반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
최신이야기
검색
회사이야기
브레인즈컴퍼니 ‘2023 소프트웨어대전’ 참가
회사이야기
브레인즈컴퍼니 ‘2023 소프트웨어대전’ 참가
브레인즈컴퍼니가 「2023 대한민국 소프트웨어대전」에 참가하여 IT 인프라 통합관리의 새로운 비전을 제시할 예정이에요. 자세한 내용은 다음과 같아요! 2023 대한민국 소프트웨어대전은요 2023 대한민국 소프트웨어대전은 2016년에 첫 개최된 대표적인 소프트웨어 ICT 비즈니스 박람회인데요. 올해는 총 330개사가 패키지SW·IT서비스·융합SW·인터넷SW·게임콘텐츠SW의 큰 분류에 맞춰 참가할 예정이에요(*총 570개 부스 규모) [2023 대한민국 소프트웨어대전] ▪일시: 2023년 11월 29일(수) ~ 12월 1일(금), 10:00~17:00 ▪장소: 삼성동 코엑스 A홀(*브레인즈컴퍼니 부스 C32번) ▪후원: 과학기술정보통신부, 교육부, 행정안전부, 산업통상자원부, 중소벤처기업부, 서울특별시 ▪홈페이지: 바로가기 --------------------------------------------------------------- 2023 소프트웨어대전에서 브레인즈컴퍼니는요 브레인즈컴퍼니는 이번 2023 소프트웨어대전에서 “AI, 클라우드 네이티브의 창을 열다. 디지털 플랫폼을 위한 Brainz Group”이라는 슬로건으로, 자회사인 AI전문기업 '에이프리카'와 함께 참가해요. 온프레미스, 클라우드 그 어떤 IT 환경도 완벽하게 통합관리할 수 있는 ‘제니우스(Zenius)’ 또한 선보일 예정인데요. 제니우스의 핵심 제품인 EMS·APM·ITSM·SIEM의 세부적인 특장점을 다양한 콘텐츠를 통해 직접 경험하실 수 있어요! [Brainz Group Tech Talk 2023] ▪장소: 삼성동 코엑스 A홀(*브레인즈컴퍼니 부스 C32번) ▪주제(세부내용 변동 가능) > 클라우드 네이티브 정보시스템 구축 방안 > Private LLM 모델 구축 방안 > 클라우드 네이티브 애플리케이션 구축 방안 > 성공적인 IT 인프라 모니터링 방안 --------------------------------------------------------------- 에이프리카와 함께 성공적인 AI&Cloud, 디지털 전환을 위한 'Brainz Group Tech Talk 2023' 세미나 또한 진행할 예정이에요. 2023 소프트웨어대전 참관 방법은 아래와 같아요. 2023 소프트웨어대전 참관 방법 하단 링크를 통해 [사전등록] 하시면 ‘무료’로 참관하실 수 있어요. 2023 소프트웨어대전 브레인즈컴퍼니 x 에이프리카 부스에 방문하셔서 IT 기술의 현재와 미래를 만나 보세요? ?2023소프트웨어대전 무료로 참가하기
2023.11.15
기술이야기
카프카를 통한 로그 관리 방법
기술이야기
카프카를 통한 로그 관리 방법
안녕하세요! 저는 개발4그룹에서 제니우스(Zenius) SIEM의 로그 관리 기능 개발을 담당하고 있는 김채욱 입니다. 제가 하고 있는 일은 실시간으로 대용량 로그 데이터를 수집하여 분석 후, 사용자에게 가치 있는 정보를 시각화하여 보여주는 일입니다. 이번 글에서 다룰 내용은 1) 그동안 로그(Log)에 대해 조사한 것과 2) 최근에 CCDAK 카프카 자격증을 딴 기념으로, 카프카(Kafka)를 이용하여 어떻게 로그 관리를 하는지에 대해 이야기해 보겠습니다. PART1. 