반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
최신이야기
검색
기술이야기
CMS로 클라우드 서비스 효율적으로 관리하는 3가지 방법
기술이야기
CMS로 클라우드 서비스 효율적으로 관리하는 3가지 방법
오늘날 많은 기업들이 AWS, 구글, 마이크로소프트 등의 클라우드 서비스를 적극 활용하고 있습니다. 클라우드 서비스는 데이터의 안정성과 가용성을 보장하고, 비용을 절감하며, 자원을 최적화하는 등 다양한 이점을 제공하기 때문인데요. 2024년 클라우드 서비스 시장 전망도 매우 밝습니다. 시장조사기관에 따르면 2024년 클라우드 시장 규모는 약 727.9억 달러에 이를 것으로 예상됩니다. 2023년과 대비하면 16.2% 증가한 수치이죠. 하지만 클라우드 서비스의 이용률이 증가하고 클라우드 인프라가 복잡해짐에 따라, 체계적이고 효율적인 클라우드 관리가 필요한데요. 클라우드 환경에서는 사용한 만큼 비용을 지불하기 때문에 자원을 효율적으로 관리할 수 있어야 하며, 실시간으로 이상 징후를 감지하여 보안을 강화할 수 있는 시스템이 필요합니다. 이러한 관리를 가능하게 해주는 시스템이 바로 CMS(Cloud Service Management System)입니다. 그래서 이번 시간에는 대표적인 CMS 솔루션인 Zenius CMS 사례를 통해, 클라우드 서비스를 관리하는 방법을 자세히 살펴보겠습니다. │CMS를 이용해 클라우드 서비스 관리하는 법 실시간 성능 모니터링 우선 클라우드 서비스 관리를 할 때 꼭 확인해야 할 첫 번째는, 클라우드 서비스의 세부 성능을 실시간으로 모니터링할 수 있어야 합니다. 클라우드 환경에서는 작은 문제가 큰 장애로 이어질 수 있기 때문에, 실시간 모니터링을 통해 이상 징후를 빠르게 감지하고 대응할 수 있어야 하죠. [그림] (왼)AWS EC2 (오)AWS EBS 좀 더 이해하기 쉽게 Zenius CMS를 통해 살펴볼게요. Zenius CMS는 각 서비스에 맞는 주요 지표를 상세히 모니터링할 수 있도록 해줍니다. 예를 들어 AWS EC2와 EBS에서 제공하는 서비스에 맞춰 각각의 구성과 성능 정보를 수집하여, 실시간 모니터링이 가능하죠. [그림] (왼)Amazon Billing, (오)Amazon VPC 특히 과금 정보를 실시간으로 모니터링할 수 있는 AWS Billing을 통해, 지출 현황을 직관적으로 파악하고 관리할 수 있도록 도와줍니다. 클라우드에서 네트워크를 분리하고 안정하게 관리할 수 있는 VPC(Virtual Private Cloud) 서비스에 대한 상세한 정보도 제공해 주죠. 서비스마다 다른 차트와 그래프를 시각화해서 보여주기 때문에, 직관적으로 확인할 수 있습니다. [그림] (왼) 관심 서비스 그룹 모니터링 (오) 서비스 그룹 별 대상/항목 설정 또한 Zenius-CMS는 클라우드와 연관된 서비스와 특성에 맞게 그룹핑하여, 한 화면에서 성능 비교를 분석할 수 있습니다. 서비스 그룹 별 대상이나 항목 설정을 할 때도 유용하죠. 클라우드 인프라 구성 시각화 클라우드 서비스 관리를 할 때 꼭 확인해야 할 두 번째는, 복잡한 클라우드 환경을 한눈에 파악할 수 있어야 합니다. 다양한 클라우드 인프라의 복잡한 구성과 서비스 간의 연결 구조를 시각적으로 보여줘야 하죠. 이는 문제 발생 시 신속하게 원인을 파악할 수 있고 해결할 수 있기 때문이죠. [그림] 클라우드 서비스 맵 Zenius CMS를 통해 다시 한번 살펴볼게요. Zenius CMS는 구성도를 자동으로 생성하여, 클라우드 서비스 맵을 쉽게 확인할 수 있습니다. 현재 사용하고 있는 각 계정에 연결된 클라우드의 구성 현황을 한눈에 파악할 수 있습니다. 또한 이러한 Map 구성을 직접 편집할 수도 있는데요. 손쉬운 Map 구성 편집을 위한 아이콘, 이미지, 폰트 등 다양한 기능을 제공하고 있습니다. 이를 통해 클라우드 환경의 복잡한 구성을 쉽게 이해하고 관리할 수 있습니다. 중앙 통합 관리 시스템 CMS로 클라우드 서비스 관리를 할 때 꼭 확인해야 할 세 번째는, 다양한 클라우드 서비스를 중앙에서 통합 관리할 수 있어야 합니다. 각 서비스의 상태의 성능을 한곳에서 모니터링하고 관리할 수 있어, 관리의 편의성과 효율성이 크게 향상되기 때문인데요. [그림] 하이브리드 토폴로지 맵 Zenius CMS는 클라우드와 온프레미스 환경(On-Premise)을 통합하여 모니터링이 가능합니다. 이 시스템은 AWS, Azure, GCP 등 멀티 클라우드 서비스의 구성/성능/장애 정보를 직관적으로 모니터링할 수 있죠. 이를 통해 전체 인프라의 연관 관계와 상태를 직관적으로 파악할 수 있습니다. [그림] 오버뷰 또한 Zenius CMS는 사용자의 관점에 맞게 클라우드 서비스를 한 화면에 구성하여 관리할 수 있습니다. 사용자의 운영 목적이나 환경에 맞춰, 클라우드 서비스 현황/관련 지표/이벤트/토폴로지 등 선택적으로 구성할 수 있습니다. 이를 통해 클라우드 환경을 보다 효율적으로 운영할 수 있죠. 이번 시간에는 CMS 도구를 활용해, 클라우드 서비스 관리 방법을 알아보았습니다. 앞으로 클라우드 서비스는 기업에서 더욱 필수적이며, 그 수요는 지속적으로 증가할 것입니다. 이제는 클라우드 자원을 효율적으로 운영하고 다양한 클라우드 환경에서도 통합 관리할 수 있는 Zenius CMS를 통해 효과적으로 관리해 보세요! 🔍더보기 Zenius CMS로 효율적으로 클라우드 관리하기
2024.07.28
기술이야기
Fluentd vs Logstash vs Filebeat, 어떤 로그 수집기를 선택할까?
기술이야기
Fluentd vs Logstash vs Filebeat, 어떤 로그 수집기를 선택할까?
이전 시간에는 Fluentd라는 로그 수집기에 대해 자세히 알아보았습니다(이전 글 보기). 이와 더불어 Logstash, Filebeat가 로그 데이터를 수집하고 처리하는 도구로 많이 쓰이고 있는데요. 이번 시간에는 이 세 가지 도구가 어떤 점에서 비슷하고, 어떤 점에서 다른지 살펴보겠습니다. │Fluentd vs Logstash, Filebeat 로그 데이터 수집 및 처리 Fluentd, Logstash, Filebeat는 모두 다양한 소스에서 로그 데이터를 수집하고 처리하는데요. 파일, 데이터베이스, 네트워크 프로토콜, 메세지 큐 등 다양한 입력 소스를 지원합니다. 수집된 로그 데이터를 분석하기 좋은 형태로 변환하고 필터링해주죠. 처리된 로그 데이터는 Elasticsearch, Kafka, HDFS, S3 같은 다양한 저장소와 분석 시스템으로 전송할 수 있습니다. ▷ Fluentd는 JSON 형식을 주로 사용해서 데이터를 처리합니다. 다양한 소스에서 데이터를 수집하고 변환할 수 있으며, 특히 쿠버네티스 같은 클라우드 네이티브 환경에서 최적화되어 있습니다. 또한 다양한 컨테이너와 마이크로서비스로부터 로그를 모아서 중앙에서 관리하죠. ▷ Logstash는 Elashtic Stack에서 로그 데이터를 수집, 변환, 전송하는데 주로 사용됩니다. 복잡한 데이터 변환과 필터링을 위한 강력한 기능을 제공하고 다양한형식으로 로그 데이터를 변환할 수 있죠. Elasticsearch와 Kibana와의 통합 덕분에 강력한 검색과 시각화 기능을 사용할 수 있습니다. ▷ Filebeat는 경량의 로그 수집기로 설계되어 있고, 주로 로그 파일을 모니터링하고 수집하는 데 최적화되어 있습니다. 서버 리소스를 거의 사용하지 않으면서도 효율적으로 로그 데이터를 수집할 수 있죠. 주로 Logstash나 Elasticsearch로 데이터를 전송해서 중앙에서 분석할 수 있게 해줍니다. 플러그인 시스템 Fluentd와 Logstash는 플러그인 시스템을 통해 기능을 확장할 수 있는데요. 다양한 입력, 필터, 출력, 플러그인을 제공해서 필요에 따라 시스템을 유연하게 구성할 수 있습니다. ▷ Fluentd는 500개 이상의 플러그인을 통해 다양한 데이터 소스와 목적지에 대한 통합을 지원합니다. 그래서 사용자는 다양한 요구에 맞춰 시스템을 쉽게 구성할 수 있죠. ▷ Logstash도 200개 이상의 플러그인을 통해, 다양한 입력 소스와 출력 목적지에 맞춤형 데이터 파이프라인을 구성할 수 있는데요. 복잡한 데이터 처리와 분석 요구 사항을 충족할 수 있습니다. ▷ Filebeat는 모듈 기반 아키텍처를 통해 특정 로그 파일 형식에 맞춘 구성을 제공합니다. 설정이 간단하고 빠르게 배포할 수 있는 것이 장점이죠. 플러그인 대신 모듈을 통해 다양한 로그 형식에 대응할 수 있습니다. 실시간 데이터 처리 세 도구 모두 실시간으로 로그 데이터를 수집하고 처리할 수 있습니다. 이는 급변하는 환경에서 로그 데이터를 즉시 분석하고 대응하는 데 매우 중요하죠. ▷ Fluentd와 Logstash는 실시간으로 수집된 데이터를 변환하고 필터링해서, 필요한 데이터를 즉시 사용할 수 있는 형태로 만들어줍니다. 이를 통해 실시간 모니터링 시스템에서 발생하는 로그 데이터를 빠르게 처리하고 문제를 신속히 해결할 수 있습니다. ▷ Filebeat는 경량화된 설계 덕분에 실시간 로그 수집에 최적화되어 있는데요. 서버 리소스를 최소화하면서도 안정적으로 데이터를 전송할 수 있습니다. 어떤 로그 수집기를 선택하면 좋을까요? 그렇다면 Fluentd, Logstash, Filebeat 중 우리 기업에 맞는 로그 수집기는 무엇인지 핵심만 정리한다면 다음과 같습니다. Fluentd ✔️ 다양한 소스에서 데이터를 수집하고 통합하는 경우 ✔️ 특히 클라우드 네이티브 환경에서 운영되는 경우 ✔️ 유연성과 확장성이 중요하고, 다양한 플러그인을 통해 쉽게 확장할 수 있는 도구가 필요한 경우 ✔️ 쿠버네티스와 같은 컨테이너화된 환경에서 로그를 수집하는 경우 Logstash ✔️ Elastic Stack을 사용해서 강력한 검색 및 시각화 기능을 필요한 경우 ✔️ 복잡한 데이터 변환과 필터링이 필요한 환경에서 로그 데이터를 처리하는 경우 ✔️ 다양한 입력 소스와 출력 목적지에 맞춤형 데이터 파이프라인을 구성하는 경우 Filebeat ✔️ 경량의 로그 수집기가 필요한 경우 ✔️ 서버 리소스를 최소화하면서 로그 데이터를 수집하고 전송해야 하는 경우 ✔️ 설치와 설정이 간단하고 빠르게 배포할 수 있는 도구가 필요한 경우 ✔️ 주로 로그 파일을 모니터링하고 수집하는 작업이 주된 경우 이처럼 각 도구는 기업 또는 사용자의 환경과 요구 사항에 맞춰, 적절한 도구를 선택하는 것이 중요한데요. 브레인즈컴퍼니의 경우는 높은 성능과 유연한 로그 데이처 처리를 위해 Logstash와 Filebeat를 사용하고 있습니다. 이번 시간에 살펴본 내용처럼 Fluentd와 Logstash, Filebeat는 모두 로그 데이터를 효과적으로 수집하는 강력한 도구입니다. 하지만 로그는 수집에서 끝나는 것이 아닌, 어떻게 안정적으로 관리하느냐도 중요합니다. 이때 로그를 수집부터 관리까지 할 수 있는 통합로그관리가 필요한데요. Zenius SIEM과 같은 솔루션을 통해 로그를 수집부터 관리까지 할 수 있고, 보안 위협에 대비하는 것이 정말 중요합니다. 데이터의 중요성이 더욱더 커지는 상황에서, 효과적인 로그 수집 및 관리를 통해 비즈니스 경쟁력을 높이시길 바랍니다. 🔍더보기 Zenius SIEM 더 자세히 보기 📝함께 읽으면 더 좋아요 • 로그 수집기 Fluentd에 대해 알아야 할 5가지!
2024.07.28
기술이야기
로그 수집기 Fluentd에 대해 알아야 할 5가지!
기술이야기
로그 수집기 Fluentd에 대해 알아야 할 5가지!
