반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
무선 AP를 WNMS를 통해 올바르게 관리하는 방법
Helm과 Argo의 개념과 통합 활용법?!
강예원
2024.03.08
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
지속적인 성과를 내기 위한 첫걸음, '이것'부터 관리 하라?!
애플리케이션을 클라우드 네이티브 환경에서 효율적으로 관리하고 운영할 수 있는 플랫폼인 쿠버네티스(kubernetes)를 활용하는 기업들이 점점 더 늘어나고 있습니다.
이에 따라 효율적인 애플리케이션 관리를 통해 패키징 배포, 관리를 자동화하고 일관된 상태를 유지하는 것이 중요해지고 있습니다. 이번 글을 통해서는 애플리케이션 개발 및 도구 중 최근 많이 사용되는
Helm과 Argo
에 대해서 자세히 알아보겠습니다.
ㅣHelm의 등장
쿠버네티스를 활용한 애플리케이션 배포에 가장 기본이 되는 단위는 yaml 파일로, 주로 쿠버네티스 object(리소스)들을 정의하고 다루는데 활용됩니다.
쿠버네티스를 통해 애플리케이션을 배포하다 보면 비슷한 틀과 내용을 공유하고, 내부 값(configuration)만 일부 변경하는 작업을 하게 되는데요, 이 과정에서 애플리케이션마다 모두 yaml 파일을 만들어야 하나 보니 매우 번거로웠습니다.
위 이미지를 보면, A 애플리케이션은 정적 파일인 yaml을 오브젝트별(Service, Pod, ConfigMap)로 만들어서 생성하고 배포합니다. 그러다가 프로젝트의 확장에 따른 기능 추가로 인해 B와 C 애플리케이션으로 쪼개어 각각의 yaml 파일을 복사해서 사용합니다.
하지만, 팀 단위로 인프라가 확장될 경우는 어떻게 할까요? 개별 오브젝트에 대한 yaml 개별적으로 관리할 수 있을까요? 만약, 개별적으로 관리한다면 파일의 갯수와 코드량의 증가로 인해 개발자들은 매우 혼잡하게 될 것입니다.
이러한 문제점을 해결하기 위해, 쿠버네티스에서 애플리케이션을 배포하기 위해 사용되는 대표적인 패키징 툴인 Helm이 등장하게 됐습니다.
Helm을 활용하면 컨테이너 배포뿐 아니라 애플리케이션을 배포하기 위해 필요한 쿠버네티스 리소스를Node의 npm, Ubuntu의 APT, Mac의 Homebrew처럼 모두 패키지 형태로 배포할 수 있습니다.
ㅣHelm의 역사
Helm은 v1부터 v3에 이르기까지 아래와 같은 변화의 과정을 거쳐왔습니다.
Helm v1
◾ [2015년 11월] DEIS의 내부 프로젝트로 시작되어 KubeCon에서 발표
◾
[
2017년 04월] MS에서 DEIS를 인수
Helm v2
◾ [2016년 01월] Google 프로젝트에 합류
◾ [2016년 ~ 2018년] Helm v2 고도화, 2.15.0 릴리스 발표에서 v2 향후 계획 세부사항 공유
Helm v3
◾
[
2018년 06월] CNCF 프로젝트에 합류, MS, 삼성 SDS, IBM 및 Blood Orange의 구성원 등이 참여
◾
[
2019년 11월] 릴리스 발표
v2에서 v3로 고도화되면서 가장 눈에 띄는 변화는 Tiller(클러스터 내에서 Helm 패키지 및 배포 상태를 관리하는 서버 구성요소)의 제거입니다.
Helm v2에서는 클러스터에 Tiller를 설치하여, API Server와 REST*1 통신을 하고, Client와 gRPC*2 통신을 진행했었는데요, Helm v3부터는 Tiller가 제거되면서 Client에서 바로 REST 통신을 통해 API Server로 요청하는 방식으로 변경되었습니다.
그 외에도 Helm v3으로 업그레이드되면서 보안 취약점이 줄어들었으며, 설치 및 관리 과정이 단순화되었습니다. 또한 사용자에게 보다 더 안전하고 효율적인 배포 및 관리 환경을 제공할 수 있게 되었습니다.
*1 REST (Representational State Transfer) : 웹 기반 애플리케이션에서 자원을 관리하기 위한 아키텍처 스타일, 데이터를 고유한 URL로 표현하고 HTTP 메서드(GET, POST, PUT, DELETE 등)를 사용하여 해당 자원에 대한 행위를 정의함
*2 gRPC (google Remote Procedure Call) : 구글에서 개발한 오픈소스 프레임워크, 원격지에 있는 다른 시스템 또는 서버에 있는 함수를 호출하는 방식
ㅣHelm의 주요 개념
Helm은 애플리케이션을 배포해 주는 툴이라고 앞서 살펴봤는데요, Helm과 같이 사용되는 주요 개념들을 살펴보겠습니다.
◾
Helm Chart:
쿠버네티스 리소스를 하나로 묶은 패키지입니다. 이는 yaml 파일의 묶음(패키지)으로, 이 묶음 public 혹은 private registry에 push 해두고, helm 명령어를 통해 Helm Chart를 설치하여 쿠버네티스 리소스를 배포하는 역할을 합니다.
◾
Repository:
Helm Chart 들의 저장소
◾
Release:
kubernetes Cluster에서 구동되는 차트 인스턴스이며, Chart는 여러 번 설치되고 새로운 인스턴스는 Release로 관리됩니다.
