반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
최신이야기
검색
기술이야기
[통합로그관리] Filebeat에서 안정적으로 하드웨어 자원 사용하기
기술이야기
[통합로그관리] Filebeat에서 안정적으로 하드웨어 자원 사용하기
Filebeat는 Elastic Stack에서 사용하는 경량(light-weight) 데이터 수집기로 logstash 대비 상대적으로 리소스(CPU와 RAM)를 상당히 적게 소모한다는 장점이 있습니다. 또, Filebeat는 간단한 필터 기능도 제공합니다. 하지만 말 그대로 간단한 필터 기능이라 한번에 대용량의 파일을 관리해야 하는 경우 호스트 서버에 부담이 갈 정도로 많은 리소스를 사용할 수 있습니다. 따라서 브레인즈컴퍼니가 운영하는 통합로그관리 에이전트는 호스트의 서버 환경에 따라 filebeat 에이전트의 설정 파일을 수정해서 안정성을 제공하고 있습니다. 본 내용은 Filebeat 리소스 점유율이 높을 때 트러블슈팅 관련 설정 수정사항입니다. 수정에 필요한 기본 파일 위치 linux : /etc/filebeat/filebeat.yml docker: /usr/share/filebeat/filebeat.yml filebeat 프로세스 메모리 확인하는 방법 top -d 1 | egrep "PID|filebeat" 수정에 앞서 filebeat의 메인 컴포넌트인 harvester의 개념을 간략하게 설명하겠습니다. 하나의 harvester는 하나의 파일을 읽어드립니다. harvester가 실행 중인 경우 파일을 한 줄씩 읽습니다. 각 파일 당 하나의 harvester가 실행됩니다. 상단의 이미지를 보면 filebeat의 컴포넌트인 input과 harvester가 보입니다. 또한 filebeat이 harvester를 관리하며 어느 파일을 읽을지 관리하는걸 알 수 있습니다. harvester가 실행 중인 경우 파일 설명자(File Descriptor) 열린 상태로 유지됩니다. 이는 파일이 삭제되거나 파일명이 변경된다 하더라도 파일을 계속 읽게 해줍니다. 하지만 파일 설명자는 harvester가 닫힐 때까지 디스크 공간을 예약합니다. 1. filebeat.inputs: 2. - type: filestream 3. id: my-filestream-id 4. paths: 5. - /var/log/system.log 6. - /var/log/wifi.log 7. - type: filestream 8. id: apache-filestream-id 9. paths: 10. - "/var/log/apache2/*" 11. fields: 12. apache: true 13. fields_under_root: true <filebeat에서 제공하는 input example> 1. scan_frequency 파일비트가 설정된 filebeat_inputs의 path에 있는 파일들의 갱신 여부를 체크하는 주기입니다. 너무 길게 설정하면 한번에 많은 파일들을 수집하게 됩니다. 반대로 너무 짧게 설정하면 스캔을 너무 잦게 해서 CPU점유율이 올라갑니다. 적당한 조절이 필요합니다. 기본값은 10초입니다. Scan_frequeny가 동작하는 방식은 아래와 같습니다. harvester 읽기 종료 또는 파일 삭제 → scan_frequency 만큼 대기 → 파일 갱신 확인 → 파일 갱신 시 새 harvester 시작 2. backoff Backoff 옵션은 파일비트가 얼마나 더 적극적으로 크롤링 하는지 지정합니다. 기본값은 1인데 1일 경우 새 줄이 추가될 경우 1초마다 확인한다는 의미입니다. Backoff가 동작하는 방식은 아래와 같습니다. harvester 읽기 종료 또는 파일 삭제 → scan_frequency만큼 대기 → 파일 갱신 확인 → 파일 갱신 시 새 harvester 시작 → 파일 갱신 시 Backoff 시간 마다 다시 확인 3. max_procs 파일비트에서 동시에 사용 가능한 최대의 cpu코어의 숫자를 설정합니다. 예를 들어32 CPU코어 시스템에서 max_procs를 1로 설정한다면 cpu사용률은 3.2%(1/32)를 넘지 않습니다. max_procs 설정돼 있으면 harvester가 아무리 많이 생성돼도 cpu의 코어 수만큼 CPU를 점유합니다. 4. harvester_limit harvester의 수가 OS가 감당할 수 있는 파일 핸들러 개수를 초과할 때 사용합니다. 한 input마다 설정되므로 inputs이 5개 선언돼 있으면 해당 input 컴퍼넌트의 harvester 개수 최대치는 5개입니다. 기본값은 0인데, 0일 경우 harvester가 무제한으로 생성 가능합니다. 리소스 관리 최적화에도 유용한데 예를 들어, input1이 input2보다 파일 개수가 3배 많고 중요성이 높을 때 3배 높은 값을 설정하는 것이 좋습니다. 5. close_eof harvester에 의해 파일이 수집되고 있을 때, EOF(End of File)에 도달하는 즉시 파일을 닫습니다. 파일이 계속 갱신된다면 데이터가 유실될 수 있는 여지가 있습니다. [참조] https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-input-log.html