로그 1. 로그의 표면적 형태 로그(Log)는 기본적으로 시스템의 일련된 동작이나 사건의 기록입니다. 시스템의 일기장과도 같죠. 로그를 통해 특정 시간에 시스템에서 ‘어떤 일’이 일어났는지 파악할 수도 있습니다. 이렇게 로그는 시간에 따른 시스템의 동작을 기록하고, 정보는 순차적으로 저장됩니다. 이처럼 로그의 핵심 개념은 ‘시간’입니다. 순차적으로 발생된 로그를 통해 시스템의 동작을 이해하며, 일종의 생활기록부 역할을 하죠. 시스템 내에서 어떤 행동이 발생하였고, 어떤 문제가 일어났으며, 유저와의 어떤 교류가 일어났는지 모두 알 수 있습니다. 만약 시간의 개념이 없다면 어떻게 될까요? 발생한 모든 일들이 뒤섞이며, 로그 해석을 하는데 어려움이 생기겠죠. 이처럼 로그를 통해 시스템은 과거의 변화를 추적합니다. 똑같은 상황이 주어지면 항상 같은 결과를 내놓는 ‘결정론적’인 동작을 보장할 수 있죠. 로그의 중요성, 이제 조금 이해가 되실까요? 2. 로그와 카프카의 관계 자, 그렇다면! 로그(Log)와 카프카(Kafka)는 어떤 관계일까요? 우선 카프카는 분산 스트리밍 플랫폼으로서, 실시간으로 대용량의 데이터를 처리하고 전송하는데 탁월한 성능을 자랑합니다. 그 중심에는 바로 ‘로그’라는 개념이 있는데요. 좀 더 자세히 짚고 넘어가 보겠습니다. 3. 카프카에서의 로그 시스템 카프카에서의 로그 시스템은, 단순히 시스템의 에러나 이벤트를 기록하는 것만이 아닙니다. 연속된 데이터 레코드들의 스트림을 의미하며, 이를 ‘토픽(Topic)’이라는 카테고리로 구분하죠. 각 토픽은 다시 *파티션(Partition)으로 나누어, 단일 혹은 여러 서버에 분산 저장됩니다. 이렇게 분산 저장되는 로그 데이터는, 높은 내구성과 가용성을 보장합니다. *파티션(Partition): 하드디스크를 논리적으로 나눈 구역 4. 카프카가 로그를 사용하는 이유 로그의 순차적인 특성은 카프카의 ‘핵심 아키텍처’와 깊게 연결되어 있습니다. 로그를 사용하면, 데이터의 순서를 보장할 수 있어 대용량의 데이터 스트림을 효율적으로 처리할 수 있기 때문이죠. 데이터를 ‘영구적’으로 저장할 수 있어, 데이터 손실 위험 또한 크게 줄어듭니다. 로그를 사용하는 또 다른 이유는 ‘장애 복구’입니다. 서버가 장애로 인해 중단되었다가 다시 시작되면, 저장된 로그를 이용하여 이전 상태로 복구할 수 있게 되죠. 이는 ‘카프카가 높은 가용성’을 보장하는 데 중요한 요소입니다. ∴ 로그 요약 로그는 단순한 시스템 메시지를 넘어 ‘데이터 스트림’의 핵심 요소로 활용됩니다. 카프카와 같은 현대의 데이터 처리 시스템은 로그의 이러한 특성을 극대화하여, 대용량의 실시간 데이터 스트림을 효율적으로 처리할 수 있는 거죠. 로그의 중요성을 다시 한번 깨닫게 되는 순간이네요! PART2. 카프카 로그에 이어 에 대해 설명하겠습니다. 들어가기에 앞서 가볍게 ‘구조’부터 알아가 볼까요? 1. 카프카 구조 · 브로커(Broker) 브로커는 *클러스터(Cluster) 안에 구성된 여러 서버 중 각 서버를 의미합니다. 이러한 브로커들은, 레코드 형태인 메시지 데이터의 저장과 검색 및 컨슈머에게 전달하고 관리합니다. *클러스터(Cluster): 여러 대의 컴퓨터들이 연결되어 하나의 시스템처럼 동작하는 컴퓨터들의 집합 데이터 분배와 중복성도 촉진합니다. 