IT 환경의 변화가 점점 빨라지면서 기업들은 매일 쏟아지는 데이터를 관리해야 합니다. 특히 로그 데이터는 시스템 상태를 모니터링하고 문제를 사전에 발견하는 데 필수적이죠. 이때 다양한 장치와 프로그램에서 생성되는 로그를 제대로 수집하지 못하면 혼란이 커질 수 있습니다. 따라서 로그 관리를 위한 도구들이 주목을 받고 있는데요, 그 중 하나가 오늘 살펴 볼 Fluentd입니다. Fluentd는 여러 소스에서 발생할 수 있는 로그 데이터를 한 곳에 모아, 일관된 형식으로 변환하고 중앙에서 효율적으로 수집해주는 오픈소스 데이터 수집기인데요. 이번 시간에는 Fluentd가 어떤 방식으로 로그 수집을 하고 효율성을 높이는지, 함께 자세히 살펴보겠습니다. │Fluentd란 무엇일까요? Treasure Data가 게작하고 후원 한, Fluentd는 다양한 소스에서 발생하는 로그 데이터를 한 곳에 모아 수집합니다. 강력한 플러그인 시스템을 갖추어 있어 여러 상황에 유연하게 대처할 수 있죠. Fluentd는 데이터를 주로 *JSON 형식으로 처리하여 기계가 쉽게 읽고 분석할 수 있도록 하는데요. 주로 *Ruby로 개발되었고, 일부 성능 향상을 위해 C언어로 작성된 컴포넌트도 포함되어 있습니다. 대규모 환경에서도 잘 작동하여, 현재는 5만 개 이상의 시스템에서 로그를 수집하고 있는 사용자도 있죠. *JSON: JavaScript Object Notaion 약어로, 데이터를 교환하기 위한 경량 데이터 형식 *Ruby: 간결한 문법을 가진 객체 지향 프로그래밍 언어 이러한 성능과 효율성 덕분에 라인(Line), 아틀라시안(Atlassian), 아마존 웹서비스(AWS) 등과 같은 주요 기업들이 Fluentd를 사용하고 있습니다. │Fluentd가 필요해진 이유 앞에서도 간략히 설명했지만, Fluentd가 필요한 대표적인 이유는 다음과 같은데요. 데이터 통합과 관리의 필요성 증가 첫 번째 이유는 데이터 통합과 관리의 필요성이 증가하고 있다는 점입니다. 디지털 전환이 가속화되면서 기업들은 다양한 소스에서 엄청난 양의 데이터를 수집하고 관리해야 합니다. 이 과정에서 로그 데이터의 통합과 처리가 중요한 과제가 되었는데요. Fluentd가 다양한 로그 데이터를 중앙에서 효율적으로 수집하고 통합하는 데 최적화해 줍니다. 또한 데이터를 일관된 형식으로 변환하여, 다양한 시스템과 쉽게 연동할 수 있게 도와주죠. 클라우드 네이티브 환경에서의 유연한 확장성 두 번째 이유는 클라우드 네이티브 환경에서 쉽게 확장할 수 있다는 점입니다. 클라우드 네이티브 환경이 표준이 되면서, 애플리케이션과 서비스들이 분산된 환경에서 운영되고 있는데요. 이런 환경에서는 로그 수집과 관리가 더욱 까다로워집니다. Fluentd는 가볍과 확장 가능한 구조를 가지고 있어, 클라우드 환경에 최적화되어 있습니다. 특히 쿠버네티스(K8s, Kubernetes)와 같은 오케스트레이션 플랫폼과 잘 통합되어, 로그 데이터를 효율적으로 수집하고 처리할 수 있죠. 이러한 유연한 확장성과 클라우드 친화적인 특성 덕분에 Fluentd가 꾸준히 활용되고 있습니다. │Fluentd의 5가지 특징 Fluentd는 다양한 환경에서 효율적이고 안정적으로 로그 데이터를 수집할 수 있는데요. 대표적인 특장점을 살펴본다면 다음과 같습니다. 다양한 플러그인 지원 500개가 넘는 커뮤니티에서 만든 플러그인을 통해, 다양한 데이터 소스와 출력을 연결할 수 있습니다. 특정 로그 형식을 처리하거나 여러 데이터베이스와 연동할 수 있도록, 필요한 플러그인을 쉽게 추하여 기능을 확장할 수 있죠. 이 덕분에 사용자는 다양한 요구에 맞춰 시스템을 유연하게 구성할 수 있습니다. 효율적인 자원 사용 메모리 사용량이 적고(30-40mb) 높은 성능을 발휘합니다. 이는 시스템 리소스를 절약하면서도 많은 양의 로그 데이터를 빠르게 처리할 수 있게 하죠. 또한 대규모 서버 환경에서도 원활하게 동작하며, 리소스를 효율적으로 운영할 수 있습니다. 안정적인 로그 수집 Fluentd의 메모리와 파일 기반의 버퍼링 옵션을 제공하여, 데이터 손실을 방지합니다. 네트워크 장애가 발생해도 로그 데이터가 손실되지 않도록 보장하죠. 또한 장애 조치 구성과 고가용성(HA, High Availability) 설정을 통해 안정적으로 로그를 수집하고 처리할 수 있습니다. 클라우드 네이티브 친화성 Fluentd는 쿠버네티스와 같은 클라우드 네이티브 환경에서 원활하게 동작하도록 최적화되어 있는데요. 이러한 최적화는 현대적인 인프라에서 로그 수집을 용이하게 하며, 클라우드 기반 애플리케이션의 로그를 효과적으로 전송하고 관리할 수 있습니다. │Fluentd의 주요 구성요소 Fluentd는 로그 데이터를 효율적으로 수집하고 처리할 수 있도록, 8가지 주요 구성 요소로 이루어져 있습니다. 아래 내용을 통해 좀 더 자세히 살펴볼게요. Input Plugins : 로그를 수집 우선 서버나 애플리케이션에서 발생하는 다양한 형식의 데이터를 수집합니다. 대표적인 플러그인으로 tail, forward, http 등이 있는데요. 예를 들어 tail 플러그인은 리눅스의 tail 명령어처럼 파일의 끝부분을 지속적으로 읽습니다. 상황에 맞는 플러그인을 선택하여, 데이터를 중앙에서 효율적으로 수집할 수 있죠. Parser : 로그를 이해할 수 있는 형식으로 변환 Input 플러그인을 통해 들어온 여러 형태의 로그 데이터를 표준화된 형식으로 변환합니다. JSON, 정규 표현식, *Apache 로그 형식 등 다양한 포맷을 지원하여 로그 데이터를 구조화하고 분석에 적합한 형태로 바꿀 수 있습니다. 이를 통해 로그 데이터를 일관성 있게 처리할 수 있죠. *Apache 로그 형식: 웹 서버에서 생성하는 로그 파일의 형식으로, 주로 정보를 기록하는 구조화된 로그 형식 Engine : 로그 처리의 중심 Fluentd의 중앙 처리 장치입니다. Input에서 수집한 데이터를 처리하고, Filter와 Formatter를 거쳐 Output으로 전송합니다. 사용자 설정에 따라 Parser, Buffer, Filter, Formatter를 추가하거나 제외할 수도 있죠. 이를 통해 데이터 흐름을 유연하게 관리하고, 다양한 요구사항에 맞게 로그 처리를 최적화할 수 있습니다. Filter Plugins : 로그 필터링 로그 데이터를 변환하거나 특정 조건에 따라 필터링합니다. 불필요한 데이터를 제거하고 필요한 데이터만 추출할 수 있습니다. 예를 들어 특정 키워드가 포함된 로그만을 추출하거나, 민감한 정보를 마스킹하여 보안성을 높일 수 있습니다. 어렇게 하면 로그 데이터의 품질이 향상되고, 분석과 저장 효율성이 개선됩니다. Buffering : 로그 임시 저장 Input 플러그인에서 들어온 데이터를 바로 Output으로 보내지 않고, 중간에 Buffer에 임시 저장합니다. 데이터를 임시 저장하기 때문에 안정적으로 전달하고, 손실을 최소화하며, 로그 트래픽을 조절할 수 있습니다. Output Plugins : 로그 저장 수집한 로그 데이터를 최종 목적지로 전달하는 플러그인입니다. HDFS, AWS S3, Elasticsearch(엘라스틱서치)와 같은 다양한 저장소뿐만 아니라, Kafka와 같은 대규모 데이터 스트리밍 플랫폼에도 로그 데이터를 효율적으로 보낼 수 있습니다. 이를 통해 여러 저장소와 분석 도구에 로그 데이터를 통합하고, 실시간으로 처리하거나, 일정 시간마다 모아서 한꺼번에 처리하는 방식으로 워크플로우를 구성할 수 있죠. Formatter : 로그를 최종 형식으로 변환 데이터를 목적지에 맞는 형식으로 변환하는 플러그인입니다. 이를 통해 최종목적지에서 데이터를 쉽게 처리할 수 있도록 도와줍니다. 예를 들어 JSON 형식으로 변환해서 Elasticsearch에 저장하면, Elasticsearch가 데이터를 쉽게 검색하고 분석할 수 있습니다. 또는 데이터를 *CSV 형식으로 변환해서 데이터 분석 도구에 전달할 수도 있습니다. *CSV: 쉼표로 구분된 값들로 이루어진 간단한 텍스트 파일 형식 Routing and Tagging : 로그 데이터의 흐름 제어 로그를 수집하고 처리하는 과정에서 각 데이터의 태그를 붙여 분류합니다. 이 태그를 이용해 로그 데이터를 특정 조건에 따라 다양한 목적지로 보냅니다. 이렇게 하면 로그 데이터를 효율적으로 관리하고, 분석 및 모니터링 요구사항에 맞게 데이터를 나눌 수 있습니다. 예를 들어 에러 로그는 즉시 실시간 모니터링 시스템으로 보내고, 일반 정보 로그는 장기 저장소에 보관하는 등 다양한 방식으로 데이터를 처리할 수 있죠. 이렇게 Fluentd는 주요 구성을 통해 로그 수집과 전송 과정을 효과적으로 처리할 수 있습니다. 이 덕분에 로그 관리가 한결 쉬워지고, 수집된 로그 데이터는 다양한 분석 작업에 유용하게 활용될 수 있습니다. 이번 시간에는 Fluentd가 왜 필요해졌는지, 주요 특징과 어떤 주요 구성 요소로 이루어져 있는지 자세히 알아보았습니다. 내용에서도 살펴보았듯이 데이터 통합과 관리의 필요성이 증가하면서 다양한 소스에서 발생하는 로그 데이터를 중앙에서 효율적으로 수집하고 일관된 형식으로 변환할 수 있는, Fluentd의 중요성이 더욱 커지고 있습니다. 특히, 클라우드 네이티브 환경에 최적화된 유연한 확장성과 다양한 플러그인 지원, 안정적인 로그 수집, 효율적인 자원 사용 등으로 AWS, Atlassian 등 주요 기업들이 Fluentd를 채택하고 있죠. 다음 시간에는 Fluentd와 유사한 로그 수집기인 Logstash와 Filebeat에 대해 살펴보겠습니다.
2024.07.28
기술이야기
오픈소스 APM만으로 완벽한 웹 애플리케이션 관리, 가능할까?
기술이야기
오픈소스 APM만으로 완벽한 웹 애플리케이션 관리, 가능할까?
지난 글을 통해 옵저버빌리티(Observability) 중요성과 APM 차이점을 자세히 살펴보았습니다(자세히 보기). 옵저버빌리티는 APM 한계성을 극복하는 방법은 맞지만, 어느 하나가 더 나은 방법이라기 보단 조직이나 사용자 상황에 따라 적합한 선택해야 하는 것이 주요 포인트였습니다. 하지만 상용 APM 제품은 다소 높은 구매 비용으로 인해, 규모가 작은 기업의 경우 부담이 될 수 있는데요. 이 때 오픈소스 APM 솔루션이 효과적인 대안이 될 수 있는데요. 따라서 이번 시간에는 주요 오픈소스 APM 알아보고, APM 상용 제품과는 어떤 차이점이 있는지 살펴보겠습니다. │오픈소스(Open Source) 소프트웨어란? 오픈소스(Open Source)란 개발 핵심 소스 코드를 공개하여 누구나 접근하고, 수정하여, 배포할 수 있는 소프트웨어를 말합니다. 얼핏 자유 소프트웨어와 비슷하게 느껴질 수 있지만 조금 다른 의미를 가지는데요. 자유 소프트웨어는 사용자의 '자유'를 강조하지만, 오픈소스는 소스 코드의 '접근성과 협업'을 중시합니다. 대표적으로 관계형 데이터베이스인 MySQL, 웹 브라우저인 Firefox, 컨테이너 가상화 플랫폼인 Docker가 대표적인 오픈소스 소프트웨어라고 할 수 있습니다. 현재 국내 디지털플랫폼 정부 구축 정책 기조에 따르면, 오픈소스 소프트웨어는 여러가지 장점을 갖고 있는데요. 오픈소스 장점 오픈소스의 첫번 째 장점은 진입 비용이 낮다는 점입니다. 공개된 소스를 기반으로 수정과 배포가 가능하기 때문에 새로운 기반 기술을 만들어 갈 경우, 비용을 줄일 수 있습니다. 두 번째 장점은 MSA 아키텍처의 기술적 토대가 오픈소스에 기반한다는 점입니다. 최근 소프트웨어 개발 환경은 오픈소스 의존도가 높아지고 있는데요. 이는 오픈소스가 특정 벤더에 종속되지 않아 독립성을 보장한다는 점에서, 오픈소스의 가장 큰 장점이라고 할 수 있습니다. 그에 반해 오픈소스 단점도 명확한데요. 오픈소스 단점 첫 번째 단점은 상용 소프트웨어와 비교해 매뉴얼이 빈약한 경우가 많다는 점입니다. 이에 따라 실제 개발 단계에서 운영이 지연될 가능성이 높아지죠. 두 번째 단점으로는 기술 지원 체계는 오픈소스 커뮤니티에 의존하고 있기 때문에, 유지보수에 큰 어려움이 따른다는 점입니다. 물론 특정 벤더에 종속되지 않는 독립성을 취할 수 있지만, 지속적인 기술지원은 어렵죠. 그렇다면 현재 국내에서 가장 많이 사용하는 오픈소스 APM 소프트웨어는 무엇인지, 자세히 살펴보겠습니다. │오픈소스 APM 종류 오픈소스 APM 종류는 다양하지만 대표적으로 Scouter, Pinpoint, Prometheus & Grafana에 대해 알아보겠습니다. 1. Scouter 첫 번째로 소개해 드릴 오픈소스 APM은 스카우터(Scouter)입니다. 스카우터는 LG CNS에서 만든 오픈소스 APM 소프트웨어로, 자바를 사용하는 애플리케이션과 컴퓨터 시스템 성능을 모니터링합니다. 이 소프트웨어는 Window, Linux, Mac 등 다양한 운영체제(OS)에서 사용할 수 있으며, 주로 이클립스 플랫폼에서 개발되었습니다. 즉 여러 환경에서 자바 애플리케이션 데이터를 수집하고, 성능 상태를 효과적으로 할 수 있다는 점이 스카우터의 주요 기능입니다. 1-1. Scouter 아키텍처 Scouter는 주로 네 가지 주요 컴포넌트로 구성되어 있는데요. 자세히 살펴보도록 하겠습니다. Java Agent Java 기반의 웹 애플리케이션(예: Tomcat, JBoss, Resin)과 스탠드얼론 Java 애플리케이션을 모니터링하는 모듈입니다. 이 에이전트는 웹 애플리케이션 서버(WAS)에 설치되어 애플리케이션 성능 정보(예: 메소드 실행 시간, 사용자 요청 처리 시간 등)를 수집하고 Scouter 서버로 전송합니다. Host Agent 이 에이전트는 운영 체제(예: Linux, Unix, Windows 등)에 설치되어 시스템 하드웨어 리소스 사용 상태를 모니터링합니다. CPU 사용률, 메모리 사용량, 디스크 I/O와 같은 정보를 수집하여 Scouter Server로 보내주는 역할을 합니다. Scouter Server(Collector) 이 서버는 Java Agent와 Host Agent로부터 데이터를 수집해 저장합니다. 사용자는 클라이언트를 통해 이 데이터에 접근할 수 있으며, 이를 통해 애플리케이션의 성능을 모니터링하고 분석할 수 있습니다. Scouter Client 사용자는 Scouter Client를 통해 서버에 접속하여, 서버로부터 수집된 데이터를 조회할 수 있습니다. 이 클라이언트는 다양한 성능 지표를 기반으로 한 시각적인 대시보드를 제공하여, 애플리케이션과 시스템 성능 상태를 효과적으로 모니터링할 수 있게 도와줍니다. 