반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
무선 AP를 WNMS를 통해 올바르게 관리하는 방법
Helm과 Argo의 개념과 통합 활용법?!
강예원
2024.03.08
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
지속적인 성과를 내기 위한 첫걸음, '이것'부터 관리 하라?!
애플리케이션을 클라우드 네이티브 환경에서 효율적으로 관리하고 운영할 수 있는 플랫폼인 쿠버네티스(kubernetes)를 활용하는 기업들이 점점 더 늘어나고 있습니다.
이에 따라 효율적인 애플리케이션 관리를 통해 패키징 배포, 관리를 자동화하고 일관된 상태를 유지하는 것이 중요해지고 있습니다. 이번 글을 통해서는 애플리케이션 개발 및 도구 중 최근 많이 사용되는
Helm과 Argo
에 대해서 자세히 알아보겠습니다.
ㅣHelm의 등장
쿠버네티스를 활용한 애플리케이션 배포에 가장 기본이 되는 단위는 yaml 파일로, 주로 쿠버네티스 object(리소스)들을 정의하고 다루는데 활용됩니다.
쿠버네티스를 통해 애플리케이션을 배포하다 보면 비슷한 틀과 내용을 공유하고, 내부 값(configuration)만 일부 변경하는 작업을 하게 되는데요, 이 과정에서 애플리케이션마다 모두 yaml 파일을 만들어야 하나 보니 매우 번거로웠습니다.
위 이미지를 보면, A 애플리케이션은 정적 파일인 yaml을 오브젝트별(Service, Pod, ConfigMap)로 만들어서 생성하고 배포합니다. 그러다가 프로젝트의 확장에 따른 기능 추가로 인해 B와 C 애플리케이션으로 쪼개어 각각의 yaml 파일을 복사해서 사용합니다.
하지만, 팀 단위로 인프라가 확장될 경우는 어떻게 할까요? 개별 오브젝트에 대한 yaml 개별적으로 관리할 수 있을까요? 만약, 개별적으로 관리한다면 파일의 갯수와 코드량의 증가로 인해 개발자들은 매우 혼잡하게 될 것입니다.
이러한 문제점을 해결하기 위해, 쿠버네티스에서 애플리케이션을 배포하기 위해 사용되는 대표적인 패키징 툴인 Helm이 등장하게 됐습니다.
Helm을 활용하면 컨테이너 배포뿐 아니라 애플리케이션을 배포하기 위해 필요한 쿠버네티스 리소스를Node의 npm, Ubuntu의 APT, Mac의 Homebrew처럼 모두 패키지 형태로 배포할 수 있습니다.
ㅣHelm의 역사
Helm은 v1부터 v3에 이르기까지 아래와 같은 변화의 과정을 거쳐왔습니다.
Helm v1
◾ [2015년 11월] DEIS의 내부 프로젝트로 시작되어 KubeCon에서 발표
◾
[
2017년 04월] MS에서 DEIS를 인수
Helm v2
◾ [2016년 01월] Google 프로젝트에 합류
◾ [2016년 ~ 2018년] Helm v2 고도화, 2.15.0 릴리스 발표에서 v2 향후 계획 세부사항 공유
Helm v3
◾
[
2018년 06월] CNCF 프로젝트에 합류, MS, 삼성 SDS, IBM 및 Blood Orange의 구성원 등이 참여
◾
[
2019년 11월] 릴리스 발표
v2에서 v3로 고도화되면서 가장 눈에 띄는 변화는 Tiller(클러스터 내에서 Helm 패키지 및 배포 상태를 관리하는 서버 구성요소)의 제거입니다.
Helm v2에서는 클러스터에 Tiller를 설치하여, API Server와 REST*1 통신을 하고, Client와 gRPC*2 통신을 진행했었는데요, Helm v3부터는 Tiller가 제거되면서 Client에서 바로 REST 통신을 통해 API Server로 요청하는 방식으로 변경되었습니다.
