반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
SMS를 통한 서버관리는 꼭 이렇게 해야만 한다?!
네트워크 정보 수집 프로토콜의 모든 것 (SNMP, RMON, ICMP, Syslog)
임형섭
2024.03.04
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
무선 AP를 WNMS를 통해 올바르게 관리하는 방법
지난 포스팅을 통해
NMS의 기본 개념
과
NMS의 구성요소와 역할
에 대해서 살펴보았는데요. 오늘은
네트워크 정보 수집을 위한 다양한 프로토콜
에 대해서 자세히 알아보겠습니다.
네트워크 프로토콜(Network Protocol)은 네트워크에 연결된 장비 간의 메시지 흐름을 통제하고 관리하는 기본적인 절차와 규칙을 정한 규약입니다.
웹 브라우저, 파일 전송, 이메일 송수신, 미디어 스트리밍 등과 같은 모든 온라인 활동을 가능하게 하기 때문에 네트워크 정보 전달의 핵심요소라고 할 수 있죠.
이번 시간에는 주요
네트워크 프로토콜인 ICMP, SNMP
를 중점적으로 알아보겠습니다.
ㅣICMP는 무엇이고 어떻게 동작하는가?
ICMP(Internet Control Message Protocol)는 주로 네트워크의 경로상의 문제나, 호스트(단말)의 문제 등을 파악할 때 사용하는 프로토콜인데요. 대표적인 서비스가 ping입니다. 구체적인 동작원리를 살펴보면 다음과 같습니다.
오류 보고
◾ 네트워크에서 데이터를 보낼 때 오류가 발생하면, 오류를 발생시킨 장비(예: 라우터, 스위치)는 오류 정보를 담아 ICMP 메시지를 처음 보낸 사람에게 전송합니다. 이를 통해 무엇이 잘못됐는지 정확히 파악하고 문제를 해결할 수 있습니다.
◾ 예를 들어 한 컴퓨터에서 인터넷을 통해 데이터를 보내는데, 그 데이터가 목적지에 도달하지 못하면 ICMP가 '이 주소로는 데이터를 배달할 수 없어!'라고 알려주는 역할을 하죠. 이렇게 사용자나 네트워크 관리자가 문제를 알리고 대응할 수 있게 도와주는 게 ICMP의 주요 역할입니다.
[그림] ICMP 동작 방식
진단 및 테스트
◾ 네트워크의 연결 상태나 성능을 테스트하기 위해 ICMP 에코 요청과 에코 응답 메시지를 사용합니다. 이를 통해 네트워크의 지연시간(latency)이나 패킷 손실(packet loss) 등을 측정할 수 있습니다. '핑(ping, Packet INternet Groper)'을 대표적인 예로 들 수 있습니다.
◾ 쉽게 표현하면 '너 지금 연결 잘 되어 있니?'라고 물었을 경우 대상 장비가 '응, 잘 되어 있어!'라고 대답하면 연결이 잘 되어 있는 것이고, 대답이 없거나 늦는 것과 같은 문제를 식별하는 것이죠.
ICMP도 좋은 도구이지만, 네트워크의 복잡성이 빠르게 증가하고 호스트 수가 증가하면서 ICMP만으로는 네트워크 관리가 어려워지는 문제가 발생했는데요. 이를 개선하기 위해서 탄생한 것이 바로 SNMP입니다.
우선 SNMP의 히스토리부터 살펴보겠습니다.
ㅣSNMP 히스토리: 각 버전별 개념과 차이점은?
SNMP(Simple Network Management Protocol)는 1988년에 아래의 세 가지 니즈에 부합하기 위해 등장했습니다.
◾ ICMP보다 많은 기능의 탑재
◾ 네트워크 문제를 직관적이고 쉽게 해결할 수 있어야 함
◾ 표준화된 프로토콜의 사용
이후 몇 가지 버전을 거쳐서 현재는 네트워크 장비를 모니터링하기 위한 프로토콜로 자리를 잡아서 대부분의 NMS 상에서 이용되고 있습니다.
잠깐 SNMP의 처리단계를 살펴보면, SNMP는 Get/Set/Trap의 단순 명령 구조로 구성되는데요, 메시지 타입별 역할은 아래와 같이 정리할 수 있습니다.
위와 같은 처리단계를 가지고 있는 SNMP는 보안 기능 강화 및 기능 개선을 위해서 초기 v1 버전에서 v3 버전까지 업그레이드됐습니다.
각 버전은 보안, 성능, 유연성 등의 측면에서 발전되었으며 현재는 SNMPv2가 가장 많이 사용되고 있죠. SNMP 버전 별 특징에 대해서 자세히 알아보겠습니다.
SNMP v1
가장 초기에 만들어진 프로토콜로 기본적인 정보만을 주고받아서 네트워크 장비들의 상태를 확인하고, 간단한 명령 정도만 내릴 수 있습니다. 보안에 많이 약한 편이고, 정보를 주고받을 때 특별한 암호화나 보호 방법을 사용하지 않기에 정보가 노출될 위험이 있습니다.
SNMP v2
SNMPv1의 단점을 해결하기 위해 개발된 버전입니다. 보안 기능과 네트워크 과부하, 관리 효율성 등에 대한 기능이 향상되었습니다.
MIB(Management Information Base) 구조를 개선하여, 새로운 데이터 타입과 객체 식별자(프로그래밍에서 특정 객체를 식별하는 데 사용되는 값이나 이름)을 도입했습니다. 이로써 더 많은 종류의 데이터를 효과적으로 다룰 수 있게 되었지만, v1과 호환이 안되는 문제가 있어 상용화에는 실패했습니다.
SNMP v2c (Community-Based Security)
SNMPv2c는 '커뮤니티 기반' 방식을 사용하며 'Community String' (공동체 문자열)을 이용합니다. Community String은 정보를 주고받기 위해 인증 과정에서 비밀번호를 사용하는 것으로, 학교에서 특정 비밀번호를 알고 있는 사람들만 특정 정보를 볼 수 있게 하는 것과 비슷합니다.
하지만 비밀번호가 복잡하지 않은 편이라, 조금 더 높은 보안을 필요로 하는 경우에는 적합하지 않을 수 있습니다. 현재 가장 많이 사용되고 있는 버전입니다.
SNMP v3
보안과 관리 기능을 대폭 강화한 버전입니다. SNMPv3는 정보를 주고받을 때 강력한 인증과 암호화를 사용하여, 네트워크 상의 중요한 정보를 안전하게 지킬 수 있습니다.
또한 복잡한 네트워크 환경에서 사용자가 많을 경우에도, 각 사용자의 접근 권한을 관리할 수 있는 기능이 있습니다. 하지만 이전 버전들보다 더 복잡한 보안 모델과 설정 등의 이유로 널리 사용되고 있지는 않습니다.
[그림] SNMP 버전과 수를 한눈에 볼 수 있는 제니우스 EMS 화면
참고로 SNMP에는 위와 같이 다양한 버전이 있기 때문에 모든 NMS는 제니우스처럼 어떤 버전으로 수집했는지와 수를 파악할 수 있어야 합니다.
이제 SNMP에 대해서 조금 더 자세하게 살펴보겠습니다.
ㅣSNMP 자세히 보기: MIB의 개념과 구조
MIB(Management Information Base)는 관리 정보 기반이라고 불립니다. SNMP를 통해 관리되어야 할 정보나 자원들을 모아둔 것으로, Manager와 Agent 간 정보를 주고받는 정보의 집합체입니다.
MIB에는 SNMP를 통해 주고받는 정보가 어떤 의미를 가지고 어떻게 사용될 수 있는지에 대한 정의가 포함되어 있습니다. 또한 각각의 정보는 '객체'라고 불리며, 이 객체들은 계층적으로 구성되어 있기에 관리하고자 하는 정보를 쉽게 찾을 수 있게 도와주죠.
