반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
무선 AP를 WNMS를 통해 올바르게 관리하는 방법
Helm과 Argo의 개념과 통합 활용법?!
강예원
2024.03.08
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
지속적인 성과를 내기 위한 첫걸음, '이것'부터 관리 하라?!
애플리케이션을 클라우드 네이티브 환경에서 효율적으로 관리하고 운영할 수 있는 플랫폼인 쿠버네티스(kubernetes)를 활용하는 기업들이 점점 더 늘어나고 있습니다.
이에 따라 효율적인 애플리케이션 관리를 통해 패키징 배포, 관리를 자동화하고 일관된 상태를 유지하는 것이 중요해지고 있습니다. 이번 글을 통해서는 애플리케이션 개발 및 도구 중 최근 많이 사용되는
Helm과 Argo
에 대해서 자세히 알아보겠습니다.
ㅣHelm의 등장
쿠버네티스를 활용한 애플리케이션 배포에 가장 기본이 되는 단위는 yaml 파일로, 주로 쿠버네티스 object(리소스)들을 정의하고 다루는데 활용됩니다.
쿠버네티스를 통해 애플리케이션을 배포하다 보면 비슷한 틀과 내용을 공유하고, 내부 값(configuration)만 일부 변경하는 작업을 하게 되는데요, 이 과정에서 애플리케이션마다 모두 yaml 파일을 만들어야 하나 보니 매우 번거로웠습니다.
위 이미지를 보면, A 애플리케이션은 정적 파일인 yaml을 오브젝트별(Service, Pod, ConfigMap)로 만들어서 생성하고 배포합니다. 그러다가 프로젝트의 확장에 따른 기능 추가로 인해 B와 C 애플리케이션으로 쪼개어 각각의 yaml 파일을 복사해서 사용합니다.
하지만, 팀 단위로 인프라가 확장될 경우는 어떻게 할까요? 개별 오브젝트에 대한 yaml 개별적으로 관리할 수 있을까요? 만약, 개별적으로 관리한다면 파일의 갯수와 코드량의 증가로 인해 개발자들은 매우 혼잡하게 될 것입니다.
이러한 문제점을 해결하기 위해, 쿠버네티스에서 애플리케이션을 배포하기 위해 사용되는 대표적인 패키징 툴인 Helm이 등장하게 됐습니다.
Helm을 활용하면 컨테이너 배포뿐 아니라 애플리케이션을 배포하기 위해 필요한 쿠버네티스 리소스를Node의 npm, Ubuntu의 APT, Mac의 Homebrew처럼 모두 패키지 형태로 배포할 수 있습니다.
ㅣHelm의 역사
Helm은 v1부터 v3에 이르기까지 아래와 같은 변화의 과정을 거쳐왔습니다.
Helm v1
◾ [2015년 11월] DEIS의 내부 프로젝트로 시작되어 KubeCon에서 발표
◾
[
2017년 04월] MS에서 DEIS를 인수
Helm v2
◾ [2016년 01월] Google 프로젝트에 합류
◾ [2016년 ~ 2018년] Helm v2 고도화, 2.15.0 릴리스 발표에서 v2 향후 계획 세부사항 공유
Helm v3
◾
[
2018년 06월] CNCF 프로젝트에 합류, MS, 삼성 SDS, IBM 및 Blood Orange의 구성원 등이 참여
◾
[
2019년 11월] 릴리스 발표
v2에서 v3로 고도화되면서 가장 눈에 띄는 변화는 Tiller(클러스터 내에서 Helm 패키지 및 배포 상태를 관리하는 서버 구성요소)의 제거입니다.
Helm v2에서는 클러스터에 Tiller를 설치하여, API Server와 REST*1 통신을 하고, Client와 gRPC*2 통신을 진행했었는데요, Helm v3부터는 Tiller가 제거되면서 Client에서 바로 REST 통신을 통해 API Server로 요청하는 방식으로 변경되었습니다.
그 외에도 Helm v3으로 업그레이드되면서 보안 취약점이 줄어들었으며, 설치 및 관리 과정이 단순화되었습니다. 또한 사용자에게 보다 더 안전하고 효율적인 배포 및 관리 환경을 제공할 수 있게 되었습니다.