그 외에도 Helm v3으로 업그레이드되면서 보안 취약점이 줄어들었으며, 설치 및 관리 과정이 단순화되었습니다. 또한 사용자에게 보다 더 안전하고 효율적인 배포 및 관리 환경을 제공할 수 있게 되었습니다.
*1 REST (Representational State Transfer) : 웹 기반 애플리케이션에서 자원을 관리하기 위한 아키텍처 스타일, 데이터를 고유한 URL로 표현하고 HTTP 메서드(GET, POST, PUT, DELETE 등)를 사용하여 해당 자원에 대한 행위를 정의함
*2 gRPC (google Remote Procedure Call) : 구글에서 개발한 오픈소스 프레임워크, 원격지에 있는 다른 시스템 또는 서버에 있는 함수를 호출하는 방식
ㅣHelm의 주요 개념
Helm은 애플리케이션을 배포해 주는 툴이라고 앞서 살펴봤는데요, Helm과 같이 사용되는 주요 개념들을 살펴보겠습니다.
◾
Helm Chart:
쿠버네티스 리소스를 하나로 묶은 패키지입니다. 이는 yaml 파일의 묶음(패키지)으로, 이 묶음 public 혹은 private registry에 push 해두고, helm 명령어를 통해 Helm Chart를 설치하여 쿠버네티스 리소스를 배포하는 역할을 합니다.
◾
Repository:
Helm Chart 들의 저장소
◾
Release:
kubernetes Cluster에서 구동되는 차트 인스턴스이며, Chart는 여러 번 설치되고 새로운 인스턴스는 Release로 관리됩니다.
ㅣHelm의 주요 기능
Helm의 두 가지 주요 기능을 살펴보겠습니다.
[1] Helm Chart를 통한 손쉬운 배포
Helm을 사용하면 어떻게 되는지 그림으로 살펴보겠습니다.
개발 클러스터가 있고 앱 2개를 배포한다고 가정했을 때, Helm Chart Template을 만들면 변수 처리를 통해 yaml 파일을 하나하나 수정할 필요 없습니다. kubectl 명령어를 통해 yaml 파일의 동적 값을 치환하여 템플릿 형태로 편리하게 배포할 수 있다는 장점이 있습니다.
[2] Helm Package를 이용한 오픈소스 설치 및 배포
Helm을 통해서 쿠버네티스에서 가동할 수 있는 아래와 같은 다양한 오픈소스들의 제품들을 쉽게 설치/배포할 수 있습니다.
위제품들 외에도 Helm Chart는 총 14,376개의 패키지와 281,373개의 릴리스를 오픈소스로 제공합니다. 이를 통해 사용자들은 자신의 요구에 맞는 가장 적합한 솔루션을 선택하여 개발할 수 있습니다. 또한 많은 사용자들이 검증하고 사용함에 따라 안정성 있는 운영도 가능하죠.
다양한 Helm Chart 패키지는 커스터마이징이 가능한 경우가 많은데요, 사용자는 필요에 따라 구성을 조정하고 수정해서 사용할 수 있는 장점이 있습니다.
다음으로는 Helm 못지않게 많이 활용되는 ArgoCD에 대해서 살펴보겠습니다.
ㅣ ArgoCD란?!
기존의 kubernetes 애플리케이션을 배포하고 관리하는 방식은 수동적이었습니다. yaml 파일을 직접 편집하고, kubectl로 변경사항을 클러스터에 적용하는 수동 배포 방식은 실수를 많이 유발했죠.
또한 여러 개발자나 팀이 각자의 방식대로 배포 및 관리를 수행하는 경우, 클러스터 상태의 일관성이 저하되었는데요. 이로 인해 개발 및 운영팀 간의 협업이 어렵고 생산성이 감소되는 문제가 발생하기도 했습니다.
이러한 기존 접근 방식에 대한 대안으로 GitOps가 탄생했는데요, GitOps는 Git 저장소를 사용하는 소프트웨어 배포 접근 방식입니다. GitOps는 인프라와 소프트웨어를 함께 관리함으로써, Git 버전 관리 시스템과 운영환경 간의 일관성을 유지할 수 있도록 합니다.