대표적으로 CPU 사용량, 메모리 사용량, 포트의 up/down 같은 상태 정보 등이 MIB에 포함됩니다. 마치 항해사가 바다를 항해하기 위해 지도를 사용하는 것처럼, MIB를 통해 네트워크의 상태를 정확히 파악하고 필요한 조치를 취할 수 있습니다.
MIB의 구조를 자세히 살펴보면 우선 큰 나무를 뒤집어 놓았다고 생각한다면 이해하기 쉽습니다. 큰 나무의 밑동(Root) → 각각의 가지(Branches) → 잎사귀(Leavers)로 나누어져 내려오는 형태인데요, 부분별로 자세히 살펴보겠습니다.
◾
밑동(Root):
모든 MIB 트리의 시작점으로, 'iso(1)', 'org(3)', 'dod(6)', 'internet(1)' 등으로 구성되어 있습니다. 여기서 'internet'은 네트워크 장비와 관련된 표준 MIB를 나타냅니다.
◾
가지(Branches):
밑동에서 나온 큰 가지들은 네트워크 장비의 다양한 부분을 나타냅니다. 예를 들어 'mgmt(2)' 가지는 일반적인 관리 정보, 'private(4)' 가지는 각 제조업체의 고유 정보 등을 의미합니다.
◾
잎사귀(Leaves):
가장 작은 단위의 정보를 나타내는 부분으로 특정 장비의 상태, 성능 지표, 설정값 등 구체적인 데이터가 저장됩니다.
MIB에서는 네트워크 장비의 정보가 여러 '분류'로 나누어져 있는데, '네트워크 인터페이스'라는 분류 아래에는 네트워크 카드의 상태, 속도, 전송된 데이터의 양과 같은 정보들이 담겨 있습니다.
MIB는 복잡해 보일 수 있지만, 네트워크 장비와 관련된 정보를 체계적으로 관리하고 접근할 수 있도록 설계되어 있습니다. 이 구조 덕분에 네트워크 관리자는 네트워크의 건강 상태를 쉽게 체크하고 필요한 조정을 할 수 있습니다.
다음으로는 MIB 내의 각 객체를 고유하게 식별하는 OID에 대해서 알아보겠습니다.
ㅣSNMP 자세히 보기: OID 확인 방법과 수집항목
OID(Object Identifier)는 MIB 내에 포함되어 있는 각 개별 정도에 대한 ID 값입니다. 아래 그림에서 볼 수 있듯이, 트리의 하단 값이 OID인데 MIB의 각 개별 정보에 대한 ID를 의미합니다.
[그림] OID Tree 구조
대형 도서관에서 원하는 책을 찾을 때 책의 번호를 확인하여 빠르고 정확하게 찾는 것처럼, 특정 오브젝트의 ID(Num)을 부여한 게 OID입니다. OID는 포함하고 있는 각 정보를 숫자로 표현합니다.
◾
Enterprise OID:
네트워크 업계에서 공통으로 사용하는 OID
◾
Private OID:
각 네트워크 벤더사에서 사용하는 독자적인 OID
예를 들어 Juniper Networks라는 네트워크 스위치 벤더에서 사용하고 있는 OID 값을 [1.3.5.6.1.9 ]라는 전용 OID 값을 사용한다고 가정하면, Juniper Networks 라우터의 경우 뒤에 라우터 제품별 OID '11'이 더 붙은 [1.3.5.6.1.9.11 ] 형태의 OID로 구성됩니다.
[그림] 제니우스 예시 화면
지금까지 네트워크 모니터링에 필요한 ICMP, SNMP 그리고 MIB, OID에 대해 살펴봤습니다. 참고로 제니우스(Zenius)-NMS에서는 OID 사전을 제공하고 있으며, 이를 통하여 관리하고 싶은 항목의 MIB 항목 및 OID 정보를 쉽게 찾을 수 있습니다.
이제 SNMP의 주요 개념 중 하나인 SNMP Trap에 대해서 알아보겠습니다.
ㅣSNMP Trap의 개념 그리고 특징은?
Manager(관리자)는 Server(Agent)로 메시지 요청(Polling)을 하게 되고, Server(Agent)는 응답(Notifying)을 하는 방식으로 진행됩니다.
그런데 Server가 비정상적인 이벤트를 감지하면 Manager의 Polling을 기다리지 않고 바로 Manager에게 메시지를 보내는데요, 이 긴급 메시지를 Trap(트랩)이라고 합니다. 우리가 날씨에 대해서 찾아보지 않아도 폭설이 예상될 때 폭설을 경고하는 자동 알림 시스템과 비슷한 개념입니다.
[그림] SNMP 프로토콜 동작 방식
SNMP Trap은 일반적으로 높은 CPU 사용량이나 디스크 공간 부족과 같이 해결해야 할 문제를 나타냅니다. 중앙 모니터링 시스템으로 전송되어 분석 및 조치를 취할 수 있죠. 이를 통해 Manager는 큰 문제가 발생하기 전에 잠재적인 문제를 신속하게 식별하고 해결할 수 있습니다.
SNMP Trap의 방식과 기능을 네 가지로 나누어 살펴보겠습니다.
(1) 비동기적 알림
SNMP Trap는 주기적인 폴링이 아닌, 이벤트 기반의 알림을 통해 즉각적으로 대응할 수 있도록 비동기적인 방법을 제공합니다.
(2) 실시간 알림
SNMP Trap은 이벤트가 발생하는 즉시 알림을 제공하여, 실시간으로 네트워크 상태 및 장치 상태를 모니터링해서 문제 발생 시 즉각적인 대응과 조치를 가능하게 합니다.
(3) 이벤트 기반 모니터링
SNMP Trap은 장치나 응용 프로그램에서 특정 이벤트가 발생했을 때만 알림을 보내기 때문에, 불필요한 트래픽을 발생시키지 않습니다. 따라서 자원을 효율적으로 사용하면서 중요한 상태 변경을 식별합니다.
(4) 자동화된 대응
SNMP Trap을 사용하면 이벤트 발생 시, 자동으로 대응 조치를 취할 수 있는 자동화 시스템을 구축할 수 있습니다. 이를 통해 관리자의 개입 없이 특정 이벤트에 대한 대응을 효과적으로 수행할 수 있습니다.
[그림] Zenius Syslog 감시 설정 등록 페이지(위), Zenius Syslog 이벤트 페이지(아래)
이와 같은 SNMP Trap을 통해 빠르게 이상을 탐지하는 것이 중요한데요. 제니우스(Zenius)-Syslog와 Trap에서는 Syslog, Trap에 각각 특정 이벤트 조건을 설정하여 이벤트를 감지하고, 장애를 통보할 수 있는 기능을 제공하고 있습니다.
이제 마지막으로 SNMP 못지않게 네트워크 관리에 중요한 역할을 하는 Syslog, RMON에 대해서 알아보겠습니다.
ㅣ Syslog, RMON의 개념과 동작원리는?
Syslog
Syslog는 컴퓨터 시스템, 네트워크 장비, 보안 장비 등에서 일어나는 모든 상황과 변화를 서버에 기록하는 프로토콜입니다. 관리 대상인 장비에서 일어나는 모든 상황을 메모리에 기록하죠. 로그/오류 관리가 주 목적이고 Unix와 Linux에서 많이 사용됩니다.
대부분의 라우터와 스위치들은 Syslog 프로토콜을 이용하여 Log들을 Syslog 서버로 보내고, 수백수천 대의 장비에 일일이 접속하여 로그를 볼 수 없기 때문에 '중앙 집중식'으로 관리합니다.
작업 방식은 주로 Client-Push 모델로 이러우지고 있고, 장비에서 일어나는 모든 상황 변화를 Layer4 프로토콜이 메모리에 기록하며, Syslog 서버는 UDP 포트 514에서 메세지를 수신합니다.
Syslog 수집항목은 시스템 운영/네트워크/보안/애플리케이션 등과 관련된 로그를 수집 및 분석하고, 각 항목별로 오류와 트랜잭션 등에 대한 내용을 확인합니다.