ㅣHelm의 주요 기능
Helm의 두 가지 주요 기능을 살펴보겠습니다.
[1] Helm Chart를 통한 손쉬운 배포
Helm을 사용하면 어떻게 되는지 그림으로 살펴보겠습니다.
개발 클러스터가 있고 앱 2개를 배포한다고 가정했을 때, Helm Chart Template을 만들면 변수 처리를 통해 yaml 파일을 하나하나 수정할 필요 없습니다. kubectl 명령어를 통해 yaml 파일의 동적 값을 치환하여 템플릿 형태로 편리하게 배포할 수 있다는 장점이 있습니다.
[2] Helm Package를 이용한 오픈소스 설치 및 배포
Helm을 통해서 쿠버네티스에서 가동할 수 있는 아래와 같은 다양한 오픈소스들의 제품들을 쉽게 설치/배포할 수 있습니다.
위제품들 외에도 Helm Chart는 총 14,376개의 패키지와 281,373개의 릴리스를 오픈소스로 제공합니다. 이를 통해 사용자들은 자신의 요구에 맞는 가장 적합한 솔루션을 선택하여 개발할 수 있습니다. 또한 많은 사용자들이 검증하고 사용함에 따라 안정성 있는 운영도 가능하죠.
다양한 Helm Chart 패키지는 커스터마이징이 가능한 경우가 많은데요, 사용자는 필요에 따라 구성을 조정하고 수정해서 사용할 수 있는 장점이 있습니다.
다음으로는 Helm 못지않게 많이 활용되는 ArgoCD에 대해서 살펴보겠습니다.
ㅣ ArgoCD란?!
기존의 kubernetes 애플리케이션을 배포하고 관리하는 방식은 수동적이었습니다. yaml 파일을 직접 편집하고, kubectl로 변경사항을 클러스터에 적용하는 수동 배포 방식은 실수를 많이 유발했죠.
또한 여러 개발자나 팀이 각자의 방식대로 배포 및 관리를 수행하는 경우, 클러스터 상태의 일관성이 저하되었는데요. 이로 인해 개발 및 운영팀 간의 협업이 어렵고 생산성이 감소되는 문제가 발생하기도 했습니다.
이러한 기존 접근 방식에 대한 대안으로 GitOps가 탄생했는데요, GitOps는 Git 저장소를 사용하는 소프트웨어 배포 접근 방식입니다. GitOps는 인프라와 소프트웨어를 함께 관리함으로써, Git 버전 관리 시스템과 운영환경 간의 일관성을 유지할 수 있도록 합니다.
ArgoCD는 GitOps를 구현하기 위한 도구 중 하나로 kubernetes 애플리케이션의 자동 배포를 위한 오픈소스 도구입니다. kubernetes 클러스터에 배포된 애플리케이션의 CI/CD 파이프라인에서 CD 부분을 담당하며, Git 저장소에서 변경사항을 감지하여 자동으로 kubernetes 클러스터에 애플리케이션을 배포할 수 있습니다.
kubernetes 애플리케이션 배포 과정을 살펴보겠습니다.
① 사용자가 개발한 내용을 Git 저장소에 Push(이때, kubernetes 배포 방식인 Helm 배포 방식의 구조로 Git 저장소에 Push 할 수 있습니다.)
② ArgoCD가 Git 저장소의 변경 상태를 감지
③ Git 저장소의 변경된 내용을 kubernetes에 배포하여 반영
ㅣ ArgoCD의 주요 기능
◾ 애플리케이션을 지정된 환경에 자동으로 배포
◾
멀티 클러스터 관리기능 제공
◾
OCI, OAuth2, LDAP 등 SSO 연동
◾
멀티 테넌시와 자체적인 RBAC 정책 제공
◾
애플리케이션 리소스 상태 분석
◾
애플리케이션 자동 및 수동 동기화 기능 제공
◾
Argo가 관리하고 있는 쿠버네티스 리소스 시각화 UI 제공
◾
자동화 및 CI 통합을 위한 CLI 제공
위 내용은 ArgoCD가 제공하는 주요 기능을 나열한 것인데요, 이 중에서도 대표적인 다섯 가지 기능에 대해서 자세히 살펴보겠습니다.
① 쿠버네티스 모니터링
ArgoCD는 쿠버네티스를 항상 추적하고 있다가 저장소의 변경사항이 감지되면, 자동으로 클러스터의 상태를 저장소의 상태와 동기화합니다. 또한 문제가 생기면 이전 상태로 롤백 할 수 있으며, 이를 통해 시스템 복구 및 문제 해결을 용이하게 합니다.
② 멀티 클러스터 관리
다중 클러스터 환경에서도 배포를 관리할 수 있어 복잡한 인프라 환경에서의 효율적인 작업을 가능하게 합니다.
③ ArgoCD 대시보드
Argo에서는 클러스터 상태를 효과적으로 관리하고 모니터링할 수 있는 대시보드를 제공합니다.
ArgoCD 대시보드를 통해 애플리케이션의 실시간 상태와 동기화 상태와 같은 전체적인 배포 파이프라인을 자동화하여 시각적으로 확인할 수 있고, 롤백 및 이력 추적 기능도 동시에 제공하고 있습니다.
④ 안전한 인증 및 권한 관리
역할 기반 액세스 제어(RBAC) 및 권한 제어기능을 통해 민감한 정보에 대한 접근을 제어할 수 있습니다.