*1 REST (Representational State Transfer) : 웹 기반 애플리케이션에서 자원을 관리하기 위한 아키텍처 스타일, 데이터를 고유한 URL로 표현하고 HTTP 메서드(GET, POST, PUT, DELETE 등)를 사용하여 해당 자원에 대한 행위를 정의함
*2 gRPC (google Remote Procedure Call) : 구글에서 개발한 오픈소스 프레임워크, 원격지에 있는 다른 시스템 또는 서버에 있는 함수를 호출하는 방식
ㅣHelm의 주요 개념
Helm은 애플리케이션을 배포해 주는 툴이라고 앞서 살펴봤는데요, Helm과 같이 사용되는 주요 개념들을 살펴보겠습니다.
◾
Helm Chart:
쿠버네티스 리소스를 하나로 묶은 패키지입니다. 이는 yaml 파일의 묶음(패키지)으로, 이 묶음 public 혹은 private registry에 push 해두고, helm 명령어를 통해 Helm Chart를 설치하여 쿠버네티스 리소스를 배포하는 역할을 합니다.
◾
Repository:
Helm Chart 들의 저장소
◾
Release:
kubernetes Cluster에서 구동되는 차트 인스턴스이며, Chart는 여러 번 설치되고 새로운 인스턴스는 Release로 관리됩니다.
ㅣHelm의 주요 기능
Helm의 두 가지 주요 기능을 살펴보겠습니다.
[1] Helm Chart를 통한 손쉬운 배포
Helm을 사용하면 어떻게 되는지 그림으로 살펴보겠습니다.
개발 클러스터가 있고 앱 2개를 배포한다고 가정했을 때, Helm Chart Template을 만들면 변수 처리를 통해 yaml 파일을 하나하나 수정할 필요 없습니다. kubectl 명령어를 통해 yaml 파일의 동적 값을 치환하여 템플릿 형태로 편리하게 배포할 수 있다는 장점이 있습니다.
[2] Helm Package를 이용한 오픈소스 설치 및 배포
Helm을 통해서 쿠버네티스에서 가동할 수 있는 아래와 같은 다양한 오픈소스들의 제품들을 쉽게 설치/배포할 수 있습니다.
위제품들 외에도 Helm Chart는 총 14,376개의 패키지와 281,373개의 릴리스를 오픈소스로 제공합니다. 이를 통해 사용자들은 자신의 요구에 맞는 가장 적합한 솔루션을 선택하여 개발할 수 있습니다. 또한 많은 사용자들이 검증하고 사용함에 따라 안정성 있는 운영도 가능하죠.
다양한 Helm Chart 패키지는 커스터마이징이 가능한 경우가 많은데요, 사용자는 필요에 따라 구성을 조정하고 수정해서 사용할 수 있는 장점이 있습니다.
다음으로는 Helm 못지않게 많이 활용되는 ArgoCD에 대해서 살펴보겠습니다.
ㅣ ArgoCD란?!
기존의 kubernetes 애플리케이션을 배포하고 관리하는 방식은 수동적이었습니다. yaml 파일을 직접 편집하고, kubectl로 변경사항을 클러스터에 적용하는 수동 배포 방식은 실수를 많이 유발했죠.
또한 여러 개발자나 팀이 각자의 방식대로 배포 및 관리를 수행하는 경우, 클러스터 상태의 일관성이 저하되었는데요. 이로 인해 개발 및 운영팀 간의 협업이 어렵고 생산성이 감소되는 문제가 발생하기도 했습니다.
이러한 기존 접근 방식에 대한 대안으로 GitOps가 탄생했는데요, GitOps는 Git 저장소를 사용하는 소프트웨어 배포 접근 방식입니다. GitOps는 인프라와 소프트웨어를 함께 관리함으로써, Git 버전 관리 시스템과 운영환경 간의 일관성을 유지할 수 있도록 합니다.