출처ⓒ viettelco.net
RMON
RMON(Remote Network Monitoring)은 네트워크 장비나 서버에서 발생하는 트래픽과 문제들을 원격에서 감시하기 위해 만들어진 프로토콜로, SNMP보다 확장된 개념이라고 할 수 있습니다.
네트워크 관리자는 RMON을 통해, 네트워크의 성능을 측정하고 문제가 발생했을 때 신속하게 해결할 수 있습니다. 회사에서 인터넷이 느려지거나 연결이 되지 않을 때 RMON을 사용하면 원인을 빠르게 찾아내어 문제를 해결할 수 있죠.
RMON과 SNMP의 연관성을 우선 아래 이미지를 통해 살펴보겠습니다.
출처ⓒ dpstele.com/blog/what-is-rmon.php
좀 더 자세히 살펴보면
◾ RMON은 SNMP 위에서 작동하며, SNMP 보다 더 광범위한 데이터를 수집/분석할 수 있는 기능을 제공합니다.
◾ SNMP가 네트워크의 '기본적인 통신'을 담당한다면, RMON은 그 위에서 보다 '세밀한 관찰과 분석'을 가능하게 합니다.
◾ RMON은 SNMP의 특정 데이터를 사용하여 네트워크 트래픽 패턴이나, 성능 문제, 네트워크 내의 비정상적인 활동 등을 실시간으로 감시하고 기록할 수 있게 해줍니다.
◾ RMON에서 Probe라는 수행 장비를 사용하며, 네트워크 트래픽 및 통계 수집 그리고 성능 모니터링을 위해 활용합니다.
결과적으로 RMON의 기능을 통해 네트워크의 문제를 더 빨리 발견하고, 효율적으로 대응할 수 있죠.
마지막으로 SNMP, RMON, ICMP, Syslog의 주요 내용들을 아래 표를 통해 한눈에 살펴보겠습니다.
。。。。。。。。。。。。
지금까지 네트워크 정보 수집을 위한 다양한 프로토콜의 종류와 특징에 대해서 알아보았습니다. 효과적인 네트워크 관리를 위해서 혁신적인 기술들이 많이 개발되고 있는데요, 이를 활용해서 성공적으로 네트워크를 운영하시기를 바라겠습니다!
#네트워크 프로토콜
#SNMP
#RMON
#ICMP
#Syslog
임형섭
프리세일즈팀
안정적이고 효과적인 비즈니스 운영을 위한 고객 맞춤형 IT 인프라 모니터링 시스템을 제안합니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
[행사] 근로자의 날 서프라이즈 이벤트 'CEO가 쏜다!'
[행사] 근로자의 날 서프라이즈 이벤트 'CEO가 쏜다!'
여느 때와 다르지 않은 월요일, 아니 5월 1일 근로자의 날 덕분에 다소 마음이 가벼웠던 지난 4월 29일, 브레인즈컴퍼니 본사 1층 앞에 특별한 차량이 도착했습니다! │본사 1층 앞, 특별한 커피차가 등장하다 본사 1층 앞에 등장한 차량은 예쁜 외관을 갖춘 커피차였습니다! 브레인즈 그룹의 대표인 선근 님께서 근로자의 날을 맞아 브레인즈컴퍼니와 에이프리카 구성원분들을 위해 직접 준비해 주셨는데요. 단순히 커피만 준비된 게 아니었습니다. 아메리카노, 카페라떼, 바닐라라떼 등의 커피류부터 리버레몬에이드, 핑크 리치 에이드, 샤인 머스캣 에이드, 뱅쇼 에이드와 같은 에이드류와 티! 그리고... 달콤하고 신선한 다양한 과일이 담긴 과일 컵까지 준비되어 있었습니다! '브레인즈 그룹 모두 모여라!'라는 팻말처럼, 커피차 이벤트 앞에 구성원분들이 삼삼오오 모이기 시작했는데요. 어떤 메뉴를 고를지 화기애애한 웃음과 목소리가 끊이질 않았습니다. "갑자기 1층에 커피차가 있어서 깜짝 놀랐어요. 선근 님이 앞치마 하면서 서빙해 주셨던 모습도 인상적이었습니다(웃음). 특히 음료에 붙어있던 '여러분이 있어 정말 든든합니다'라는 문장에 감동받았어요!" "1층에 커피차가 있어서, 근처에 무슨 행사하나 보다 했는데 저희를 위한 선물이었다니. 정말 감동했습니다. 촬영해서 친구들에게 보여주기도 했어요. 다들 깜찍하다고 하더라고요(웃음). 이렇게 소소한 이벤트를 열어주신 선근 님께 감사의 말씀 전합니다!" 등의 반응들로 감동과 즐거움을 엿볼 수 있던 시간이기도 했습니다. 또한 이날 선근 님께서는 브레인즈 구성원분들을 위해 손수 서빙과 더불어, 따뜻한 응원 메시지까지 함께 전달해 주셨습니다. 하지만 이날 커피차 이벤트는 단순히 음료와 간식만 준비된 것이 아니었는데요. │두근두근 '꽝 없는' 룰렛 이벤트! 바로 커피차와 함께 선근 님께서 준비한 '꽝 없는 룰렛 이벤트!'가 기다리고 있었습니다. 1등(5만 원 상품권)을 비롯해서 별다방 상품권, 츄파춥스 등이 선물로 준비되어 있었는데요. 모든 브레인즈 구성원분들에게 공평하게 룰렛을 돌릴 수 있는 기회가 주어졌습니다. 모두 두근거리는 마음으로 신중하게 룰렛을 돌리는 시간이 이어졌는데요. 룰렛 이벤트를 통해 여기저기서 터져 나오는 함성과, 아쉬움에 섞인 탄식, 그리고 상품권이 당첨되면 환호하는 소리까지 다양한 감정이 섞여있던 재미있는 시간이었습니다. "색다른 이벤트로 오랜만에 리프레시도 되고, 타팀들과 함께 룰렛 돌리기를 하면서 서로 얼굴 마주하고 인사도 가질 수 있는 시간이라 더 좋았어요. 이런 소확행 이벤트 덕분에 월요일 하루가 너무 즐거웠어요!" 라는 훈훈한 반응도 이끌어낼 수 있었습니다. 그렇다면 대망의 5만 원 상품권을 차지한 분은 두구-두구-두구! 누구일까요? 바로 인프라코어팀 성현진님이었습니다. 축하드립니다! 1등이 생각보다 빠르게 나오는 바람에, 선근 님께서는 '현금으로 쏜다!' 추가 이벤트를 진행해 주셨는데요. 무려 네 분을 더 추가로 선정했습니다! "근로자의 날을 미리 축하하는 이벤트를 통해 시원하고 맛있는 음료도 먹고, 예상치 못한 1등이란 이득까지 생겨 기분 좋게 일할 수 있었습니다. 오늘 정말 기억에 남는 하루가 될 것 같아요. 재밌는 이벤트를 열어주셔서 감사드립니다!" "행여나 5만 원 권 상품권이 없을까 봐 점심을 먹고 바로 달려왔는데, 보람이 있었네요! 좋은 이벤트에 5만 원 상품권까지! 오늘 커피차 이벤트 덕분에, 의미 있는 하루를 보낼 수 있었습니다. 이 5만 원은 좋은 곳에 쓰겠습니다(웃음)." 이렇게 추가 1등 당첨자분들의 벅찬 소감도 들어볼 수 있었습니다. 이번 'CEO가 쏜다!' 이벤트를 통해 직원들에게 단순한 감사의 표시를 넘어서, 브레인즈 그룹의 핵심 가치 중 하나인 '행복하게 일하는 환경'을 위해 실천하려는 모습이 엿보였던 행사였습니다. 선근님의 ❤ 그리고 무엇보다 직원들의 행복과 만족을 최우선으로 생각하는 선근 님의 따뜻한 마음도 직접 느낄 수 있던 시간이었었는데요, 앞으로도 이러한 활동을 통해 모두가 행복하게 일할 수 있는 환경'을 만들고자 합니다. 브레인즈컴퍼니의 다음 이야기도 기대해 주세요!