⑤ GitOps 지원
ArgoCD는 GitOps 방법론을 따르므로 애플리케이션의 배포를 Git Repository와 동기화할 수 있습니다. 이를 통해 코드와 인프라의 일관성을 유지하고 변경사항을 추적할 수 있습니다.
ㅣ Helm과 ArgoCD의 통합 활용 프로세스
Helm과 Argo를 함께 사용하면 개발, 테스트, 배포 프로세스를 효과적으로 관리할 수 있습니다. Helm으로 애플리케이션을 패키징하고 버전을 관리하며, Argo를 활용하여 GitOps 워크플로우를 통해 지속적인 통합 및 배포를 자동화할 수 있습니다.
① develop:
Helm을 사용하여 애플리케이션을 Helm Chart로 패키징 합니다. 이후 개발된 Helm Chart를 저장하기 위한 Git 저장소를 설정합니다. ArgoCD에서 저장한 저장소를 특정 배포 대상 Kubernetes 클러스터와 연결하여, Git 저장소의 변경사항을 감지하고 새로운 배포를 시작하여 클러스터에 적용합니다.
② git push:
개발자가 로컬 저장소 내용을 원격 저장소에 배포합니다.
③ Observe(GitOps):
ArgoCD는 Git 저장소의 변경 사항을 감지하여, 변경사항이 발생하면 새로운 버전의 애플리케이션을 배포하여 자동화 및 일관성을 유지합니다.
④ 운영/테스트/개발
ㅣ마무리
오늘 함께 살펴본 Helm과 ArgoCD 두 가지 강력한 도구를 함께 이용한다면 CI/CD 통합, 버전 관리, 자동화 등의 이점을 활용해서 kubernetes 환경에서 애플리케이션을 더 효율적으로 관리할 수 있습니다.
한편 애플리케이션을 효과적으로 개발하는 것도 중요하지만, kubernetes 환경의 프로세스를 실시간 모니터링하고 추적하여 관리하는 것도 매우 중요합니다.
브레인즈컴퍼니의 kubernetes 모니터링 솔루션 Zenius-K8s는 다양한 CI/CD 도구를 이용하여 개발한 kubernetes 애플리케이션의 전체 클러스터 및 구성요소에 대한 상세 성능 정보를 모니터링하고, 리소스를 추적함으로써 시스템의 안정성과 성능을 높여주고 있습니다.
#쿠버네티스
#Helm
#Argo
#K8s
#kubernetes
#ArgoCD
#ZeniusK8s
강예원
프리세일즈팀
고객에게 특화된 Zenius를 제공하기 위해, 비즈니스 요구에 알맞은 전략적 컨설팅을 제안합니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
금융권에서 꾸준히 각광받는 제니우스(Zenius)
금융권에서 꾸준히 각광받는 제니우스(Zenius)
지난해 10월 일본의 은행 간 결제 시스템이 이틀간 '먹통'이 된 사태가 발생했었습니다. 그리고 한 달 후에는 카드 결제 데이터를 처리하는 일본 카드 네트워크의 시스템 오류로 인해 일본 각지에서 7시간 넘게 시민들이 카드 사용을 못 하는 불편이 발생하기도 했죠. 일본의 사례와 같이 은행이나 카드회사 등의 금융회사에서 네트워크/서버의 장애가 발생할 경우 궁극적으로 이익과 신뢰도의 급감으로 이어질 수 있습니다. 그렇기 때문에 '사고 없는' IT 인프라 환경 운영을 위한 노력을 이어가는 가운데, 브레인즈컴퍼니의 제니우스(Zenius)을 활용하는 금융기관이 꾸준히 증가하고 있습니다. ㅣ제니우스, 금융기관에서 꾸준히 각광받다 앞서 언급한 대로, 제니우스를 도입하고 활용하는 금융기관이 꾸준히 늘고 있습니다. 최근 수협중앙회는 '통합관제 및 운영 자동화'를 위해, 그리고 새마을금고는 '빅데이터 플랫폼 고도화'를 위해 제니우스를 도입했습니다. 또한 한국수출입은행과 한국 주택금융공사도 서버와 네트워크 관리를 위해 제니우스를 활용하고 있습니다. 이 밖에도 NH 뱅크, 신협중앙회, 광주은행, IBK 투자증권, DB손해보험 등에서도 꾸준히 제니우스를 활용하고 있습니다. 그렇다면 금융기관에서 제니우스를 꾸준히 사용하고 있는 이유는 무엇일까요? ㅣ제니우스의 네 가지 강점 금융기관에서 꾸준히 각광받는 제니우스는 크게 네 가지의 강점이 있습니다. [1] IT 인프라에 대한 통합 관리 제니우스는 금융기관의 복잡한 IT 환경을 통합 관리할 수 있는 기능들을 제공합니다. 이를 통해 IT 인프라의 성능 및 장애 정보를 빠르게 파악할 수 있어서, 운영 효율성과 안정성을 크게 높을 수 있습니다. [2] 보안 강화 금융기관에 필수적인 높은 수준의 보안을 유지할 수 있도록 제니우스는 통합 로그 관리, 보안 취약점 점검 등의 보안 기능을 제공합니다. 이를 통해 보안 위협에 대응하고 사전에 예방할 수 있습니다. [그림] 제니우스(Zenius) 오버뷰 예시화면 [3] 장애 대응 및 예방 실시간 모니터링과 자동 장애 복구 기능으로 시스템 장애에 대한 신속한 예방과 대응이 가능합니다. 이를 통해 서비스 중단을 최소화하고, 고객 만족도를 높일 수 있습니다. [4] 클라우드 서비스 지원 쿠버네티스 활용을 비롯한 클라우드 환경으로의 전환은 금융기관의 중요한 이슈로 떠오르고 있습니다. 제니우스는 모든 클라우드 환경(퍼블릭, 프라이빗, 하이브리드)에 대한 모니터링이 가능하여, 클라우드 서비스 안정성과 효율성을 크게 높여줍니다. 제니우스(Zenius)는 앞서 살펴 본 금융기관뿐 아니라, 공공기관과 기업을 포함한 1,000곳 이상에서 활발히 활용되고 있습니다. CSAP 인증과 GS 인증 1등급도 획득한 제니우스를 통해 성공적인 IT 인프라를 관리하시기 바랍니다.