ArgoCD는 GitOps를 구현하기 위한 도구 중 하나로 kubernetes 애플리케이션의 자동 배포를 위한 오픈소스 도구입니다. kubernetes 클러스터에 배포된 애플리케이션의 CI/CD 파이프라인에서 CD 부분을 담당하며, Git 저장소에서 변경사항을 감지하여 자동으로 kubernetes 클러스터에 애플리케이션을 배포할 수 있습니다.
kubernetes 애플리케이션 배포 과정을 살펴보겠습니다.
① 사용자가 개발한 내용을 Git 저장소에 Push(이때, kubernetes 배포 방식인 Helm 배포 방식의 구조로 Git 저장소에 Push 할 수 있습니다.)
② ArgoCD가 Git 저장소의 변경 상태를 감지
③ Git 저장소의 변경된 내용을 kubernetes에 배포하여 반영
ㅣ ArgoCD의 주요 기능
◾ 애플리케이션을 지정된 환경에 자동으로 배포
◾
멀티 클러스터 관리기능 제공
◾
OCI, OAuth2, LDAP 등 SSO 연동
◾
멀티 테넌시와 자체적인 RBAC 정책 제공
◾
애플리케이션 리소스 상태 분석
◾
애플리케이션 자동 및 수동 동기화 기능 제공
◾
Argo가 관리하고 있는 쿠버네티스 리소스 시각화 UI 제공
◾
자동화 및 CI 통합을 위한 CLI 제공
위 내용은 ArgoCD가 제공하는 주요 기능을 나열한 것인데요, 이 중에서도 대표적인 다섯 가지 기능에 대해서 자세히 살펴보겠습니다.
① 쿠버네티스 모니터링
ArgoCD는 쿠버네티스를 항상 추적하고 있다가 저장소의 변경사항이 감지되면, 자동으로 클러스터의 상태를 저장소의 상태와 동기화합니다. 또한 문제가 생기면 이전 상태로 롤백 할 수 있으며, 이를 통해 시스템 복구 및 문제 해결을 용이하게 합니다.
② 멀티 클러스터 관리
다중 클러스터 환경에서도 배포를 관리할 수 있어 복잡한 인프라 환경에서의 효율적인 작업을 가능하게 합니다.
③ ArgoCD 대시보드
Argo에서는 클러스터 상태를 효과적으로 관리하고 모니터링할 수 있는 대시보드를 제공합니다.
ArgoCD 대시보드를 통해 애플리케이션의 실시간 상태와 동기화 상태와 같은 전체적인 배포 파이프라인을 자동화하여 시각적으로 확인할 수 있고, 롤백 및 이력 추적 기능도 동시에 제공하고 있습니다.
④ 안전한 인증 및 권한 관리
역할 기반 액세스 제어(RBAC) 및 권한 제어기능을 통해 민감한 정보에 대한 접근을 제어할 수 있습니다.
⑤ GitOps 지원
ArgoCD는 GitOps 방법론을 따르므로 애플리케이션의 배포를 Git Repository와 동기화할 수 있습니다. 이를 통해 코드와 인프라의 일관성을 유지하고 변경사항을 추적할 수 있습니다.
ㅣ Helm과 ArgoCD의 통합 활용 프로세스
Helm과 Argo를 함께 사용하면 개발, 테스트, 배포 프로세스를 효과적으로 관리할 수 있습니다. Helm으로 애플리케이션을 패키징하고 버전을 관리하며, Argo를 활용하여 GitOps 워크플로우를 통해 지속적인 통합 및 배포를 자동화할 수 있습니다.
① develop:
Helm을 사용하여 애플리케이션을 Helm Chart로 패키징 합니다. 이후 개발된 Helm Chart를 저장하기 위한 Git 저장소를 설정합니다. ArgoCD에서 저장한 저장소를 특정 배포 대상 Kubernetes 클러스터와 연결하여, Git 저장소의 변경사항을 감지하고 새로운 배포를 시작하여 클러스터에 적용합니다.