ArgoCD는 GitOps를 구현하기 위한 도구 중 하나로 kubernetes 애플리케이션의 자동 배포를 위한 오픈소스 도구입니다. kubernetes 클러스터에 배포된 애플리케이션의 CI/CD 파이프라인에서 CD 부분을 담당하며, Git 저장소에서 변경사항을 감지하여 자동으로 kubernetes 클러스터에 애플리케이션을 배포할 수 있습니다.
kubernetes 애플리케이션 배포 과정을 살펴보겠습니다.
① 사용자가 개발한 내용을 Git 저장소에 Push(이때, kubernetes 배포 방식인 Helm 배포 방식의 구조로 Git 저장소에 Push 할 수 있습니다.)
② ArgoCD가 Git 저장소의 변경 상태를 감지
③ Git 저장소의 변경된 내용을 kubernetes에 배포하여 반영
ㅣ ArgoCD의 주요 기능
◾ 애플리케이션을 지정된 환경에 자동으로 배포
◾
멀티 클러스터 관리기능 제공
◾
OCI, OAuth2, LDAP 등 SSO 연동
◾
멀티 테넌시와 자체적인 RBAC 정책 제공
◾
애플리케이션 리소스 상태 분석
◾
애플리케이션 자동 및 수동 동기화 기능 제공
◾
Argo가 관리하고 있는 쿠버네티스 리소스 시각화 UI 제공
◾
자동화 및 CI 통합을 위한 CLI 제공
위 내용은 ArgoCD가 제공하는 주요 기능을 나열한 것인데요, 이 중에서도 대표적인 다섯 가지 기능에 대해서 자세히 살펴보겠습니다.
① 쿠버네티스 모니터링
ArgoCD는 쿠버네티스를 항상 추적하고 있다가 저장소의 변경사항이 감지되면, 자동으로 클러스터의 상태를 저장소의 상태와 동기화합니다. 또한 문제가 생기면 이전 상태로 롤백 할 수 있으며, 이를 통해 시스템 복구 및 문제 해결을 용이하게 합니다.
② 멀티 클러스터 관리
다중 클러스터 환경에서도 배포를 관리할 수 있어 복잡한 인프라 환경에서의 효율적인 작업을 가능하게 합니다.
③ ArgoCD 대시보드
Argo에서는 클러스터 상태를 효과적으로 관리하고 모니터링할 수 있는 대시보드를 제공합니다.
ArgoCD 대시보드를 통해 애플리케이션의 실시간 상태와 동기화 상태와 같은 전체적인 배포 파이프라인을 자동화하여 시각적으로 확인할 수 있고, 롤백 및 이력 추적 기능도 동시에 제공하고 있습니다.
④ 안전한 인증 및 권한 관리
역할 기반 액세스 제어(RBAC) 및 권한 제어기능을 통해 민감한 정보에 대한 접근을 제어할 수 있습니다.
⑤ GitOps 지원
ArgoCD는 GitOps 방법론을 따르므로 애플리케이션의 배포를 Git Repository와 동기화할 수 있습니다. 이를 통해 코드와 인프라의 일관성을 유지하고 변경사항을 추적할 수 있습니다.
ㅣ Helm과 ArgoCD의 통합 활용 프로세스
Helm과 Argo를 함께 사용하면 개발, 테스트, 배포 프로세스를 효과적으로 관리할 수 있습니다. Helm으로 애플리케이션을 패키징하고 버전을 관리하며, Argo를 활용하여 GitOps 워크플로우를 통해 지속적인 통합 및 배포를 자동화할 수 있습니다.
① develop:
Helm을 사용하여 애플리케이션을 Helm Chart로 패키징 합니다. 이후 개발된 Helm Chart를 저장하기 위한 Git 저장소를 설정합니다. ArgoCD에서 저장한 저장소를 특정 배포 대상 Kubernetes 클러스터와 연결하여, Git 저장소의 변경사항을 감지하고 새로운 배포를 시작하여 클러스터에 적용합니다.
② git push:
개발자가 로컬 저장소 내용을 원격 저장소에 배포합니다.
③ Observe(GitOps):
ArgoCD는 Git 저장소의 변경 사항을 감지하여, 변경사항이 발생하면 새로운 버전의 애플리케이션을 배포하여 자동화 및 일관성을 유지합니다.