2024.04.16
[Zenius Case#1] 내일까지 서버관리 현황 부탁할게요!
[Zenius Case#1] 내일까지 서버관리 현황 부탁할게요!
퇴근을 준비하는 어느 날, 부장님이 갑자기 요청합니다. “내일까지 서버관리 전반 현황 보고해야 되니 준비 부탁할게! 그럼 고생하고 낼 보자고” 어떤 내용들로 자료를 준비해야 하는 걸까요? 이번에는 Zenius SMS를 활용한 서버관리현황 파악에 대해 살펴보겠습니다. 서버관리 현황 파악의 포인트 1. 얼마나 많은 대상을 관리하고 있으며 종류는 어떤 것이 있는가? 2. 관리가 필요한 주요 성능지표 항목은 어떤 것이 있는가? 3. 주요 성능지표 관련해 현재 상태는 어떠한가? 4. 이슈가 존재하는 서버의 현황과 어떤 이슈를 가지고 있는가? 5. 어떻게 필요한 자료를 쉽고 빨리 확보해 보고할 것인가? 6. 향후 지속적으로 제공 가능한 범위인가?(내일까지 해야 하는데….) 7. 추가적인 요청사항에 대한 대응이 가능한가? 상기 사항들 모두 중요하지만, 그 중에서도 “지속적으로 제공 및 관리가 가능한가?”라는 부분에 집중해야 합니다. 아무리 훌륭한 자료라도 자료구성을 위해 과도한 공수가 발생하는 자료는 사실상 향후 지속적인 관리측면에서 실효성을 상실하게 돼 1회성 보고자료로 끝나게 되는게 현실입니다. 실제 업무에 필요한 자료는 지속적인 관리가 가능해야만 합니다. Zenius로 1분 만에 서버현황 보고자료 정리하기 Step 1. 기본 데이터 취득(10초) Step 2. 현황정보 정리(10초) 저희가 운영하는 대상은Total 12대입니다. OS 별로 Linux 6, Solaris 1, AIX 1, HPUX 1, Window 3 관리 운영 중에 있습니다. Step 3. 주요 성능지표의 상태정리(20초) 먼저 서버(OS) 측면의 주요 성능지표에 대해 알아보도록 하겠습니다. 정보시스템 성능관리 지침에서는 서버 성능관리의 목적을 아래와 같이 정의하고 있습니다. 서버 성능관리의 목적 “서버 성능관리 업무는 최적의 용량을 적시에 확보하기 위한 용량계획의 시점을 제공하고 성능 관련 문제를 사전에 예방함으로써, 사용자의 시스템 활용도 및 만족도를 향상시키기 위하여 수행된다.” 또한 정보시스템 성능관리 지침에서 서버의 주요 성능관리 구성요소는 아래와 같이 정의하고 있습니다. 구성요소 내용 CPU 총 CPU사용률, 시스템 모드 사용률, 사용자 모드 사용률, Run Queue, Pri Queue, 사용자수 등 메모리 총 메모리 사용률, 시스템 및 버퍼 캐쉬, Page In/Out, Swap 공간 사용률 등 디스크 Disk 사용률, Disk I/O Busy, Disk Queue 프로세스 CPU를 집중적으로 사용하는 프로세스, Zombie 프로세스 커널 커널 파라미터 설정을 통한 자원의 적절한 분배 파일시스템 파일시스템 IO Rate, 파일시스템 공간 사용률 네트워크 I/O In 패킷률, Out 패킷률, Collision률, Error률 해당 성능관리 구성요소 중 실제 시스템운영 시 체크가 필요한 몇 개 항목에 대해 간단히 정의하고 넘어가겠습니다. CPU 사용률(%) 서버의 성능을 의미하는 척도로 사용되는 항목으로 CPU의 사용률이 일정 이상을 넘어가면 서비스에 영향을 주기 시작합니다. 순간적으로 급격히 높아질 수 있기 때문에 일반적으로 임계값과 지속시간을 함께 지정해 감시합니다. *여기서 CPU란? Central Processing Unit의 약자로 명령을 해독하고 산술논리연산이나 데이터 처리를 실행하는 장치입니다. Memory 사용률(%) 메모리의 사용량이 너무 빨리 소모되거나 또는 지속적으로 사용량이 떨어지지 않는다면 조치가 필요한 부분입니다. *여기서 Memory란? 기억소자를 지칭하는 것으로 보다 빠른 처리를 위한 프로그램 또는 데이터를 저장하거나 계산된 결과를 임시 또는 반영구적으로 보관하는 기억장치입니다. Disk I/O Busy Rate(%) Disk의 경우 데이터 처리 속도가 메모리나 CPU에 비해 너무 느리기 때문에 Disk I/O Busy Rate의 경우 일정 임계치 이상 지속되는 경우 과다한 입출력이 발생시킴을 의미하며 시스템 성능에 영향을 줄 수 있습니다. *여기서 Disk I/O란? Disk의 입출력 양을 의미합니다. 이제 기본 취득 데이터 기준 주요 성능지표를 정리해 보겠습니다. CPU 사용률(%) 저희가 운영하는 서버 중 CPU 사용률은 다음과 같으며, CPU 사용률이 가장 높은 대상은 Cent7x64 장비입니다. 