반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
SMS를 통한 서버관리는 꼭 이렇게 해야만 한다?!
네트워크 정보 수집 프로토콜의 모든 것 (SNMP, RMON, ICMP, Syslog)
임형섭
2024.03.04
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
무선 AP를 WNMS를 통해 올바르게 관리하는 방법
지난 포스팅을 통해
NMS의 기본 개념
과
NMS의 구성요소와 역할
에 대해서 살펴보았는데요. 오늘은
네트워크 정보 수집을 위한 다양한 프로토콜
에 대해서 자세히 알아보겠습니다.
네트워크 프로토콜(Network Protocol)은 네트워크에 연결된 장비 간의 메시지 흐름을 통제하고 관리하는 기본적인 절차와 규칙을 정한 규약입니다.
웹 브라우저, 파일 전송, 이메일 송수신, 미디어 스트리밍 등과 같은 모든 온라인 활동을 가능하게 하기 때문에 네트워크 정보 전달의 핵심요소라고 할 수 있죠.
이번 시간에는 주요
네트워크 프로토콜인 ICMP, SNMP
를 중점적으로 알아보겠습니다.
ㅣICMP는 무엇이고 어떻게 동작하는가?
ICMP(Internet Control Message Protocol)는 주로 네트워크의 경로상의 문제나, 호스트(단말)의 문제 등을 파악할 때 사용하는 프로토콜인데요. 대표적인 서비스가 ping입니다. 구체적인 동작원리를 살펴보면 다음과 같습니다.
오류 보고
◾ 네트워크에서 데이터를 보낼 때 오류가 발생하면, 오류를 발생시킨 장비(예: 라우터, 스위치)는 오류 정보를 담아 ICMP 메시지를 처음 보낸 사람에게 전송합니다. 이를 통해 무엇이 잘못됐는지 정확히 파악하고 문제를 해결할 수 있습니다.
◾ 예를 들어 한 컴퓨터에서 인터넷을 통해 데이터를 보내는데, 그 데이터가 목적지에 도달하지 못하면 ICMP가 '이 주소로는 데이터를 배달할 수 없어!'라고 알려주는 역할을 하죠. 이렇게 사용자나 네트워크 관리자가 문제를 알리고 대응할 수 있게 도와주는 게 ICMP의 주요 역할입니다.
[그림] ICMP 동작 방식
진단 및 테스트
◾ 네트워크의 연결 상태나 성능을 테스트하기 위해 ICMP 에코 요청과 에코 응답 메시지를 사용합니다. 이를 통해 네트워크의 지연시간(latency)이나 패킷 손실(packet loss) 등을 측정할 수 있습니다. '핑(ping, Packet INternet Groper)'을 대표적인 예로 들 수 있습니다.
◾ 쉽게 표현하면 '너 지금 연결 잘 되어 있니?'라고 물었을 경우 대상 장비가 '응, 잘 되어 있어!'라고 대답하면 연결이 잘 되어 있는 것이고, 대답이 없거나 늦는 것과 같은 문제를 식별하는 것이죠.
ICMP도 좋은 도구이지만, 네트워크의 복잡성이 빠르게 증가하고 호스트 수가 증가하면서 ICMP만으로는 네트워크 관리가 어려워지는 문제가 발생했는데요. 이를 개선하기 위해서 탄생한 것이 바로 SNMP입니다.
우선 SNMP의 히스토리부터 살펴보겠습니다.
ㅣSNMP 히스토리: 각 버전별 개념과 차이점은?
SNMP(Simple Network Management Protocol)는 1988년에 아래의 세 가지 니즈에 부합하기 위해 등장했습니다.
◾ ICMP보다 많은 기능의 탑재
◾ 네트워크 문제를 직관적이고 쉽게 해결할 수 있어야 함
◾ 표준화된 프로토콜의 사용
이후 몇 가지 버전을 거쳐서 현재는 네트워크 장비를 모니터링하기 위한 프로토콜로 자리를 잡아서 대부분의 NMS 상에서 이용되고 있습니다.
잠깐 SNMP의 처리단계를 살펴보면, SNMP는 Get/Set/Trap의 단순 명령 구조로 구성되는데요, 메시지 타입별 역할은 아래와 같이 정리할 수 있습니다.
위와 같은 처리단계를 가지고 있는 SNMP는 보안 기능 강화 및 기능 개선을 위해서 초기 v1 버전에서 v3 버전까지 업그레이드됐습니다.
각 버전은 보안, 성능, 유연성 등의 측면에서 발전되었으며 현재는 SNMPv2가 가장 많이 사용되고 있죠. SNMP 버전 별 특징에 대해서 자세히 알아보겠습니다.
SNMP v1
가장 초기에 만들어진 프로토콜로 기본적인 정보만을 주고받아서 네트워크 장비들의 상태를 확인하고, 간단한 명령 정도만 내릴 수 있습니다. 보안에 많이 약한 편이고, 정보를 주고받을 때 특별한 암호화나 보호 방법을 사용하지 않기에 정보가 노출될 위험이 있습니다.
SNMP v2
SNMPv1의 단점을 해결하기 위해 개발된 버전입니다. 보안 기능과 네트워크 과부하, 관리 효율성 등에 대한 기능이 향상되었습니다.
MIB(Management Information Base) 구조를 개선하여, 새로운 데이터 타입과 객체 식별자(프로그래밍에서 특정 객체를 식별하는 데 사용되는 값이나 이름)을 도입했습니다. 이로써 더 많은 종류의 데이터를 효과적으로 다룰 수 있게 되었지만, v1과 호환이 안되는 문제가 있어 상용화에는 실패했습니다.
SNMP v2c (Community-Based Security)
SNMPv2c는 '커뮤니티 기반' 방식을 사용하며 'Community String' (공동체 문자열)을 이용합니다. Community String은 정보를 주고받기 위해 인증 과정에서 비밀번호를 사용하는 것으로, 학교에서 특정 비밀번호를 알고 있는 사람들만 특정 정보를 볼 수 있게 하는 것과 비슷합니다.
하지만 비밀번호가 복잡하지 않은 편이라, 조금 더 높은 보안을 필요로 하는 경우에는 적합하지 않을 수 있습니다. 현재 가장 많이 사용되고 있는 버전입니다.
SNMP v3
보안과 관리 기능을 대폭 강화한 버전입니다. SNMPv3는 정보를 주고받을 때 강력한 인증과 암호화를 사용하여, 네트워크 상의 중요한 정보를 안전하게 지킬 수 있습니다.
또한 복잡한 네트워크 환경에서 사용자가 많을 경우에도, 각 사용자의 접근 권한을 관리할 수 있는 기능이 있습니다. 하지만 이전 버전들보다 더 복잡한 보안 모델과 설정 등의 이유로 널리 사용되고 있지는 않습니다.