브로커에 문제가 발생하면, 데이터가 여러 브로커에 데이터가 복제되어 데이터 손실이 되지 않죠. · 프로듀서(Producer) 프로듀서는 토픽에 레코드를 전송 또는 생성하는 *엔터티(Entity)입니다. 카프카 생태계에서 ‘데이터의 진입점’ 역할도 함께 하고 있죠. 레코드가 전송될 토픽 및 파티션도 결정할 수 있습니다. *엔터티(Entity): 업무에 필요한 정보를 저장하고 관리하는 집합적인 것 · 컨슈머(Consumer) 컨슈머는 토픽에서 레코드를 읽습니다. 하나 이상의 토픽을 구독하고, 브로커로부터 레코드를 소비합니다. 데이터의 출구점을 나타내기도 하며, 프로듀서에 의해 전송된 메시지를 최종적으로 읽히고 처리되도록 합니다. · 토픽(Topic) 토픽은 프로듀서로부터 전송된 레코드 카테고리입니다. 각 토픽은 파티션으로 나뉘며, 이 파티션은 브로커 간에 복제됩니다. 카프카로 들어오는 데이터를 조직화하고, 분류하는 방법을 제공하기도 합니다. 파티션으로 나눔으로써 카프카는 ‘수평 확장성과 장애 허용성’을 보장합니다. · 주키퍼(ZooKeeper) 주키퍼는 브로커를 관리하고 조정하는 데 도움을 주는 ‘중앙 관리소’입니다. 클러스터 노드의 상태, 토픽 *메타데이터(Metadata) 등의 상태를 추적합니다. *메타데이터(Metadata): 데이터에 관한 구조화된 데이터로, 다른 데이터를 설명해 주는 데이터 카프카는 분산 조정을 위해 주키퍼에 의존합니다. 주키퍼는 브로커에 문제가 발생하면, 다른 브로커에 알리고 클러스터 전체에 일관된 데이터를 보장하죠. ∴ 카프카 구조 요약 요약한다면 카프카는 1) 복잡하지만 견고한 아키텍처 2) 대규모 스트림 데이터를 실시간으로 처리하는 데 있어 안정적이고 장애 허용성이 있음 3) 고도로 확장 가능한 플랫폼을 제공으로 정리할 수 있습니다. 이처럼 카프카가 큰 데이터 환경에서 ‘어떻게’ 정보 흐름을 관리하고 최적화하는지 5가지의 구조를 통해 살펴보았습니다. 이제 카프카에 대해 조금 더 명확한 그림이 그려지지 않나요? 2. 컨슈머 그룹과 성능을 위한 탐색 카프카의 가장 주목할 만한 특징 중 하나는 ‘컨슈머 그룹의 구현’입니다. 이는 카프카의 확장성과 성능 잠재력을 이해하는 데 중심적인 개념이죠. 컨슈머 그룹 이해하기 카프카의 핵심은 ‘메시지를 생산하고 소비’ 하는 것입니다. 그런데 수백만, 심지어 수십억의 메시지가 흐르고 있을 때 어떻게 효율적으로 소비될까요? 여기서 컨슈머 그룹(Consumer Group)이 등장합니다. 컨슈머 그룹은, 하나 또는 그 이상의 컨슈머로 구성되어 하나 또는 여러 토픽에서 메시지를 소비하는데 협력합니다. 그렇다면 왜 효율적인지 알아보겠습니다. · 로드 밸런싱: 하나의 컨슈머가 모든 메시지를 처리하는 대신, 그룹이 부하를 분산할 수 있습니다. 토픽의 각 파티션은 그룹 내에서 정확히 하나의 컨슈머에 의해 소비됩니다. 이는 메시지가 더 빠르고 효율적으로 처리된다는 것을 보장합니다. · 장애 허용성: 컨슈머에 문제가 발생하면, 그룹 내의 다른 컨슈머가 그 파티션을 인수하여 메시지 처리에 차질이 없도록 합니다. · 유연성: 데이터 흐름이 변함에 따라 그룹에서 컨슈머를 쉽게 추가하거나 제거합니다. 이에 따라 증가하거나 감소하는 부하를 처리할 수 있습니다. 여기까지는 최적의 성능을 위한 ‘카프카 튜닝 컨슈머 그룹의 기본 사항’을 다루었으니, 이와 관련된 ‘성능 튜닝 전략’에 대해 알아볼까요? 성능 튜닝 전략 · 파티션 전략: 토픽의 파티션 수는, 얼마나 많은 컨슈머가 활성화되어 메시지를 소비할 수 있는지 영향을 줍니다. 