전일 기준 Peak 치가 59% 정도이며 현재 36%정도의 사용률을 보입니다. Memory 사용률(%) Memory 사용률 현황은 다음과 같으며, Memory 사용률이 가장 높은 대상은 Solaris11 장비 입니다. 전일 기준 Peak 치가 97% 정도이며 현재도 96%정도의 사용률을 보입니다. 해당 장비의 경우 상세분석 진행 예정입니다. Disk I/O Busy Rate(%) Disk I/O Busy Rate 기준으로 모니터링이 필요한 대상은 다음과 같으며 현재 전반 양호한 상태입니다. 가장 높은 대상은 Zenius6.1 장비입니다. 현재 37% 정도를 보이고 있으며 한시적 증가로 요소가 존재하는 상태입니다. 저장장치 사용률(%) 저장장치 사용률의 경우 시스템 전체의 사용률보다는 파티션 별 사용률 관점에서 정리가 필요합니다. 95% 이상 사용중인 파티션 영역이 존재하고, AIX72-ORA, Suse11-x64, Solaris11 장비의 경우 현재 조치 진행 중이며 용량증설 계획도 함께 고려하고 있습니다. Step 4. 이슈사항 정리(20초) 전체관리대상 중 긴급 1건, 위험 4건, 주위 4건의 이슈가 발생해 있는 상태이며 등급 별 상세내역은 다음과 같습니다. 이슈 발생 후 지속시간 2일 이상 지속중인 항목들은 단기 조치 불가 항목으로 조치방안에 대해 논의중인 항목입니다. 이상으로 Zenius를 활용해 1분만에 서버현황 보고자료를 구성해봤습니다. 그럼 이제 다음과 같이 보고를 진행했을 때 추가적으로 유입될 수 있는 요청사항을 Zenius SMS를 활용해 대응해보겠습니다. Zenius SMS를 활용해 추가 요청사항 대응하기 Q. CPU 사용률 높은 장비의 CPU 추이는 어떤가요? 전반 추이와 전일 대비 사용률을 확인해볼 필요가 있습니다. A. 해당장비의 CPU 사용률 추이는 다음과 같으며 전일대비 비교 했을 때 거의 유사한 범위내에 사용률 추이를 보여주고 있습니다. 3단계의 임계라인 기준으로 감시를 수행하고 있습니다. Q. 특정 파티션의 파일시스템 사용률이 높은 장비의 타 파티션의 사용률은 얼마나 되나요? 저장장치 사용률 추이도 함께 검토가 필요해보입니다. A. /nshome40 96% 이외 /home 파티션도 사용률이 90% 이상인 상태입니다. 사용률 추이를 확인했을 때 급격한 증가는 발생하지 않는 상태입니다.
2022.09.02
업계 1위 회사에서 개발 경험을 쌓고 싶다면?
업계 1위 회사에서 개발 경험을 쌓고 싶다면?
브레인즈컴퍼니는 IT 인프라 통합관리 소프트웨어 업계에서 20년 넘게 선두 자리를 지켜오고 있습니다. 20년 역사 중 절반인 10년 가량을 브레인즈에서 함께 성장해 온 개발자들이 있는데요. 업계 1위 제품을 개발하고 있다는 자부심으로 근무 중인 백엔드 개발자, 신호진님&프런트엔드 개발자 김범호님의 이야기를 들어보겠습니다. ----------------------------------------------------------------- Q. 안녕하세요, 자기소개 부탁드릴게요. 호진님: 안녕하세요. 2014년에 입사해 개발1그룹 인프라코어팀에서 근무 중인 신호진입니다. 첫 직장이 브레인즈컴퍼니라, 이제 8년차에 접어든 백엔드 개발자입니다. 범호님: 저는 2012년에 입사해서 10년이 흘렀네요. 개발2그룹 인프라웹팀에서 근무 중인 프런트엔드 개발자 김범호입니다. Q. 각자 맡고 있는 업무에 대해 설명해 주세요. 호진님: 브레인즈컴퍼니의 지능형 IT 인프라 통합관리 소프트웨어인 ZENIUS EMS(제니우스 이엠에스)의 통보 매니저, MRTG 매니저, 서버 Agent를 담당하고 있어요. 통보 매니저는 장애 발생 시 메일, 문자, App 등으로 통보해 사용자가 인지할 수 있도록 하고요. MRTG매니저는 다양한 IT 인프라에 대해 모니터링 분석 데이터를 제공해요. 서버 Agent는 장애 감시, OS 별 성능항목 초 단위 모니터링, 프로세스 모니터링을 제공합니다. 범호님: 호진님 팀에서 실시간 모니터링 작업을 통해 데이터를 수집하면, 그 수집된 데이터를 보고서나 차트, 오버뷰 등으로 사용자가 한눈에 볼 수 있도록 기획/설계/개발하는 업무를 하고 있습니다. Q. 이번 기회를 빌려 Zenius(제니우스)에 대해 홍보해 보자면? 범호님: 긴 말이 필요 없을 것 같아요. 