② git push:
개발자가 로컬 저장소 내용을 원격 저장소에 배포합니다.
③ Observe(GitOps):
ArgoCD는 Git 저장소의 변경 사항을 감지하여, 변경사항이 발생하면 새로운 버전의 애플리케이션을 배포하여 자동화 및 일관성을 유지합니다.
④ 운영/테스트/개발
ㅣ마무리
오늘 함께 살펴본 Helm과 ArgoCD 두 가지 강력한 도구를 함께 이용한다면 CI/CD 통합, 버전 관리, 자동화 등의 이점을 활용해서 kubernetes 환경에서 애플리케이션을 더 효율적으로 관리할 수 있습니다.
한편 애플리케이션을 효과적으로 개발하는 것도 중요하지만, kubernetes 환경의 프로세스를 실시간 모니터링하고 추적하여 관리하는 것도 매우 중요합니다.
브레인즈컴퍼니의 kubernetes 모니터링 솔루션 Zenius-K8s는 다양한 CI/CD 도구를 이용하여 개발한 kubernetes 애플리케이션의 전체 클러스터 및 구성요소에 대한 상세 성능 정보를 모니터링하고, 리소스를 추적함으로써 시스템의 안정성과 성능을 높여주고 있습니다.
#쿠버네티스
#Helm
#Argo
#K8s
#kubernetes
#ArgoCD
#ZeniusK8s
강예원
프리세일즈팀
고객에게 특화된 Zenius를 제공하기 위해, 비즈니스 요구에 알맞은 전략적 컨설팅을 제안합니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
SIEM 솔루션, Zenius SIEM의 주요 기능
SIEM 솔루션, Zenius SIEM의 주요 기능
클라우드 컴퓨팅, 컨테이너 기술, 분산 아키텍처의 확산으로 IT 인프라는 점점 더 복잡해지고 있으며, 이에 따라 로그 데이터의 양도 급격히 증가하고 있습니다. 로그 데이터는 시스템 운영 상태를 진단하고 보안 위협을 탐지하는 데 중요한 역할을 하지만, 방대한 데이터의 체계적인 수집, 저장, 분석 없이는 효과적으로 활용하기 어렵습니다. 이와 함께 운영 환경의 다양성과 복잡성이 증가하면서 보안 위협에 노출될 가능성도 높아지고 있습니다. 로그 데이터를 통합적으로 관리하고 분석하지 못할 경우, 잠재적 위협을 놓치거나 대응이 지연될 위험이 커집니다. 이러한 상황에서 로그 데이터를 통합적으로 관리하고 분석하는 SIEM(Security Information and Event Management) 솔루션이 유용한 도구로 자리잡고 있습니다. 그중에서도, Zenius SIEM은 대규모 로그 데이터를 실시간으로 통합 관리하고, 잠재적 위협을 신속히 탐지하여 기업의 운영 안정성을 높입니다. 또한, 다양한 환경에서 데이터 수집과 분석을 지원하고, 규제 준수 기능을 통해 기업의 보안과 운영 효율성을 강화하며 주목받고 있습니다. Zenius SIEM의 주요 기능과 특장점은 무엇인지 자세히 살펴보겠습니다. SIEM 솔루션, Zenius SIEM의 주요기능 5가지 1. 다양한 환경에서의 로그수집 및 통합 관리 Zenius SIEM은 복잡하고 다변화된 IT 환경에서 로그 데이터를 효율적으로 수집하고 통합 과리할 수 있도록 설계된 고도화된 기능을 제공합니다. 이를 통해 다양한 환경과 데이터 소스에서의 로그 관리가 더욱 체계적으로 이루어질 수 있습니다. - 다양한 로그 소스 수집: Syslog, 파일 기반 로그, 데이터베이스(DB) 등 전통적인 로그 소스는 물론, 클라우드 서비스(AWS, GCP, Azure)와 Kubernetes와 같은 컨테이너 환경에서도 로그를 누락 없이 수집합니다. 