1-2. Scouter 주요기능 출처ⓒ tistory_chanchan-father Scouter의 주요기능 중 하나는 'XLog'인데요. 이 기능은 트랜잭션 응답 시간을 시각적으로 표현하여 시스템 성능을 모니터링하는 데 유용합니다. 액티브 서비스가 종료될 때마다 XLog 차트에 점으로 나타나기 때문에, 개발자는 트랜잭션 처리 시간을 간편하게 확인할 수 있습니다. 각 점을 클릭하여 관련 트랜잭션의 자세한 정보를 얻을 수 있으며, 시스템 분석과 성능 개선 작업에도 도움을 줍니다. 2. Pinpoint 두 번째로 소개해 드릴 오픈소스 APM는 '핀포인트(Pinpoint)'입니다. 핀포인트는 네이버에서 2012년 7월부터 개발을 시작해, 15년 초에 배포한 오픈소스 APM 솔루션입니다. 핀포인트는 MSA를 위한 국산 오픈소스 APM으로 각광 받아왔습니다. 2-1. Pinpoint 아키텍처 핀포인트 아키텍처는 다음과 같은 네 가지 주요 구성요소는 이루어져 있는데요. 아래 내용을 통해 자세히 살펴보겠습니다. Agent 핀포인트의 에이전트는 애플리케이션 서버에 java-agent 형태로 추가되어, 애플리케이션 성능 데이터를 실시간으로 수집합니다. 이 에이전트는 수집한 데이터를 Collector로 전송하며, 이 과정을 통해 성능 모니터링과 문제 해결에 필요한 중요 정보를 제공합니다. Collector Agent로부터 받은 프로파일링 데이터를 수집하고 처리하는 역할을 합니다. Collector는 이 데이터를 구조화하여 빅데이터 데이터베이스인 HBase로 전송합니다. 이를 통해 데이터가 안정하게 저장되고 필요할 때 쉽게 접근할 수 있습니다. HBase Hbase는 분산 데이터베이스로서, 핀포인트 시스템에서 성능 데이터를 저장하고 검색하는 중심적인 역할을 합니다. 대규모 데이터 볼륨을 효율적으로 처리할 수 있는 구조로 설계되어 있으며, 수집된 데이터의 신속한 처리와 안정적인 저장을 보장합니다. Web UI 웹 인터페이스를 통해 사용자에게 데이터를 시각적으로 제공하는 구성 요소입니다. 이 데이터는 핀포인트 에이전트가 애플리케이션 서버에서 수집한 정보를 기반으로 생성됩니다. 이렇게 수집된 데이터는 서버를 통해 Web UI로 전송되면, 사용자는 UI를 통해 다양한 형태의 성능 지표를 조회하고 분석할 수 있습니다. 이러한 구성을 통해 네이버 핀포인트는 애플리케이션 성능 문제를 진단하고 해결하는 데 필요한 정보를 제공합니다. 2-2. Pinpoint 주요기능 그 다음으로 핀포인트의 대표적인 주요 기능에 대해 자세히 알아보겠습니다. 서버맵 이 기능은 분산 환경에서 각 노드 간의 트랜잭션 흐름을 시각적으로 표현하여, 트랜잭션 성공/실패와 응답 시간 분포를 실시간으로 모니터링할 수 있습니다. 이를 통해 시스템 부하 상태와 성능 병목 지점을 식별할 수 있죠. 콜스택 콜스택(Call Stack) 기능은 트랜잭션의 세부 실행 과정을 추적하여, 성능 문제 원인을 분석하고, 코드 최적화를 지원합니다. 이 기능은 각 콜스택에서 소요되는 시간과 발생하는 예외 상황까지 자세히 보여주어, 성능 병목 현상 진단에 도움을 줍니다. 트랜잭션 필터 사용자는 트랜잭션 필터 기능을 이용해 응답 시간이 긴 트랜잭션, 특정 사용자나 IP 주소에서 발생한 트랜잭션 등을 세부적으로 필터링하여 분석할 수 있습니다. 이는 특정 조건에 따른 트랜잭션의 세부 사항을 더 깊이 이해하는 데 유용합니다. Application Inspector 이 기능은 애플리케이션 성능 지표를 시간별/일별로 분석하며 CPU 사용률, 메모리 사용량, JVM 상태 등을 체계적으로 관리하는 기능을 제공합니다. 이를 통해 애플리케이션의 전반적인 성능 관리가 가능합니다. 3. Prometheus 세 번째로 소개해 드릴 오픈소스 APM는 '프로메테우스(Prometheus)'입니다. 프로메테우스는 관제 대상으로부터 모니터링 메트릭 데이터를 저장하고, 검색할 수 있는 시스템인데요. 무엇보다 CNCF 재단으로부터 '클라우드 네이티브에 적합한 오픈소스 모니터링'으로 각광 받아 쿠버네티스(Kubernetes, K8s) 이후 두번째로 졸업한 프로젝트입니다. 프로메테우스는 CNCF 졸업 인증서를 받은 이후 시장에서 많은 주목을 받았습니다. 구조가 간단해서 운영이 쉽고, 다양한 모니터링 시스템과 연계할 수 있는 여러 플러그인을 보유하고 있기 때문이죠. 이러한 장점은 클라우드 네이티브를 위한 기초적인 오픈소스로 각광 받게 되었습니다. 3-1. Prometheus 아키텍처 프로메테우스에서 가장 큰 특징은 에이전트(Agent)가 아닌, 메트릭(Metric)을 통해 데이터를 수집한다는 점입니다. 메트릭이란 이전 시간에도 살펴봤듯이, 현재 상태를 보기 위한 시계열 데이터를 의미합니다. 프로메테우스는 이러한 메트릭 수집을 위해 다양한 수집 도구를 사용하는데요. 좀 더 자세히 살펴보도록 하겠습니다. Application 위 아키텍처에서 수집하고자 하는 대상은, 애플리케이션으로 표현됩니다. 주로 MySQL DB과 Tomcat과 같은 웹 서버까지 다양한 서버와 WAS가 모니터링 대상이 됩니다. 프로메테우스는 이를 주로 Target System으로 표현하고 있습니다. Pulling 프로메테우스에서는 각 Target System에 대한 메트릭 데이터 수집을 풀링(Pulling) 방식을 통해 데이터를 수집합니다. 프로메테우스는 앞서 언급했듯 별도의 에이전트로 데이터를 수집하지 않습니다. Prometheus Server에서 자체적인 Exporter를 통해 메트릭 읽는 방식을 사용하죠. 보통 모니터링 시스템 에이전트는, 모니터링 시스템으로 메트릭을 보내는 푸쉬(Push) 방식을 사용합니다. 특히 푸쉬 방식은 서비스가 오토 스케일링 등과 같이 환경이 가변적일 경우 유리한데요. 풀링 방식의 경우 모니터링 대상이 가변적으로 변경될 경우, 모니터링 대상의 IP 주소를 알 수 없기 때문에 정확한 데이터 수집이 어려워집니다. Service Discovery 이처럼 정확한 데이터 수집을 해결하기 위한 방안이 서비스 디스커버리(Service Discovery) 방식입니다. 서비스 디스커버리는 현재 운영 중인 대상 목록과 IP 주소를 동적으로 수집하는 프로세스입니다. 예를 들어 file_sd, http_sd 방식부터 디스커버리 전용 솔루션인 Consul을 사용하죠. Exporter Exporter는 모니터링 대상 시스템에서 데이터를 수집하는 역할을 합니다. 별도의 에이전트는 아니지만, 에이전트와 비슷하게 데이터를 수집하는 역할을 합니다. HTTP 통신을 통해 메트릭 데이터를 수집하며, Exporter를 사용하기 어려울 경우 별도 Push gateway를 사용합니다. Prometheus Server 프로메테우스 서버는 데이터 수집, 저장, 쿼리를 담당하는 중앙 구성 요소입니다. HTTP 프로토콜을 사용하는 것이 특징이며, Exporter가 제공하는 HTTP 엔드포인트에 접속해 메트릭 데이터를 수집합니다. Alert Manager 사용자에게 알람을 주는 역할을 담당합니다. Prometheus는 타 오픈소스 모니터링 솔루션과 달리 Alert Manager UI 기능을 제공하여 일부 제한된 데이터를 시각화할 수 있습니다. 하지만 시각화 기능이 제한적이므로, 보통 Grafana라는 오픈소스 대시보드 툴을 사용하여 UI를 보완합니다. 3-2. Grafana '그라파나(Grafana)'에 좀 더 자세히 설명한다면, 데이터 분석을 시각화하기 위한 오픈소스 대시보드 도구입니다. 다양한 플러그인을 이용해 프로메테우스와 같은 모니터링 툴과 *그라파이트(Graphite)1, *엘라스틱서치(Elasticsearch)2, *인플럭스DB(InfluxDB)3 와 같은 데이터베이스와 연동하여 사용자 맞춤형 UI를 제공합니다. 특히 방대한 데이터를 활용해 맞춤형 대시보드를 쉽게 만들 수 있는 것이 그라파나의 큰 장점이죠. *1. Graphite: 시계열 데이터를 수집하고 저장하며, 이를 그래프로 시각화하는 모니터링 도구 *2. Elasticsearch: 다양한 유형의 문서 데이터를 실시간으로 검색하고 분석하는 분산형 검색 엔진 *3. InfluxDB: 시계열 데이터의 저장과 조회에 특화된 고성능 데이터베이스 그라파나의 주요 특징은 플러그인 확장을 통한 데이터 시각화와 템플릿 지원으로, 다른 사용자 대시보드 템플릿을 쉽게 가져와 사용할 수 있다는 점입니다. 이처럼 Promeheus 장점은 Exporter를 통한 다양한 메트릭 데이터 수집과 3rd Party 솔루션과 연계가 수월하다는 점입니다. 오픈소스로 IT 인프라를 구성하는 기업의 경우 Prometheus와 Grafana를 연계하여, 서비스 운영현황을 모니터링 할 수 있습니다. 지금까지 오픈소스 APM가 무엇이고, 각각의 아키텍처와 주요 기능은 무엇인지 살펴보았는데요. 그렇다면 상용 APM 제품과, 오픈소스 APM는 어떤 차이점이 있을까요? │상용 APM 제품 vs 오픈소스 APM 제품 앞에서 소개해 드린 오픈소스 APM 중, 대표적으로 프로메테우스와 핀포인트를 상용 APM 제품과 비교해 보겠습니다. Prometheus vs 상용 APM 제품 우선 프로메테우스를 대표하는 장점은 유연한 통합성입니다. 마이크로서비스가 대세 기술로 자리 잡으면서, 인스턴스를 자주 확장하거나 축소하는 것이 자유로운 요즘인데요. 만약 이 작업을 수동으로 관리한다면 매우 어려울 수 있습니다. 하지만 프로메테우스를 사용하면 이런 문제를 해결할 수 있죠. 프로메테우스는 쿠버네티스와 같은 여러 서비스 디스커버리 시스템과 통합되어, 쿠버네티스 클러스터 내의 모든 노드와 파드에 발생하는 매트릭을 자동으로 수집할 수 있습니다. 이러한 기능은 마이크로서비스 환경에서 효율적으로 모니터링 할 수 있습니다. 하지만 한계점도 있는데요. 바로 실시간 데이터 확인이 어렵다는 점입니다. 프로메테우스는 풀링(Pulling) 주기를 기반으로 메트릭 데이터를 수집하기 때문에, 순간적인 스냅샷 기능이 없습니다. 수집된 데이터는 풀링하는 순간 스냅샷 데이터라고 볼 수 있죠. 이러한 단점은 APM에서 일반적으로 지원하는 실시간성 트랜잭션 데이터를 대체하기 어렵습니다. 반면에 상용 APM 제품은 어떨까요? 대표적으로 Zenius APM 사례를 통해 살펴보겠습니다. Zenius APM은 에이전트가 자동으로 메트릭을 수집하여 서버로 전송하여, 데이터를 실시간으로 처리할 수 있습니다. 또한 에이전트가 푸쉬(Push) 방식이기 때문에, 데이터의 지연이 풀링 방식에 비해 적고 데이터가 더 정확하게 수집되죠. 또한 Raw Data 기반의 실시간 과거 데이터를 통해 정밀한 장애 원인 분석이 가능합니다. 과거 시점 스냅샷 기능도 있어 문제 발생 시점을 정확히 파악하여, 문제 해결 시간을 단축시킬 수 있죠. Pinpoint 장단점 vs 상용 APM 제품 그 다음으로는 핀포인트를 대표하는 장점에 대해 알아 보겠습니다. 핀포인트 장점으로는 클라우드 환경에서 뛰어난 가시성을 보여준다는 점입니다. 클라우드에서의 웹 애플리케이션 서버(WAS)는 유연성과 확장성이 뛰어나지만, 복잡한 시스템 구조로 인해 모니터링이 어려울 수 있는데요. 핀포인트는 이러한 환경에서, 각 가상 서버의 성능을 실시간으로 파악하고 문제를 신속하게 진단하는데 큰 도움을 줍니다. 그에 반해 핀포인트에 단점은 다양한 기능이 부족합니다. 핀포인트는 JVM 기반 데이터의 모니터링이 일부 제한되는데요. 대시보드의 'Inspector'와 같은 일부 기능이 지원되지 않아, 이용에 어려움이 있습니다. 또한 다수 트랜잭션이 동시에 실행될 때 특정 트랜잭션이 오래 걸리거나 에러가 발생할 경우, 그 원인을 파악하기 어렵습니다. 이는 세부적인 콜백 정보를 충분히 제공하지 않았기 때문이죠. 그렇다면 상용 APM 제품은 어떨까요? 이번에도 Zenius APM를 통해 자세히 살펴보겠습니다. Zenius APM은 다양한 트랜잭션 모니터링 기능을 제공하는데요. 이를 통해 사용자는 트랜잭션 성능을 실시간으로 파악하고, 잠재적 문제를 빠르게 진단할 수 있습니다. 또한 이 시스템은 대량으로 동시 접속자를 대량으로 관리할 수 있어, 피크 타임에 발생할 수 있는 성능 저하를 사전에 감지하고 대응할 수 있도록 지원합니다. 비교표 구분 Zenius APM Prometheus Pinpoint Scouter 기술지원 벤더 지원을 통한 빠른 초기 설정, 기술지원 용이 오픈소스 기반의 기술지원 불가로 초기 학습 필요 오픈소스 기반의 기술 지원 불가로 초기 학습 필요 오픈소스 기반의 기술 지원 불가로 초기 학습 필요 사용자 인터페이스 실시간 트랜잭션 처리, 액티브 서비스 모니터링, 동시 접속 사용자 수 등, 사용자 정의 실시간 모니터링 상황판 구성 Grafana 플러그인 연계로 다양한 컴포넌트 모니터링 가능 토폴로지 일부 모니터링 불가, 제한적으로 사용자 동시 접속자 수 모니터링 가능, 사용자 정의 기반 모니터링 불가 기능 제한에 따른 간소화된 UI 제공, 사용자 정의 기반 모니터링 불가 컨테이너 모니터링 가능 가능 가능 불가 쿠버네티스 모니터링 가능 가능 불가 불가 연관 인프라 정보 모니터링 연관된 WAS 서버, DB서버, DB확인, 해당 인프라 상세 정보 제공 불가 재한적으로 연관 인프라 모니터링 제공 불가 Raw Data 과거 시점 재현 초 단위 데이터를 기준으로 장애 발생시점 등 과거 상황을 그대로 재현함 불가 불가 불가 리포팅 사용자 정의 기반 리포팅 서비스 제공 써드 파티를 이용한 제한적인 리포팅 기능 제공 불가 불가 이번 시간에는 주요 오픈소스 APM와 상용 APM 차이점을 살펴보았습니다. 각 솔루션은 분명한 장단점을 갖고 있으며, 모든 상황에 완벽한 솔루션은 없습니다. 그러나 여기서 주목해야 할 것은, APM의 핵심이 '트랜잭션을 얼마나 효과적으로 모니터링할 수 있는가'라는 점입니다. 이 측면에서 오픈소스 APM은 한계가 있으나, 상용 APM 제품은 이를 효과적으로 수행할 수 있습니다. 물론 비용 면에서 오픈소스 APM와 비교해, 상용 APM 제품이 부담스러울 순 있습니다. 하지만 트랜잭션 모니터링 관리의 중요성을 고려한다면, 이러한 투자는 가치가 있습니다. 더 나아가 심층적인 실시간 데이터 모니터링, 신속한 데이터 처리, 전문적인 기술적인 기술 지원, 보다 복잡한 시스템 환경에서 효과적인 트랜잭션 관리를 우선시 한다면 Zenius APM 제품이 더더욱 적합할 것입니다. 🔍더보기 Zenius APM 더 자세히 보기 📝함께 읽으면 더 좋아요 • APM에서 꼭 관리해야 할 주요 지표는? • APM의 핵심요소와 주요기능은? • 옵저버빌리티 vs APM, 우리 기업에 맞는 솔루션은?