④ 운영/테스트/개발
ㅣ마무리
오늘 함께 살펴본 Helm과 ArgoCD 두 가지 강력한 도구를 함께 이용한다면 CI/CD 통합, 버전 관리, 자동화 등의 이점을 활용해서 kubernetes 환경에서 애플리케이션을 더 효율적으로 관리할 수 있습니다.
한편 애플리케이션을 효과적으로 개발하는 것도 중요하지만, kubernetes 환경의 프로세스를 실시간 모니터링하고 추적하여 관리하는 것도 매우 중요합니다.
브레인즈컴퍼니의 kubernetes 모니터링 솔루션 Zenius-K8s는 다양한 CI/CD 도구를 이용하여 개발한 kubernetes 애플리케이션의 전체 클러스터 및 구성요소에 대한 상세 성능 정보를 모니터링하고, 리소스를 추적함으로써 시스템의 안정성과 성능을 높여주고 있습니다.
#쿠버네티스
#Helm
#Argo
#K8s
#kubernetes
#ArgoCD
#ZeniusK8s
강예원
프리세일즈팀
고객에게 특화된 Zenius를 제공하기 위해, 비즈니스 요구에 알맞은 전략적 컨설팅을 제안합니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
좋은 대시보드(Dashboard) 설계를 위한 4가지 핵심 가이드
좋은 대시보드(Dashboard) 설계를 위한 4가지 핵심 가이드
급변하는 IT 환경에서 우리는 많은 데이터를 접하고 있습니다. 이러한 방대한 데이터를 효율적으로 관리하고 시각화하기 위해 '대시보드'가 등장한 후 널리 활용되고 있습니다. 대시보드(Dashboard)는 필요한 데이터를 통합하여 시각화하는 화면으로, 사용자에게 중요한 정보를 한눈에 보여주는 도구입니다. 2023년 가트너(Gartner) 연구에 따르면, 전 세계 기업 72%가 데이터 시각화 도구를 사용하고 있기도 합니다. 데이터 시각화 도구를 활용한 기업이 비활용 기업에 비해 의사 결정 속도가 5배 빠르다는 연구 결과도 나왔죠. 그렇다면 기업운영에 있어 대시보드가 왜 중요한지, 좀 더 자세히 살펴보겠습니다. │대시보드(Dashboard), 왜 중요할까요? 대시보드가 중요한 이유는 여러 가지 있지만, 그중에서도 가장 핵심적인 이유는 다음과 같습니다. 첫째, 대시보드는 빠르고 정확한 의사 결정을 가능하게 합니다. 대시보드는 실시간으로 데이터를 시각화하고 중요한 정보를 즉각적으로 제공하여, 빠르고 정확한 의사 결정을 가능하게 합니다. 예를 들어 서버의 성능 문제나 네트워크 장애를 실시간으로 감지하고 즉각적으로 대응할 수 있습니다. 이는 기업이 비즈니스 연속성을 유지하고, 예기치 않은 문제로 인한 손실을 최소화할 수 있게 도와주죠. 둘째, 대시보드는 전체적인 상황을 한눈에 파악할 수 있게 합니다. 여러 출처에서 수집된 데이터를 하나의 화면에 통합하여 보여주기 때문에, 전체적인 상황을 한눈에 파악할 수 있습니다. 이를 통해 데이터 간의 관계를 쉽게 분석하고, 복잡한 문제를 효율적으로 해결할 수 있죠. 이는 전략적 계획 수립과 운영 효율성을 높이는 데 매우 중요한 역할을 합니다. 위에서 살펴본 두 가지 핵심 이유로 인해서 대시보드는, 기업의 비즈니스 경쟁력 확보를 위한 핵심 도구로 자리 잡고 있습니다. │어떤 종류의 대시보드가 있을까요? 대시보드 종류는 매우 다양한데요. IT 인프라 통합 관리 대시보드 기준에서, 대표적으로 세 가지 대시보드 유형을 살펴보겠습니다. 