더 많은 파티션은 더 많은 컨슈머가 병렬로 작동할 수 있음을 의미하는 거죠. 그러나 너무 많은 파티션은 *오버헤드를 야기할 수 있습니다. *오버헤드: 어떤 처리를 하기 위해 간접적인 처리 시간 · 컨슈머 구성: *fetch.min.bytes 및 *fetch.max.wait.ms와 같은 매개변수를 조정합니다. 그다음 한 번에 얼마나 많은 데이터를 컨슈머가 가져오는지 제어합니다. 이러한 최적화를 통해 브로커에게 요청하는 횟수를 줄이고, 처리량을 높입니다. *fetch.min.bytes: 한 번에 가져올 수 있는 최소 데이터 사이즈 *fetch.max.wait.ms: 데이터가 최소 크기가 될 때까지 기다릴 시간 · 메시지 배치: 프로듀서는 메시지를 함께 배치하여 처리량을 높일 수 있게 구성됩니다. *batch.size 및 *linger.ms와 같은 매개변수를 조정하여, 대기 시간과 처리량 사이의 균형을 찾을 수 있게 되죠. *batch.size: 한 번에 모델이 학습하는 데이터 샘플의 개수 *linger.ms: 전송 대기 시간 · 압축: 카프카는 메시지 압축을 지원하여 전송 및 저장되는 데이터의 양을 줄입니다. 이로 인해 전송 속도가 빨라지고 전체 성능이 향상될 수 있습니다. · 로그 정리 정책: 카프카 토픽은, 설정된 기간 또는 크기 동안 메시지를 유지할 수 있습니다. 보존 정책을 조정하면, 브로커가 저장 공간이 부족해지는 점과 성능이 저하되는 점을 방지할 수 있습니다. 3. 컨슈머 그룹과 성능을 위한 실제 코드 예시 다음 그림과 같은 코드를 보며 조금 더 자세히 살펴보겠습니다. NodeJS 코드 중 일부를 발췌했습니다. 카프카 설치 시에 사용되는 설정 파일 *server.properties에서 파티션의 개수를 CPU 코어 수와 같게 설정하는 코드입니다. 이에 대한 장점들을 쭉 살펴볼까요? *server.properties: 마인크래프트 서버 옵션을 설정할 수 있는 파일 CPU 코어 수에 파티션 수를 맞추었을 때의 장점 · 최적화된 리소스 활용: 카프카에서는 각 파티션이 읽기와 쓰기를 위한 자체 *I/O(입출력) 스레드를 종종 운영합니다. 사용 가능한 CPU 코어 수와 파티션 수를 일치시키면, 각 코어가 특정 파티션의 I/O 작업을 처리합니다. 이 동시성은 리소스에서 최대의 성능을 추출하는 데 도움 됩니다. · 최대 병렬 처리: 카프카의 설계 철학은 ‘병렬 데이터 처리’를 중심으로 합니다. 코어 수와 파티션 수 사이의 일치는, 동시에 처리되어 처리량을 높일 수 있습니다. · 간소화된 용량 계획: 이 접근 방식은, 리소스 계획에 대한 명확한 기준을 제공합니다. 성능 병목이 발생하면 CPU에 *바인딩(Binding)되어 있는지 명확하게 알 수 있습니다. 인프라를 정확하게 조정할 수도 있게 되죠. *바인딩(Binding): 두 프로그래밍 언어를 이어주는 래퍼 라이브러리 · 오버헤드 감소: 병렬 처리와 오버헤드 사이의 균형은 미묘합니다. 파티션 증가는 병렬 처리를 촉진할 수 있습니다. 하지만 더 많은 주키퍼 부하, 브로커 시작 시간 연장, 리더 선거 빈도 증가와 같은 오버헤드도 가져올 수도 있습니다. 파티션을 CPU 코어에 맞추는 것은 균형을 이룰 수 있게 합니다. 다음은 프로세스 수를 CPU 코어 수만큼 생성하여, 토픽의 파티션 개수와 일치시킨 코드에 대한 장점입니다. 파티션 수와 컨슈머 프로세스 수 일치의 장점 · 최적의 병렬 처리: 카프카 파티션의 각각은 동시에 처리될 수 있습니다. 