2024.07.26
기술이야기
좋은 대시보드(Dashboard) 설계를 위한 4가지 핵심 가이드
기술이야기
좋은 대시보드(Dashboard) 설계를 위한 4가지 핵심 가이드
급변하는 IT 환경에서 우리는 많은 데이터를 접하고 있습니다. 이러한 방대한 데이터를 효율적으로 관리하고 시각화하기 위해 '대시보드'가 등장한 후 널리 활용되고 있습니다. 대시보드(Dashboard)는 필요한 데이터를 통합하여 시각화하는 화면으로, 사용자에게 중요한 정보를 한눈에 보여주는 도구입니다. 2023년 가트너(Gartner) 연구에 따르면, 전 세계 기업 72%가 데이터 시각화 도구를 사용하고 있기도 합니다. 데이터 시각화 도구를 활용한 기업이 비활용 기업에 비해 의사 결정 속도가 5배 빠르다는 연구 결과도 나왔죠. 그렇다면 기업운영에 있어 대시보드가 왜 중요한지, 좀 더 자세히 살펴보겠습니다. │대시보드(Dashboard), 왜 중요할까요? 대시보드가 중요한 이유는 여러 가지 있지만, 그중에서도 가장 핵심적인 이유는 다음과 같습니다. 첫째, 대시보드는 빠르고 정확한 의사 결정을 가능하게 합니다. 대시보드는 실시간으로 데이터를 시각화하고 중요한 정보를 즉각적으로 제공하여, 빠르고 정확한 의사 결정을 가능하게 합니다. 예를 들어 서버의 성능 문제나 네트워크 장애를 실시간으로 감지하고 즉각적으로 대응할 수 있습니다. 이는 기업이 비즈니스 연속성을 유지하고, 예기치 않은 문제로 인한 손실을 최소화할 수 있게 도와주죠. 둘째, 대시보드는 전체적인 상황을 한눈에 파악할 수 있게 합니다. 여러 출처에서 수집된 데이터를 하나의 화면에 통합하여 보여주기 때문에, 전체적인 상황을 한눈에 파악할 수 있습니다. 이를 통해 데이터 간의 관계를 쉽게 분석하고, 복잡한 문제를 효율적으로 해결할 수 있죠. 이는 전략적 계획 수립과 운영 효율성을 높이는 데 매우 중요한 역할을 합니다. 위에서 살펴본 두 가지 핵심 이유로 인해서 대시보드는, 기업의 비즈니스 경쟁력 확보를 위한 핵심 도구로 자리 잡고 있습니다. │어떤 종류의 대시보드가 있을까요? 대시보드 종류는 매우 다양한데요. IT 인프라 통합 관리 대시보드 기준에서, 대표적으로 세 가지 대시보드 유형을 살펴보겠습니다. 서비스형 대시보드 [그림] Zenius 서비스형 대시보드 일반적으로 많이 사용하는 서비스형 대시보드는 IT 서비스 성능 상태를 실시간으로 모니터링할 수 있게 도와줍니다. CPU, 메모리 사용량, 디스크 I/O, 네트워크 트래픽 등을 한눈에 확인할 수 있죠. 이를 통해 성능 저하나 장애가 발생하면 즉각 알림을 받아 빠르게 대응할 수 있습니다. 또한 클라우드와 온 프레미스 환경 모두 사용 가능해 유연성이 뛰어납니다. 지도형 대시보드 [그림] Zenius 지도형 대시보드 지도형 대시보드는 여러 지역에 분산된 IT 인프라를 한 지도에서 통합적으로 보여줍니다. 서버, 데이터 센터, 네트워크 장비 위치와 상태를 지도 위에 표시해 한눈에 파악할 수 있죠. 이때 특정 지역에서 문제가 발생하면 즉시 감지하고 대응할 수 있습니다. 또한 지리적 데이터를 바탕으로 장애 패턴을 분석하여 효율적인 관리가 가능하며, 실제 지리 정보 시스템(GIS)와 연동해 정교한 위치 기반 관리도 가능합니다. 이러한 기능 덕분에 이 대시보드는, 특히 글로벌 기업이나 여러 지사와 데이터 센터를 운영하는 조직에서 유용하게 사용됩니다. 구성도형 대시보드 [그림] Zenius 구성형 대시보드 구성도형 대시보드는 네트워크 자원의 상태와 관계를 시각적으로 표현해 줍니다. 이를 통해 네트워크 장비 간의 트래픽 흐름을 실시간으로 모니터링하고, 병목 지점이나 장애 발생 지점을 쉽게 찾아낼 수 있습니다. 또한 각 장비의 상태, 성능 지표, 로그 데이터를 시각적으로 제공해 문제를 조기에 발견하고 해결할 수 있도록 도와줍니다. 더 나아가 네트워크 트래픽을 분석해 최적화 방안을 도출할 수 있으며, 다양한 네트워크 인프라를 지원해 유연한 관리가 가능합니다. 하지만 이러한 대시보드는 '어떻게 구현하고 설계했느냐'에 따라서 좋은 대시보드가 될 수도, 그렇지 못할 수도 있는데요. 그렇다면 좋은 대시보드를 만들기 위해 어떤 점을 고려해야 할까요? 다음 내용을 통해 자세히 살펴보겠습니다. │좋은 대시보드를 만들기 위한 고려사항 핵심 데이터 우선 제공 우선 좋은 대시보드를 만들기 위해 가장 먼저 고려해야 할 점은, 시각화할 대상과 데이터를 명확히 파악해야 한다는 것입니다. 어떤 데이터가 가장 중요한지, 결정하는 것이 우선이죠. 반대로 너무 많은 데이터를 시각화하지 않도록 주의해야 합니다. 과도한 데이터 시각화는 사용자가 중요한 정보를 파악하는 데 어려울 수 있습니다. 따라서 핵심 데이터를 선별하여 우선적으로 표시해야 합니다. 좀 더 구체적인 사례를 통해 살펴볼게요. 대시보드는 서버, 네트워크, DB 등 기본 인프라 데이터를 수집하고 시각화해야 하는데요. 이 데이터는 CPU, 메모리, bps, 스토리지, 데이터 파일 등과 같이 시스템 성능과 운영 상태를 파악하는 필수적인 핵심 지표들입니다. 이러한 핵심 데이터를 명확하게 정의하고 제공하는 것은 대시보드 설계의 첫 번째 단계에서 중요한 요소이죠. [그림] Zenius 서비스형 대시보드 Zenius 대시보드는 이러한 기본 인프라 데이터를 우선적으로 수집하고 시각화하여, 사용자가 가장 중요한 정보를 빠르게 파악할 수 있도록 합니다. 사용자가 어떤 데이터를 가장 먼저 확인해야 하는지, 즉 우선순위를 명확히 하여 중요한 정보를 놓치지 않도록 도와주죠. 효율적이고 직관적인 정보 전달 좋은 대시보드를 만들기 위해 두 번째로 고려해야 할 점은, 사용자가 필요한 정보를 쉽고 빠르게 확인할 수 있도록 설계되어야 합니다. 데이터의 가독성을 높이는 색상과 그래픽 요소를 적절히 사용하여, 사용자 인터페이스가 직관적이고 사용하기 쉬워야 합니다. 여기서 유의할 점은 시각적 요소에 너무 몰두하지 않도록 주의해야 합니다. 디자인에만 집중하면 필요한 정보가 제대로 전달되지 않을 위험이 있기 때문이죠. 따라서 실용성과 사용성을 중시하여 사용자 중심의 인터페이스를 설계해야 합니다. 이번에도 대시보드 사례를 통해 구체적으로 살펴볼게요. Zenius는 '사용자 맞춤형 대시보드'를 제공하고 있는데요. 사용자의 모니터링 환경에 맞게 자유롭게 편집할 수 있습니다. 관리 대상이 많아지거나, 관리 목표를 변경해도 컴포넌트와 디스플레이 항목을 손쉽게 편집할 수 있습니다. 또한 Zenius의 직관적이고 유연한 편집 기능을 통해, 사용자에게 필요에 따라 색상이나 차트 유형을 쉽게 변경할 수 있도록 설계했습니다. 데이터를 가독성 있게 시각화하여 사용자가 인터페이스 직관적이고 사용하기 쉽도록 구성했죠. 외부 데이터 통합 좋은 대시보드를 만들기 위해 세 번째로 고려해야 할 점은, 기업 내 여러 솔루션의 핵심 지표를 한 화면에서 확인할 수 있도록 구성해야 합니다. 외부 데이터와의 연동으로 여러 시스템의 데이터를 통합하면, 전체 상황을 한눈에 파악할 수 있는데요. 이를 통해 분석과 의사결정을 용이하게 해줍니다. Zenius 사례를 통해 다시 한번 살펴보겠습니다. Zenius 대시보드는 3rd Party 시스템 연동을 통해, 외부 데이터를 통합하여 한 화면에서 핵심 지표를 확인할 수 있도록 설계했습니다. 이를 통해 사용자가 기업 내 다양한 솔루션 지표를 한눈에 파악할 수 있죠. 비즈니스 전반의 통합 관제 좋은 대시보드를 만들기 위해 네 번째로 고려해야 할 점은, 비즈니스 관점에서 모니터링과 이상 상황을 감지할 수 있도록 설계되어야 합니다. 조직의 전반적인 운영 상태를 실시간으로 파악하고, 문제 발생 시 신속하게 대응해야 하기 때문이죠. 또한 서비스 단위로 인프라를 구성하여, 비즈니스 문제 여부를 즉각적으로 파악할 수 있도록 해야 합니다. 다시 Zenius 사례를 통해 살펴볼게요. Zenius 대시보드는 수집된 다양한 정보를 바탕으로, 최상위 레벨에서 비즈니스 관점 모니터링과 이상 상황을 감지할 수 있는 화면을 제공합니다. 다양한 컴포넌트와 차트, 다이나믹한 요소들을 적용하여 시각적인 효과를 극대화할 수 있죠. 이번 시간에는 대시보드가 왜 필요한지, 좋은 대시보드를 구현하기 위해서는 어떠한 점들을 고려해야 하는지 알아보았습니다. 하지만 이러한 좋은 대시보드를 성공적으로 구현하기 위해서는, 전문가의 도움이 필요합니다. 데이터를 시각화하여 구성하는 것은 보는 이에 따라 관점이 다르고 다양하여, 하나부터 열까지 구성하는 것이 어려울 수 있기 때문이죠. 또한 조직 상황이나 사용자 관점마다 중요한 데이터가 다르고 시각화해야 하는 방식도 다를 수 있습니다. 따라서 제니우스(Zenius)와 같이 수많은 구축 노하우를 보유하고 있고, 고객의 상황에 따라 최적화된 대시보드 구현이 가능한 솔루션 활용을 통해 비즈니스 경쟁력을 확보하시기 바랍니다. 🔍더보기 Zenius Dashboard 더 자세히 보기
2024.07.26
기술이야기
엣지 컴퓨팅을 위한 CNCF 프로젝트, KubeEdge 활용법
기술이야기
엣지 컴퓨팅을 위한 CNCF 프로젝트, KubeEdge 활용법
최근 몇 년 간 IT 분야는 급속한 발전을 거듭하고 있습니다. 특히 2010년대 중반부터 데이터를 온라인에 저장하는 기존 방식을 넘어서, 보다 진보된 컴퓨팅 기술이 등장하며 클라우드 컴퓨팅이 중요한 역할을 하게 되었습니다. 아마존 웹 서비스(AWS), 마이크로소프트(Microsoft), 구글(Google) 등의 대형 기업들이 클라우드 서비스를 주도해 나갔죠. 하지만 점점 IT 산업이 커지고 사물인터넷(IoT) 기술이 발전하면서 IT 장비에서 생성되는 데이터양이 기하급수적으로 많아졌습니다. IDC의 2018년 자료에 따르면, 2025년에는 전 세계에서 생성되는 데이터가 175ZB(*제타바이트1)에 도달할 예정이라고 합니다. 이처럼 수많은 데이터가 생성되고 중앙 서버에 저장/연산이 될 경우, 서버에 부하가 증가하는 문제가 발생하게 됩니다. *1. 1 ZB = 1021 bytes = 1,000,000,000,000,000,000,000 bytes 이를 해결하기 위해 2020년부터 중앙 서버에만 저장하지 않고, 클라우드 하위개념인 '클라우드렛'을 통해 데이터를 분산 처리하는 새로운 기술이 등장했는데요. 그 기술이 바로 엣지 컴퓨팅(Edge Computing)입니다. │엣지 컴퓨팅(Edge Computing)이란? 엣지 컴퓨팅은 데이터를 중앙 집중형 데이터 센터나 클라우드 대신, 데이터가 생성되는 가장 가까운 곳에서 처리하는 기술입니다. 쉽게 말해 중앙 서버가 아닌 데이터가 발생하는 '엣지(가장자리)'에서 직접 처리하는 것을 의미하죠. 엣지 컴퓨팅의 목적은 데이터 처리 응답 지연을 없애고, 실시간 성능을 개선하는 것입니다. 따라서 엣지 컴퓨팅의 가장 큰 특징이 '분산 처리 기능'이기도 합니다. 즉 가까운 곳에서 데이터를 처리하여, 부하를 분산하고, 통신 지역을 최소화하는 것이 엣지 컴퓨팅의 주목적입니다. │Edge Computing 필요성 그렇다면 엣지 컴퓨팅은 왜 점점 중요해지고 있을까요? 앞에서 언급했던 것처럼, IoT 시대가 도래하면서 다양한 디바이스에서 처리하는 데이터의 양이 폭발적으로 증가하고 있습니다. 이에 따라 요구되는 처리 속도와 응답 속도도 높아지고 있죠. 방대한 양의 데이터를 처리하기 위해서는 대규모 데이터 센터가 필요하지만, 각 위치에 데이터 센터를 두는 것보다 한 곳에서 중앙 집중식으로 처리하는 것이 더 효율적입니다. 이것이 클라우드 컴퓨팅이 대중화된 이유 중 하나입니다. 그러나 인터넷을 통해 클라우드로 데이터를 전송하고 처리한 후 반환할 때, 약간의 시간 지연이 발생합니다. 물론 로봇과 산업 장비의 센서 기술은 나날이 발전하고 있어, 어느 순간에도 상황을 정확하게 파악할 수 있게 되었습니다. 하지만 데이터 처리와 반응 사이에 시간 지연이 발생하면 정교한 *센싱 기술2 은 아직 어려운 편이죠. *2. 센싱 기술: 다양한 센서를 활용해 물리적 환경으로부터 데이터를 감지하고 수집하는 기술 이처럼 정밀하고 복잡한 동작을 수행하는 디바이스에는 고정밀 IoT가 필요한데요. 이를 위해서는 최대한 실시간에 가깝게 정보와 데이터를 주고받아야 하는데, 엣지 컴퓨팅가 이를 가능하게 합니다. 따라서 엣지 컴퓨팅은 IoT가 다음 단계로 나아가기 위해 필요한 기술로 주목받고 있죠. │Edge Computing 장점 엣지 컴퓨팅의 구체적인 이점은 무엇일까요? 엣지 컴퓨팅을 활용하면 얻을 수 있는 이점을 살펴보겠습니다. • 네트워크 트래픽 감소: 엣지 컴퓨팅은 데이터를 중앙 클라우드 서버로 보내지 않고 엣지(사용자 근처 단말기)에서 직접 처리하기 때문에, 네트워크 트래픽이 큰 폭으로 감소합니다. • 빠른 데이터 처리 응답시간: 데이터를 단말기에서 바로 처리하므로, 데이터 처리 응답 시간이 매우 빠릅니다. 실시간 응답이 중요한 애플리케이션에서는 큰 이점이죠. • 향상된 보안성: 개인정보 등 중요한 데이터를 중앙 데이터 센터로 전송하지 않아도 되므로 보안성이 높아집니다. 데이터가 로컬에서 처리되기 때문에 데이터 유출 위험이 줄어듭니다. • 장애 포인트 감소: 서버에 장애가 발생할 경우, 전체 서비스로 장애가 확대되는 클라우드 컴퓨팅과 달리 엣지 컴퓨팅은 개별 엣지의 장애가 다른 엣지로 전파되지 않게 합니다. 따라서 전체 시스템의 안정성이 향상되고 장애 포인트가 감소됩니다. │Edge Computing 활용 분야 엣지 컴퓨팅 활용분야는 다양하지만, 대표적인 엣지 컴퓨팅 적용사례로 스마트팩토리가 있습니다. 스마트 팩토리는 IoT, AI를 활용해 공정을 자동화하고 최적화하는 공장을 의미하는데요. 스마트팩토리에서는 제품 생산 과정에서 발생하는 모든 데이터를 중앙 클라우드 서버에 저장하면, 서버에 부하가 걸리기 쉽습니다. 이를 해결하기 위해 단순히 매일 반복되는 프로세스는 근처 엣지서버에 저장하고 데이터 연산 작업을 진행하죠. 반면 복잡하고 자주 처리되지 않는 데이터는 중앙 클라우드 서버에 저장합니다. 이렇게 하면 AI가 기기를 운영할 때 실시간 데이터 처리가 가능하여 지연 시간을 줄이고 효율성을 높일 수 있습니다. 여기서 엣지 서버는 지사 개념으로, 중앙 클라우드 서버는 본사 개념으로 이해할 수 있습니다. 엣지 컴퓨팅 활용 분야는 계속해서 확대되고 있습니다. 스마트팩토리 외에도 에너지 스트리밍, 게임, 헬스케어, 농업, 데이터센터, 자율주행, 스마트 시티 등 대규모 산업분야에 많이 사용되고 있습니다. │Edge Computing 도전 과제 하지만 엣지 컴퓨팅 기술에는 여러 도전과제가 있는데요, 대표적으로 애플리케이션 배포관리가 있습니다. 