2024.05.02
무선 AP에 대해서 꼭 알아야 할 세 가지
무선 AP에 대해서 꼭 알아야 할 세 가지
지난 시간에는 무선 AP를 '어떻게' 하면 효과적으로 관리할 수 있는지에 대한 TIP을 알려 드렸었는데요(링크). 여기서 잠깐, 무선 AP란? '무선 AP'는 Access Point의 약자로 Wireless Access Point 라고 하며, WAP으로 불리기도 합니다. 실제 인터넷으로 연결되는 신호는, 무선 신호를 받아서 유선 신호 체계로 전달해 주는 매개체가 필요한데요. 이를 AP가 담당합니다. 이름 그대로 Access Point로서 유선 신호를 무선으로 바꿔주거나, 무선 신호를 유선으로 바꾸는 접촉 지점의 역할을 하죠. 이번 시간에는 구성요소, 주요 활용사례, 관리 시스템 등 AP와 관련해서 꼭 알아야 할 세 가지를 살펴볼 예정입니다. 우선 그전에 무선 AP가 최근에 '왜' 필요해졌는지부터 짚어보겠습니다. │무선 AP의 필요성 무선 AP는 일반적인 유선 공유기보다, 설치 장소에 구애받지 않는다는 점에서 차별점을 가지고 있습니다. 무선 안테나가 AP에 자체적으로 내장되어 있고 PoE 기능을 통해 일반적인 가정에서 사용하는 유선 공유기보다 자유롭게 설치될 수 있죠. 이외에도 AP는 아래와 같은 특장점으로 각광받고 있습니다. 가용성 무선 AP는 일반적인 유무선 공유기보다 무선으로 연결된 기기를 더 많이 수용할 수 있는데요. 대규모 인원을 수용해야 하는 기업/공공 지자체/백화점/카페 등 대규모 클라이언트가 필요한 장소의 원활한 네트워크 연결을 용이하게 한다는 점에서 가용성이 뛰어납니다. 관리적 측면 무선 AP는 자신을 포함하여 대역을 무선으로 연결해 주는 기능이 기본적인 역할입니다. 하지만 부가적으로 무선관리 시스템으로부터 중앙 컨트롤을 받으며, 클라이언트의 통신 상태를 체크하는 기능을 가지고 있는데요. 사용자 확인부터 트래픽 양, 웹 접속 권한 설정과 알람까지 폭넓은 관리 기능을 제공하고 있습니다. 대규모 클라이언트 지원 일반적인 가정이 아닌 학교/기업/공공장소와 같은 대규모 클라이언트에 동시 접속을 하기 위해선, 대규모 접속을 처리할 수 있는 무선 AP가 필요합니다. 일반적인 공유기의 경우 약 한정된 IP만 할당받을 수 있으며, 인원이 많아질수록 속도 저하나 부하가 발생하기 때문이죠. 반면 무선 AP는 이러한 대규모 환경에서 접속을 효과적으로 처리할 수 있습니다. 편리성 무선 AP는 *SSID(Service Set Identifier)1가 하나로 통합되어, 접속 환경이 달라지더라도 무선 신호를 다시 잡을 필요가 없습니다. 반면 가정용 공유기의 경우 SSID가 별도로 분리되어 있어, 무선 신호 연결을 할 때마다 별도의 인증 절차를 거치게 되죠. 물론 공유기도 AP 모드로 SSID를 통합하여 사용할 수 있지만, 이는 네트워크 속도의 저하를 일으킬 수 있습니다. *SSID1: Wifi 공유기 검색할 때 나오는 명칭 이름(ex. SK_WifiXXXX) │무선 AP를 활용한 주요 사례 무선 AP는 앞에서도 언급했지만 대규모 환경에 적합하여, 다양한 분야에서 지속적으로 확대되고 있는데요. 몇 가지 대표적인 사례를 통해 좀 더 살펴보겠습니다. 디지털 뉴딜 정책 : 공공 와이파이 전환 사업 한국지능정보진흥원(NIA)에서는 2023년에 전국의 공공장소에 무선 인터넷 인프라를 대폭 확장하는 사업을 진행했습니다. 이 계획에 따라 그 해에만 4,400개의 새로운 공공장소에 공공 와이파이가 설치되어, 전체적으로 5.8만 개의 공공장소에서 공공 와이파이를 이용할 수 있게 되었습니다. 당진시 공공 와이파이 존 구축 당진시는 2018년까지 꾸준히 인구가 증가한 도시 중 하나입니다. 이러한 변화에 맞춰 교통과 물류의 인프라가 획기적으로 개선되었습니다. 더불어 당진시는 공공 와이파이 수요 증가에 대응하기 위해, Cisco AP 제품을 사용하여 시내 주요 지점에 공공 와이파이존을 확대하는 사업을 추진했습니다. 이 밖에도 국내 여러 도시에서는 스마트 시티 구축을 목표로, 도시 곳곳에 무선 AP를 설치하여 시민들이 어디서나 인터넷에 쉽게 접속할 수 있는 환경을 조성하고 있습니다. 대형 쇼핑몰, 카페 체인점(ex. 스타벅스), 호텔 등 상업 시설에서도 고객 경험 개선을 위해 무선 AP를 활용한 와이파이 서비스를 제공하고 있죠. 그렇다면 네트워크 환경에서 AP가 잘 관리될 수 있도록, 필수적으로 확인해야 하는 구성 요소는 무엇일까요? │무선 AP의 네트워크 환경 구성 요소 [그림] 무선 AP의 네트워크 환경 구성 요소 무선 AP를 구축하고 잘 관리하기 위해서는 AP 컨트롤러, LWAPP 프로토콜, PoE, UI 구성 요소들이 필요한데요. 각각 구성 요소들이 어떤 역할을 하는지 파악해 보겠습니다. AP 컨트롤러 AP 컨트롤러(WLC, Wireless Lan Controller)는 다량의 AP를 관리합니다. AP의 작동 상태를 실시간으로 모니터링하며, 접속 상태 확인과 AP 설정하는 역할을 담당하죠. 또한 로드밸런싱(대역폭 분산)과 함께 일부 AP 장애 시 주변 AP를 통한 장애 감지 기능, 플랫폼을 통한 클라이언트 접속 상태에 대한 실시간 모니터링 기능을 제공합니다. LWAPP 프로토콜 이때 AP 컨트롤러와 무선 AP 간의 통신을 위한 프로토콜인 LWAPP(Lightweight Access Point Protocol)가 필요한데요. LWAPP 프로토콜을 통해 각 AP는 컨트롤러로부터 자동으로 구성되고, 보안 업데이트를 받으며, 사용자 접속을 관리할 수 있기 때문이죠. 예를 들어 LWAPP 프로토콜 덕분에 쇼핑몰 방문객들은 어디서나 끊김 없는 와이파이 접속을 경험할 수 있으며, 운영자는 효율적으로 네트워크를 관리할 수 있습니다. PoE PoE(Power of Ethernet)는 무선 AP에 붙어 있는 이더넷 전원 장치로, 인터넷 케이블 하나에 데이터와 전원을 동시에 보내는 기술입니다. PoE를 이용하여 전원 코드를 따로 꽂을 필요가 없어, 설치가 간편하죠. 또한 별도의 어댑터 연결 없이 PoE 전송이 가능한 WAN 케이블 연결만 하면, 네트워크 기능과 전원 기능을 모두 구현할 수 있습니다. 이를 통해 AP의 벽면이나 천장에 설치가 가능합니다. UI AP 컨트롤러와 연계된 UI(UserInterface)로 AP 관리가 가능하며, AP에 연결된 클라이언트까지 확인할 수 있습니다. UI 화면을 통해 어느 정도의 트래픽을 사용했는지 확인할 수 있으며, AP의 이름(SSID)과 암호를 지정할 수 있습니다. 또한 AP에 연결된 클라이언트의 외/내부 관리가 가능합니다. Cisco Meraki와 Ruckus의 경우, AP 컨트롤러와 AP를 웹 화면으로 관리할 수 있는 UI 환경을 제공하는데요. 다음 사례를 통해 좀 더 자세히 살펴보겠습니다. │무선 AP와 컨트롤러 관리 시스템 앞에서 살펴본 것처럼 대규모의 무선 AP와 컨트롤러를 관리하기 위해서는 UI 환경, 즉 '모니터링'이 필수적인데요. 무선 AP와 컨트롤러를 모니터링할 수 있는 대표적인 사례를 살펴본다면 다음과 같습니다. Cisco Meraki [그림] Cisco Meraki 주요 장비 Cisco Meraki는 Cisco의 주요 AP, WAN, 스위치, 제품에 대한 모니터링이 가능합니다. Cisco 자체의 대시보드를 통해 장비와 현황 헬스 체크가 가능하며, 클라이언트의 실시간 사용속도와 AP에 연결된 클라이언트 리스트 역시 확인할 수 있죠. 