컨슈머 수가 파티션 수와 일치하면, 각 컨슈머는 특정 파티션에서 메시지를 독립적으로 소비할 수 있게 되죠. 따라서 병렬 처리가 향상됩니다. · 리소스 효율성: 파티션 수와 컨슈머 수가 일치하면, 각 컨슈머가 처리하는 데이터의 양이 균등하게 분배됩니다. 이로 인해 전체 시스템의 리소스 사용이 균형을 이루게 되죠. · 탄력성과 확장성: 트래픽이 증가하면, 추가적인 컨슈머를 컨슈머 그룹에 추가하여 처리 능력을 증가시킵니다. 동일한 방식으로 트래픽이 감소하면 컨슈머를 줄여 리소스를 절약할 수 있습니다. · 고가용성과 오류 회복: 컨슈머 중 하나가 실패하면, 해당 컨슈머가 처리하던 파티션은 다른 컨슈머에게 자동 재분배됩니다. 이를 통해 시스템 내의 다른 컨슈머가 실패한 컨슈머의 작업을 빠르게 인수하여, 메시지 처리가 중단되지 않습니다. 마지막으로 각 프로세스별 컨슈머를 생성해서 토픽에 구독 후, 소비하는 과정을 나타낸 소스코드입니다. ∴ 컨슈머 그룹 요약 컨슈머 그룹은 높은 처리량과 장애 허용성 있는 메시지 소비를 제공하는 능력이 핵심입니다. 카프카가 어떤 식으로 운영되는지에 대한 상세한 부분을 이해하고 다양한 매개변수를 신중하게 조정한다면, 어떠한 상황에서도 카프카의 최대 성능을 이끌어낼 수 있습니다! ------------------------------------------------------------ ©참고 자료 · Jay Kreps, “I Hearts Logs”, Confluent · 위키피디아, “Logging(computing)” · Confluent, “https://docs.confluent.io/kafka/overview.html” · Neha Narkhede, Gwen Shapira, Todd Palino, “Kafka: The Definitive Guide” ------------------------------------------------------------
2023.09.19
회사이야기
'Zenius-SIEM v2.0' GS인증 1등급 획득
회사이야기
'Zenius-SIEM v2.0' GS인증 1등급 획득
브레인즈컴퍼니는 지난 8월 22일 한국정보통신기술협회(TTA)로부터 Zenius-SIEM v2.0에 대한 GS인증 1등급을 획득했습니다. GS인증은 Good Software의 약자로 양질의 품질을 갖춘 SW 제품에 국가가 부여하는 인증 제도 입니다. ISO 국제표준을 기반으로 기능 적합성, 성능 효율성, 보안성 등 여러 테스트를 거쳐 결과가 우수한 제품에 인증이 부여됩니다. GS인증을 받은 제품은 공공기관 우선 구매 대상으로 지정할 수 있습니다. 이번에 GS인증 1등급을 받은 Zenius-SIEM v2.0은 다양한 대용량 로그의 수집, 분석 및 통합 관리 시스템으로, 컴플라이언스(Compliance)를 준수하고 보안 위협에 대한 감시 · 대응 체계를 수립할 수 있는 통합로그 관리 시스템입니다. CC인증에 이어 GS인증 1등급을 획득한 Zenius-SIEM v2.0은 제품의 보안성이 강화되고 안정성을 검증받아 제주특별자치도청과 한국금형산업진흥회에 구축을 완료하였습니다. Zenius-SIEM v2.0은 SaaS(Software as a Service) 형태의 서비스를 제공하기 위해 개발 중에 있으며, On-Premise와 클라우드 환경에서 더 많은 고객들이 안정적으로 대용량 로그를 관리하고 보안 환경을 유지하도록 지원할 예정입니다.