[그림] SNMP 버전과 수를 한눈에 볼 수 있는 제니우스 EMS 화면
참고로 SNMP에는 위와 같이 다양한 버전이 있기 때문에 모든 NMS는 제니우스처럼 어떤 버전으로 수집했는지와 수를 파악할 수 있어야 합니다.
이제 SNMP에 대해서 조금 더 자세하게 살펴보겠습니다.
ㅣSNMP 자세히 보기: MIB의 개념과 구조
MIB(Management Information Base)는 관리 정보 기반이라고 불립니다. SNMP를 통해 관리되어야 할 정보나 자원들을 모아둔 것으로, Manager와 Agent 간 정보를 주고받는 정보의 집합체입니다.
MIB에는 SNMP를 통해 주고받는 정보가 어떤 의미를 가지고 어떻게 사용될 수 있는지에 대한 정의가 포함되어 있습니다. 또한 각각의 정보는 '객체'라고 불리며, 이 객체들은 계층적으로 구성되어 있기에 관리하고자 하는 정보를 쉽게 찾을 수 있게 도와주죠.
대표적으로 CPU 사용량, 메모리 사용량, 포트의 up/down 같은 상태 정보 등이 MIB에 포함됩니다. 마치 항해사가 바다를 항해하기 위해 지도를 사용하는 것처럼, MIB를 통해 네트워크의 상태를 정확히 파악하고 필요한 조치를 취할 수 있습니다.
MIB의 구조를 자세히 살펴보면 우선 큰 나무를 뒤집어 놓았다고 생각한다면 이해하기 쉽습니다. 큰 나무의 밑동(Root) → 각각의 가지(Branches) → 잎사귀(Leavers)로 나누어져 내려오는 형태인데요, 부분별로 자세히 살펴보겠습니다.
◾
밑동(Root):
모든 MIB 트리의 시작점으로, 'iso(1)', 'org(3)', 'dod(6)', 'internet(1)' 등으로 구성되어 있습니다. 여기서 'internet'은 네트워크 장비와 관련된 표준 MIB를 나타냅니다.
◾
가지(Branches):
밑동에서 나온 큰 가지들은 네트워크 장비의 다양한 부분을 나타냅니다. 예를 들어 'mgmt(2)' 가지는 일반적인 관리 정보, 'private(4)' 가지는 각 제조업체의 고유 정보 등을 의미합니다.
◾
잎사귀(Leaves):
가장 작은 단위의 정보를 나타내는 부분으로 특정 장비의 상태, 성능 지표, 설정값 등 구체적인 데이터가 저장됩니다.
MIB에서는 네트워크 장비의 정보가 여러 '분류'로 나누어져 있는데, '네트워크 인터페이스'라는 분류 아래에는 네트워크 카드의 상태, 속도, 전송된 데이터의 양과 같은 정보들이 담겨 있습니다.
MIB는 복잡해 보일 수 있지만, 네트워크 장비와 관련된 정보를 체계적으로 관리하고 접근할 수 있도록 설계되어 있습니다. 이 구조 덕분에 네트워크 관리자는 네트워크의 건강 상태를 쉽게 체크하고 필요한 조정을 할 수 있습니다.
다음으로는 MIB 내의 각 객체를 고유하게 식별하는 OID에 대해서 알아보겠습니다.
ㅣSNMP 자세히 보기: OID 확인 방법과 수집항목
OID(Object Identifier)는 MIB 내에 포함되어 있는 각 개별 정도에 대한 ID 값입니다. 아래 그림에서 볼 수 있듯이, 트리의 하단 값이 OID인데 MIB의 각 개별 정보에 대한 ID를 의미합니다.
[그림] OID Tree 구조
대형 도서관에서 원하는 책을 찾을 때 책의 번호를 확인하여 빠르고 정확하게 찾는 것처럼, 특정 오브젝트의 ID(Num)을 부여한 게 OID입니다. OID는 포함하고 있는 각 정보를 숫자로 표현합니다.
◾
Enterprise OID:
네트워크 업계에서 공통으로 사용하는 OID
◾
Private OID:
각 네트워크 벤더사에서 사용하는 독자적인 OID
예를 들어 Juniper Networks라는 네트워크 스위치 벤더에서 사용하고 있는 OID 값을 [1.3.5.6.1.9 ]라는 전용 OID 값을 사용한다고 가정하면, Juniper Networks 라우터의 경우 뒤에 라우터 제품별 OID '11'이 더 붙은 [1.3.5.6.1.9.11 ] 형태의 OID로 구성됩니다.
[그림] 제니우스 예시 화면
지금까지 네트워크 모니터링에 필요한 ICMP, SNMP 그리고 MIB, OID에 대해 살펴봤습니다. 참고로 제니우스(Zenius)-NMS에서는 OID 사전을 제공하고 있으며, 이를 통하여 관리하고 싶은 항목의 MIB 항목 및 OID 정보를 쉽게 찾을 수 있습니다.
이제 SNMP의 주요 개념 중 하나인 SNMP Trap에 대해서 알아보겠습니다.
ㅣSNMP Trap의 개념 그리고 특징은?
Manager(관리자)는 Server(Agent)로 메시지 요청(Polling)을 하게 되고, Server(Agent)는 응답(Notifying)을 하는 방식으로 진행됩니다.
그런데 Server가 비정상적인 이벤트를 감지하면 Manager의 Polling을 기다리지 않고 바로 Manager에게 메시지를 보내는데요, 이 긴급 메시지를 Trap(트랩)이라고 합니다. 우리가 날씨에 대해서 찾아보지 않아도 폭설이 예상될 때 폭설을 경고하는 자동 알림 시스템과 비슷한 개념입니다.
[그림] SNMP 프로토콜 동작 방식
SNMP Trap은 일반적으로 높은 CPU 사용량이나 디스크 공간 부족과 같이 해결해야 할 문제를 나타냅니다. 중앙 모니터링 시스템으로 전송되어 분석 및 조치를 취할 수 있죠. 이를 통해 Manager는 큰 문제가 발생하기 전에 잠재적인 문제를 신속하게 식별하고 해결할 수 있습니다.
SNMP Trap의 방식과 기능을 네 가지로 나누어 살펴보겠습니다.
(1) 비동기적 알림
SNMP Trap는 주기적인 폴링이 아닌, 이벤트 기반의 알림을 통해 즉각적으로 대응할 수 있도록 비동기적인 방법을 제공합니다.
(2) 실시간 알림
SNMP Trap은 이벤트가 발생하는 즉시 알림을 제공하여, 실시간으로 네트워크 상태 및 장치 상태를 모니터링해서 문제 발생 시 즉각적인 대응과 조치를 가능하게 합니다.
(3) 이벤트 기반 모니터링
SNMP Trap은 장치나 응용 프로그램에서 특정 이벤트가 발생했을 때만 알림을 보내기 때문에, 불필요한 트래픽을 발생시키지 않습니다. 따라서 자원을 효율적으로 사용하면서 중요한 상태 변경을 식별합니다.