이를 통해 복잡한 하이브리드 및 멀티 클라우드 환경에서도 로그 관리의 일관성을 유지할 수 있습니다. - 실시간 로그 수집 현황 모니터링: 대량의 로그 데이터가 실시간으로 수집되는 과정을 직관적인 대시보드에서 시각화해 확인할 수 있습니다. 이는 로그 수집 과정에서 발생할 수 있는 문제를 조기에 발견하고 신속히 대응할 수 있도록 지원합니다. - Syslog 유형 자동 분석: 수집된 Syslog 데이터를 자동으로 분류하고 필터링하며, 로그 정규화를 통해 데이터의 분석 가능성을 높입니다. 이러한 기능은 이기종 환경에서 발생하는 다양한 로그 형식의 비효율성을 제거하고, 더욱 정확한 검색 및 분석 결과를 제공하는 데 기여합니다. Zenius SIEM의 이러한 기능들은 로그 관리의 복잡성을 대폭 줄이고, 사용자가 이기종 IT 환경에서도 신뢰성 높은 데이터를 기반으로 운영 결정을 내릴 수 있도록 합니다. 또한, 실시간 데이터 수집 및 모니터링을 통해 잠재적인 문제를 조기에 탐지함으로써 운영 중단과 같은 심각한 상황을 예방할 수 있습니다. 2. 안정적인 로그 저장 및 무결성 검증 Zenius SIEM은 로그 데이터를 안전하게 저장하고 관리하며, 데이터 무결성을 보장하는 데 필요한 다양한 기능을 제공합니다. - OpenSearch 기반 저장소: 대규모 로그 데이터를 효율적으로 저장하고 빠르게 검색할 수 있도록 설계된 고성능 분산형 스토리지를 사용합니다. 이를 통해 실시간 데이터 액세스와 대량의 로그 데이터 처리가 가능해집니다. - 로그 무결성 검증: SHA-256 기반 암호화 해시 기술을 활용하여 수집된 로그 데이터가 변경되거나 손상되지 않았음을 검증합니다. 이는 보안 사고 발생 시에도 신뢰할 수 있는 데이터로 사건을 분석하고 대응할 수 있는 기반을 제공합니다. - 효율적인 로그 압축 및 장기 보관: 장기적으로 저장해야 하는 로그 데이터를 효율적으로 압축하여 스토리지 사용량을 절감합니다. 또한, 보관 주기를 유연하게 설정하여 일정 기간이 지난 데이터를 자동으로 폐기하거나 다른 스토리지로 이관함으로써 데이터 관리의 효율성을 높입니다. - 다중 복제 및 장애 복구: 저장된 로그 데이터를 여러 노드에 중복 저장하여 데이터 유실 위험을 최소화하고, 장애 발생 시 신속하게 데이터를 복구할 수 있는 안정적인 구조를 제공합니다. 이를 통해 중요한 로그 데이터의 가용성을 항상 보장합니다. 이와 같이 로그 데이터의 무결성과 안정성을 보장함으로써, 규제 준수와 감사 대응 능력을 강화할 수 있습니다. 또한, 대량의 로그 데이터를 효율적으로 저장하고 복구 가능성을 확보함으로써, 운영 비용 절감과 데이터 신뢰성을 동시에 달성할 수 있습니다. 3. 정교한 로그 분석 및 상관관계 분석 Zenius SIEM은 단순히 로그 데이터를 저장하는 것을 넘어, 이를 활용해 조직의 운영 효율성과 보안 강화를 위한 정교한 분석 기능을 제공합니다. 구체적으로 아래와 같은 데이터 처리 분석 능력을 통해 보안 위협을 조기에 탐지하고 예방할 수 있도록 지원합니다. - 정밀 검색 기능: Zenius SIEM은 OpenSearch 기반으로 일반 검색과 상세 검색 두 가지 방식을 제공합니다. 