2023.08.30
회사이야기
[행사] 2023년 상반기 간담회
회사이야기
[행사] 2023년 상반기 간담회
2023년 상반기 간담회가 6월 29일 브레인즈컴퍼니 본사 8층 라운지에서 열렸습니다. 신년회 이후 오랜만에 브레인저들이 한 자리에 모였습니다. 오후 4시가 되어 행사가 시작되었습니다. 먼저 선근님이 간략히 자회사 에이프리카의 실적 전망에 대해 언급하면서 브레인즈컴퍼니와의 시너지 극대화를 위해 모든 동료들이 비즈니스에 더 집중하길 당부했습니다. 다음으로 각 부서장들이 2023년 상반기 사업실적 및 하반기 사업 계획을 발표했습니다. 전략사업본부장인 은숙님을 시작으로 연구개발본부장 자환님, 경영지원실장 현보님이 상반기의 굵직한 성과들을 정리해 주었습니다. 먼저 은숙님은 새로운 브레인저들을 위해 전략 사업 본부의 팀들과 업무에 대해 소개해 주었고, 23년 상반기의 TOP 5 프로젝트와 하반기 다양한 팀의 공조가 필요한 프로젝트 5가지를 설명해주었습니다. 자환님은 차세대 제니우스의 개발 상황 및 SIEM, ITSM의 상반기 실적을 설명해 주고, 하반기의 개발 계획과 개발 조직 개편에 대해 안내해 주었습니다. 현보님은 상반기 자회사 에이프리카의 합류로 많은 일이 새로 생겼으나, 회사가 성장하는 기쁨도 커지고 있다고 언급해 주었습니다. 또 상반기의 큰 행사 중 하나였던 창립기념 해외 연수 설문조사의 결과를 설명해 주었습니다. 부사장인 재걸님은 “고객이 우리를 신뢰해서 손 잡아준 만큼 우리는 더 큰 책임감을 가져야 한다”며 “하반기에도 동업자 정신으로 서로 똘똘 뭉치자”고 상반기 총평을 하며 간담회를 마무리하였습니다. 이후 근처 고깃집으로 이동해 단체 회식을 가졌습니다. 고깃집 대관 시간이 지나가도록 오래 이야기를 나누고, 고기를 먹으며 즐거운 시간을 보냈습니다. 2023년 상반기 모두들 수고 많으셨습니다. 브레인즈컴퍼니 화이팅!
2023.06.30
회사이야기
강선근 대표이사, ‘중소기업인 대회’ 산업포장 수상
회사이야기
강선근 대표이사, ‘중소기업인 대회’ 산업포장 수상
강선근 브레인즈컴퍼니 대표이사가 20일 중소기업DMC타워에서 열린 ‘중소기업인 대회’에서 산업포장을 수상했습니다. 올해 34회째를 맞은 중소기업인 대회는 일자리, 수출, 사회기여 등 한국경제 발전에 공헌한 중소/벤처기업인의 성과를 되짚어 보고, 자긍심을 높이는 중소 기업계 최대 축제입니다. 중소기업인 대회는 기술력 뿐만 아니라 재무적 실적과 사회 공헌에 얼마나 이바지 했는지를 종합적으로 평가하며 일회성 공적이 아닌 얼마나 꾸준한 업적이 쌓았는지를 보고 수상자를 선발합니다. 강선근 대표이사는 IT 인프라 통합관리 솔루션, Zenius(제니우스)의 우수한 기술력으로 관제 분야의 국산화 및 국내 SW산업 수준을 향상시킨 공로를 인정 받았습니다. 또한 교육 기관에 기부금 전달 및 산학 협력 업무협약을 체결해 소프트웨어산업 인재 양성에 힘쓰고 있는 점을 인정받아 산업포장을 수상하게 되었습니다. △기술력: 다양한 이기종 IT 인프라에 대한 통합관리 시스템 Zenius EMS를 기반으로, 웹 애플리케이션 성능 모니터링 Zenius APM, 통합로그관리 Zenius SIEM , IT서비스 관리 Zenius ITSM 등으로 구성된 소프트웨어 발전 기여 △실적: 공공기관, 관제부분 실적 1위 △사회공헌: 산학 협력 등 일자리 창출 이번 행사는 서울지방중소벤처기업청과 중소기업중앙회 서울지역본부가 공동 주최하고 서울시가 후원하였습니다.