다양한 엣지 환경에서 애플리케이션을 배포하고 관리하는 것은, 생각만 해도 복잡한 프로세스이기 때문이죠. 이때 애플리케이션 버전 관리를 일관되게 하고 다양한 엣지 장치와 위치에서 호환성을 유지하려면, 효율적인 오케스트레이션 배포 시스템이 필요합니다. 이러한 과제를 해결하기 위해 여러 솔루션들이 연구되고 있는데요. 그중 하나가 쿠버네티스(Kubernetes, K8s)입니다. 쿠버네티스는 컨테이너화된 애플리케이션을 자동 배포하고, 확장하며, 관리하기 위한 오픈 소스 플랫폼입니다. 이때 쿠버네티스 기술에 + Edge를 접목한 것이 바로 KubeEdge입니다. 좀 더 자세히 알아볼까요? │KubeEdge란? KubeEdge는 쿠버네티스를 확장하여 엣지 컴퓨팅 환경을 지원하는 오픈 소스 플랫폼입니다. 엣지 컴퓨팅의 잠재력을 최대한 활용할 수 있는 플랫폼이죠. KubeEdge는 클라우드 컴퓨팅과 엣지 컴퓨팅의 경계를 허물기 위해 설계되었는데요. CNCF 재단에서 엣지 컴퓨팅 커뮤니티 구성원에 의해 개발되었고, 2018년 11월 상하이 KubeCon에서 처음 발표되었습니다. 쿠버네티스 기반으로 설계된 KubeEdge는, 2019년 3월에 첫 릴리즈 이후로 점차 안정화되고 있습니다. │KubeEdge 주요 기능 KubeEdge는 쿠버네티스를 사용해 클라우드와 엣지 리소스를 일관되게 관리할 수 있습니다. 또한 클라우드에서 운영하던 애플리케이션과 서비스를 동일한 방식으로 다룰 수 있죠. 이 밖에도 KubeEdge 주요 기능은 다음과 같습니다. • 엣지 클러스터 관리: KubeEdge는 엣지 환경에서도 쿠버네티스 클러스터를 효율적으로 관리할 수 있습니다. • 데이터 처리: 엣지에서 생성된 데이터를 로컬에서 처리하여, 네트워크 대역폭을 절약하고 응답 시간을 단축합니다. • 애플리케이션 오케스트레이션: 클라우드와 유사한 방식으로 엣지 애플리케이션을 배포하고 관리할 수 있습니다. • 보안: 엣지와 클라우드 간의 안전한 통신을 보장하여, 데이터 보안을 강화합니다. │KubeEdge 주요특징 KubeEdge 기능이 좀 더 원활하게 작업을 할 수 있도록 도와주는 주요 특징이 있는데요. 자세히 살펴보겠습니다. • 분산 아키텍처: KubeEdge는 클라우드와 엣지를 각각 포함하는 분산된 환경을 지원합니다. 클라우드에는 Kube-apiserver가 있으며, 엣지에는 실제 IoT 디바이스가 있습니다. 이를 통해 중앙 집중식 관리와 로컬 처리를 모두 가능하게 합니다. • 쿠버네티스 API 호환성: KubeEdge는 쿠버네티스 API와 호환됩니다. 이를 통해 기존에 쿠버네티스에 익숙한 사용자는 엣지 컴퓨팅 환경을 쉽게 관리할 수 있죠. • 리소스 제약 환경 지원: 엣지 디바이스는 일반적으로 제한된 컴퓨팅 자원을 가지고 있습니다. KubeEdge는 이러한 환경을 고려하여 설계되었기 때문에, 리소스가 제한된 환경에서도 효율적으로 작동합니다. • 오프라인 작동 지원: 엣지 노드는 네트워크에 연결되어 있지 않더라도, 일정 부분을 독립적으로 작동할 수 있습니다. 이는 인터넷 연결이 불안정한 환경에서 매우 유용합니다. • 경량화된 엣지 컴포넌트: KubeEdge는 엣지 측에 'EdgeCore'라는 경량화된 컴포넌트를 사용합니다. EdgeCore는 IoT 디바이스와의 통신/관리를 담당합니다. • 효율적인 통신: 클라우드와 엣지 사이의 통신은 *MQTT3와 같은 프로토콜을 사용하여 효율적으로 이루어집니다. 이는 데이터의 신속한 전송과 처리를 가능하게 합니다. *3. MQTT: Message Queuing Telementry Transport의 약자로 경량 메시지 전송 프로토콜 │KubeEdge 구성도 KubeEdge 구성도를 살펴보면 크게 Cloud, Edge, Device로 나누어져 있는데요. 각각 구성요소에 대한 설명은 아래와 같습니다. • Edged: Edge에서 컨테이너화된 애플리케이션을 관리합니다. 이는 엣지 디바이스에서 애플리케이션을 배포하고 실행하는 역할을 합니다. • EdgeHub: Edge에 위치한 통신 인터페이스 모듈로, 엣지 컴퓨팅을 위해 클라우드 서비스와 상호 작용하는 *웹 소켓4 클라이언트입니다. 클라우드와 실시간 데이터 통신을 담당합니다. • CloudHub: 클라우드에서의 통신 인터페이스 모듈입니다. 클라우드 측의 변경 사항을 감시하고, EdgeHub에 메시지를 캐싱하고 보내는 역할을 담당하는 웹 소켓 서버입니다. • Edge Controller: Edge 노드를 관리하는 모듈입니다. 이 모듈은 데이터를 특정 엣지 노드로 전달될 수 있도록, 엣지 노드와 포드 *메타데이터5를 관리합니다. 즉 Edge Controller는 쿠버네티스 컨트롤러 역할을 확장하여, 엣지 컴퓨팅 환경에서도 효율적인 노드 관리와 데이터 흐름을 가능하게 합니다. • EventBus: MQTT를 사용하여 내부 엣지 통신을 처리하는 모듈입니다. 이는 MQTT 서버와 상호 작용하여 다른 구성 요소에 게시와 구독 기능을 제공하는 MQTT 클라이언트 역할을 합니다. • Device Twin: 장치 메타 데이터를 처리하는 장치용 소프트웨어 미러입니다. 이 모듈은 장치 상태를 처리하고 이를 클라우드에 동기화하는 데 도움을 줍니다. 또한 경량 데이터베이스(SQLite)에 연결되어, 애플리케이션에 대한 쿼리 인터페이스도 제공합니다. • MetaManager: Edge 노드에서 메타데이터를 관리하는 모듈입니다. 이는 Edged와 EdgeHub 사이의 메세지 프로세서로, 경량 데이터베이스(SQLite)와의 메타데이터를 저장/검색하는 역할을 담당합니다. *4. 웹 소켓: 웹 브라우저와 서버 간의 실시간 양방향 통신을 가능하게 하는 프로토콜 *5. 포드 메타데이터: 파일 원본 데이터 외에 추가적인 속성이나 정보를 포함하는 메타데이터 이러한 각 구성 요소는 엣지와 클라우드 간의 원활한 통신, 애플리케이션 배포, 데이터 관리 등을 담당하여 엣지 컴퓨팅의 성능과 효율성을 극대화합니다. 이를 통해 실시간 데이터 처리와 안정적인 시스템 운영이 가능하죠. │엣지 컴퓨팅과 KubeEdge 미래 전망 그렇다면 엣지컴퓨팅과 KubeEdge 미래 전망은 어떨까요? 엣지 컴퓨팅과 KubeEdge의 결합은 데이터 생성 지점에서 즉시 처리를 가능하게 하여 지연 시간을 줄이고, 클라우드 네이티브 애플리케이션을 엣지 환경에서도 원활하게 실행할 수 있도록 지원합니다. 따라서 이러한 기술의 결합은 5g와 함께 자율주행차, 스마트 시티 등 다양한 분야에서 혁신을 이끌며, 향후 지속적인 성장이 예상됩니다. IDC에 따르면, 전 세계 엣지 컴퓨팅 지출은 2023년 2080억 달러에서 2026년까지 연평균 13.1%씩 성장하여 3170억 달러에 이를 것으로 예상됩니다. 이러한 성장은 디지털 전환 이니셔티브의 중요한 요소로 엣지 컴퓨팅의 역할이 확대되면서 더욱 가속화될 예정입니다. 국내에서도 엣지 컴퓨팅과 관련한 기술 발전과 시장 확장이 활발히 이루어지고 있습니다. 정부가 민간사업에게 5G 주파수를 할당하면서 이음 5G(5G 특화망) 서비스가 시작되었고, 이를 통해 자율 주행 로봇 등의 엣지 컴퓨팅 관련 서비스가 확대되고 있습니다. 결론적으로 엣지 컴퓨팅과 KubeEdge의 결합은, 미래의 디지털 트랜스 포메이션을 가속화할 핵심 기술로 자리 잡을 것으로 전망하고 있습니다. 이들의 발전은 다양한 산업 분야에서 새로운 비즈니스 모델과 기회를 창출하여, 우리의 생활 방식을 더욱 안전하고 편리하게 만들어 줄 것입니다. 📚참고 자료 • MichaelShirer, "New IDC Spending Guide Forecasts Edge Computing Investments Will Reach $232 Billion in 2024", IDC • GordonHaff, "Edge computing: 4 trends for 2023", enterprisersproject • ShirleyStark, "Future Of Edge Computing: Top 6 Trends 2023", justtotaltech • TonyFyler, "Edge computing trends in 2023", techhq • Bluefriday, "KubeEdge concept", tistory • Mansoor Ahmed, "Kubernetes Native Edge Computing Framework, KubeEdge", linkedin • "TDK의 고급 HDD 헤드 기술은 사회의 디지털 변혁을 가속화합니다", shunlongwei • 양대규기자, 엣지에서 AI와 시각적 처리가 증가하는 이유, aitimes
2024.07.26
기술이야기
옵저버빌리티(Observability) vs APM, 우리 기업에 맞는 솔루션은?!
기술이야기
옵저버빌리티(Observability) vs APM, 우리 기업에 맞는 솔루션은?!
지난 글을 통해 웹 애플리케이션을 전반적으로 모니터링하고 관리하기 위한 좋은 도구인, APM의 핵심요소와 기능에 대해서 알아봤습니다(지난 글 보기). APM은 분명 좋은 도구이지만 문제 원인이 애플리케이션, 웹, WAS, DB가 아닌 특정한 시스템 오류이거나 클라우드 네이티브 환경에서의 장애일 경우 문제 발생 원인을 명확히 밝히기 어려울 수 있습니다. 따라서 이번 시간에는 APM의 한계성은 무엇이고, 이를 보완하기 위한 방법은 무엇인지 자세히 살펴보겠습니다. │APM 한계성 불과 얼마 전까지만 해도 예상치 못한 장애를 탐지하고 분석하는 것은, 기존 APM만으로 충분했었습니다. 기존에는 모놀리식 구조로 되어있어 애플리케이션이 적은 수로 구성되어 있었고, Web-WAS-DB가 모두 단일 구조로 구성되어 있었기 때문입니다. 하지만 현재 대다수 기업들은 MSA 환경에서 서비스를 구축하고, DevOps 구조로 업무를 진행하는 경우가 많습니다. 즉 클라우드 네이티브 환경에서는 기존 모놀리식 구조의 APM의 한계가 하나둘씩 보이기 시작한 것이죠. 이러한 이유로 클라우드 네이티브 방식에는 서비스 장애 원인을 분석하기 위한 새로운 모니터링 툴이 필요했습니다. 이때 등장하는 것이 바로 옵저버빌리티(Observability)입니다. │Observability란? 그렇다면 Observability란 무엇일까요? 옵저버빌리티는 IT 인프라에 대한 근본적인 장애 원인을 분석하기 위한 방법론입니다. 관찰 가능성이라고 표현되기도 하죠. Obsevability는 비교적 최근에 사용한 용어이지만, 옵저버빌리티를 위한 고민은 오래전부터 지속되어왔습니다. 시스템이 내가 의도한 대로 작동하고 있을까? 예상치 못한 장애 탐지와 장애 근본 원인은 어떻게 분석할 수 있을까? IT 인프라 운영 환경에 문제가 발생했을 때, 문제 식별을 위해 필요한 객관적인 지표는 어떻게 도출할 수 있을까? 하지만 소프트웨어 애플리케이션에서 Observability는, 위와 같은 고민이 발생하거나 겪어보지 못했던 현상이 생길 때 이를 이해하고 설명할 수 있는 지표를 분석해 줍니다. │Obsevability의 등장배경 및 필요성 앞에서 옵저버빌리티가 무엇인지 살펴봤는데요. 이어서 Observability가 등장하게 된 이유와 필요성에 대해 자세히 살펴보겠습니다. MSA 전환에 따른 복잡성 증가 옵저버빌리티가 등장하게 된 첫 번째 이유는, 모놀리식 아키텍처에서 MSA 환경으로 전환함에 따라 복잡성이 증가했기 때문입니다. 우선 그림을 통해 자세히 살펴보겠습니다. [그림(왼)]은 모놀리식 아키텍처를 나타내는데요. 애플리케이션의 모든 구성 요소가 하나의 인프라로 통합되어 있는 형태입니다. 배포가 간단하며, 확장성이 쉽고, E2E 테스트가 용이하다는 장점이 있습니다. 하지만 조그마한 수정 사항이 있으면, 다시 구성 환경을 빌드하고 배포해야 한다는 단점이 있습니다. 또한 일부 오류가 전체 아키텍처에 영향을 미친다는 치명적인 단점도 존재하죠. 반면 [그림(오)]에 해당하는 MSA(Micro Service Architecture)는 하나의 큰 애플리케이션을 여러 개의 작은 애플리케이션으로 쪼개어, 변경과 조합이 가능합니다. 작은 서비스의 독립적 배포라는 강력한 장점을 앞세워 Netflix, PAYCO와 같은 다양한 기업들이 앞다투어 MSA를 받아들였습니다. 여기서 문제는 MSA로 변화함에 따라 통합 테스트나 E2E 테스트 검증이 필요해졌는데요. 이처럼 여러 서비스의 API를 검증해야 하므로, 복잡성이 증가하고 많은 시간과 비용이 소모되었습니다. 무엇보다 각 서비스 별로 자체적인 데이터베이스가 있어, 트랜잭션에 대한 파악이 어려워지기도 했죠. 따라서 기존 APM이 담당하는 트랜잭션 모니터링의 복잡성은 더욱 증가했고, Observability의 필요성이 대두되었습니다. DevOps와 클라우드 네이티브 환경으로서의 전환 옵저버빌리티가 등장하게 된 두 번째 이유는, DevOps와 클라우드 네이티브 환경으로 전환하기 위해 필요한 도구이기 때문입니다. DevOps의 핵심은 소프트웨어의 개발(Deployment)과 운영(Operation)을 분리하는 것이 아닌, 하나로 통합된 업무 처리 방식으로 진행됩니다. 이때 관리하는 서비스 전반에 대한 가시성이 충분히 확보되지 않으면, DevOps 조직은 근본적인 원인을 찾는 데 어려움을 겪게 됩니다. 이러한 어려움을 해결하기 위해서는 서비스를 구성하는 아키텍처부터 트랜잭션까지 가시성이 확보되어야 합니다. 이를 통해 DevOps의 목표인 지속적인 개발과 운영의 통합을 만들어낼 수 있죠. 또한 Observability는 클라우드 네이티브 환경으로 전환하기 위한 필수 조건입니다. 기업에서 운영 중인 서비스/IT 인프라가 클라우드 네이티브 환경으로 전환되면서, 이전에 발생하지 않았던 모든 장애 가능성에 대한 인지를 위해 Observability가 선행되어야 합니다. │Observability와 Monitoring 차이점 그렇다면 기존의 모니터링(Monitoring)과 옵저버벌리티(Observability)의 차이점은 무엇일까요? 기존의 모니터링 역할은 IT 인프라의 '정상 작동 확인'을 위한 도구 역할에 초점이 맞춰져 있었습니다. 모니터링 구성 요소인 대시보드와 사용자 알람을 통해 가시성을 확보하고, 장애를 쉽게 감지할 수 있었죠. 즉 모니터링은 인프라 성능 지표, 구성 관리, 사용자 알람에 주 목적을 둔 IT 운영 담당자에 포커스를 맞춘 도구입니다. Observability는 기존 모니터링이 맡는 알람(Alerting), 메트릭(Metric) 외에도 로그(시스템, 애플리케이션), 트레이스, 디버깅과 같은 작업이 가능합니다. 