(4) 자동화된 대응
SNMP Trap을 사용하면 이벤트 발생 시, 자동으로 대응 조치를 취할 수 있는 자동화 시스템을 구축할 수 있습니다. 이를 통해 관리자의 개입 없이 특정 이벤트에 대한 대응을 효과적으로 수행할 수 있습니다.
[그림] Zenius Syslog 감시 설정 등록 페이지(위), Zenius Syslog 이벤트 페이지(아래)
이와 같은 SNMP Trap을 통해 빠르게 이상을 탐지하는 것이 중요한데요. 제니우스(Zenius)-Syslog와 Trap에서는 Syslog, Trap에 각각 특정 이벤트 조건을 설정하여 이벤트를 감지하고, 장애를 통보할 수 있는 기능을 제공하고 있습니다.
이제 마지막으로 SNMP 못지않게 네트워크 관리에 중요한 역할을 하는 Syslog, RMON에 대해서 알아보겠습니다.
ㅣ Syslog, RMON의 개념과 동작원리는?
Syslog
Syslog는 컴퓨터 시스템, 네트워크 장비, 보안 장비 등에서 일어나는 모든 상황과 변화를 서버에 기록하는 프로토콜입니다. 관리 대상인 장비에서 일어나는 모든 상황을 메모리에 기록하죠. 로그/오류 관리가 주 목적이고 Unix와 Linux에서 많이 사용됩니다.
대부분의 라우터와 스위치들은 Syslog 프로토콜을 이용하여 Log들을 Syslog 서버로 보내고, 수백수천 대의 장비에 일일이 접속하여 로그를 볼 수 없기 때문에 '중앙 집중식'으로 관리합니다.
작업 방식은 주로 Client-Push 모델로 이러우지고 있고, 장비에서 일어나는 모든 상황 변화를 Layer4 프로토콜이 메모리에 기록하며, Syslog 서버는 UDP 포트 514에서 메세지를 수신합니다.
Syslog 수집항목은 시스템 운영/네트워크/보안/애플리케이션 등과 관련된 로그를 수집 및 분석하고, 각 항목별로 오류와 트랜잭션 등에 대한 내용을 확인합니다.
출처ⓒ viettelco.net
RMON
RMON(Remote Network Monitoring)은 네트워크 장비나 서버에서 발생하는 트래픽과 문제들을 원격에서 감시하기 위해 만들어진 프로토콜로, SNMP보다 확장된 개념이라고 할 수 있습니다.
네트워크 관리자는 RMON을 통해, 네트워크의 성능을 측정하고 문제가 발생했을 때 신속하게 해결할 수 있습니다. 회사에서 인터넷이 느려지거나 연결이 되지 않을 때 RMON을 사용하면 원인을 빠르게 찾아내어 문제를 해결할 수 있죠.
RMON과 SNMP의 연관성을 우선 아래 이미지를 통해 살펴보겠습니다.
출처ⓒ dpstele.com/blog/what-is-rmon.php
좀 더 자세히 살펴보면
◾ RMON은 SNMP 위에서 작동하며, SNMP 보다 더 광범위한 데이터를 수집/분석할 수 있는 기능을 제공합니다.
◾ SNMP가 네트워크의 '기본적인 통신'을 담당한다면, RMON은 그 위에서 보다 '세밀한 관찰과 분석'을 가능하게 합니다.
◾ RMON은 SNMP의 특정 데이터를 사용하여 네트워크 트래픽 패턴이나, 성능 문제, 네트워크 내의 비정상적인 활동 등을 실시간으로 감시하고 기록할 수 있게 해줍니다.
◾ RMON에서 Probe라는 수행 장비를 사용하며, 네트워크 트래픽 및 통계 수집 그리고 성능 모니터링을 위해 활용합니다.
결과적으로 RMON의 기능을 통해 네트워크의 문제를 더 빨리 발견하고, 효율적으로 대응할 수 있죠.
마지막으로 SNMP, RMON, ICMP, Syslog의 주요 내용들을 아래 표를 통해 한눈에 살펴보겠습니다.
。。。。。。。。。。。。
지금까지 네트워크 정보 수집을 위한 다양한 프로토콜의 종류와 특징에 대해서 알아보았습니다. 효과적인 네트워크 관리를 위해서 혁신적인 기술들이 많이 개발되고 있는데요, 이를 활용해서 성공적으로 네트워크를 운영하시기를 바라겠습니다!
#네트워크 프로토콜
#SNMP
#RMON
#ICMP
#Syslog
임형섭
프리세일즈팀
안정적이고 효과적인 비즈니스 운영을 위한 고객 맞춤형 IT 인프라 모니터링 시스템을 제안합니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
공공분야 관제 SW 1위, 제니우스(Zenius)
공공분야 관제 SW 1위, 제니우스(Zenius)
공공 정보화 시장의 외산 소프트웨어 쏠림 현상이 여전한 가운데, 관제 분야는 반대로 국산화 비율이 90%를 넘었습니다. 브레인즈컴퍼니가 해당 분야에서 1위를 차지하며, 국산 SW의 자존심을 지켰습니다. 행정안전부가 공개한 ‘2022년 범정부EA 기반 공공부문 정보자원 현황 통계보고서’에 따르면, 지난해 공공부문 전체 SW 국산화 비율은 40.7%에 불과합니다. 반면, 관제 분야는 외산화 비율이 9.75%, 국산화 비율이 90.25%로 나타났습니다. 이번 보고서는 SW 유형별(OS, DBMS, WEB/WAS, 백업, 정보보호, 관제) 국산화 정도, 운영기간별 현황과 운영 상위 벤더 등에 대한 통계 정보를 제공하고 있습니다. 그 중, 관제 분야의 Top4 벤더 정보부터 살펴보겠습니다. 벤더 2019년 2020년 2021년 브레인즈컴퍼니 709 1,137 1,201 제니퍼소프트 406 952 921 이글루시큐리티 786 1,145 872 와치텍 629 689 718 [표1] 관제분야 SW 벤더의 연도별 운영 수량(단위: 개) 브레인즈컴퍼니는 그동안 간발의 차이로 2위였다가 드디어 1위가 됐습니다. 2021년 기준 전체 4,991개 관제 SW 중 브레인즈컴퍼니는 1,201개로 24.06%의 점유율을 보이고 있습니다. 