2023.06.21
회사이야기
통합보안관리 솔루션 'Zenius SIEM' 국내 CC인증 획득
회사이야기
통합보안관리 솔루션 'Zenius SIEM' 국내 CC인증 획득
브레인즈컴퍼니(099390)는 차세대 통합보안관리 솔루션 'Zenius(제니우스) SIEM v2.0’이 국내 CC(Common Criteria)인증 EAL(Evaluation Assurance Level) 2등급을 획득했다고 19일 밝혔다. 국내 CC인증은 IT보안인증사무국이 IT 제품의 보안성, 안정성, 신뢰성을 검증하고 이를 인증하는 제도다. 'Zenius SIEM v2.0'은 이기종의 다양한 장비에서 발생되는 대용량 로그를 수집 및 분석하고, 개인정보보호, 개인정보처리스템의 접속기록관리 등 각종 컴플라이언스에서 로그를 안전하게 저장하고 관리하는 소프트웨어다. 제품은 162만 EPS(Event Per Second)의 인덱싱과 1TB에 0.02초 이내 검색 성능을 바탕으로 로그 수집 현황을 실시간으로 모니터링하고, 수집된 로그에 대한 위/변조 감시 기능을 제공한다. 특히 HTML5 기반 반응형 웹 환경 지원, 26종의 차트 및 컴포넌트 등 사용자 중심의 대시보드와 편리한 보고서 기능을 제공한다. 또, 'Zenius SIEM v2.0'은 SQL(Structured Query Language)에서 제공하는 함수를 이용해 이상 탐지가 가능하고, 서버 증설 시 서비스 중단없이 병렬확장 할 수 있다. 브레인즈컴퍼니는 2020년에 'Zenius SIEM v1.0'을 처음 개발한 후, 이번 업그레이드로 빅데이터 기반의 다양한 로그 수집 및 연관분석을 통해 관리 효율을 증대하고, 국내 네트워크 환경의 규제를 준수하기 위해 CC인증을 획득했다. 강선근 브레인즈컴퍼니 대표는 "향후 ChatGPT와 같은 LLM(Large Language Model)기술을 활용해 고객에게 보다 편리한 인터페이스를 제공하고, SaaS(Software as a Service, 서비스형 소프트웨어)버전을 준비하고 있다"고 말했다.
2023.04.19
기술이야기
통합로그관리가 필요한 3가지 이유
기술이야기
통합로그관리가 필요한 3가지 이유
로그는 IT 인프라에서 발생하는 모든 상황들을 기록한 데이터입니다. 쉽게 말해 사용자가 어떤 루트로 사이트에 접속했고, 접속한 시점부터 어떤 행동을 취했는지가 모두 기록으로 남게 되는데, 이 기록들이 로그입니다. 로그는 IT 환경에서 가장 많이 발생하지만, 데이터 처리 기술이 발달하지 않았던 시기에는 처리 비용에 비해 가치가 낮은 데이터로 여겨졌습니다. 하지만 최근들어 IT 서비스와 인프라가 다양해지고 디지털 트랜스포메이션이 가속화되면서, 로그의 양이 기하급수적으로 증가하고 사물인터넷(IoT), 빅데이터 등과 같은 신기술이 발전하면서 그 효용성 또한 날로 증가하고 있습니다. 그렇다면, 이 로그는 실제로 어떻게 활용될까요? 개발 영역에서는 버그 혹은 크래시율 수집 및 상시 트래킹, 이슈 발생 후 롤백 및 대응, 특정 기능에 대한 사용성 진단에 활용됩니다. 마케팅 분야는 채널별 ROI 진단 및 비용 최적화, 배너/프로모션/이벤트 효과 측정, 유저 세그멘테이션 및 타게팅에 사용합니다. 기획 및 디자인 영역은 기능 개선을 위한 A/B 테스트, 유저 Journey 경로 분석을 통한 UX/UI 최적화 등에서 쓰이고 있습니다. 이처럼 여러 영역에서 다양하게 쓰이는 로그를 관리하지 않고 방치해두면 어떤 일이 발생할까요? 통합로그관리가 필요한 이유에 대해 알아보겠습니다. ----------------------------------------------- I. 