또한 구글맵을 연동하여 주요 네트워크 장비의 위치 기반 모니터링이 가능합니다. Ruckus Networks Ruckus는 자사 네트워크 장비인 스위치, AP, AP 컨트롤러와 클라우드 관리 시스템을 제공하는 AP 전문 기업입니다. 컨트롤러와 연계된 웹 UI로 네트워크 상태를 원격으로 파악할 수 있죠. 또한 Ruckus의 대시 보드를 통해 주요 장비의 네트워크의 지리적 위치와 AP, 그리고 클라이언트 모니터링이 가능합니다. WNMS AP 벤더가 제공하는 AP 컨트롤러 관리 솔루션 외에도 WNMS(Wireless Network Monitoring System)를 통한 이기종 AP 관리가 가능합니다. 대규모 엔터프라이즈 환경에서는 다양한 이기종의 AP를 사용하는 경우가 많은데요. 이러한 환경에서 WNMS는 트래픽과 클라이언트 사용량을 확인할 수 있을 뿐만 아니라, 다양한 종류의 AP를 함께 관리할 수 있습니다. 이처럼 다양한 제조사의 AP를 하나의 시스템에서 통합적으로 관리할 수 있기 때문에, 대규모 환경에서 네트워크 관리를 효율적으로 운영할 수 있겠죠. [그림] Zenius-WNMS 모니터링 뷰 Zenius-WNMS 모니터링 화면을 보며 좀 더 자세히 살펴볼게요. Cisco와 Ruckus는 자사의 AP 무선 장비만 모니터링할 수 있는 솔루션인 반면, Zenius-WNMS는 AP 장비의 전체 운영 상황과 세부정보들을 모니터링할 수 있습니다. 컨트롤러, AP 장비 운영 상태, 벤더명, 주요 모델 및 트래픽 현황, 접속된 클라이언트 수 등 또한 확인이 가능합니다. [그림] Zenius-WNMS로 보는 무선 AP 트래픽 현황 이뿐만 아니라 Zenius-WNMS는 현재 운영중인 AP의 2.4GHz 대역, 5GH 대역에서의 트래픽 현황과 연결된 클라이언트 이벤트 현황도 모니터링할 수 있습니다. 다양한 감시 항목 설정을 통해, 주요 AP와 관련된 장애 이벤트와 운영 항목에 대한 모니터링도 가능합니다. 이를 통해 네트워크 관리자는 복잡한 네트워크 환경에서 발생할 수 있는 다양한 문제를 빠르게 대응할 수 있고, 네트워크의 성능 저하를 일으킬 수 있는 요소를 즉각적으로 식별하고 조치할 수 있죠. [그림] **대학교 종합상황판 Zenius-WNMS의 대표적인 사례로 **대학교를 들어볼 수 있는데요. 3,000여 개 이상의 대량 무선 AP를 관리하기 위해 통합 대시보드 UI 환경을 구축하였습니다. 이처럼 대규모 환경에서도 Zenius-WNMS는 효과적으로 무선 네트워크를 관리할 수 있습니다. 무선 AP와 이를 구성하는 요소들을 관리하는 체계적인 모니터링 시스템은, 이제 현대 사회에서 필수적으로 자리 잡았습니다. Zenius-WNMS을 활용하여 무선 AP를 하나의 시스템에서 통합적으로 관리하고, 대량의 무선 AP를 효율적으로 관리해 보세요!
2024.05.21
Java APM 기반 기술에 대한 간략한 설명
Java APM 기반 기술에 대한 간략한 설명
몇 년 전부터 미국 실리콘밸리에서 불어온 스타트업 광풍이 인플레이션과 경기 침체가 동시에 예상되는 최악의 전망 속에서 조금 사그러드는 모습입니다. 그러나 빠른 속도로 퍼지기 시작한 IT 관련 유행들은 아마 꽤 오랜 시간 우리들 근처에 남아 그 영향이 지속되지 않을까 예상해봅니다. 그 중 한 부분을 차지하는 것이 새로운 혹은 인기가 급상승한 Go, Python, R, Julia, Kotlin, Rust, Swift 등의 컴퓨터 언어들입니다. 이렇게 많은 언어들이 새로 등장해 번쩍번쩍하는 장점을 뽐내고 있는 와중에도, 아직 세상의 많은 부분, 특히 ‘엔터프라이즈 IT’라 불리는 영역에서 여전히 가장 많이 사용되는 것은 Java입니다. 절대적이지는 않지만 컴퓨터 언어의 인기 순위 차트인 TIOBE 인덱스에 따르면, 2022년 6월 현재도 Java의 인기는 Python, C의 뒤를 잇는 3위입니다. Java 역시 Java 9부터는 십 수년간 고수하던 백워드 컴패티빌리티 정책을 포기하고 여러가지 반짝거리는 장점을 받아들이면서 버전업을 계속해, 올해 9월에는 Java 19가 나올 예정입니다. 그러나 아직도 우리나라 ‘엔터프라이즈 IT’에서 가장 많이 쓰이는 버전, 그리고 작년까지는 세계에서 가장 많이 쓰이는 버전은 Java 8이었습니다. 이렇게 많은 Java 어플리케이션의 성능을 모니터링하고 관리할 수 있는 솔루션을 통상적으로 APM(Application Performance Management)이라고 합니다. 위에서 서술한 것처럼 다른 컴퓨터 언어들의 인기가 올라가고 사용되는 컴퓨터 언어가 다양해지면서 많은 APM 제품들이 Java외의 다른 컴퓨터 언어로 작성된 어플리케이션도 지원하는 경우가 늘어나고 있으나, 이 글에서는 APM을 Java 어플리케이션의 성능을 모니터링하고 관리할 수 있는 솔루션으로 한정하도록 하겠습니다. 어플리케이션의 성능을 보다 깊이 모니터링하는데 필수적인 것이 Trace[i]입니다. Trace는 어플리케이션이 실행되는 과정에 중요하다고 생각되는 부분에서 중요하다고 생각되는 어플리케이션의 상태를 기록으로 남긴 것입니다. 전통적인 어플리케이션에서는 실행 Thread를 따라가면서 순차적인 Trace가 남게 되고 유행에 맞는 MSA(Micro-Service Architecture) 어플리케이션에서는 서로 연관됐지만 직선적이지는 않은 형태의 Trace가 남게 됩니다. 이러한 Trace를 수집하고 추적하고 분석하는 것이 APM의 주요 기능 중 하나입니다. 그런데, 여기서 문제가 하나 생깁니다. Trace는 누가 남길 것인가 하는 문제입니다. 개발 리소스가 충분하고 여유가 있는 경우, 개발시 성능에 대한 부분에 신경을 써서 개발자들이 Trace를 남기며 이를 분석하고 최적화하는 것이 정례화, 프로세스화 돼있겠지만, 많은 경우 개발 리소스를 보다 중요한 목표 달성을 위해 투입하는 것도 모자랄 지경인 것이 현실입니다. 아무리 분석 툴인 APM이 좋아도, 분석할 거리가 되는 Trace가 없으면 무용지물이 돼 버립니다. 그래서 APM에는 미리 정해진 중요한 시점에 어플리케이션에서 아무 것도 하지 않더라도 자동으로 Trace를 남기도록 하는 기능이 필수적으로 필요합니다. Java 어플리케이션의 경우 이러한 기능은 Java Bytecode Instrumentation이라고 하는 기반 기술을 사용해 구현됩니다. 서론이 매우 길어졌지만, 이 글에서는 Java Bytecode Instrumentation에 대해 조금 상세히 살펴보도록 하겠습니다. Java Bytecode Instrumentation을 명확히 이해하려면, 먼저 Java가 아니라 C, C++, Rust등의 언어들로 작성된 프로그램이 어떤 과정을 거쳐서 실행되는가, 그리고 Java 프로그램은 어떤 과정을 거쳐서 실행되는가를 살펴보는 것이 도움이 됩니다. Java가 세상에 나오기 이전에는 ‘컴퓨터 학원’이나 고등학교 ‘기술’ 과목, 그리고 대학의 ‘컴퓨터 개론’ 등에 반드시 이런 내용이 포함돼 있었지만 요즘은 그렇지도 않은 것 같습니다. 컴퓨터에서 프로그램을 실행시키는 것은 CPU, 즉 Central Processing Unit입니다. 지금 이 글을 작성하고 있는 컴퓨터의 CPU는 Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz입니다. CPU는 메모리의 프로그램이 있는 영역을 읽어 들여, 미리 정해진 값에 따라 정해진 동작을 수행하게 됩니다. 