이는 “공공분야의 관제 소프트웨어 1위는 브레인즈컴퍼니다”라는 객관적 지표입니다. 지난 3년간 연도별 관제 SW 도입수량과 점유율을 보면 브레인즈컴퍼니가 어떤 환경에서 어떻게 1위가 됐는지 유추가 가능합니다. 기타 점유수량이 현저히 줄어들고 있고 동시에 상위 벤더 쏠림현상이 나타났습니다. 브레인즈컴퍼니는 치열한 경쟁 환경 속에서 꾸준히 성장을 이뤄왔다고 볼 수 있습니다. 공공부문의 경쟁환경이 어떻게 변화하고 있는지 영업그룹 상무 은숙님에게 물어봤습니다. "공공분야는 더욱 공정한 제품 도입을 위해 기술과 가격평가를 통한 입찰, 제조사에게 직접 구매하는 방식으로 변화하고 있습니다. 상위 벤더 쏠림 현상은 관제대상의 고도화 속도를 따라가야 하고, 동시에 기존 운영 노하우 및 고객 니즈가 축적되는 제품이라 더욱 심화될 것으로 예측합니다." 다음은 소프트웨어 유형별 국산화 정도를 보겠습니다. 유형별 OS DBMS WEB/WAS 백업 정보보호 관제 외산 98.26 81.48 63.53 79.64 26.28 9.75 국산 1.74 18.52 36.47 20.36 73.72 90.25 1위 기업 레드햇 (40.10) 오라클 (63.56) 티맥스소프트 (36.47) 컴볼트 (38.65) 트렌드마이크로 (31.55) 브레인즈컴퍼니 (24.06) [표2] SW 유형별 도입률과 1위 기업(단위: %) 우선, 관제 부분의 국산화율은 90.25%로 전체 SW에서 가장 높으며, 정보보호와 관제를 제외한 다른 분야는 40% 이하인 것이 특징입니다. 쟁쟁한 글로벌 기업 사이에서 브레인즈컴퍼니가 국내기업의 위상을 높인 거 같아 뿌듯합니다. 그런데 욕심일까요? 내심 다른 분야 1위 기업처럼 도입률이 30% 이상되면 좋겠습니다. 브레인즈컴퍼니가 30% 이상 점유가 가능할 지 은숙님의 의견 들어봤습니다. "[표1]을 보시면 브레인즈컴퍼니가 기울기 변화없이 우상향하는 것을 볼 수 있는데요. 관제 SW는 그 특성상 일회성 도입이 아닌 통합관리 및 운영편의성을 위해 지속적으로 확장되게 구성돼 있습니다. 브레인즈컴퍼니의 제니우스가 기능이나 기술 지원이 퇴보하지 않는 한, 일회성으로 끝날 일이 없기 때문에 가능하다고 봅니다. 하지만 공공 시장이 빠르게 클라우드로 전환되는 상황에서 관제분야도 이 흐름에 대비해야 합니다. 즉, 클라우드 환경의 가용성, 성능, 보안을 사전에 모니터링해 문제가 최종 사용자 환경에 영향을 주기 전에 찾아서 해결하는 역할이 추가적으로 필요합니다." 다음은 관제 SW 운영기간별 현황을 살펴보겠습니다. 구분 3년 미만 3~5년 5~8년 8~10년 10년 이상 수량 2,743 1,275 1,654 1,530 2,669 비율 27.8 12.9 16.8 15.5 27.0 [표3] 관제 SW 운영기간 현황(단위: 개, %) 우리가 주목할 것은 3년 미만과 10년 이상입니다. 10년 이상 비율은 “관제 SW는 그 특성상 일회성이 아닌 한 번 구축하면 지속적으로 확장된다”는 은숙님 의견을 뒷받침해주는 수치입니다. 3년 미만 비율이 높은 것은 그만큼 관제 SW의 필요성이 늘어 신규 도입이 증가했고, 해당 수량은 향후 몇 년 간 쭉 지속될 것이라고 유추해볼 수 있습니다. 이에 대한 은숙님의 의견입니다. "10년이면 강산이 변한다는 말이 있죠. 2000년 초 경쟁하던 제조사가 없어지거나, 불과 몇해 전 치열하게 경쟁했던 회사가 아예 언급조차 되지 않거나, 또 거기는 빼고... 하는 말들을 듣게 됩니다. 제니우스는 잠시 반짝하거나, 일부 영업적 베네핏에 의해서 점유되는 제품이 아닙니다. 고객들이 다음 버전을 기대하고 써 본 분들이 추천하는 제품이라, 현재 개발 중인 차세대 제니우스는 더 많은 고객분들과 함께 할 수 있을 것이라고 자신합니다." 이번 소식은 브레인즈컴퍼니가 IT인프라 통합 관제 소프트웨어 분야에서 국내 1위가 맞는지, 아니면 몇 위쯤 인지 항상 궁금했던 분에게는 유용한 정보가 될 것 같습니다. 앞으로 차세대 제니우스를 통해 관제 SW 분야에서 최고의 서비스를 제공하도록 하겠습니다. [부록] 함께 알아 두면 좋은 정보 §공공부문은 중앙행정기관, 법기관, 광역 및 기초자치단체, 공공기관으로 구분된다. §중앙행정기관 중 국방부, 감사원, 방통위, 법제처, 공수처, 소방청은 관제 소프트웨어를 운영하고 있지 않다. 광역자치단체의 총 소프트웨어 도입비 중 관제 소프트웨어 비중은 평균 6.9%이다. 가장 낮은 지역은 경기도 1.4%, 다음은 광주 2.4%이다. 1위는 부산이며 16.3%이다. §공공부문 소프트웨어는 총 20만6천개이며 총 도입비는 17조6천억원이다. 이중 중앙행정기관이 84%를 차지한다. 반면 하드웨어는 총 23만 5천개, 총 도입비는 9조9천억원이다. §관제분야 소프트웨어의 운영 기준 도입비는 6천6백억원이다. 운영체제 8천억원, 정보보호 7조5천억원, WAS 1조5천억원, DBMS 1조6천억원, 백업 2조3천억원, 기타 3조원. §소프트웨어 중 기타로 분류되는 것에는 가상화, 리포팅툴, 그래픽툴, 검색엔진, EAI/ESB, 클러스터, 메일 등이 있다. §도입률과 점유율이 혼재돼 사용했는데, 도입 후 사용하지 않는 SW는 통계자료에서 제외됐으므로 결국 같은 의미이다. §공공부문이 운영중인 정보시스템에서 가장 많이 사용하고 있는 개발언어는 JAVA(70.26%), 다음으로 JSP(46.5%)이다. 개발 프레임워크의 경우 1위는 전자정부표준으로 48.5%, 2위는 Spring 15.7%, 꼴찌는 .NET 5.7%