일반 검색은 쿼리 스트림 방식을 활용해 간단하고 빠르게 데이터를 검색할 수 있으며, 상세 검색은 쿼리 빌더(Query Builder)를 통해 DQL(Query DSL) 방식으로 정밀한 데이터 탐색을 지원합니다. 두 방식의 장단점을 활용해 필요에 따라 선택적으로 사용할 수 있도록 설계되어, 폭넓은 검색과 정교한 분석을 모두 지원합니다. - 다차원 상관관계 분석: 복합 이벤트 처리 엔진(CEP)을 통해 다수의 로그 데이터를 연계 분석하여 숨겨진 위협 패턴과 이상 징후를 식별합니다. 이를 통해 보안 사고를 사전에 탐지하거나, 네트워크 이상 현상을 빠르게 발견함으로써 조직의 대응력을 강화합니다. - SQL 기반 분석 및 알림: SQL 쿼리를 활용하여 로그 데이터를 세부적으로 필터링하거나 집계하는 정교한 분석이 가능합니다. 특정 조건에 따라 이벤트를 자동 생성하고, 실시간 경고 알림을 발송해 보안 사고 발생 시 신속한 대응을 지원합니다. - AI 기반 예측 분석: 머신러닝 알고리즘을 적용하여 로그 데이터의 이상 패턴을 학습하고, 미래에 발생할 가능성이 높은 위협을 예측합니다. 이를 통해 잠재적 위험을 사전에 경고하여, 조직의 보안 태세를 더욱 강화합니다. 이와 같은 정교한 분석 및 예측 기능을 통해 조직은 단순히 과거 데이터를 검토하는 데 그치지 않고, 미래에 발생할 수 있는 위협을 사전에 예측하고 대응할 수 있습니다. 이는 보안 사고의 위험을 대폭 줄이고, 효율적인 위기 관리 체계를 구축하는 데 기여합니다. 4. 사용자 중심의 데이터 시각화 Zenius SIEM은 방대한 로그 데이터를 직관적으로 시각화하여 데이터의 가독성을 높이고 분석 과정을 단순화함으로써 IT 관리자와 보안 담당자의 의사결정을 효과적으로 지원합니다. - 다양한 시각화 컴포넌트 제공: 막대 차트, 선형 그래프, 테이블, 실시간 데이터 뷰, 3D 그래프 등 26종 이상의 다양한 시각화 옵션을 제공하여 로그 데이터를 다각도로 분석할 수 있습니다. 이러한 시각화 도구는 사용자 요구에 따라 데이터를 직관적으로 탐색하고 비교하는 데 유용합니다. - 실시간 이벤트 오버뷰: 전체 로그 데이터의 상태와 주요 이벤트를 실시간으로 요약하여 한눈에 파악할 수 있는 대시보드를 제공합니다. 또한, 분석 보고서를 자동으로 생성할 수 있는 기능을 통해 반복적인 보고 작업을 간소화하고 분석 효율성을 높여줍니다. - 맞춤형 보고서: 조직별 요구에 맞춘 정기 리포트를 자동으로 생성하여, 주요 운영 지표와 보안 상태를 간략히 요약합니다. 이 리포트는 IT 관리자와 의사결정자에게 필요한 정보를 명확하고 효율적으로 전달합니다. 이러한 시각화 기능을 통해 데이터의 복잡성을 단순화하여 IT 관리자와 보안 담당자가 중요한 정보를 신속하게 이해하고 조치를 취할 수 있습니다. 5. 효율적인 운영 관리 및 자동화 Zenius SIEM은 단순한 로그 분석 도구를 넘어, IT 인프라의 운영 효율성을 높일 수 있는 포괄적인 관리 기능을 제공합니다. 이를 통해 복잡한 환경에서도 일관되고 안정적인 운영을 지원합니다. - 역할 기반 계정 관리(RBAC): 세부적인 권한 설정을 통해 사용자별 접근 권한을 세밀하게 제어하며, 조직 내 각 사용자의 역할에 맞는 최소한의 권한만 부여해 보안성을 강화합니다. 