관제 시스템으로서 갖출 수 있는 건 다 갖추고 있어요. 그러니까 업계 1위겠죠? 호진님: Zenius(제니우스)는 다양한 IT 인프라를 관리하는 제품이지만, 복잡하지 않고 사용자가 이용하기 쉽게 직관적으로 잘 만들어진 제품이에요. 국내에서 가장 인기있는 통합관제 솔루션입니다. Q. Zenius(제니우스) 제품을 개발할 때 주로 어떠한 언어를 사용하고 계시나요? 호진님: 주로 C, C++ 언어를 사용하고 있습니다. 범호님: 저는 주로 Java를 사용해요. 현재 팀 이전에는 ITSM팀에서 근무했는데, 그때는 Kotlin을 사용했어요. Q. 두 분은 프런트엔드/백엔드 커리어를 선택한 계기가 있나요? 호진님: 저는 컴퓨터공학을 전공했고, 프로젝트 때마다 담당하던 부분이 백엔드였어요. 그러다 보니 자연스럽게 백엔드 개발자가 됐어요. 그리고 C, C++ 언어를 배우면서 이 분야가 전망이 좋다는 점도 직무를 선택하는데 영향을 미친 것 같아요. 범호님: 저도 호진님과 비슷해요. 전공이기도 했고, 개발 업무가 성격에 잘 맞았어요. Q. 두 분 모두 개발 일을 하신 지 10년 정도가 흘렀네요. 개발 환경이 10년 전과 비교했을 땐 어떻게 달라졌나요? 호진님: 예전에는 개발자라 하면 야근도 많았고 연봉도 그렇게 높지 않았죠. 지금은 개발자 품귀 현상이 나타날 정도로 인기있는 직종이 되다 보니, 연봉도 높아지고 야근도 없는 편이에요. 얼마 전에 연봉이 천만원 인상되면서 매우 만족하며 다니고 있습니다. (웃음) 범호님: 10년 전만 해도 개발자는 3D 업종이라는 말이 있을 만큼 힘든 직업이었던 것 같아요. 예전에는 “적성에 맞는 일을 꼭 해야겠다”라는 인식이 있었다면, 요즘은 개발자가 좋은 이미지로 비치다 보니 사람들이 쉽게 접할 수 있게 되면서 적성보다는 “개발 일을 한 번 해 봐도 괜찮지 않을까”라는 인식으로 바뀐 것 같아요. Q. 이제 팀에 대해 이야기 나눠볼게요. 각자 팀 분위기는 어떤가요? 범호님: 저희는 자유로운 분위기인 것 같아요. 혼자 밥 먹고 싶으면 혼자만의 시간을 갖기도 하고, 다른 사람과 어울리고 싶으면 함께하기도 하고요. 각자 취향을 존중해 주고 있습니다. 호진님: 인프라코어팀은 그 어떤 팀보다 밝은 팀이에요. 저희 팀은 10명 가량으로 구성돼 있는데, 그중 절반 이상이 10~15년 이상의 근속자분들이자 베테랑 개발자예요. 모두 겸손하고 유머러스해서 입사 초부터 잘 해주시다 보니 적응하기도 쉬웠어요. 평소 서로 인사도 잘 하고 이야기도 자주 나누고요. 다른 팀들이 저희 팀을 무서워(?) 하는 것 같은데, 실상은 전혀 그렇지 않거든요. 특히 그룹장인 상호님은 겉으로는 차가워 보이지만, 속은 누구보다 따뜻해서 이야기 나눠보면 그 매력을 느낄 수 있을 거예요. (웃음) Q. 장기 근속자가 많다는 것이 배울 점이 많아 좋기도 하지만, 세대 차이가 발생할 수도 있을 것 같은데요. 그 간극을 좁히기 위해 어떤 노력을 하시나요? 호진님: 시니어 개발자들과 주니어 개발자들이 서로의 차이를 극복하기 위해 대화를 정말 많이 합니다. 그러다 보면, 서로 생각하지 못한 부분을 채워줄 수 있더라고요. 그리고 저희 팀은 함께 밥도 자주 먹고 강제성 없이 원하는 사람들끼리 술도 마시면서 동료애를 쌓아가고 있어요. 범호님: 코드 리뷰를 통해 서로 피드백을 주고받고 있어요. 연차가 낮은 동료가 먼저 신기술을 접하고 오면 제가 배우려고 할 때도 있고요. 또, 저희 팀도 대화를 많이 해요. 설득하는 과정이 필요할 때마다 대화를 통해 의사소통을 해 나가요. 서로 존중해주는 과정이라고 생각해요. 내 의견이 맞다고 생각하다가도 상대 의견이 타당한 내용이라면 믿어주고 서로 응원하면서 일하고 있습니다. Q. 동료들은 본인들을 어떤 사람이라고 이야기할 것 같은가요? 호진님: 아주 쑥스러운 질문이네요. (웃음) 음... 괜찮은 사람이라고 할 것 같습니다. (웃음) 앞으로 “같이 일하면 즐겁고, 어떤 일이든 믿고 맡길 수 있는 사람!”이라는 평가를 들을 수 있도록 더 노력해야죠. 범호님: 믿을 수 있는 사람. 그래서 의지할 수 있고 항상 같이 일하기 좋은 사람이고 싶습니다. (웃음) Q. 그럼 반대로 어떤 동료와 함께 일하고 싶은가요? 호진님: 예의 있고 끈기 있는 동료요. 예의는 직장 생활의 기본이라고 생각해요. 업무 관련해서는 개발과정에서 막히는 부분이 있을 때 오래 앉아있으면 해결책이 나오기 때문에 끈기가 정말 중요해요. 