2022.10.24
통합로그관리가 필요한 3가지 이유
통합로그관리가 필요한 3가지 이유
로그는 IT 인프라에서 발생하는 모든 상황들을 기록한 데이터입니다. 쉽게 말해 사용자가 어떤 루트로 사이트에 접속했고, 접속한 시점부터 어떤 행동을 취했는지가 모두 기록으로 남게 되는데, 이 기록들이 로그입니다. 로그는 IT 환경에서 가장 많이 발생하지만, 데이터 처리 기술이 발달하지 않았던 시기에는 처리 비용에 비해 가치가 낮은 데이터로 여겨졌습니다. 하지만 최근들어 IT 서비스와 인프라가 다양해지고 디지털 트랜스포메이션이 가속화되면서, 로그의 양이 기하급수적으로 증가하고 사물인터넷(IoT), 빅데이터 등과 같은 신기술이 발전하면서 그 효용성 또한 날로 증가하고 있습니다. 그렇다면, 이 로그는 실제로 어떻게 활용될까요? 개발 영역에서는 버그 혹은 크래시율 수집 및 상시 트래킹, 이슈 발생 후 롤백 및 대응, 특정 기능에 대한 사용성 진단에 활용됩니다. 마케팅 분야는 채널별 ROI 진단 및 비용 최적화, 배너/프로모션/이벤트 효과 측정, 유저 세그멘테이션 및 타게팅에 사용합니다. 기획 및 디자인 영역은 기능 개선을 위한 A/B 테스트, 유저 Journey 경로 분석을 통한 UX/UI 최적화 등에서 쓰이고 있습니다. 이처럼 여러 영역에서 다양하게 쓰이는 로그를 관리하지 않고 방치해두면 어떤 일이 발생할까요? 통합로그관리가 필요한 이유에 대해 알아보겠습니다. ----------------------------------------------- I. 보안 대응체계 구축 저장만 하고 관리되지 않은 로그는 IT 시스템의 장애나 문제 발생 시 그 원인을 찾아내기가 어렵습니다. 또, 로그 데이터의 중요 정보가 외부로 유출될 위험도 커집니다. 끊임없이 발생하는 보안 사고에 대비하기 위해 통합로그관리는 반드시 필요합니다. 관리된 로그는 장애나 사고 발생 시에 그 원인을 파악하고 빠른 대처를 위한 근거 데이터로 사용할 수 있으며, 보안 체계를 마련하는 데에도 활용가능 합니다. 기업들은 로그관리 제품을 사용해 사이버 침해위협을 예방 및 감시하고, 정기적인 로그분석을 통해 강력한 보안대응체계를 구축하고 있습니다. 통합로그관리 솔루션은 보안장비(Firewall, IDC, IPS 등)의 로그와 해킹, 악성코드 등 보안/침해 관련 로그를 지속적으로 분석해 예방 체계를 구축합니다. 또, 대용량 로그의 상관분석을 통해 보안위협을 탐지하고 이상징후를 모니터링하는 등 강력한 보안 대응체계를 구축할 수 있습니다. II. 컴플라이언스 준수 로그는 보안 사고가 발생했을 때 가장 기본적인 증거 및 모니터링 자료로 활용됩니다. 이에 따라 정부에서는 데이터 관리에 대해 각종 법률을 규정하고 있어, 공공기관을 비롯한 개인정보를 다루는 온라인 사업자 및 기업 등은 해당 법규를 준수해야 합니다. 안전한 데이터 이용을 위해 2018년에 발의된 '데이터 3법' 개정안은 2020년 1월 9일 국회 본회의를 통과했습니다. 데이터 3법은 개인정보 보호법, 정보통신망 이용촉진 및 정보보호 등에 관한 법률, 신용정보의 이용 및 보호에 관한 법률 등 3가지 법률을 통칭합니다. 로그 관리 관련 규제의 주요 내용은 다음과 같습니다. i. 개인정보보호를 위해 접근 권한 부여, 변경 또는 말소 기록을 3년 이상 보관해야 합니다. ii. 개인정보 취급자는 개인정보처리시스템의 접속기록을 월 1회 이상 점검해야 하고, 그 활동의 증거를 남기기 위해 시스템에 접속했다는 기록을 1년 이상 보관해야 합니다. iii. 정보통신서비스 제공자는 접근 권한 내역을 5년간 보관하고, 접속 기록의 위·변조 방지를 위해 반드시 백업 보관해야 합니다. III. 빅데이터 처리 플랫폼 IT 인프라 확대 및 기타 비정형 로그 유입에 따라 대용량 로그에 대한 관리가 요구되고 있습니다. 특히 수집된 로그를 실시간으로 분석∙판단해 IT 서비스의 안정적 운영을 도모해야 하는 수요가 증대되고 있는데요. 오늘날의 데이터는 기존 데이터에 비해 양이 매우 방대해 기존 방법이나 도구로는 관리가 어렵습니다. 따라서 빅데이터 기술을 기반으로 하는 대용량 통합 로그관리 솔루션은 이제 IT 운영을 위한 필수 솔루션으로 자리잡았습니다. ----------------------------------------------- 이처럼 기업은 보안위협 및 이상징후 대응/컴플라이언스 준수/대용량 로그 관리를 위해 통합로그관리 솔루션을 필수로 갖춰야합니다. 브레인즈컴퍼니의 통합로그관리 솔루션 '제니우스(Zenius) Logmanager'는 이기종 장비에서 발생되는 정형∙비정형 로그 데이터의 수집/분석/관리 등을 위한 빅데이터 플랫폼입니다. 제니우스 로그매니저가 어떻게 구성돼 있는지 살펴보겠습니다. 제니우스 로그매니저는 정형/반정형 또는 비정형 로그에 대한 실시간 수집 및 신속한 분석 기능을 제공하며, 이러한 정보들을 다양한 차트와 대시보드를 통해 직관적으로 가시화합니다. 특히 로그매니저는 독보적인 인덱싱 및 검색 속도를 제공하며 확장성, 편의성, 효율성, 호환성 등의 특장점을 보유한 제품입니다. 로그 이벤트 발생 시 즉각적인 알람을 통해 빠른 문제 해결과 높은 가용성을 확보하도록 지원합니다.