서비스형 대시보드 [그림] Zenius 서비스형 대시보드 일반적으로 많이 사용하는 서비스형 대시보드는 IT 서비스 성능 상태를 실시간으로 모니터링할 수 있게 도와줍니다. CPU, 메모리 사용량, 디스크 I/O, 네트워크 트래픽 등을 한눈에 확인할 수 있죠. 이를 통해 성능 저하나 장애가 발생하면 즉각 알림을 받아 빠르게 대응할 수 있습니다. 또한 클라우드와 온 프레미스 환경 모두 사용 가능해 유연성이 뛰어납니다. 지도형 대시보드 [그림] Zenius 지도형 대시보드 지도형 대시보드는 여러 지역에 분산된 IT 인프라를 한 지도에서 통합적으로 보여줍니다. 서버, 데이터 센터, 네트워크 장비 위치와 상태를 지도 위에 표시해 한눈에 파악할 수 있죠. 이때 특정 지역에서 문제가 발생하면 즉시 감지하고 대응할 수 있습니다. 또한 지리적 데이터를 바탕으로 장애 패턴을 분석하여 효율적인 관리가 가능하며, 실제 지리 정보 시스템(GIS)와 연동해 정교한 위치 기반 관리도 가능합니다. 이러한 기능 덕분에 이 대시보드는, 특히 글로벌 기업이나 여러 지사와 데이터 센터를 운영하는 조직에서 유용하게 사용됩니다. 구성도형 대시보드 [그림] Zenius 구성형 대시보드 구성도형 대시보드는 네트워크 자원의 상태와 관계를 시각적으로 표현해 줍니다. 이를 통해 네트워크 장비 간의 트래픽 흐름을 실시간으로 모니터링하고, 병목 지점이나 장애 발생 지점을 쉽게 찾아낼 수 있습니다. 또한 각 장비의 상태, 성능 지표, 로그 데이터를 시각적으로 제공해 문제를 조기에 발견하고 해결할 수 있도록 도와줍니다. 더 나아가 네트워크 트래픽을 분석해 최적화 방안을 도출할 수 있으며, 다양한 네트워크 인프라를 지원해 유연한 관리가 가능합니다. 하지만 이러한 대시보드는 '어떻게 구현하고 설계했느냐'에 따라서 좋은 대시보드가 될 수도, 그렇지 못할 수도 있는데요. 그렇다면 좋은 대시보드를 만들기 위해 어떤 점을 고려해야 할까요? 다음 내용을 통해 자세히 살펴보겠습니다. │좋은 대시보드를 만들기 위한 고려사항 핵심 데이터 우선 제공 우선 좋은 대시보드를 만들기 위해 가장 먼저 고려해야 할 점은, 시각화할 대상과 데이터를 명확히 파악해야 한다는 것입니다. 어떤 데이터가 가장 중요한지, 결정하는 것이 우선이죠. 반대로 너무 많은 데이터를 시각화하지 않도록 주의해야 합니다. 과도한 데이터 시각화는 사용자가 중요한 정보를 파악하는 데 어려울 수 있습니다. 따라서 핵심 데이터를 선별하여 우선적으로 표시해야 합니다. 좀 더 구체적인 사례를 통해 살펴볼게요. 대시보드는 서버, 네트워크, DB 등 기본 인프라 데이터를 수집하고 시각화해야 하는데요. 이 데이터는 CPU, 메모리, bps, 스토리지, 데이터 파일 등과 같이 시스템 성능과 운영 상태를 파악하는 필수적인 핵심 지표들입니다. 이러한 핵심 데이터를 명확하게 정의하고 제공하는 것은 대시보드 설계의 첫 번째 단계에서 중요한 요소이죠. [그림] Zenius 서비스형 대시보드 Zenius 대시보드는 이러한 기본 인프라 데이터를 우선적으로 수집하고 시각화하여, 사용자가 가장 중요한 정보를 빠르게 파악할 수 있도록 합니다. 사용자가 어떤 데이터를 가장 먼저 확인해야 하는지, 즉 우선순위를 명확히 하여 중요한 정보를 놓치지 않도록 도와주죠. 