2022.11.17
기술이야기
통합로그관리가 필요한 3가지 이유
기술이야기
통합로그관리가 필요한 3가지 이유
로그는 IT 인프라에서 발생하는 모든 상황들을 기록한 데이터입니다. 쉽게 말해 사용자가 어떤 루트로 사이트에 접속했고, 접속한 시점부터 어떤 행동을 취했는지가 모두 기록으로 남게 되는데, 이 기록들이 로그입니다. 로그는 IT 환경에서 가장 많이 발생하지만, 데이터 처리 기술이 발달하지 않았던 시기에는 처리 비용에 비해 가치가 낮은 데이터로 여겨졌습니다. 하지만 최근들어 IT 서비스와 인프라가 다양해지고 디지털 트랜스포메이션이 가속화되면서, 로그의 양이 기하급수적으로 증가하고 사물인터넷(IoT), 빅데이터 등과 같은 신기술이 발전하면서 그 효용성 또한 날로 증가하고 있습니다. 그렇다면, 이 로그는 실제로 어떻게 활용될까요? 개발 영역에서는 버그 혹은 크래시율 수집 및 상시 트래킹, 이슈 발생 후 롤백 및 대응, 특정 기능에 대한 사용성 진단에 활용됩니다. 마케팅 분야는 채널별 ROI 진단 및 비용 최적화, 배너/프로모션/이벤트 효과 측정, 유저 세그멘테이션 및 타게팅에 사용합니다. 기획 및 디자인 영역은 기능 개선을 위한 A/B 테스트, 유저 Journey 경로 분석을 통한 UX/UI 최적화 등에서 쓰이고 있습니다. 이처럼 여러 영역에서 다양하게 쓰이는 로그를 관리하지 않고 방치해두면 어떤 일이 발생할까요? 통합로그관리가 필요한 이유에 대해 알아보겠습니다. ----------------------------------------------- I. 보안 대응체계 구축 저장만 하고 관리되지 않은 로그는 IT 시스템의 장애나 문제 발생 시 그 원인을 찾아내기가 어렵습니다. 또, 로그 데이터의 중요 정보가 외부로 유출될 위험도 커집니다. 끊임없이 발생하는 보안 사고에 대비하기 위해 통합로그관리는 반드시 필요합니다. 관리된 로그는 장애나 사고 발생 시에 그 원인을 파악하고 빠른 대처를 위한 근거 데이터로 사용할 수 있으며, 보안 체계를 마련하는 데에도 활용가능 합니다. 기업들은 로그관리 제품을 사용해 사이버 침해위협을 예방 및 감시하고, 정기적인 로그분석을 통해 강력한 보안대응체계를 구축하고 있습니다. 통합로그관리 솔루션은 보안장비(Firewall, IDC, IPS 등)의 로그와 해킹, 악성코드 등 보안/침해 관련 로그를 지속적으로 분석해 예방 체계를 구축합니다. 또, 대용량 로그의 상관분석을 통해 보안위협을 탐지하고 이상징후를 모니터링하는 등 강력한 보안 대응체계를 구축할 수 있습니다. II. 컴플라이언스 준수 로그는 보안 사고가 발생했을 때 가장 기본적인 증거 및 모니터링 자료로 활용됩니다. 이에 따라 정부에서는 데이터 관리에 대해 각종 법률을 규정하고 있어, 공공기관을 비롯한 개인정보를 다루는 온라인 사업자 및 기업 등은 해당 법규를 준수해야 합니다. 안전한 데이터 이용을 위해 2018년에 발의된 '데이터 3법' 개정안은 2020년 1월 9일 국회 본회의를 통과했습니다. 데이터 3법은 개인정보 보호법, 정보통신망 이용촉진 및 정보보호 등에 관한 법률, 신용정보의 이용 및 보호에 관한 법률 등 3가지 법률을 통칭합니다. 로그 관리 관련 규제의 주요 내용은 다음과 같습니다. i. 개인정보보호를 위해 접근 권한 부여, 변경 또는 말소 기록을 3년 이상 보관해야 합니다. ii. 개인정보 취급자는 개인정보처리시스템의 접속기록을 월 1회 이상 점검해야 하고, 그 활동의 증거를 남기기 위해 시스템에 접속했다는 기록을 1년 이상 보관해야 합니다. iii. 정보통신서비스 제공자는 접근 권한 내역을 5년간 보관하고, 접속 기록의 위·변조 방지를 위해 반드시 백업 보관해야 합니다. III. 빅데이터 처리 플랫폼 IT 인프라 확대 및 기타 비정형 로그 유입에 따라 대용량 로그에 대한 관리가 요구되고 있습니다. 특히 수집된 로그를 실시간으로 분석∙판단해 IT 서비스의 안정적 운영을 도모해야 하는 수요가 증대되고 있는데요. 오늘날의 데이터는 기존 데이터에 비해 양이 매우 방대해 기존 방법이나 도구로는 관리가 어렵습니다. 따라서 빅데이터 기술을 기반으로 하는 대용량 통합 로그관리 솔루션은 이제 IT 운영을 위한 필수 솔루션으로 자리잡았습니다. ----------------------------------------------- 이처럼 기업은 보안위협 및 이상징후 대응/컴플라이언스 준수/대용량 로그 관리를 위해 통합로그관리 솔루션을 필수로 갖춰야합니다. 브레인즈컴퍼니의 통합로그관리 솔루션 '제니우스(Zenius) Logmanager'는 이기종 장비에서 발생되는 정형∙비정형 로그 데이터의 수집/분석/관리 등을 위한 빅데이터 플랫폼입니다. 제니우스 로그매니저가 어떻게 구성돼 있는지 살펴보겠습니다. 제니우스 로그매니저는 정형/반정형 또는 비정형 로그에 대한 실시간 수집 및 신속한 분석 기능을 제공하며, 이러한 정보들을 다양한 차트와 대시보드를 통해 직관적으로 가시화합니다. 특히 로그매니저는 독보적인 인덱싱 및 검색 속도를 제공하며 확장성, 편의성, 효율성, 호환성 등의 특장점을 보유한 제품입니다. 로그 이벤트 발생 시 즉각적인 알람을 통해 빠른 문제 해결과 높은 가용성을 확보하도록 지원합니다.
2022.11.10
1