2022.11.10
서버 모니터링 트렌드 살펴보기
서버 모니터링 트렌드 살펴보기
기업이나 조직의 IT 인프라 모니터링은 서버 모니터링에서 출발합니다. 통상적으로 서버 모니터링부터 네트워크, 데이터베이스, 웹애플리케이션, 전산설비 등으로 모니터링의 범위를 확장해 나가는 것이 일반적입니다. 서버는 초창기 메인 프레임부터 유닉스 서버, 리눅스 서버를 거쳐 최근의 가상화 서버에 이르기까지 물리적 및 논리적으로 그 성격이 변화해 왔습니다. 그에 따라 서버 모니터링의 관점도 많이 변모해 왔습니다. 기껏해야 1~2대 규모로 운영하던 메인 프레임의 시대와 수천, 수만대의 서버팜을 관리해야 하는 시대의 모니터링 개념은 달라야 합니다. 또, 가상화 시대를 맞아 물리적 서버 개념보다는 논리적 서버 개념이 중요해지고, 서버 1~2대의 장애 상황보다는 서버팜이 이루고 있는 서비스의 영속성이 중요해졌습니다. 이처럼 서버라는 인프라가 기술 발전에 따라 변모하고 있고, 그에 대응해 모니터링 콘셉트나 방법도 변화하고 있습니다. 이번 블로그에서는 서버 관련 새로운 인프라 개념 및 기술들이 대두되면서 변화하는 서버 모니터링의 새로운 트렌드에 관해 논의해 보고자 합니다. 1. 클라우드 네이티브 모니터링 더 많은 기업이나 조직이 전통적인 레거시 시스템에서 클라우드로 이동함에 따라 클라우드 모니터링의 필요성이 급격히 증가했습니다. 클라우드 네이티브 모니터링 도구는 Amazon Web Services(AWS), Microsoft Azure, Google Cloud Platform(GCP)과 같은 클라우드 환경에서 애플리케이션과 클라우드 인프라를 모니터링하도록 설계됐습니다. 또, 클라우드 인프라의 성능, 가용성 및 보안에 대한 실시간 인사이트를 제공해, IT운영부서가 문제를 신속하게 발견하고 해결할 수 있도록 지원합니다. 일반적인 클라우드 모니터링은 메트릭과 로그를 사용해 클라우드 인프라 및 애플리케이션 성능을 하나의 통합된 화면에 제공합니다. 또한 통합 IT 환경 측면에서는 컨테이너 오케스트레이션 플랫폼 및 서버리스 컴퓨팅과 같은 다른 클라우드 환경과 통합해 모니터링할 수도 있습니다. 클라우드 기반 모니터링의 최신 추세는 하이브리드 모니터링입니다. 조직은 하이브리드 모니터링을 통해 클라우드와 온프레미스에서 각각 실행 중인 서버 및 애플리케이션 모두를 단일 플랫폼에서 모니터링할 수 있습니다. 2. 인공지능과 머신러닝 서버 모니터링의 또 다른 트렌드는 인공 지능(AI)과 머신 러닝(ML)을 사용해 모니터링 과정을 자동화하는 것입니다. AI 및 ML 알고리즘은 모니터링 과정에서 생성된 방대한 양의 데이터를 분석하고 패턴을 식별해 이상 징후를 감지할 수 있습니다. 이는 실시간으로 수행될 수 있으므로 운영관리자는 발생하는 모든 문제에 신속하게 대응할 수 있습니다. ML 알고리즘은 과거 데이터를 분석해 트래픽이 가장 많은 시기나 잠재적 장애와 같은 미래 추세를 예측할 수 있습니다. 이를 위해 서버의 성능과 관련된 대규모 데이터 세트에서 ML 알고리즘을 교육해야 합니다. 이 데이터는 서버 로그, 시스템 메트릭, 애플리케이션 로그 및 기타 관련 정보가 해당됩니다. 다음으로 알고리즘을 학습해 다양한 메트릭 간의 패턴과 상관 관계를 식별하고 이상 징후와 잠재적 문제를 감지합니다. 머신 러닝 모델이 훈련되면 서버를 실시간으로 모니터링하도록 배포할 수 있으며, 모델은 지속적으로 서버 메트릭을 분석하고 이를 학습한 패턴과 비교합니다. 편차나 이상을 감지하면 문제를 해결하기 위해 경고 또는 자동화된 작업을 트리거할 수 있습니다. 예를 들어, 트래픽이 갑자기 증가하는 경우 리소스를 자동으로 Scaling 하거나 다운 타임을 방지하기 위해 다른 조치를 취할 수 있습니다. 전반적으로 인공 지능과 머신 러닝을 사용해 서버 모니터링을 자동화하면, 문제해결에 시간을 절약하고 인적 오류의 위험을 줄일 수 있습니다. 또, 심각한 문제로 번지기 전에 잠재적 문제를 식별해 서버 인프라의 전반적인 안정성과 가용성을 향상할 수 있습니다. 3. 컨테이너 모니터링 컨테이너가 애플리케이션 배포에 점점 더 많이 사용되면서, 컨테이너 모니터링은 서버 모니터링의 중요한 측면이 됐습니다. 컨테이너란 애플리케이션을 모든 인프라에서 실행하는데 필요한 모든 파일 및 라이브러리와 함께 번들로 제공하는 소프트웨어 배포 도구입니다. 컨테이너를 사용하면 모든 유형의 디바이스 및 운영 체제에서 실행되는 단일 소프트웨어 패키지를 만들 수 있습니다. 뿐만 아니라, 단일 시스템에서 한 컨테이너는 다른 컨테이너의 작업을 방해하지 않으므로 확장성이 뛰어나고, 결함이 있는 서비스가 다른 서비스에 영향을 주지 않아 애플리케이션의 복원력과 가용성이 향상되는 장점이 있습니다. 컨테이너 모니터링은 CPU 및 메모리 사용량과 같은 컨테이너 리소스 사용률에 대한 실시간 메트릭을 제공할 수 있습니다. 또, 애플리케이션이 의도한 대로 실행되고 있는지 확인하기 위해 Kubernetes(쿠버네티스)와 같은 컨테이너 오케스트레이션 플랫폼을 모니터링하고, 컨테이너 및 기본 인프라에 대한 실시간 가시성을 제공합니다. 4. 서버리스 모니터링 서버리스 컴퓨팅은 사용량에 따라 백엔드 서비스를 제공하는 방법으로, 개발자가 서버를 관리할 필요없이 애플리케이션을 빌드하고 실행하는 것을 가능하게 합니다. 서버리스 컴퓨팅은 벤더 종속성(Vendor lock-in), 콜드 스타드와 DB백업이나 영상 인코딩 등 단시간에 많은 컴퓨팅 용량이 필요한 경우, 효율적이지 않음에도 불구하고 최근 몇 년 동안 주목을 받아오며 서버리스 모니터링이 서버 모니터링의 새로운 트렌드가 됐습니다. 서버리스 모니터링은 CPU, 메모리, 디스크 사용량 등 리소스 사용률, 애플리케이션 성능, 호출 시간 및 오류율과 같은 기능 성능에 대한 실시간 인사이트를 제공합니다. 서버리스 모니터링은 데이터베이스 쿼리 성능과 같은 서버리스 함수의 종속성에 대한 인사이트도 제공합니다. 5. 