여기에 하나 더 덧붙이자면, 책임감 있는 동료들과 일하고 싶어요. 데드라인은 정말 중요하니까요. 범호님: 바보 같은 질문을 스스럼없이 하는 동료. 터무니없는 질문을 시작으로 되게 괜찮은 아이디어가 나오기도 하거든요. 그래서 때와 장소에 따라 질문을 하는 용기가 필요해요. 상대 이야기를 듣다가 모르는 부분에 대해서는 질문을 해야 업무를 하는데 문제가 없거든요. 보통 질문을 하지 않는 사람들은 이해를 하지 못했는데도 불구하고, 마치 다 알고 있는 것처럼 근엄하게 있다가 넘어가는 경우들이 많아요. 그렇다 보면 업무를 진행하는데 문제가 발생하죠. 그래서 아무 말없이 듣기만 하기보다는 질문할 수 있는 용기를 가진 동료가 좋습니다. Q. 차후에 합류하게 될 개발자들에게 브레인즈에 대해 꼭 알려주고 싶은 것은? 범호님: 저는 장기근속자다 보니, 그동안 회사가 바뀌는 과정을 봐왔는데요. 브레인즈컴퍼니는 지난 10년간 꾸준히 성장해오고 있어요. 그래서 새로운 개발자들이 합류한다면, 10년 후에는 더 큰 회사로 성장해 있을 것이라고 확신해요. 특히 브레인즈컴퍼니는 인재에 많이 투자를 하고 있습니다. 웬만한 교육은 지원을 해주고 있기 때문에, 이렇게 노력을 들이는 회사에서 본인 스스로 노력하고 발전하고자 하는 의지만 있다면 좋은 방향으로 성장할 수 있습니다. 호진님: 브레인즈컴퍼니는 직원을 많이 생각하는 회사예요. 복지가 좋고, 사람들도 좋아요. 이렇게 말하면 잘 와 닿지 않을 것 같은데, 입사하셔서 직접 느껴 보시기 바랍니다! Q. 마지막 질문입니다. 나에게 브레인즈컴퍼니란? 범호님: 동반자. 저는 그동안 운이 좋은 케이스였던 것 같아요. 프로젝트를 하기 위해 외부로 나갔다가 다시 돌아오기도 했고, 팀도 옮겨 봤고요. 그 와중에 회사가 리모델링도 하고 인력이 충원되면서 커졌고요. 또, 기존 제품을 아예 새로 만들어 보기도 했죠. 안주할 새도 없이 여러 변화를 겪으며 회사와 함께 성장해왔기 때문에 동반자 같은 존재가 됐습니다. 호진님: 성장할 수 있는 기회를 주는 곳. 또, 밥 굶지 않고 살아갈 수 있도록 아낌없이 지원해주는 곳이기도 하고요. (웃음)
2022.11.22
[Zenius Case#2] 서버관리, 서버가 왜 이렇게 느리지?
[Zenius Case#2] 서버관리, 서버가 왜 이렇게 느리지?
평온한 오후 퇴근 준비가 한창인데 불길한 전화가 걸려 옵니다. “서비스가 먹통이어서 확인 좀 해야 하는데 서버가 엄청 버벅거리고 반응이 느려요!! 이거 왜 이러죠??” 왜!! 도대체 왜!! 한 번쯤은 겪어보았을 급작스러운 Linux 서버의 상태 이슈! 불행하게도 무척이나 다양한 원인으로 인해 발생하게 됩니다. 우리의 목표는 이 다양한 원인 중 실제 발생 원인을 빠르게 특정하는 것! 기본적인 항목들의 체크리스트를 통해 빠르게 원인을 파악 해 봅시다. Linux 서버 상태 이슈 체크리스트 1. 서버의 CPU 부하 확인하기 2. BUFFER, CACHE, SWAP 상태 확인하기 3. 디스크 상태 확인하기 Zenius를 통한 데이터 추이 분석!! 장애의 발생은 순식간에 일어나지만, 장애 발생 시점의 데이터만을 확인해서는 원인을 파악하기가 쉽지 않은 경우가 많습니다. Zenius를 활용하여 앞서 정한 체크리스트를 빠르게 확인해 봅시다. 1. 서버의 CPU 부하 확인하기 - CPU 부하 확인의 Point는 Load Average Load Average는 CPU 사용 대기 중인 프로세스와 I/O 완료를 대기하고 있는 프로세스의 수를 의미합니다. 따라서, Load Average가 높다는 것은 CPU가 바쁘며 시스템에 걸리는 부하가 있다는 뜻입니다. 화면과 같이 1분, 5분, 15분의 로드 평균을 확인 해 보도록 합시다. 1분 로드 평균은 순간적으로 증가하는 경우가 있지만, 5분 15분 데이터상에도 이전과 비교하였을 때 높은 수치를 보인다면, CPU의 부하가 의심스러운 상황입니다. 그렇다면 CPU의 사용률과 I/O 대기율은 어떨까요? user가 사용한 CPU 사용률은 일정하지만, Iowait 수치가 올라간 것을 볼 수 있습니다. 이 경우 CPU의 리소스 부족이기보다는 I/O로 인한 부하로 판단할 수 있고, 자세히는 메모리나 프로세스의 현황 확인이 필요한 경우입니다. 반대로 user 수치가 높은 경우에는 물리적인 CPU 자체의 리소스 부족이라 볼 수 있습니다. 2. BUFFER, CACHE, SWAP 상태 확인하기 - 메모리 사용률과 Swap, Buffer, Cache 메모리 사용률이 높다 = 서버에 부하가 있다?? 