이때 어떤 값이 어떤 동작을 수행하는지 규정해 놓은 것을 Machine Language라고 합니다. Machine Language는 100% 숫자의 나열이므로 이를 좀더 사람이 읽기 쉬운 형태로 1:1 매핑 시킨 것이 Assembly Language입니다. (그렇다고 읽기가 많이 쉬워지지는 않습니다.) 이 글에서는 이 두 단어를 구분없이 혼동해 사용합니다. C, C++, 그리고 나온 지 벌써 10년이나 된 Go, 요즘 인기가 계속 상승하고 있는 Rust 등의 언어로 작성된 프로그램은, 이들 언어로 작성된 소스 코드를 Machine Language로 미리 변환해서[ii] 실행 파일을 만들고 이를 실행하게 됩니다. 이 변환을 수행하는 것을 Compile한다라고 하고 이 변환을 수행하는 프로그램을 Compiler라고 부릅니다. 한편, 소스 코드를 완전히 Machine Language로 변환시킨 실행 파일을 실행하는 것이 아니라 Interpreter라 불리우는 프로그램이 소스 코드를 읽으면서 그 의미에 맞게 동작을 수행시키는 언어들도 있습니다. ‘스크립트 언어’라 불리는 bash, Perl, PHP, Ruby, Python 등이 이에 해당되면, 요즘은 잘 쓰이지 않지만 그 옛날 Bill Gates가 직접 Interpreter를 만들기도 했던 BASIC 등이 이에 해당합니다. 본론으로 돌아가보겠습니다. 그렇다면, Java 프로그램은 어떤 방식으로 실행이 되는가? 기본적으로는 Interpreter 방식이라고 생각해도 이 글의 주제인 Java Bytecode Instrumentation을 이해하는 데는 무리가 없습니다.[iii] 여기에 더해 Java의 실행 방식에는 몇 가지 큰 특징이 있습니다. 첫째로, Java는 소스 파일을 직접 읽어 들이면서 실행하는 것이 아니라 소스 파일을 미리 변환시킨 Java Class File을 읽어 들이면서 실행합니다. 하나의 Java Class File에는 하나의 Java Class 내용이 모두 포함됩니다. 즉, Class의 이름, public/private/internal 여부, 부모 클래스, implement하는 interface 등의 Class에 대한 정보, Class의 각 필드들의 정보, Class의 각 메서드[iv]들의 정보, Class에서 참조하는 심볼과 상수들, 그리고 이 글에서 가장 중요한 Java로 작성된 각 메서드의 내용을 Java Bytecode 혹은 JVM Bytecode라고 하는 중간 형태의 수열로 변환시킨 결과 등이 Java Class File에 들어가게 됩니다. 이 Java Bytecode는 실제 실행 환경인 CPU 및 Machine 아키텍처에 무관합니다. 똑같은 Java 소스 코드를 Windows에서 Compile해 Java Class File로 만들건, Linux에서 Compile해 Java Class File로 만들건 그 내용은 100% 동일하게 되고 이 점은 C, C++, Rust 등 Compiler 방식의 언어와 큰 차이점입니다. Java의 가장 큰 마케팅 캐치프레이즈 “Write Once, Run Anywhere”는 이를 표현한 것입니다. 둘째, Java Bytecode는 일반적인 CPU의 Machine Language와 많은 유사점을 지닙니다.[v] 어찌 보면 Java Bytecode는 실제 존재하지는 않지만 동작하는 가상의 CPU의 Machine Language라고 볼 수 있는 것입니다. 이러한 이유에서 Java Class File을 읽어 들여 실행시키는 프로그램을 JVM이라고 (Java Virtual Machine) 부릅니다. Java 소스 파일을 Java Class File로 변환시키는 프로그램을 Java Compiler라고 부르며, 가장 많이 쓰는 Java Compiler는 JDK(Java Development Kit)에 포함된 javac라고 하는 프로그램입니다.[vi] JVM은 JDK에 포함된 java라고 하는 프로그램을 가장 많이 씁니다. 한편 사용 빈도는 그렇게 높지 않지만, Java Class File을 사람이 알아볼 수 있는 형태로 변환해서 그 내용을 보고 싶은 경우도 있습니다. 이런 일을 하는 프로그램을 Java Bytecode Disassembler[vii]라고 부르며, JDK에는 Java Bytecode Disassembler인 javap가 포함돼 있습니다. 혹은, Eclipse나 Intellij IDEA 같은 IDE에서 Java Class File을 로드하면 사람이 알아볼 수 있는 형태로 변환해 보여줍니다. Java Bytecode의 실제 예를 한번 살펴보도록 하겠습니다. 설명을 간단히 하기 위해, 클래스나 메서드 선언 등은 다 제외하고, 오직 메서드의 내용에만 집중하면, System.out.println(“Hello, World.”); 라는 Java 프로그램은 다음과 같은 Java Bytecode로 변환됩니다. (전통적으로 16진수로 표시합니다.) b2 00 0b 12 09 b6 00 0f b1 이를 javap를 사용해, 혹은 JVM Reference[viii]를 보고 좀더 사람이 보기 쉬운 형태로 표현하면 다음과 같습니다. 0: getstatic #11 // Field java/lang/System.out:Ljava/io/PrintStream; 3: ldc #9 // String Hello World 5: invokevirtual #15 // Method java/io/PrintStream.println: (Ljava/lang/String;)V 8: return JVM Reference의 Chapter 7을 참고하면, Java Bytecode를 javap의 결과에 어떻게 대응되는지를 알 수 있습니다. javap의 결과를 조금 더 살펴봅시다. 먼저 콜론 앞의 숫자는 인스트럭션의 offset으로서 Bytecode 시퀀스의 0번째, 3번째, 5번째, 8번째를 의미합니다. 0번째의 getstatic은 그 다음 숫자에 해당하는 필드를 스택의 맨 위에 저장하도록 합니다. 3번째의 ldc는 “Hello, World”라는 상수값을 스택의 맨 위에 저장하도록 합니다. 5번째의 invokevirtual은 println 메서드를 호출하고, 8번째의 return은 메서드에서 리턴해 호출한 곳으로 실행을 넘깁니다. Java 프로그램은 (정확히는 Java 소스 코드로 작성된 프로그램을 Compile한 결과) 통상적으로 많은 수의 Java Class File로 이뤄집니다. JVM은 이러한 Java Class File을 한꺼번에 읽어 들이는 것이 아니라 실행을 하다가 필요한 순간이 되면 그 때 읽어 들입니다. JVM은 이 로딩 과정에 사용자가 개입할 여지를 남겨 뒀는데, 이것이 Java Bytecode Instrumentation입니다. 이에 대한 개요는 https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html에 설명돼 있습니다. 요약해서 설명하면 다음과 같습니다. (1)사용자는 미리 정해진 규약대로 Java Agent라는 프로그램을 작성하고 이를 JVM 실행시에 옵션으로 명기합니다. (2)JVM은 Java Class File을 읽어 들여서 JVM이 처리하기 좋은 형태로 저장하기 전에, 그 파일 내용을 Java Agent의 ClassFileTransformer 클래스의 transform 메서드[ix]에 전달합니다. (3)JVM은 Java Class File의 원래 내용이 아니라 (2)의 메서드가 반환하는 결과를 저장하고 실행합니다. 이 과정을 Java Bytecode Instrumentation이라고 합니다. 