마이크로서비스 모니터링 마이크로서비스는 하나의 큰 애플리케이션을 여러 개의 작은 기능으로 쪼개어 변경과 조합이 가능하도록 만든 아키텍처로, 각 서비스를 다른 서비스와 독립적으로 개발, 배포 및 확장할 수 있는 장점이 있습니다. 하지만 마이크로서비스는 일반적으로 분산된 환경에 배포되므로 성능을 추적하고 문제를 찾아내기가 어렵고, 독립적으로 설계됐으므로 호환성에 어떤 문제가 있는지 감지할 필요가 있어 마이크로서비스 모니터링이 필요합니다. 마이크로서비스 모니터링은 개별 마이크로서비스 및 전체 애플리케이션의 성능과 상태를 추적하는 프로세스로 로그, 메트릭 및 트레이스와 같은 다양한 소스에서 데이터를 수집하고 분석해 문제를 식별하고 성능을 최적화하는 작업입니다. 마이크로서비스 모니터링은 각 마이크로서비스 별 가용성, 응답 시간, 가동 시간, 지연 시간, 오류율을 포함합니다. CPU, 메모리, 디스크 사용량과 같은 리소스 사용률을 추적해 잠재적인 성능 병목 현상이나 리소스 제약을 식별할 수 있고, 마이크로서비스 간의 데이터 흐름을 추적하고 서비스 간의 종속성 추적을 모니터링합니다. 또, 마이크로서비스 모니터링은 애플리케이션 전체의 전반적인 상태와 성능뿐만 아니라 타사 서비스 및 API의 성능과 상태도 모니터링할 수 있습니다. ----------------------------------- 브레인즈컴퍼니는 꾸준히 연구개발에 매진해 상기와 같은 새로운 트렌드를 반영한 Zenius-EMS를 개발, 출시했습니다. Zenius-EMS는 고객들이 레거시 시스템에서부터 클라우드 네이티브 시스템에 이르기까지 다양한 관점의 서버모니터링을 할 수 있도록 지원합니다. *이미지 출처: Unsplash, flaction
2023.03.29
클라우드 송환(Cloud Repatriation): 클라우드에서 다시 온프레미스로
클라우드 송환(Cloud Repatriation): 클라우드에서 다시 온프레미스로
다시 온프레미스로 복귀하려는 움직임 2022년 발표된 IDC 조사 결과에 의하면, 미국 기업의 71%가 향후 2년내에 ‘클라우드 송환’ 계획이 있다고 합니다. 실제 일부 애플리케이션을 클라우드에서 빼내 자체 데이터센터로 다시 가지고 오는 기업이 늘고 있습니다. 우리나라의 경우 ‘클라우드 전환’이 업계의 화두가 되고 있지만, 클라우드 전환을 10년 넘게 경험하고 있는 미국의 경우에는 이제 ‘클라우드 송환’이 또 다른 화두가 되고 있습니다. 클라우드 송환(Cloud repatriation)은 기업이 클라우드 환경에서 운영하던 애플리케이션, 데이터, 서비스 등을 온프레미스 환경으로 되돌리는 것을 말합니다. 이는 퍼블릭 클라우드가 비즈니스 민첩성을 향상시킬 수 있지만, 특정한 상황에서 온프레미스보다 퍼블릭 클라우드의 지출 비용이 더 크다는 사실을 기업이 깨달으면서 해당 애플리케이션 등을 온프레미스로 복귀시키려는 IT 전략입니다. 클라우드 송환 현상은 IT 비용과 성능을 비롯한 여러 측면에서 클라우드가 항상 최선의 해결책은 아니라는 인식을 바탕으로 확대되는 추세이며 이제 기업이 비용, 성능, 보안의 극대화를 위해 기존 환경과 새로운 환경 사이에서 자연스러운 워크로드 분산을 시작했다는 의미이기도 합니다. 미처 몰랐던 클라우드 서비스의 문제점 클라우드를 채택한 기업이 클라우드 송환을 선택하는 이유는 다음과 같은 문제가 있기 때문입니다. 첫째, 클라우드 비용 문제입니다. 2022년 클라우드 현황(Flexera 2022 State of the Cloud Report) 보고서에 따르면, 클라우드 비용의 30% 정도가 낭비되고 있습니다. 클라우드 서비스가 표면적으로 내세우는 클라우드의 가장 큰 장점이 비용 절감임에도 불구하고, 클라우드 전환 OPEX(operational expenses)가 기존 CAPEX(capital expenses) 대비 더 낫다고 단정하기 어렵습니다. 초기에는 클라우드의 비용이 저렴하게 느껴지지만, 가상머신(VM)과 컨테이너 인스턴스에서 처리하는 작업이 늘어날수록 비용도 더해지기 때문입니다. 워크로드가 증가하는 스타트업은 클라우드를 통해 유연성을 확보하는 것이 비용면에서 유리하겠지만, 예측 가능한 수준의 워크플로우를 갖고 있는 기업이라면 얘기가 달라집니다. 특히, 클라우드에서는 인터넷 대역폭 및 스토리지 요금 등 추가적인 비용이 발생할 수 있습니다. 둘째, 보안 문제입니다. 기업은 클라우드 제공자가 제공하는 기본적인 보안 기능 외에도 보안 문제에 대한 책임을 직접 지게 됩니다. 또, 기업은 자체 보안 정책을 준수해야 하며, 이를 클라우드 환경에 적용하는 것이 쉽지 않습니다. 특히 복잡한 멀티클라우드 환경에서는 견고하게 클라우드 보안 아키텍처를 구축하기 어렵고 외주 처리에 따라 많은 비용이 듭니다. 셋째, 성능 문제입니다. 클라우드에서는 다른 기업과 리소스를 공유하기 때문에 성능 문제가 발생할 수 있습니다. 또, 클라우드 환경에서 애플리케이션 및 데이터를 조작하는 데 필요한 대역폭이 충분하지 않을 경우 성능 문제가 발생할 수 있습니다. 따라서 기업은 성능 문제로 인해 클라우드 송환을 선택할 수 있습니다. 넷째, 제어 문제입니다. 클라우드에서는 기본적으로 클라우드 제공자가 인프라 관리와 보안을 담당합니다. 이는 기업이 클라우드 환경에서는 많은 경우 애플리케이션, 데이터, 서비스 등을 직접 제어할 수 없다는 것을 의미합니다. 따라서, 기업이 직접 컨트롤하지 못해서 문제가 발생한다고 느낄 때에는 클라우드 송환을 선택할 수 있습니다. 클라우드 송환의 이점 클라우드 송환(Cloud repatriation)은 기업에게 여러 가지 이점을 제공합니다. 첫째, 기업은 애플리케이션, 데이터, 서비스 등을 직접 관리할 수 있습니다. 이는 기업이 보안 및 규정 준수와 같은 중요한 문제를 직접 다룰 수 있도록 해주며, 제어력을 높임으로써 IT 부서가 잠재적 문제에 대비해 인사이트와 더 나은 계획을 수립할 수 있게 해줍니다. 클라우드에서는 기본적으로 클라우드 제공 업체가 인프라 관리와 보안을 담당하기 때문에, 이를 직접 제어할 수 없습니다. 