종의 다양한 장비에서 발생되는 대용량 로그를 수집 및 분석하고, 개인정보보호, 개인정보처리스템의 접속기록관리 등 각종 컴플라이언스에서 로그를 안전하게 저장하고 관리하는 소프트웨어다. 제품은 162만 EPS(Event Per Second)의 인덱싱과 1TB에 0.02초 이내 검색 성능을 바탕으로 로그 수집 현황을 실시간으로 모니터링하고, 수집된 로그에 대한 위/변조 감시 기능을 제공한다. 특히 HTML5 기반 반응형 웹 환경 지원, 26종의 차트 및 컴포넌트 등 사용자 중심의 대시보드와 편리한 보고서 기능을 제공한다. 또, 'Zenius SIEM v2.0'은 SQL(Structured Query Language)에서 제공하는 함수를 이용해 이상 탐지가 가능하고, 서버 증설 시 서비스 중단없이 병렬확장 할 수 있다. 브레인즈컴퍼니는 2020년에 'Zenius SIEM v1.0'을 처음 개발한 후, 이번 업그레이드로 빅데이터 기반의 다양한 로그 수집 및 연관분석을 통해 관리 효율을 증대하고, 국내 네트워크 환경의 규제를 준수하기 위해 CC인증을 획득했다. 강선근 브레인즈컴퍼니 대표는 "향후 ChatGPT와 같은 LLM(Large Language Model)기술을 활용해 고객에게 보다 편리한 인터페이스를 제공하고, SaaS(Software as a Service, 서비스형 소프트웨어)버전을 준비하고 있다"고 말했다.
2023.04.19
1