보안 대응체계 구축 저장만 하고 관리되지 않은 로그는 IT 시스템의 장애나 문제 발생 시 그 원인을 찾아내기가 어렵습니다. 또, 로그 데이터의 중요 정보가 외부로 유출될 위험도 커집니다. 끊임없이 발생하는 보안 사고에 대비하기 위해 통합로그관리는 반드시 필요합니다. 관리된 로그는 장애나 사고 발생 시에 그 원인을 파악하고 빠른 대처를 위한 근거 데이터로 사용할 수 있으며, 보안 체계를 마련하는 데에도 활용가능 합니다. 기업들은 로그관리 제품을 사용해 사이버 침해위협을 예방 및 감시하고, 정기적인 로그분석을 통해 강력한 보안대응체계를 구축하고 있습니다. 통합로그관리 솔루션은 보안장비(Firewall, IDC, IPS 등)의 로그와 해킹, 악성코드 등 보안/침해 관련 로그를 지속적으로 분석해 예방 체계를 구축합니다. 또, 대용량 로그의 상관분석을 통해 보안위협을 탐지하고 이상징후를 모니터링하는 등 강력한 보안 대응체계를 구축할 수 있습니다. II. 컴플라이언스 준수 로그는 보안 사고가 발생했을 때 가장 기본적인 증거 및 모니터링 자료로 활용됩니다. 이에 따라 정부에서는 데이터 관리에 대해 각종 법률을 규정하고 있어, 공공기관을 비롯한 개인정보를 다루는 온라인 사업자 및 기업 등은 해당 법규를 준수해야 합니다. 안전한 데이터 이용을 위해 2018년에 발의된 '데이터 3법' 개정안은 2020년 1월 9일 국회 본회의를 통과했습니다. 데이터 3법은 개인정보 보호법, 정보통신망 이용촉진 및 정보보호 등에 관한 법률, 신용정보의 이용 및 보호에 관한 법률 등 3가지 법률을 통칭합니다. 로그 관리 관련 규제의 주요 내용은 다음과 같습니다. i. 개인정보보호를 위해 접근 권한 부여, 변경 또는 말소 기록을 3년 이상 보관해야 합니다. ii. 개인정보 취급자는 개인정보처리시스템의 접속기록을 월 1회 이상 점검해야 하고, 그 활동의 증거를 남기기 위해 시스템에 접속했다는 기록을 1년 이상 보관해야 합니다. iii. 정보통신서비스 제공자는 접근 권한 내역을 5년간 보관하고, 접속 기록의 위·변조 방지를 위해 반드시 백업 보관해야 합니다. III. 빅데이터 처리 플랫폼 IT 인프라 확대 및 기타 비정형 로그 유입에 따라 대용량 로그에 대한 관리가 요구되고 있습니다. 특히 수집된 로그를 실시간으로 분석∙판단해 IT 서비스의 안정적 운영을 도모해야 하는 수요가 증대되고 있는데요. 오늘날의 데이터는 기존 데이터에 비해 양이 매우 방대해 기존 방법이나 도구로는 관리가 어렵습니다. 따라서 빅데이터 기술을 기반으로 하는 대용량 통합 로그관리 솔루션은 이제 IT 운영을 위한 필수 솔루션으로 자리잡았습니다. ----------------------------------------------- 이처럼 기업은 보안위협 및 이상징후 대응/컴플라이언스 준수/대용량 로그 관리를 위해 통합로그관리 솔루션을 필수로 갖춰야합니다. 브레인즈컴퍼니의 통합로그관리 솔루션 '제니우스(Zenius) Logmanager'는 이기종 장비에서 발생되는 정형∙비정형 로그 데이터의 수집/분석/관리 등을 위한 빅데이터 플랫폼입니다. 제니우스 로그매니저가 어떻게 구성돼 있는지 살펴보겠습니다. 제니우스 로그매니저는 정형/반정형 또는 비정형 로그에 대한 실시간 수집 및 신속한 분석 기능을 제공하며, 이러한 정보들을 다양한 차트와 대시보드를 통해 직관적으로 가시화합니다. 특히 로그매니저는 독보적인 인덱싱 및 검색 속도를 제공하며 확장성, 편의성, 효율성, 호환성 등의 특장점을 보유한 제품입니다. 로그 이벤트 발생 시 즉각적인 알람을 통해 빠른 문제 해결과 높은 가용성을 확보하도록 지원합니다.
2022.11.10
1
2