효율적이고 직관적인 정보 전달 좋은 대시보드를 만들기 위해 두 번째로 고려해야 할 점은, 사용자가 필요한 정보를 쉽고 빠르게 확인할 수 있도록 설계되어야 합니다. 데이터의 가독성을 높이는 색상과 그래픽 요소를 적절히 사용하여, 사용자 인터페이스가 직관적이고 사용하기 쉬워야 합니다. 여기서 유의할 점은 시각적 요소에 너무 몰두하지 않도록 주의해야 합니다. 디자인에만 집중하면 필요한 정보가 제대로 전달되지 않을 위험이 있기 때문이죠. 따라서 실용성과 사용성을 중시하여 사용자 중심의 인터페이스를 설계해야 합니다. 이번에도 대시보드 사례를 통해 구체적으로 살펴볼게요. Zenius는 '사용자 맞춤형 대시보드'를 제공하고 있는데요. 사용자의 모니터링 환경에 맞게 자유롭게 편집할 수 있습니다. 관리 대상이 많아지거나, 관리 목표를 변경해도 컴포넌트와 디스플레이 항목을 손쉽게 편집할 수 있습니다. 또한 Zenius의 직관적이고 유연한 편집 기능을 통해, 사용자에게 필요에 따라 색상이나 차트 유형을 쉽게 변경할 수 있도록 설계했습니다. 데이터를 가독성 있게 시각화하여 사용자가 인터페이스 직관적이고 사용하기 쉽도록 구성했죠. 외부 데이터 통합 좋은 대시보드를 만들기 위해 세 번째로 고려해야 할 점은, 기업 내 여러 솔루션의 핵심 지표를 한 화면에서 확인할 수 있도록 구성해야 합니다. 외부 데이터와의 연동으로 여러 시스템의 데이터를 통합하면, 전체 상황을 한눈에 파악할 수 있는데요. 이를 통해 분석과 의사결정을 용이하게 해줍니다. Zenius 사례를 통해 다시 한번 살펴보겠습니다. Zenius 대시보드는 3rd Party 시스템 연동을 통해, 외부 데이터를 통합하여 한 화면에서 핵심 지표를 확인할 수 있도록 설계했습니다. 이를 통해 사용자가 기업 내 다양한 솔루션 지표를 한눈에 파악할 수 있죠. 비즈니스 전반의 통합 관제 좋은 대시보드를 만들기 위해 네 번째로 고려해야 할 점은, 비즈니스 관점에서 모니터링과 이상 상황을 감지할 수 있도록 설계되어야 합니다. 조직의 전반적인 운영 상태를 실시간으로 파악하고, 문제 발생 시 신속하게 대응해야 하기 때문이죠. 또한 서비스 단위로 인프라를 구성하여, 비즈니스 문제 여부를 즉각적으로 파악할 수 있도록 해야 합니다. 다시 Zenius 사례를 통해 살펴볼게요. Zenius 대시보드는 수집된 다양한 정보를 바탕으로, 최상위 레벨에서 비즈니스 관점 모니터링과 이상 상황을 감지할 수 있는 화면을 제공합니다. 다양한 컴포넌트와 차트, 다이나믹한 요소들을 적용하여 시각적인 효과를 극대화할 수 있죠. 이번 시간에는 대시보드가 왜 필요한지, 좋은 대시보드를 구현하기 위해서는 어떠한 점들을 고려해야 하는지 알아보았습니다. 하지만 이러한 좋은 대시보드를 성공적으로 구현하기 위해서는, 전문가의 도움이 필요합니다. 데이터를 시각화하여 구성하는 것은 보는 이에 따라 관점이 다르고 다양하여, 하나부터 열까지 구성하는 것이 어려울 수 있기 때문이죠. 또한 조직 상황이나 사용자 관점마다 중요한 데이터가 다르고 시각화해야 하는 방식도 다를 수 있습니다. 따라서 제니우스(Zenius)와 같이 수많은 구축 노하우를 보유하고 있고, 고객의 상황에 따라 최적화된 대시보드 구현이 가능한 솔루션 활용을 통해 비즈니스 경쟁력을 확보하시기 바랍니다. ?더보기 Zenius Dashboard 더 자세히 보기
2024.07.26
장기근속자 인터뷰(2)_10주년