이는 내부 보안 리스크를 줄이고 권한 오남용을 방지하는 데 효과적입니다. - 운영 자동화: 에이전트 설치, 재시작, 상태 모니터링과 같은 반복 작업을 원격으로 자동화하여 대규모 IT 환경에서도 일관된 운영이 가능합니다. 이를 통해 관리자가 주요 업무에 더 집중할 수 있도록 지원하며, 운영 효율성을 높여줍니다. - 리소스 상태 모니터링: 시스템의 CPU, 메모리, 디스크 사용량 등 주요 리소스를 실시간으로 모니터링하여 잠재적인 병목 현상을 사전에 식별하고 예방합니다. 이 기능은 리소스 최적화와 안정적인 서비스 제공에 중요한 역할을 합니다. - 클러스터 환경 지원: 다수의 장비와 복잡한 분산 시스템에서도 효율적으로 관리 작업을 수행할 수 있도록 설계되었습니다. 클러스터링 기능을 통해 고가용성(High Availability) 환경을 지원하여, 장애 상황에서도 서비스 연속성을 보장합니다. 운영 자동화와 효율적인 관리 기능을 통해 IT 팀의 업무 부담을 줄이고, 복잡한 인프라에서도 일관된 운영 체계를 유지할 수 있습니다. 이는 운영 생산성을 높이는 동시에 운영 중단 시간(Downtime)을 최소화하여 서비스의 안정성을 보장합니다. 다른 SIEM 솔루션과 비교 시, Zenius SIEM의 장점은?! Zenius SIEM은 현대 IT 인프라의 복잡성을 해결하고, 대규모 로그 데이터를 효율적으로 관리 및 분석하도록 설계된 차별화된 SIEM 솔루션입니다. - 실시간 데이터 수집 및 안전한 관리: 클라우드, 컨테이너, 분산 아키텍처로 인해 급증하는 로그 데이터를 실시간으로 수집하고 저장하며, SHA-256 기반의 무결성 검증과 TLS/SSL 암호화 통신을 통해 데이터의 보안과 무결성을 보장합니다. 이러한 기능은 민감한 데이터가 포함된 환경에서도 높은 신뢰성을 제공합니다. - 업계 최고 수준의 성능: Zenius SIEM은 1TB 규모의 데이터를 0.02초 이내에 검색할 수 있는 업계 최고 수준의 검색 속도를 자랑하며, 무중단 스케일 아웃 기능을 지원해 대규모 IT 환경에서도 안정적이고 유연한 확장이 가능합니다. 이는 대규모 엔터프라이즈 환경에서 필수적인 요구 사항을 충족합니다. - 정교한 상관관계 분석: 복합 이벤트 처리(CEP) 엔진을 활용해 다중 로그 이벤트 간의 숨겨진 패턴을 탐지하여 위협을 조기에 식별하고 대응할 수 있습니다. 이를 통해 기존의 단편적인 로그 분석을 넘어선 정교한 위협 탐지와 보안 사고 예방이 가능합니다. - 강력한 검색 및 분석 기능: DQL(Query DSL) 및 OpenSearch Query String 방식을 활용한 정밀 검색과 통계 분석 기능을 통해 사용자는 로그 데이터를 깊이 있게 탐구하고 활용할 수 있습니다. 이 기능은 데이터 중심의 의사결정을 지원하며, 복잡한 IT 환경에서의 로그 분석 효율성을 높입니다. - 사용자 친화적인 시각화 및 대시보드: 25종 이상의 시각화 컴포넌트(차트, 선형 그래프, 테이블 등)를 활용해 수집된 로그 데이터를 직관적으로 표현할 수 있는 대시보드를 제공합니다. 이를 통해 IT 관리자와 보안 담당자는 시스템의 운영 상태를 한눈에 파악하고, 중요한 데이터를 빠르게 이해할 수 있습니다. Zenius SIEM은 이러한 강력한 기능과 뛰어난 확장성을 바탕으로, 로그 관리와 보안 운영에서 차별화된 가치를 제공합니다.
2025.01.24
다음 슬라이드 보기