이를 통해 앞으로 발생할 수 있는 장애를 미리 예측하고, 발생한 장애에 대한 근본적인 원인을 찾아내는 데 초점이 맞춰져 있습니다. │Observability 확보를 위한 핵심 구성 요소 옵저버빌리티는 앞서 언급했듯이 메트릭(Metric), 로깅(Logging), 트레이싱(Tracing) 등 작업이 가능한데요. 좀 더 자세히 살펴보겠습니다. Metric 모니터링 분야에서 Metric(메트릭)이란, 인프라 혹은 서비스 성능과 상태를 나타내는 지표입니다. 여기서 중요한 점은 단순히 현재 상태를 보기 쉽게 표현하는 것에서 더 나아가 '시계열 데이터' 형태로 변화하는 데이터를 보여줘야 합니다. 예를 들어 CPU 사용률, 메모리 사용률, 스레드 사용률과 같이 시간이 지남에 따라 어떻게 변화하는지 효율적으로 보여줄 수 있어야 하죠. 또한 메트릭은 여러 AI 분석툴과 오픈소스와 결합하여, 직관적인 파라미터를 통해 시계열 데이터의 다양한 패턴을 자동 감지할 수 있어야 합니다. 운영자와 개발자에게 필요한 리소스를 선택할 수 있도록 성능 예측하는 지표도 필요합니다. Logging Logging(로깅)은 운영 중인 시스템과 애플리케이션에서 발생하는 다양한 이벤트와 에러 등을 기록하는 과정입니다. Observability는 여기서 더 나아가 클라우드 시스템의 모든 로그를 수집하여, 해당 로그를 통해 문제 원인을 식별할 수 있어야 합니다. 물론 각 로그 스트림은 단일 인스턴스에 대한 이벤트를 알려주기 때문에, 마이크로 서비스 환경에서 전체적인 문제 원인을 파악하기 어려울 수 있습니다. 하지만 중앙 집중식 로깅을 사용하면, 애플리케이션 로그를 한곳에 저장할 수 있습니다. 이를 통해 여러 서비스로 구성된 MSA 환경에서 로그를 효과적으로 검색하고 모니터링할 수 있죠. 이러한 작업을 하기 위해서 ELK Stack1 과 같은 로그 수집 활용 도구가 필요한데요. 이 도구는 로그 관리를 단순화화여, 전체 시스템 문제를 더 쉽게 분석할 수 있도록 도와줍니다. *ELK Stack1: Elastic Search. Logstash, Kibana의 약자로 데이터를 수집하고 분석하는 도구 모음 Tracing 트레이싱은 애플리케이션 실행 정보를 기록하는 '특별한 로깅' 방식을 의미합니다. 사실 로깅과 트레이싱을 구분하는 것에 큰 의미는 없습니다. 하지만 Observability 관점에서 트레이싱은, 전체 로그 중 문제를 일으키는 특정 로그들을 시각화하고 이를 선택적으로 관찰하는데 의미가 있습니다. Debugging Observability에서 말하는 디버깅은, 시스템과 서비스 성능을 확인하고 검사할 수 있는 다양한 도구입니다. 장애 원인을 찾을 경우 그 장애 원인뿐만 아니라, 연관관계를 가진 여러 인프라와 애플리케이션을 함께 보여줄 수 있어야 하죠. RUM RUM은 Real User Monitoring 약자로, 사용자의 인터랙션을 추적하여 웹사이트나 애플리케이션 성능을 실시간으로 모니터링하는 기술입니다. 옵저버빌리티는 앞서 언급했듯, 더 이상 IT 인프라 운영자를 위한 도구가 아닙니다. DevOps를 위한 통합적인 가시성을 제공하는 도구이죠. 따라서 운영자와 개발자를 위한 '실제 사용자 관점'에서 모니터링을 제공해야 합니다. 이처럼 옵저버빌리티 시스템은 애플리케이션의 전체적인 상태를 깊이 있게 파악하고, 문제 원인을 분석하는 데 중점을 두는 접근 방식입니다. 그렇다면 애플리케이션 성능 관리 시스템인 APM 도구와는 어떤 차이점이 있을까요? │APM과 Observability 차이점 어떻게 보면 APM과 Observability는 비슷해 보이지만, 문제 원인과 인프라를 분석하는 시각에 따라서 다양한 차이점을 지니고 있습니다. 우선 첫 번째 차이점으로는 모니터링 목적 대상에 따른 차이가 있습니다. APM은 E2E(End-to-End) 성능 구간에 주목합니다. WEB-WAS-DB에 걸친 이 과정을 실제 서비스 사용자의 *액티브 서비스2에 초점을 맞춰, 애플리케이션 성능을 분석하고 모니터링하죠. *액티브 서비스: 현재 시점에서 사용자에게 제공되고 있는 상태 Observability는 APM에서 주목하는 E2E보다, 더 많은 범위를 모니터링합니다. 시스템 인프라, WAS, DB에 대한 정밀 성능 분석과 장애 감지는 물론. 운영 중인 인프라와 서비스를 통합하여 문제 원인을 찾는 데 집중합니다. [그림] Zenius-APM 사용자 정의 실시간 모니터링 상황판 따라서 두 번째 차이점으로는, 측정하는 지표에도 많은 차이가 있는데요. APM은 사용자 요청에 따른 응답 시간과 응답 분포, 액티브 서비스 상태, 트랜잭션 처리율, 이슈 중심으로 '사용자 요청' 관점에 따라 주요 지표를 확인할 수 있습니다. Observability는 사용자의 요청 관점이 아닌, 발생할 수 있는 '모든 이벤트 지표'에 주목합니다. 보다 더 전방위적인 모니터링이 가능하죠. 또한 옵저버빌리티는 기존 APM에서 발생하는 주요 장애 원인뿐 아니라, 예측하지 못한 장애를 객관적인 지표로 보여줍니다. 정리한다면 인프라와 서비스를 분석하고 장애를 탐지한다는 점에서 APM과 Observability는 동일한 역할을 갖지만, 결국 사용자가 무엇을 더 초점에 맞추느냐에 따라 사용 목적은 아래와 같이 달라질 수 있습니다. 우리 기업은 Observability가 맞을까, APM가 맞을까? APM Type Observability Type 애플리케이션 성능 최적화가 필요한 경우 애플리케이션 코드 내의 문제를 식별하고 해결하는 데 중점을 둘 경우 MSA 환경이 아닌 모놀리식 아키텍처에서 서비스를 구성하고 있는 경우 MSA 환경에서의 분산 시스템을 통해 서비스를 구성하는 경우 단순한 애플리케이션 성능을 넘어 전체 IT 인프라 환경에 대한 통찰력 확보가 필요한 경우 인프라 운영자, 개발자, 보안담당자 모두가 통합 모니터링 환경이 필요한 경우 이번 글에서는 옵저버빌리티의 중요성과 APM의 차이점을 자세히 살펴보았습니다. 결론적으로 옵저버빌리티와 APM 중 어느 하나를 더 좋다고 할 수 없으며, 각 조직의 요구사항과 사용 편의성에 맞춰 선택해야 합니다. 그러나 점점 복잡해지는 IT 환경을 고려한다면, 옵저버빌리티를 기반으로 한 Zenius-APM과 같은 도구를 활용하여 좀 더 효율적으로 웹 애플리케이션을 관리해 보는 것은 어떨까요? 🔍더보기 Zenius APM 더 자세히 보기 📝함께 읽으면 더 좋아요 • APM에서 꼭 관리해야 할 주요 지표는?! • APM의 핵심요소와 주요기능은?!
2024.07.24
기술이야기
APM의 핵심요소와 주요기능은?!
기술이야기
APM의 핵심요소와 주요기능은?!
지난 글을 통해서 APM의 필요성과 '트랜잭션' 현황 파악의 중요성에 대해서 알아봤습니다. 이번 시간에는 트랜잭션을 어떤 방식으로 추적하는지 APM 동작 과정을 통해 살펴보고, APM 시스템을 최적화하는 핵심 요소와 기능은 무엇인지 자세히 알아보겠습니다. │APM 동작 과정 APM은 Client-Web Application-DBMS와 같은 구성요소 사이에 트랜잭션1을 추적할 수 있어야 합니다. 이를 통해 웹 서비스 전반적인 성능을 모니터링하고, 문제가 발생했을 때 원인을 신속하게 진단할 수 있기 때문인데요. 그렇다면 각 단계별로 APM가 어떻게 트랜잭션1을 추적하는지 좀 더 자세히 살펴보겠습니다. *트랜잭션1: 쉽게 말해 데이터베이스에 실행되는 작업 단위를 의미합니다. 트랜잭션은 작은 여러 작업들을 하나의 그룹으로 묶어 처리하기 때문에, A라는 작업에서 일부가 성공했다고 하더라도 하나의 트랜잭션 처리가 비정상적으로 종료되면 모두 실패한 것이죠. 클라이언트(Client) 웹 서비스 사용자가 이용하는 디바이스 또는 브라우저입니다. 클라이언트에서 발생하는 요청과 응답을 추적하여 페이지 로딩 시간, 사용자 활동, 에러 발생 등을 파악할 수 있습니다. 이 정보들을 통해 사용자 경험을 분석하고 개선하는데 기초 자료로 사용되죠. 웹서버(Web Server) 클라이언트 요청을 받아, 적절한 답을 생성하여 보내는 서버입니다. 이 단계에서 APM은 서버(예: Apache, Nginx) 로그와 성능 지표를 분석하여 요청 처리 시간, 데이터 전송량, 서버 오류 등 정보를 모니터링하고 기록합니다. 웹 애플리케이션 서버(WAS) WAS는 Web Application Server의 약자로, 애플리케이션에서 사용하는 데이터를 저장하고 관리하는 시스템입니다. 이 단계에서 APM은 데이터베이스 성능을 모니터링하여 DB 쿼리 실행시간과 DB 서버 부하 등을 측정하고, 성능 문제를 파악하는 데 도움을 줍니다. WAS 종류로는 WebLogic, Websphere, JEUS, Tomcat 등이 있습니다. 데이터베이스(DBMS) DBMS(Database Management System)는 기업에서 발생하는 모든 데이터를 저장하고 관리하는 소프트웨어입니다. 이 단계에서는 DB 성능 관리 솔루션을 통해, 애플리케이션 개발자가 작성한 SQL 튜닝과 DBMS 소프트웨어 병목 현상 등을 모니터링할 수 있습니다. 특히 데이터베이스는 IT 인프라에서 필수 요소입니다. 기업 서비스 대부분이 데이터베이스에 접근하여, 데이터를 조회하고 수정해야 하기 때문에 DB 관리는 매우 중요하다 할 수 있죠. 이처럼 APM은 Client-Web Server-Was-DB 각 구성요소 사이에 있는 트랜잭션을 추적하여 웹 서비스 성능을 평가할 수 있습니다. 그다음으로는 APM 시스템 전체적인 성능을 평가하고 최적화하는 핵심 요소는 무엇인지 살펴보겠습니다. │APM 성능을 최적화하는 핵심요소 APM 시스템은 크게 5가지 요소를 통해, 전체적인 성능을 최적화할 수 있습니다. 우선 Resource는 시스템 성능과 안정성을 평가하는데 중요한 역할을 하며, DataBase는 SQL 쿼리의 실행 계획이나 DB 연결 상태와 같은 세부 정보를 분석하여 데이터베이스 성능을 최적화합니다. Alert는 모니터링된 데이터에서 문제를 식별하고 사용자나 운영자에게 경고를 보내며, User 경험과 행동을 추적하여 서비스 품질을 평가합니다. WAS는 서버 내부에서 발생하는 이벤트를 모니터링하고, 서버 성능을 평가하는 역할을 합니다. Resource-Database-Alert-User-WAS 이 5가지 요소는 APM 아키텍처를 구성하는 핵심 요소이기도 한데요. 다음 내용을 통해 APM 아키텍처를 좀 더 자세히 살펴보겠습니다. │APM 아키텍처 APM 아키텍처는 Agent를 통해 WAS(관리대상) 실시간 데이터를 수집하고 → Manager에서 데이터를 수집/분석/가공 한 뒤 → 다양한 UI로 시각화합니다. 특히 꼭 기억해야 할 APM 아키텍처 핵심 3가지는 에이전트, 데이터베이스, 통신방식인데요. 좀 더 자세히 알아보겠습니다. 에이전트 APM 관리대상(예시: WebSphere, WebLogic, JBoss, JEUS, Tomcat 등)에 Agent라고 불리는 소프트웨어를 설치합니다. 그다음 모니터링 대상 시스템(WAS)에서 데이터를 수집하죠. 에이전트는 애플리케이션 내부 동작을 모니터링하고, 성능 데이터를 수집하는 역할을 합니다. 이러한 데이터를 활용하여 에이전트는 서비스 구간별 현황과 초당 처리 건수, 서비스 응답시간, 동시 접속자 수, 트랜잭션 거래량, 에러 등 상세한 지표를 제공해 주죠. 데이터베이스 수집된 데이터를 보관하고 분석하기 위해서는, 데이터베이스(DataBase)를 사용합니다. 이 데이터베이스는 대규모 데이터를 저장하고 관리하는 구조여야 하며, 분석하고 보고서를 생성하는데 필요한 데이터를 효율적으로 쿼리 할 수 있어야 합니다. 통신방식 APM 시스템은 보통 다양한 통신 프로토콜(Communication Protocol)을 사용하여, 데이터를 수집하고 전송합니다. 예를 들어 웹 소켓(WebSocket)을 통해 실시간 데이터를 전송하거나 http(s)를 사용하여 주기적으로 데이터를 전송하는 방식이 일반적입니다. 그다음으로는 APM은 어떤 주요 기능을 제공하는지 알아보도록 하겠습니다. │APM 주요기능 APM은 대표적으로 웹사이트와 소프트웨어 애플리케이션 및 서비스에서, 성능을 모니터링하고 분석하는 기능이 있는데요. 좀 더 자세한 APM 기능을 살펴보겠습니다. 실시간 성능 통합 모니터링 [그림] Zenius-APM 토폴로지 맵 APM은 Tomcat, Jboss, WebLogic, JEUS 등 다양한 애플리케이션 서버(WAS) 환경에서 실행되는 애플리케이션 통합 모니터링을 제공합니다. 시스템 간의 처리 성능과 현황 정보는 토폴로지 뷰를 통해 시각적으로 파악할 수 있죠. [그림] Zenius-APM 모니터링 상황판 또한 각 서버의 트랜잭션 처리량, 처리 속도, 자원 사용량을 실시간으로 분석하여 시스템 성능을 관리합니다. 특정 트랜잭션 실행 경로를 추적하고 분석하여, 성능 병목 현상도 식별할 수 있습니다. [그림] Zenius-APM 모니터링 서비스 응답분포 APM은 서비스 응답 분포도를 제공하여, 비정상적인 트랜잭션을 집중적으로 조회하고 분석할 수 있습니다. 장애관리 APM은 메모리 누수, 서비스 응답 지연과 같은 장애 원인을 실시간으로 추적하고 분석하는 기능을 제공합니다. Rawdata를 기반으로 장애 발생 시점을 재현하여, 문제의 근본 원인을 파악하는 데 도움을 주죠. 또한 자동 이벤트 처리는 장애 관리 규칙(Rule)에 따라 이루어지며, 문제 발생 시에는 사용자에게 즉각적인 알림을 제공합니다. 성능 분석과 통계 APM은 애플리케이션 성능을 다양한 지표(예: 성능비교, 기간비교, 증설 필요성, 시간대별 등)를 통해 분석하고, 여러 파일 형식의 보고서로 제공합니다. 또한 애플리케이션 성능 문제와 SQL 쿼리 간의 연관성을 분석하여 성능 개선 방안을 제안합니다. 다양한 환경 지원 레거시 시스템에서 클라우드 인프라에 이르기까지, APM은 다양한 IT 환경을 효과적으로 지원합니다. 또한 WAS 중심 성능 관리와 MSA(마이크로 서비스 아키텍처) 환경 모니터링을 가능하게 하는 기술을 제공하죠. 이번 시간에 알아본 내용처럼 APM은 다양한 애플리케이션 서버(WAS) 환경에서 실행되며, 트랜잭션 성능을 관리하는 통합 모니터링 제품입니다. Zenius-APM와 같이 다양한 WAS 환경에서의 통합 모니터링과 트랜잭션 처리 현황을 체계적으로 파악할 수 있는 APM을 통해, 효과적으로 웹 애플리케이션을 관리해 보세요!