사용자는 Java Bytecode Instrumentation을 구현해, 즉 Java Agent를 잘 작성헤 무엇이든 원하는 바를 달성할 수 있는 것입니다![x] 이러한 Java Bytecode Instrumentation은 APM, 그리고 Aspect-Oriented Programming의 기반 기술이 됩니다. 우리나라에서 Java로 프로그래밍을 한다고 하면 누구나 다 알고 있을 것 같은 Spring Core의 핵심 요소 중의 하나가 Aspect-Oriented Programming입니다. 예를 들어 Spring에서 @Transaction 이라고 annotation된 메서드가 있으면, Spring은 그 메서드의 맨 처음에 transaction을 시작하는 코드, 정상적으로 return하기 직전에는 transaction을 commit하는 코드, 그리고 익셉션에 의해 메서드를 빠져 나가기 직전에는 transaction을 rollback하는 코드를 삽입해 주게 되는데 이를 Java Bytecode Instrumentation을 이용해 구현하는 것입니다. 그럼, Java Agent에 거의 무조건적으로 필요한 기능은 무엇일까요? Java Agent는 Java Class File 내용을 그대로 전달받기 때문에 이를 해석할 수 있어야 무언가를 할 수 있습니다. 불행히도, java 스탠다드 라이브러리에는 Java Bytecode를 직접 다루는 기능은 없습니다.[xi] 그래서 de facto standard로 사용되는 것이 asm이라는 라이브러리입니다. 이 라이브러리는 수많은 java 라이브러리와 어플리케이션에 포함돼 있습니다. 그러나 asm이 훌륭한 라이브러리이긴 하지만, 이를 직접 사용하려면 각 상황에 맞게 코드를 삽입하는 프로그램을 작성해서 사용해야 하므로 자유도가 떨어집니다. 그래서 Zenius APM에서는 asm을 사용하되 삽입될 코드를 설정 파일에서 지정할 수 있는 suji(Simple Universal Java Instrumentor)[xii]라고 이름 붙인 라이브러리를 직접 만들어 사용하고 있습니다. suji를 사용하면 yaml 형식의 설정 파일에서, 어떤 클래스의 어떤 메서드의 어느 부분에 삽입할 것인지에 대한 조건과 삽입될 코드를 yaml의 list 형태로 지정하는 것만으로 (이는 Lisp와 비슷한 방식으로, 이렇게 하면 파싱 과정을 생략하면서 쉽게 코드를 넣을 수 있습니다.) Java Bytecode Instrumentation을 손쉽게 처리할 수 있습니다. 예를 들어, Zenius APM에서 JDBC getConnection을 처리하기 위해서 다음과 같은 부분이 설정 파일에 포함돼 있습니다. JDBC.DataSource.getConnection: IsEnabled: true ClassChecker: [ HasInterface, javax/sql/DataSource ] MethodName: getConnection IsStatic: false IsPublic: true IsDeclared: false ReturnType: Ljava/sql/Connection; Locals: [ Ljava/lang/Object;, Ljava/lang/Object; ] AtEntry: - [ INVOKE, dataSourceGetConnection, l1, [] ] AtExit: - [ INVOKE, poolGetConnectionEnd, l2, [ l1, ^r, true ] ] - [ LOAD, l2 ] - [ CAST, Ljava/sql/Connection; ] - [ STORE, ^r ] AtExceptionExit: - [ INVOKE, endByException, null, [ l1, ^e ] ] 간략하게 설명하면, Class가 만약 javax.sql.DataSource를 implement하고 메서드가 스태틱이 아니고 public이면서 java.sql.Connection을 리턴하는 getConnection이라는 이름을 가진 경우에 메서드 시작 시, 리턴 시, 그리고 익셉션에 의해 메서드를 나갈 때 위의 예제에 규정된 코드를 삽입하라는 의미입니다. 이상으로 Java Bytecode Instrumentation에 대한 간략한 설명을 마칩니다. 다음에는 실제로 APM이 중점적으로 추적하고 분석하는 것은 어떤 것들인가에 대해 설명하겠습니다. -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- [i] Sridharan, Distributed Systems Observability, O’Reilly, 2018의 Chapter 4. The Three Pillars of Observability 참조. 번역본은 없는 듯합니다. [ii] 이 외에 여러가지 과정을 거치지만 이 글의 목적과는 무관하므로 과감하게, 자세한 설명은 생략합니다. [iii] 실제로는 Java 프로그램이 100% 이렇게 interpret되어 실행되는 것은 아닙니다. 특정 메쏘드 혹은 메쏘드의 일부분이 자주 실행돼 interpret하는 것보다 미리 컴퓨터(=CPU)가 바로 실행할 수 있는 형태(=Machine Language)로 변환(=compile)해 놓는 것이 더 낫다고 JVM이 판단하는 경우, 미리 이런 변환 과정을 한번 거쳐 그 결과를 기억해 놓고, 그 기억된 결과를 컴퓨터(=CPU)가 바로 실행합니다. 이렇게 변환하는 과정을 Just-In-Time Compile 혹은 JIT라고 합니다. 또 이 때문에 JVM을 단순한 interpreter로 부를 수는 없는 것입니다. [iv] 국립국어원은 메서드가 맞는 표기라고 합니다. [v] 물론 많은 차이점도 지닙니다. (1) JVM은 register가 존재하지 않고 오로지 stack에만 의존한다. (2) JVM은 Class, Method의 개념을 포함하고 있지만 일반적인 범용 CPU에는 그런 상위 개념은 없습니다. [vi] 보통 IDE를 써서 개발을 하기 때문에, javac를 직접 사용하거나 Java Class File을 직접 다룰 일은 잘 없고, jar 파일이 이 글을 읽는 여러분에게 훨씬 더 익숙할 지도 모릅니다. Jar 파일은 그냥 zip으로 압축된 파일이니 그 압축을 한번 풀어 보길 바란다. 확장자가 class인 수많은 파일을 찾을 수 있을 것입니다. [vii] Assembly는 Assemble의 명사형이며, Assemble의 반대말은 Disassemble입니다. [viii] JVM에 대한 모든 것은 The Java Virtual Machine Specification에 나와 있습니다. 이 중 'Chapter 6. The Java Virtual Machine Instruction Set'를 참고하면 각각의 instruction에 대해 상세히 알 수 있습니다. [ix] https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/ClassFileTransformer.html#transform-java.lang.ClassLoader-java.lang.String-java.lang.Class-java.security.ProtectionDomain-byte:A- [x] 쉽다고는 하지 않았습니다. 또 몇가지 제약 사항은 있습니다. [xi] 참고로 최근에는 asm을 대체할 수 있는 기능을 스탠다드 라이브러리에 넣을 계획이 진행되고 있습니다. https://openjdk.org/jeps/8280389 [xii] 명명이 아이돌 그룹 출신 모 여배우와 관계가 아주 없지는 않음을 조심스럽게 밝혀 둡니다.