답은 No !! Linux 서버의 메모리 사용률은 Buffer/Cache의 사용량이 포함되어 표현되게 됩니다. 따라서, 우리는 그 추이를 통하여 이슈를 확인하는 것이 중요합니다. 위의 검은 바탕의 그래프는 메모리 사용률이 높지만, 일정한 수치를 유지하고 있습니다. 이런 경우 서버의 메모리 사용은 안정적인 영역에서 이루어진다고 판단이 가능합니다. 그 이유는 실제 메모리 사용량과 Buffer/Cache에 할당량의 수치가 할당 가능한 수치 내에서 이루어지기 때문에 사용률이 유지된다고 볼 수 있기 때문입니다. 반면 흰 바탕의 그래프는 메모리 사용률이 점차 증가하며 결국 100%까지 도달한 것을 확인할 수 있는데요, 이경우에는 프로세스가 연산에 필요한 공간을 할당받지 못하여 프로세스 행이 발생하게 됩니다. 그렇다면 Buffer Cache Swap은 어떨까요? 먼저 Buffer Cache에 관해 확인 해 보도록 하겠습니다. *Buffer – 메타데이터를 메모리에 저장. *Cache – Page Cache, Slab을 메모리에 저장. 쉽게 말해, 둘 다 용도에 맞는 정보를 저장하여 수행 속도에 도움을 주는 영역입니다. 메모리 사용량이 늘어나면 이 Buffer, Cache 영역이 줄어들게 되고, 저장 영역이 줄어든다는 것은 속도가 떨어져 성능 저하로 이어지게 됩니다. 아래 그래프는 메모리 사용률이 올라가고 있는 상태의 서버 데이터입니다. 다음으로 이 시점의 Buffer, Cache의 영역을 확인해 보겠습니다. 추이 그래프를 통해 메모리 사용률이 올라갈수록 Buffer, Cache 영역이 줄어드는 것을 확인할 수 있습니다. 그렇다면 이 시점의 I/O는 어떨까요? 보시는 바와 같이 Iowait 수치가 급격히 올라갔음을 확인 할 수 있으므로, “메모리 사용률의 상승은 Buffer, Cache 영역을 줄어들게 하여 속도 저하를 발생시킨다.” 라는 결론을 도출할 수 있습니다. 또한, 메모리 사용률의 상승은 Swap에도 영향을 끼치게 됩니다. *Swap – 디스크 공간에 할당하여 메모리 역할로 사용하는 공간. 따라서, Swap 영역의 사용은 실제 메모리가 아닌 디스크를 사용하기 때문에 속도 저하가 발생 됩니다. 위 그래프는 Swap 사용률이 증가하고 있는 서버의 데이터입니다. 이 시점의 디스크의 상태를 보면 Read와 Write가 점차 Swap과 동일하게 상승하는 것을 볼 수 있습니다. 이렇게 메모리 대신 디스크 영역을 사용하면서 속도가 저하하게 되는 것입니다. 3. 디스크, 확인하기 - Mount Point 별 디스크 사용량, 작업량 추이 확인 디스크의 여유 공간이 없으면 시스템이 파일 생성을 못 하게 되고 결국엔 서버의 운영에 영향을 끼치게 됩니다. 각각의 마운트 지점의 사용률을 체크하여 여유 공간을 확보하는 것이 필요합니다. 디스크의 사용량이 급작스럽게 늘어난 경우는 신규 파일이 업로드되었다거나, 로그파일이 급작스럽게 많이 쌓이는 경우가 있습니다. 그렇기에 각 Mount Point의 사용률을 확인하고 해당 지점의 이슈 사항을 파악하는 것이 가장 좋습니다. 위 그래프와 같이 1시간 이내에 /data 지점의 사용률이 급등하였다면, 해당 지점에 쌓이는 데이터나 로그파일이 급격하게 증가한 것이므로 확인이 필요합니다. 다음으로는 디스크 사용 추이를 확인 해 보도록 하겠습니다. 서버에서 사용하는 물리 디스크는 각각의 성능의 한계가 있습니다. 이 한계를 직관적으로 확인할 수 있는 데이터로는 Disk Busy Rate(작업률)와 Disk Wait Rate(대기율)이 있는데요, Read 및 Write의 양이 한계치까지 치솟게 된다면 Busy Rate 값이 증가하게 되고, 이에 따른 Wait Rate 가 늘어나면서 서버의 성능 저하를 불러오게 됩니다. 어떻게 관리해야 할까? 앞서 확인한 서버의 상태 이슈들, 물론 급작스럽게 발생하는 경우는 어쩔 수 없지만 미리 대비가 가능한 것들은 Zenius-EMS를 이용하여 임계치 기반의 사전 모니터링과, 모니터링 페이지를 통한 직관적인 관리가 가능합니다. 각각의 항목들에 세부적으로 단계별 임계치를 걸어서 서버의 상태 이슈를 사전에 인지하고, 요약 페이지를 통해 빠르게 상태를 파악하여 우리의 퇴근 시간을 사수해 보는 건 어떨까요?
2023.08.08
다음 슬라이드 보기