2024.07.19
기술이야기
GPU 모니터링의 중요성과 솔루션 선택 기준은?!
기술이야기
GPU 모니터링의 중요성과 솔루션 선택 기준은?!
인공지능(AI), 클라우드 컴퓨팅, 가상 현실(VR) 및 증강 현실(AR), 빅데이터 분석 등 정말 다양한 분야의 기술이 고도화 됨에 따라서 GPU(Graphic Processing Unit, 그래픽 처리 장치) 시장도 빠르게 커지고 있습니다. GPU 시장은 2024년부터 2029년까지 32.9%의 CAGR(연평균 성장률)을 기록하며, 2029년에 280조 원을 돌파할 것으로 예측됩니다. GPU의 활용도가 커지면서 그와 동시에 GPU를 효율적으로 관리하는 'GPU 모니터링'의 중요성도 점점 더 부각되고 있는데요, 자세한 이유부터 살펴보겠습니다. │GPU 모니터링이 필요한 이유는?! GPU 모니터링이 필요한 가장 큰 이유는 효율적인 자원 관리와 성능 최적화입니다. GPU는 고성능을 제공하기 때문에 리소스를 많이 소모합니다. 따라서 실시간 모니터링을 통해 GPU의 사용량, 소모 전력, 온도, 메모리 사용량 등을 파악하고 대응해야 합니다. 이는 곧 시스템이 과열되거나 과부하 되는 것을 막아주고 GPU 성능을 최적의 상태로 유지시켜주기 때문이죠. 이와 더불어서 빠른 문제 진단과 해결을 위해서도 모니터링이 필요합니다. GPU 관련 문제나 오류는 단순한 시스템 성능 저하를 넘어서 서비스/비즈니스 전반의 문제로 확대될 수 있습니다. 따라서 GPU 모니터링 솔루션을 사용하여 메모리 누수 등의 이상 징후를 빠르게 발견하고 조치할 수 있어야 합니다. 또한 실시간 GPU 모니터링을 통해서 에너지 사용량 최적화하면 전체 시스템의 에너지 효율도 향상시킬 수 있습니다. 그렇다면 구체적으로 어떤 GPU 모니터링 솔루션을 선택해야 할까요?! │GPU 모니터링 솔루션 선택 방법?! GPU 솔루션 선택 시 가장 중요하게 확인해야 할 부분은, 'GPU의 특성을 고려한 모니터링이 가능한가?'입니다. GPU는 한 개 서버라 하더라도 각각의 GPU 별로 모니터링이 되어야 하고, 온도 상승에 따른 성능 저하와 'Out of memory'와 같은 문제를 신속하게 파악해야 하는 특성이 있습니다. [그림] 제니우스의 GPU 모니터링 화면 예시 예를 들어 브레인즈컴퍼니의 제니우스(Zenius) EMS는 GPU의 특성을 고려하여 GPU 별 모니터링을 제공하고 있습니다. 또한 GPU 온도의 추이 분석 및 감시 기능도 제공하여 일정치 이상으로 온도가 상승하거나 메모리가 증가하면 즉각적인 알림을 제공합니다. 이와 더불어서 프로세스 별 GPU 사용량과 OS 관점의 네트워크 트래픽, CPU 등 전반적인 상태에 대한 모니터링 기능도 함께 제공합니다. 제니우스 EMS와 같이 GPU 특성에 맞춘 모니터링 솔루션을 활용하면, GPU 성능을 최적화하고 효율도 최대한 높일 수 있습니다. GPU가 점점 더 중요한 역할을 맡고 있고, 그에 따른 비용도 크게 들어가는 만큼 모니터링 솔루션을 활용한 실시간 관리는 더 중요해지고 있습니다. 또한 GPU뿐 아니라 다른 IT 인프라도 통합 관리할 수 있는 솔루션을 사용하는 것도 경쟁력을 높일 수 있는 좋은 방법입니다. 애플리케이션, GPU, 네트워크 서버, 트래픽, 클라우드, 무선 AP 등 모든 IT 인프라 환경을 통합 관리할 수 있는 제니우스 같은 솔루션 도입을 통해 한 발 더 앞서 나가시기 바랍니다.
2024.07.15
기술이야기
APM에서 꼭 관리해야 할 주요 지표는?
기술이야기
APM에서 꼭 관리해야 할 주요 지표는?
웹 애플리케이션, 모바일 애플리케이션, 데스크탑 소프트웨어, 그리고 클라우드 기반 서비스까지 애플리케이션 서비스의 범위는 점점 더 광범위해지고 있습니다. 온라인 쇼핑, OTT, 게임, 금융, SNS, 기업 ERP 서비스 등 거의 모든 산업 분야에서 애플리케이션을 활용하는 가운데 애플리케이션 서비스가 원활하게 제공되지 않으면 기업은 고객의 신뢰를 잃고, 브랜드 이미지와 매출에도 큰 타격을 입게 됩니다. 이에 따라서 애플리케이션의 성능을 지속적으로 모니터링하고 문제를 신속하게 감지하고 해결하게 해주는 APM(Application Performance Monitoring)의 중요성이 빠르게 커지고 있습니다. 그렇다면 구체적으로 APM이 왜 필요한지와 APM을 통해 꼭 살펴봐야 하는 지표들에 대해서 자세히 알아보겠습니다. │APM(Application Performance Monitoring)의 필요성 앞서 언급한 것처럼 APM은 애플리케이션의 성능을 추적하여, 사용자 만족도를 높이기 위한 필수적인 도구입니다. APM이 왜 점점 더 중요해졌는지 좀 더 구체적으로 살펴볼게요. 시스템 복잡성 관리 현대 IT 환경은 마이크로서비스(MSA), 클라우드, 서버리스 컴퓨팅 등 다양한 기술을 복합적으로 사용합니다. 이로 인해 시스템은 점점 더 복잡해지고, 전통적인 모니터링 도구로는 파악하기 어려운 문제가 발생할 수 있는데요. APM은 이러한 복잡한 시스템에서 발생하는 성능 저하나 오류를 정확히 파악하고, 문제의 근원지를 신속하게 찾아내는 데 도움을 줍니다. 예를 들어 대형 은행이 APM을 통해 실시간 거래 처리 시스템의 성능 저하를 조기에 발견하고 해결하여, 고객 불편을 최소화한 사례가 있습니다. 비즈니스 효율성 및 비용절감 오늘날 기업들은 웹사이트, 모바일 앱, 클라우드 서비스 등 다양한 디지털 플랫폼을 원활하게 운영하기를 원합니다. 동시에 어떻게 하면 이 많은 플랫폼들을 효율적으로 운영하면서, 비용을 절감할지 고민하는데요. APM은 이러한 고민을 해결해 줍니다. 예를 든다면 APM은 클라우드 환경에서 비효율적으로 사용되는 리소스를 식별하고, 필요한 경우에만 리소스를 확장하거나 축소할 수 있도록 지원합니다. 이를 통해 클라우드 비용을 절감하면서도, 시스템 성능을 유지할 수 있게 도와주죠. 고객 경험 개선 다양한 웹/모바일 서비스들이 생겨나면서 소비자들은 점점 더 빠르고, 안정적이며, 개인에게 특화된 맞춤형 서비스를 원하고 있습니다. 애플리케이션의 성능을 개선할수록 사용자 만족도 역시 높아지죠. 만약 소비자 입장에서 필요한 물건을 구매하려고 할 때 버그가 발생하여 구매페이지가 넘어가지 않거나, 결제 과정에 문제가 생긴다면, 고객은 구매를 포기할 수도 있습니다. 이러한 상황에서 APM은 웹 애플리케이션의 성능을 실시간으로 감시하고 문제를 빠르게 해결해 줍니다. 이를 통해 사용자 만족도를 높이고 기업의 잠재적인 매출을 방지할 수 있습니다. 이번엔 개발자/운영자의 관점으로 보는 APM의 필요성을 살펴보겠습니다. 개발자: 개발자는 APM을 통해 애플리케이션의 성능 저하를 유발하는 코드 문제점을 상세히 파악합니다. 예를 들어 느린 데이터베이스 쿼리라던지, 비효율적인 로직, 예기치 않은 오류나 버그 등을 실시간으로 개선합니다. 운영자: 웹/모바일 서비스에 성능 저하나 장애가 발생할 경우 운영자는 APM을 사용하면 어떤 부분이 원인인지 신속하게 진단하고, 필요한 조치를 취할 수 있습니다. 예를 들어 시스템의 디스크, 네트워크, 애플리케이션 등 어느 부분이 문제인지 빠르게 파악할 수 있죠. 또한 시스템의 리소스 사용률을 분석하여, 비효율적으로 사용되는 리소스를 조정합니다. 이처럼 APM을 적극적으로 활용하는 기업은, 웹 애플리케이션 성능을 효과적으로 관리할 수 있어 고객 만족을 높일 수 있습니다. 그렇다면 APM을 통해 웹 애플리케이션을 효율적으로 관리하기 위해서는 어떤 지표를 구체적으로 확인하고 관리해야 할까요? │APM에서 꼭 확인해야 할 주요 지표들 APM으로 웹 애플리케이션을 효과적으로 관리하기 위해서는, 먼저 트랜잭션(Transaction) 처리 현황을 확인하는 것이 중요합니다. APM을 통해 사용자가 웹페이지를 조회하거나, API 호출을 통해 특정 작업을 요청할 때, 이 요청이 정상적으로 활성화되고 완료되기까지 전 과정을 살펴볼 수 있어야 하죠. 이밖에도 확인해야 할 주요 지표들이 있는데요. 좀 더 자세히 살펴보겠습니다. 트랜잭션 처리량 [그림] Zenius-APM 서비스 처리 현황 이 차트는 시스템이 일정 시간동안 처리할 수 있는 트랜잭션의 수를 말합니다. 쉽게 말해 웹 애플리케이션이 얼마나 많은 일을 할 수 있는지를 보여주는 지표이죠. 예를 든다면 온라인 쇼핑몰에는 초당 몇 건의 주문을 처리할 수 있는지를 나타냅니다. 여기서 트랜잭션 처리량이 높다는 것은 그만큼 많은 작업을 빠르게 처리할 수 있다는 것을 의미합니다. 정리한다면 시스템 부하가 증가할 경우 처리량이 어떻게 변화하는지 파악하여, 시스템이 사용자 요구와 피크 타임에 충분한 성능을 발휘할 수 있는지 확인하는데 유용합니다. 트랜잭션 상세 성능 : CPU, 힙메모리 등 [그림] Zenius-APM CPU, 힙 메모리 사용률 APM은 트랜잭션의 상세 성능인 CPU 사용률, 힙 메모리 사용률 등 같은 중요한 지표들을 측정합니다. 'CPU 사용률'은 애플리케이션이 얼마나 많은 리소스를 사용하는지를 보여줍니다. '힙 메모리 사용률'은 애플리케이션의 메모리 관리 효율성을 진단하는 지표인데요. 높은 사용률은 메모리 누수를, 낮은 사용률은 리소스 부족과 성능 저하를 나타낼 수 있죠. 이 지표를 모니터링함으로써 개발자는 메모리 관리를 최적화할 수 있습니다. 트랜잭션 응답 분포 : 응답시간 [그림] Zenius-APM 서비스 응답분포 트랜잭션 응답 분포는 사용자의 요청에 대한 시스템의 응답 시간을 말합니다. 사용자가 웹 애플리케이션에 어떤 요청을 했을 때, 시스템이 얼마나 빨리 응답하는지를 나타내주죠. 예를 들어 웹사이트에서 페이지를 클릭했을 때, 그 페이지가 얼마나 빨리 응답하는지에 대한 시간을 말합니다. 응답 시간이 짧으면 사용자는 웹사이트에 더 오래 머무르고, 더 많은 페이지를 탐색하게 해, 사용자의 이탈률을 줄일 수 있겠죠. 사용자 수 모니터링 지표 제공 : 동시 접속 사용자 수, 시간당 방문자 수, 액티브 사용자 수 [그림] Zenius-APM 동시 사용자수, 시간대별 방문자 수 등 이 지표는 웹 애플리케이션을 이용하는 사용자 활동을 측정합니다. 여기서 꼭 확인해야 하는 세 가지 지표가 있는데요. '동시 접속 사용자 수'는 특정 시점에 애플리케이션을 이용하는 사용자 수를 나타내며, 시스템의 부하를 파악하는 데 중요한 지표입니다. '시간당 방문자 수'는 한 시간 동안 애플리케이션 트래픽 패턴을 이해하는 데 도움을 주며 '액티브 사용자 수'는 일정 기간 동안 활동적으로 애플리케이션을 이용하는 사용자 수를 의미하죠. 예를 든다면 온라인 게임 서버에 동시 접속 사용자 수가 급격히 증가하는 시간대를 파악하여, 그 시간대에 서버 리소스를 늘리거나 최적화하여 끊김 없는 게임을 경험할 수 있게 하죠. 이처럼 APM은 트랜잭션을 모니터링하여, 애플리케이션의 성능을 측정하고 분석할 수 있어야 합니다. 이를 통해 웹 애플리케이션에 문제가 발생했을 때 어디서부터 해결해야 할지에 대한 방향을 잡을 수 있죠. │APM, 효과적으로 활용하고 있으신가요? 이번 시간에는 APM이 왜 점차 중요해지고, 웹 애플리케이션을 효과적으로 관리하기 위해 어떤 APM 핵심 지표를 살펴봐야 하는지 알아보았습니다. 다양한 분야에서 애플리케이션 활용이 필수가 되고 있고 AI와 클라우드 컴퓨팅 기술 채택으로 인한 복잡성이 증가하고 있습니다. 이에 따라서 Mordor Intelligence는 APM 시장의 가치가 2024년에 약 94억 달러에 이른 후 2029년까지 연평균 성장률(CAGR) 31%로 급성장할 것으로 예측했습니다. 이처럼 급격하게 중요성과 활용도가 커지는 APM. 혹시 아직 도입하지 않으셨다면 Zenius-APM과 같은 효율적인 솔루션을 통해 애플리케이션 성능을 최적화 하시기 바랍니다.