2022.08.04
인턴 은서님의 자유롭고 따뜻했던 브레인즈 생활기
인턴 은서님의 자유롭고 따뜻했던 브레인즈 생활기
지난 1월, 경영기획실에 대학생 인턴 은서님이 첫 출근을 했습니다. 곧 졸업을 앞두고 있지만, 아직 진로를 결정하지 못해 고민이라던 은서님은 이번 인턴 활동으로 졸업 후 청사진을 그려볼 수 있었다는데요. 은서님이 브레인즈컴퍼니에서 어떤 경험을 해봤길래, 미래 계획을 세울 수 있었을까요? 두 달간의 따뜻했던 브레인즈 생활기, 함께 들으러 가시죠! ------------------------------------------------------- Q. 안녕하세요, 은서님. 자기소개 부탁드립니다. 안녕하세요, 브레인즈컴퍼니 경영기획실 HR인턴 박은서입니다. 벌써 약 두 달간의 인턴 생활이 끝나다니, 시간 참 빠른 것 같아요. Q. 인턴 기간 동안 브레인즈에서 어떤 업무를 했나요? 채용 관련 업무를 담당했어요. 주로 서류와 면접전형 심사에 참관한 후 합격자와 불합격자를 관리하는 업무를 했고요. 개발자 직군 채용에 도움이 될 수 있도록 ‘개발자 특집 인터뷰’를 진행하기도 했어요. 그 외에도 브레인저들의 주거 복지와 관련한 업무도 경험해봤습니다. Q. 가장 기억에 남는 업무나 뿌듯했던 순간이 있을까요? ‘넷플릭스 기업 문화가 한국에서도 통할까’라는 주제로 기업문화 TF 회의에서 발표했을 때요. 브레인즈컴퍼니는 행복한 회사를 만들기 위해 기업문화 TF인 ‘YB(Young Brainz)’를 운영 중인데요. YB팀은 일주일에 한 번씩 회의를 열어 브레인즈컴퍼니의 기업문화를 개선해 나가고 있습니다. 이 회의에서 제가 자료를 서치하고 직접 만든 PPT로 발표할 기회를 가질 수 있었는데요. 넷플릭스가 구축한 새로운 기업문화에 대해 이야기하고, 국내 6곳의 기업(메리츠 화재, 우아한 형제들, CJ ENM, 비바리퍼블리카, 와디즈, 렌딧)이 넷플릭스의 기업문화를 어떻게 벤치마킹하고 있는지에 대해 발표했어요. 나아가 영업부서와 함께 브레인즈컴퍼니는 이를 어떻게 적용해볼 것인지 함께 고민하는 시간도 가질 수 있었답니다. 차후에 YB팀 분들이 자료를 활용할 수 있도록 따로 전달 드렸고, 실무에 참고하고 있다는 얘길 들어 참 뿌듯하고 기뻤던 것 같아요. Q. 브레인즈컴퍼니의 근무 환경은 어땠나요? 근무 환경에 대해 느낀 3가지는, “무엇이든 할 수 있는 곳”이라는 것과 “누워서도 쉴 수 있을 정도의 자유로운 분위기” 그리고 “브레인저와 소통하는 선근님”입니다. 앞서 언급한 기업문화 TF에서 자유롭게 제 목소리를 낼 수 있다는 점에서 알 수 있듯이, 브레인즈컴퍼니는 직급에 상관없이 하고 싶은 업무가 있다면 해볼 수 있는 분위기더라고요. 인턴도 단순 업무가 아닌 해보고 싶은 일이 있다면 바로 주전 선수로 뛸 수 있었어요. 브레인즈컴퍼니 8층에는 라운지가 있는데요. 이 라운지는 음악이 흘러나오고, 소파와 책, 음료수가 비치돼 있어 카페테리아를 연상케 해요. 쿠션이나 쇼파에 몸을 눕다시피 기대고 쉬는 분도 봤어요. 마지막으로 선근님과 직원 간의 1:1 소통이 인상깊었는데요. 요청사항이 있거나 회사에서 하고 싶은 프로젝트가 있으면, 중간관리자를 거치지 않고 바로 선근님과 미팅룸에서 가볍게 대화를 나누기도 하더라고요. 저한테는 매우 신기한 풍경이었어요. Q. 브레인즈컴퍼니에서 근무하며 가장 좋았던 점은 무엇인가요? 직원 분들이 모두 좋았다는 점이었어요. 특히 제 사수님이 저를 너무 잘 챙겨주셔서 감사했어요. 사실 처음으로 직장생활을 하다 보면, 일하다 모르는 부분이 있어도 어디서부터 어디까지 여쭤봐야 하는지 감이 안 잡혀서 곤란할 때가 있거든요. 그런데 물어봐야 하나 말아야 하나 고민하기도 전에 먼저 알아봐 주시는 세심함에 놀랐어요. 연차가 있으신 임원들도 성품이 부드러웠고, 일 외에도 학교 생활이나 일상에도 관심을 가져 주셔서 참 따뜻한 곳이라고 느껴졌어요. 또 브레인즈컴퍼니는 아침식사가 항상 제공되는데, 아침에 출근하면 꼭 먹고 근무하라고 신신당부해주셨어요. Q. 첫 직장생활을 해보며, 직장인으로서 느낀 고충과 이점에 대해 얘기해주세요. 고충이라고 한다면, 첫 사회생활이다 보니 다소 낯설었다는 점이요. 처음이다 보니 모든 것이 어색하고, 기존의 삶과는 생활 패턴이 다르다 보니 적응하는데 시간이 좀 걸렸던 것 같아요. 특히 아침에 아주 일찍 일어나 지옥철을 뚫고 출근하는 길이 참 힘들었던 것 같네요. 직장인들이 새삼 대단하다고 느꼈어요. 이점은 그만큼 사회인으로서 성장할 수 있는 기회를 얻을 수 있었다는 것이요. 저는 졸업 전 방학 기간에 인턴을 했던 터라, 인턴십 프로그램이 끝나면 다시 학교로 돌아가야 하는데요. 학교로 돌아갔을 때, 앞으로 진로를 위해 무엇을 준비해야 하는지 구체적으로 알게 됐어요. 미래를 계획하는 데에 있어 경험을 제공해 준 브레인즈컴퍼니에게 감사드릴 뿐입니다. Q. 다음에 들어올 인턴에게 해주고 싶은 조언은? 적극적으로 업무를 추진하라고 조언하고 싶어요. 사실 첫 직장생활이다 보니, 제 업무의 범위가 어느 정도인지, 어떤 안건에 대해 의견을 제시해도 되는지 망설여질 때가 있는데 브레인즈컴퍼니는 언제나 열려 있더라고요. 생각 이상으로 제 의견을 충분히 반영해줬어요. 인턴십 프로그램은 기간이 짧기 때문에 주어진 시간 안에 일을 효율적으로 배우려면 거침없이 묻고, 업무 외에도 관련된 것들을 추가적으로 찾아보고 도전해봐야 한다고 생각합니다. Q. 퇴사 후 앞으로의 계획은? 퇴사 후에는 일단 다시 대학생의 신분으로 돌아가 학교 생활을 즐길 계획입니다. 학업에 더 집중하되, 브레인즈컴퍼니에서 배운 것들을 바탕으로 관련 대외활동이나 기자단을 하면서 진로를 구체화할 예정입니다. 제 첫 직장이 브레인즈컴퍼니여서 행복했어요! 브레인저 모두 감사했습니다!
2022.08.18
다음 슬라이드 보기