클라우드 송환에 적합한 케이스는 정적인 기능을 제공하며 사용량이 많은 애플리케이션입니다. 비용이 고정되고 예측 가능한 애플리케이션은 온프레미스 환경에서 관리하는 편이 더 효과적입니다. 둘째, 기업은 클라우드 비용을 절감할 수 있습니다. 한때 퍼블릭 클라우드가 모든 문제의 해답이라고 생각했다가 퍼블릭 클라우드의 비용 특성과 이점이 기업의 상황과는 맞지 않는다는 사실을 깨닫게 됩니다. 2~3년에 걸쳐 추가되는 비용을 감안하면 퍼블릭 클라우드를 계속 사용할 만한 매력은 시간이 갈수록 희석됩니다. 기업은 반복적으로 발생하는 클라우드 운영 비용을 줄이거나 없애는 방법으로 많은 비용을 절감할 수 있습니다. 예를 들어, 어떤 기업의 데이터가 여러 사이트에서 발생하고 그 양이 많다면 클라우드 환경에서 데이터를 보관하고 이동시키는 데 많은 비용이 발생할 수 있습니다. 또 다른 예로 영상을 불러오고 저장하는 작업이 빈번한 영상 제작 기업의 경우, 클라우드 서버에서 병목현상이 발생할 수 있고 내부 LAN처럼 10Gbps 속도로 데이터를 옮기려면 그 비용이 저렴하지 않을 수 있습니다. 비용 외에도 데이터 이동에 많은 시간이 소모되며 이로 인해 데이터를 필터링해 최소한의 데이터만 저장해야 하는 불편함이 있습니다. 한편, 메모리와 디스크 리소스 비용이 계속 하락하면서 기업의 온프레미스 투자가 유리해지고 있습니다. 더불어 클래스 메모리 및 SDN(소프트웨어 정의 네트워크)과 같은 비용에 도움을 주는 솔루션을 활용하면, 한때 퍼블릭 클라우드의 큰 매력이었던 유연성, 확장성, 중복성의 간극이 상당부분 사라집니다. 셋째, 기업은 데이터 보호와 백업을 더욱 쉽게 할 수 있습니다. 클라우드 업체도 데이터 프라이버시에 대해 엄격하지만 온프레미스 환경에서 데이터를 저장하고 백업 받고 복구하는 것보다 더 안전할 수 없습니다. 물론 민감한 정보를 로컬 환경에 저장하는 것 역시 문제 제기가 있겠지만 최소한 고객 데이터가 사라졌을 때 무엇을 어떻게 해야 하는지 알 수 있습니다. 규정 준수 측면에서도 각 국마다 개인정보보호 규정이 달라 우발적인 규정 위반 가능성이 있습니다. 이러한 우려를 줄이는 방법은 애플리케이션을 특정 위치의 온프레미스 환경에서 실행하는 것입니다. 넷째, 대역폭 문제에서 자유로운 장점이 있습니다. 클라우드 환경에서 빅데이터 시스템을 활용하는 기업은 빅데이터 시스템에서 생성되는 데이터가 높은 대역폭을 요구하면서 자사 데이터 센터보다 훨씬 더 많은 운용 비용을 지불합니다. 컴퓨팅은 온디맨드이므로 탄력적인 클라우드가 유리할 수 있지만 스토리지는 매일 매초 비용이 계속 증가하고 있는 사실을 알아야 합니다. 클라우드냐 온프레미스냐 고려할 점 클라우드 송환은 비용면에서 매력적이지만 매우 도전적인 과제입니다. 클라우드 서비스 공급자는 일반적으로 클라우드에서 빠져나오기 상당히 어렵게 계약하고, 해체됐거나 아예 존재하지 않던 온프레미스 환경을 준비하기 위해 기업의 재무와 조직 운영에 큰 영향을 미치기 때문입니다. 게다가 애플리케이션을 온프레미스 데이터센터로 마이그레이션하는 경우 기업은 클라우드의 확장성, 유연성, 가용성, 탄력성을 유지하기 힘들고 자체 데이터센터가 클라우드에 비해 더 안전하다는 보장을 하기도 어렵습니다. 따라서 이런 경우에는 애플리케이션에서 실행 중인 환경에 대한 종속성이 있는 부분과 단순히 데이터를 관리하는 부분을 분리하면 혼란을 최소화할 수 있습니다. 처음부터 클라우드 환경을 고려해 서비스를 설계했다면, 워크로드를 다시 데이터센터로 되돌리기 위해서는 어느 정도의 재설계가 필요하며 빅데이터에 의존하는 기업은 상당한 마이그레이션 작업을 각오해야 합니다. 이처럼 클라우드 송환은 매우 어려운 과제입니다. 따라서 처음부터 워크로드를 퍼블릭 클라우드로 이전하는데 매우 신중한 입장을 취하는 것이 가장 중요합니다. 그래서 최근에는 기업들이 클라우드 환경을 고수하는 것보다는 필요한 경우 클라우드와 온프레미스 환경을 융합하는 하이브리드 클라우드 전략을 선택하는 경향이 있습니다. 모든 서비스를 클라우드로 전환하는 것이 아니라, 단기간에 트래픽이나 사용자가 급속히 늘어날 가능성이 있거나, 클라우드 서비스를 활용해 서비스를 빠르게 런칭해야 하는 경우로 한정하는 것이 필요합니다. 우리나라에서도 많은 기업들이 이미 클라우드가 갖고 있는 단점들을 경험하고 온프레미스로 전환하고 있습니다만, ‘클라우드 전환’이라는 큰 물결 아래 ‘클라우드 송환(Cloud Repatriation)’에 대한 논의는 제한적입니다. 우리나라의 클라우드 전환율이 세계시장과 비교해 볼 때 현저히 낮지만, 오히려 클라우드 환경의 문제를 이미 경험한 나라들의 교훈을 미리 받아들인다면 학습비용을 줄일 수 있을 것으로 기대합니다. Zenius-EMS는 고객들이 레거시 시스템에서부터 클라우드 네이티브 시스템에 이르기까지 다양한 관점의 서버모니터링을 할 수 있도록 지원합니다. 대규모 인프라가 존재하는 데이터센터 및 클라우드 환경에서 대용량 데이터 처리에 대한 높은 성능을 확인할 수 있습니다. 고유의 특허 기술을 통해 수천대의 장비에서 발생되는 데이터들을 안정적으로 수집하고 빠르게 처리할 수 있습니다. [출처] John Edwards, "클라우드의 온프레미스 송환이 타당한 5가지 경우", IT WORLD, 2019.04.16 Steven J. Vaughan-Nichols, "모두가 '클라우드' 외칠 때 '로컬 서버' 선택해야 하는 이유, IT WORLD, 2022.07.27 Andy Patrizio, "기업 71%, 2년 이내 클라우드에서 온프레미스로 복귀할 것", IT WORLD, 2022.06.29 Clint Boulton, "'전진 위한 후퇴'··· 클라우드서 온프레미스로 송환하는 기업들", CIO Korea, 2020.03.30 Brian Adler, "Cloud Computing Trends: Flexera 2022 State of the Cloud Report", flexera, 2022.03.21
2023.04.07
다음 슬라이드 보기