2024.07.12
기술이야기
무선 AP에 대해서 꼭 알아야 할 세 가지
기술이야기
무선 AP에 대해서 꼭 알아야 할 세 가지
지난 시간에는 무선 AP를 '어떻게' 하면 효과적으로 관리할 수 있는지에 대한 TIP을 알려 드렸었는데요(링크). 여기서 잠깐, 무선 AP란? '무선 AP'는 Access Point의 약자로 Wireless Access Point 라고 하며, WAP으로 불리기도 합니다. 실제 인터넷으로 연결되는 신호는, 무선 신호를 받아서 유선 신호 체계로 전달해 주는 매개체가 필요한데요. 이를 AP가 담당합니다. 이름 그대로 Access Point로서 유선 신호를 무선으로 바꿔주거나, 무선 신호를 유선으로 바꾸는 접촉 지점의 역할을 하죠. 이번 시간에는 구성요소, 주요 활용사례, 관리 시스템 등 AP와 관련해서 꼭 알아야 할 세 가지를 살펴볼 예정입니다. 우선 그전에 무선 AP가 최근에 '왜' 필요해졌는지부터 짚어보겠습니다. │무선 AP의 필요성 무선 AP는 일반적인 유선 공유기보다, 설치 장소에 구애받지 않는다는 점에서 차별점을 가지고 있습니다. 무선 안테나가 AP에 자체적으로 내장되어 있고 PoE 기능을 통해 일반적인 가정에서 사용하는 유선 공유기보다 자유롭게 설치될 수 있죠. 이외에도 AP는 아래와 같은 특장점으로 각광받고 있습니다. 가용성 무선 AP는 일반적인 유무선 공유기보다 무선으로 연결된 기기를 더 많이 수용할 수 있는데요. 대규모 인원을 수용해야 하는 기업/공공 지자체/백화점/카페 등 대규모 클라이언트가 필요한 장소의 원활한 네트워크 연결을 용이하게 한다는 점에서 가용성이 뛰어납니다. 관리적 측면 무선 AP는 자신을 포함하여 대역을 무선으로 연결해 주는 기능이 기본적인 역할입니다. 하지만 부가적으로 무선관리 시스템으로부터 중앙 컨트롤을 받으며, 클라이언트의 통신 상태를 체크하는 기능을 가지고 있는데요. 사용자 확인부터 트래픽 양, 웹 접속 권한 설정과 알람까지 폭넓은 관리 기능을 제공하고 있습니다. 대규모 클라이언트 지원 일반적인 가정이 아닌 학교/기업/공공장소와 같은 대규모 클라이언트에 동시 접속을 하기 위해선, 대규모 접속을 처리할 수 있는 무선 AP가 필요합니다. 일반적인 공유기의 경우 약 한정된 IP만 할당받을 수 있으며, 인원이 많아질수록 속도 저하나 부하가 발생하기 때문이죠. 반면 무선 AP는 이러한 대규모 환경에서 접속을 효과적으로 처리할 수 있습니다. 편리성 무선 AP는 *SSID(Service Set Identifier)1가 하나로 통합되어, 접속 환경이 달라지더라도 무선 신호를 다시 잡을 필요가 없습니다. 반면 가정용 공유기의 경우 SSID가 별도로 분리되어 있어, 무선 신호 연결을 할 때마다 별도의 인증 절차를 거치게 되죠. 물론 공유기도 AP 모드로 SSID를 통합하여 사용할 수 있지만, 이는 네트워크 속도의 저하를 일으킬 수 있습니다. *SSID1: Wifi 공유기 검색할 때 나오는 명칭 이름(ex. SK_WifiXXXX) │무선 AP를 활용한 주요 사례 무선 AP는 앞에서도 언급했지만 대규모 환경에 적합하여, 다양한 분야에서 지속적으로 확대되고 있는데요. 몇 가지 대표적인 사례를 통해 좀 더 살펴보겠습니다. 디지털 뉴딜 정책 : 공공 와이파이 전환 사업 한국지능정보진흥원(NIA)에서는 2023년에 전국의 공공장소에 무선 인터넷 인프라를 대폭 확장하는 사업을 진행했습니다. 이 계획에 따라 그 해에만 4,400개의 새로운 공공장소에 공공 와이파이가 설치되어, 전체적으로 5.8만 개의 공공장소에서 공공 와이파이를 이용할 수 있게 되었습니다. 당진시 공공 와이파이 존 구축 당진시는 2018년까지 꾸준히 인구가 증가한 도시 중 하나입니다. 이러한 변화에 맞춰 교통과 물류의 인프라가 획기적으로 개선되었습니다. 더불어 당진시는 공공 와이파이 수요 증가에 대응하기 위해, Cisco AP 제품을 사용하여 시내 주요 지점에 공공 와이파이존을 확대하는 사업을 추진했습니다. 이 밖에도 국내 여러 도시에서는 스마트 시티 구축을 목표로, 도시 곳곳에 무선 AP를 설치하여 시민들이 어디서나 인터넷에 쉽게 접속할 수 있는 환경을 조성하고 있습니다. 대형 쇼핑몰, 카페 체인점(ex. 스타벅스), 호텔 등 상업 시설에서도 고객 경험 개선을 위해 무선 AP를 활용한 와이파이 서비스를 제공하고 있죠. 그렇다면 네트워크 환경에서 AP가 잘 관리될 수 있도록, 필수적으로 확인해야 하는 구성 요소는 무엇일까요? │무선 AP의 네트워크 환경 구성 요소 [그림] 무선 AP의 네트워크 환경 구성 요소 무선 AP를 구축하고 잘 관리하기 위해서는 AP 컨트롤러, LWAPP 프로토콜, PoE, UI 구성 요소들이 필요한데요. 각각 구성 요소들이 어떤 역할을 하는지 파악해 보겠습니다. AP 컨트롤러 AP 컨트롤러(WLC, Wireless Lan Controller)는 다량의 AP를 관리합니다. AP의 작동 상태를 실시간으로 모니터링하며, 접속 상태 확인과 AP 설정하는 역할을 담당하죠. 또한 로드밸런싱(대역폭 분산)과 함께 일부 AP 장애 시 주변 AP를 통한 장애 감지 기능, 플랫폼을 통한 클라이언트 접속 상태에 대한 실시간 모니터링 기능을 제공합니다. LWAPP 프로토콜 이때 AP 컨트롤러와 무선 AP 간의 통신을 위한 프로토콜인 LWAPP(Lightweight Access Point Protocol)가 필요한데요. LWAPP 프로토콜을 통해 각 AP는 컨트롤러로부터 자동으로 구성되고, 보안 업데이트를 받으며, 사용자 접속을 관리할 수 있기 때문이죠. 예를 들어 LWAPP 프로토콜 덕분에 쇼핑몰 방문객들은 어디서나 끊김 없는 와이파이 접속을 경험할 수 있으며, 운영자는 효율적으로 네트워크를 관리할 수 있습니다. PoE PoE(Power of Ethernet)는 무선 AP에 붙어 있는 이더넷 전원 장치로, 인터넷 케이블 하나에 데이터와 전원을 동시에 보내는 기술입니다. PoE를 이용하여 전원 코드를 따로 꽂을 필요가 없어, 설치가 간편하죠. 또한 별도의 어댑터 연결 없이 PoE 전송이 가능한 WAN 케이블 연결만 하면, 네트워크 기능과 전원 기능을 모두 구현할 수 있습니다. 이를 통해 AP의 벽면이나 천장에 설치가 가능합니다. UI AP 컨트롤러와 연계된 UI(UserInterface)로 AP 관리가 가능하며, AP에 연결된 클라이언트까지 확인할 수 있습니다. UI 화면을 통해 어느 정도의 트래픽을 사용했는지 확인할 수 있으며, AP의 이름(SSID)과 암호를 지정할 수 있습니다. 또한 AP에 연결된 클라이언트의 외/내부 관리가 가능합니다. Cisco Meraki와 Ruckus의 경우, AP 컨트롤러와 AP를 웹 화면으로 관리할 수 있는 UI 환경을 제공하는데요. 다음 사례를 통해 좀 더 자세히 살펴보겠습니다. │무선 AP와 컨트롤러 관리 시스템 앞에서 살펴본 것처럼 대규모의 무선 AP와 컨트롤러를 관리하기 위해서는 UI 환경, 즉 '모니터링'이 필수적인데요. 무선 AP와 컨트롤러를 모니터링할 수 있는 대표적인 사례를 살펴본다면 다음과 같습니다. Cisco Meraki [그림] Cisco Meraki 주요 장비 Cisco Meraki는 Cisco의 주요 AP, WAN, 스위치, 제품에 대한 모니터링이 가능합니다. Cisco 자체의 대시보드를 통해 장비와 현황 헬스 체크가 가능하며, 클라이언트의 실시간 사용속도와 AP에 연결된 클라이언트 리스트 역시 확인할 수 있죠. 또한 구글맵을 연동하여 주요 네트워크 장비의 위치 기반 모니터링이 가능합니다. Ruckus Networks Ruckus는 자사 네트워크 장비인 스위치, AP, AP 컨트롤러와 클라우드 관리 시스템을 제공하는 AP 전문 기업입니다. 컨트롤러와 연계된 웹 UI로 네트워크 상태를 원격으로 파악할 수 있죠. 또한 Ruckus의 대시 보드를 통해 주요 장비의 네트워크의 지리적 위치와 AP, 그리고 클라이언트 모니터링이 가능합니다. WNMS AP 벤더가 제공하는 AP 컨트롤러 관리 솔루션 외에도 WNMS(Wireless Network Monitoring System)를 통한 이기종 AP 관리가 가능합니다. 대규모 엔터프라이즈 환경에서는 다양한 이기종의 AP를 사용하는 경우가 많은데요. 이러한 환경에서 WNMS는 트래픽과 클라이언트 사용량을 확인할 수 있을 뿐만 아니라, 다양한 종류의 AP를 함께 관리할 수 있습니다. 이처럼 다양한 제조사의 AP를 하나의 시스템에서 통합적으로 관리할 수 있기 때문에, 대규모 환경에서 네트워크 관리를 효율적으로 운영할 수 있겠죠. [그림] Zenius-WNMS 모니터링 뷰 Zenius-WNMS 모니터링 화면을 보며 좀 더 자세히 살펴볼게요. Cisco와 Ruckus는 자사의 AP 무선 장비만 모니터링할 수 있는 솔루션인 반면, Zenius-WNMS는 AP 장비의 전체 운영 상황과 세부정보들을 모니터링할 수 있습니다. 컨트롤러, AP 장비 운영 상태, 벤더명, 주요 모델 및 트래픽 현황, 접속된 클라이언트 수 등 또한 확인이 가능합니다. [그림] Zenius-WNMS로 보는 무선 AP 트래픽 현황 이뿐만 아니라 Zenius-WNMS는 현재 운영중인 AP의 2.4GHz 대역, 5GH 대역에서의 트래픽 현황과 연결된 클라이언트 이벤트 현황도 모니터링할 수 있습니다. 다양한 감시 항목 설정을 통해, 주요 AP와 관련된 장애 이벤트와 운영 항목에 대한 모니터링도 가능합니다. 이를 통해 네트워크 관리자는 복잡한 네트워크 환경에서 발생할 수 있는 다양한 문제를 빠르게 대응할 수 있고, 네트워크의 성능 저하를 일으킬 수 있는 요소를 즉각적으로 식별하고 조치할 수 있죠. [그림] **대학교 종합상황판 Zenius-WNMS의 대표적인 사례로 **대학교를 들어볼 수 있는데요. 3,000여 개 이상의 대량 무선 AP를 관리하기 위해 통합 대시보드 UI 환경을 구축하였습니다. 이처럼 대규모 환경에서도 Zenius-WNMS는 효과적으로 무선 네트워크를 관리할 수 있습니다. 무선 AP와 이를 구성하는 요소들을 관리하는 체계적인 모니터링 시스템은, 이제 현대 사회에서 필수적으로 자리 잡았습니다. Zenius-WNMS을 활용하여 무선 AP를 하나의 시스템에서 통합적으로 관리하고, 대량의 무선 AP를 효율적으로 관리해 보세요!
2024.05.21
기술이야기
성공적인 네트워크 관리의 세 가지 조건!
기술이야기
성공적인 네트워크 관리의 세 가지 조건!
한 기업에서 네트워크 지연 및 접속 오류 등의 장애가 생기면 어느 정도의 피해 비용이 발생할까요? Gartner 리포트에 따르면, 1분당 평균 700만 원 이상의 비용이 발생한다고 합니다. 여기에 브랜드 신뢰도나 이미지 추락 등 당장 보이지 않는 부분까지 포함하면 피해 비용은 기하급수적으로 늘어납니다. 따라서 IT 산업에 속한 기업뿐 아니라 다른 분야의 민간기업, 그리고 정부기관과 공기업에 이르기까지 안정적으로 네트워크를 관리하기 위한 노력을 이어가고 있습니다. [그림] 네트워크 장애를 막기 위한 정부 차원의 노력 네트워크 활용도와 중요성이 증가함에 따라서 NMS(Network Management System) 시장의 규모도 빠르게 확대되고 있습니다. 전 세계적인 NMS 시장의 규모는 2022년 12조 원을 넘어서 2027년에는 19조 원에 이를 것으로 예상됩니다. 하지만 NMS를 사용한다고 네트워크 관리가 무조건 수월해지는 것은 아닙니다. 성공적인 네트워크 관리를 위한 도구로써 NMS가 갖춰야 할 세 가지 필수 항목이 있는데요, 지금부터 자세히 알아보겠습니다. ㅣNMS(네트워크 관리 시스템)의 세 가지 필수 조건 NMS 솔루션 선택 시 아래 세 가지를 꼭 점검해 보시기 바랍니다. 첫 번째, 유/무선/가상 네트워크 환경에 대한 성능 모니터링이 가능한가? NMS는 네트워크 장비부터 무선 엑세스 포인트(AP), 소프트웨어 정의 네트워크(SDN)에 이르기까지 다양한 네트워크 환경에 대해서 통합적으로 모니터링할 수 있어야 합니다. 또한 라우터, 스위치, 서버, 애플리케이션 등 네트워크로 연결된 모든 환경에 대한 가시성 확보가 중요합니다. 이를 통해서 트래픽, CPU 사용률, 지연시간, 장비의 다운타임 등 주요 지표들에 대한 모니터링을 통해 네트워크 성능을 최적화할 수 있게 때문이죠. [그림] NMS 예시화면 (제니우스: 전체 네트워크에 대한 통합 모니터링) 두 번째, 연관 장비에 대한 복합적인 관리가 가능한가? NMS는 네트워크 장비 관점의 트래픽과, 네트워크 장비에 연결된 서버 관점의 트래픽까지 복합적으로 분석할 수 있어야 합니다. 이러한 기능을 통해 하드웨어 오류 및 소프트웨어 장애 관리를 넘어서 서비스의 통신 상태, 트래픽 양과 흐름을 모니터링하여 전체 서비스에 대한 가용성 및 병목현상을 확인할 수 있기 때문입니다. [그림] NMS 예시화면(제니우스: 네트워크 장비 요약 view) 세 번째, 다양한 이벤트에 대한 관리가 가능한가? NMS는 임계치 기반의 즉각적인 문제 원인 식별과 정상 범위 이탈 시의 통보 기능을 통해 문제 해결 및 예방에 활용될 수 있어야 합니다. 이뿐 아니라 이벤트가 발생할 경우 스크립트를 통한 자동화 프로세스로 관리자의 업무 효율도 향상시킬 수 있어야 합니다. 더불어서 보안 취약점을 관리하여 보안 위협을 사전에 막고, 사용자의 접근으로부터 보호하는 기능도 반드시 필요합니다. 지금까지 살펴본 NMS의 세 가지 조건은 네트워크의 안정성, 보안성, 효율성을 보장하기 위한 필수조건입니다. 네트워크의 중요성과 활용도가 커지는 가운데 '제대로 된' NMS의 활용을 통해 높은 경쟁력을 확보하시기 바랍니다.
2024.05.10
1
2
3
4
5
6
7
8
9