장기근속자 인터뷰(2)_10주년
<왼쪽부터 ITSM팀 정지은 부장, TC팀 정채린 차장, ITSM팀 박현철 차장, 프리세일즈팀 서종원 차장> Q1. 간단한 본인 소개 부탁 드려요. 정지은: 연구개발본부 ITSM팀 정지은입니다. 최근에는 Zenius Dashboard와 EMS 웹토폴로지 관련 업무를 하고 있습니다. 2021년은 재택근무로 한 해를 보냈고, 2022년도 재택근무로 회사 출근하는 날이 적지만 잊지 않아 주셨으면 좋겠습니다. 정채린: 저는 TC팀에서 일하고 있는 정채린입니다. 팀내에서는 프로젝트 구축이나 유지보수, 내부 업무 등 크고 작은 일들을 하고 있습니다. 취미와 특기, 스트레스 푸는 방법은 독서와 귀여운 거(이유준) 보는 일입니다. 박현철: 연구개발본부 ITSM팀에서 근무하고 있는 박현철입니다. ITSM BackEnd 파트를 담당하고 있습니다. 서종원: 브레인즈에서는 전략사업본부 프리세일즈팀 소속으로 일하고 있고요. 집에서는 귀여운 4살 아들을 둔 철 없는 아빠입니다. Q2. 근속 10주년 소감은? 정지은: 10년이 정말 빠르게 지나간 것 같습니다. 대리로 입사해서 현재 부장이라는 직급에 있네요. 아직도 부족한 면이 많아 계속 배워 나가고 있습니다. 앞으로도 잘 부탁드리겠습니다. 정채린: 벌써 입사한 지 10년이 넘었다는 사실이 놀랍기도 하고 시간이 참 빠르다는 생각이 듭니다. “첫 입사한 회사에서 2~30대 청춘을 보냈구나”라는 생각에 감회가 새롭습니다. 박현철: 입사한 지 얼마 되지 않은 것 같은데 시간이 빨리 가는 것 같습니다. 좋을 때나 힘들 때 늘 같이 지원하고 응원해 준 팀원들에게 감사드립니다. 앞으로도 잘 부탁드립니다. 서종원: 입사한 게 엊그제 같은데 벌써 10년이네요. 10주년이 기쁘기도 하지만, 점점 고인물이 되어간다는 느낌은 달갑지가 않네요. 고여서 썩지 않도록 노력해보겠습니다! Q3. 근속 10년 중 가장 기억에 남는 점은? 정지은: 최근 코로나로 회사 행사가 없지만 저는 운 좋게도 입사하고 나서 바로 사원 전체 해외연수도 몇 번 다녀왔고, 미국 연수도 다녀왔습니다. 친구들과 가는 해외 여행이랑은 다른 맛이 있고 물론 불편한 면도 있는 건 사실이지만, 일로만 만나는 회사 분들의 자유로운 모습을 보는 즐거움도 있었던 것 같네요. 정채린: 아무래도 2011~2022년 사이 결혼과 출산을 했으니, 그 시기가 가장 기억에 남습니다. 결혼기념일도 아마 회사 창립기념일이랑 같은 것 같기도 하네요. 지금은 퇴사했지만 친하게 지냈던 김과장님과 함께 갔던 싱가폴 해외연수도 기억에 남습니다. 박현철: 업무적으로는 입사 후 국민연금 프로젝트로 잠실에 파견 나간 일이 기억에 남습니다. 입사 후 첫 프로젝트에 정신 없을 때라 더 생각이 나는 것 같아요. 그 외에는 사내 첫 해외연수(세부)가 떠오릅니다. 서종원: 아마도 최근이지 않을까요? 파격적인 연봉 인상으로 주변에서 부러움의 대상이 됐습니다. 요 근래 회사 자랑 할 수 있어서 좋았습니다.^^ Q4. 10년 포상금 사용계획은? 정지은: 부모님 모시고 제주도로 호캉스를 떠나고 싶네요.^^ 정채린: 휴가를 가는게 일반적이겠죠. 가족과 즐거운 시간을 보내는데 사용하지 않을까 싶습니다. 박현철: 호캉스나 필요한 생활가전을 구입할까합니다. 최근 식기세척기에 관심이 많아져 구입을 고려하고 있습니다. 서종원: 아직은 코로나로 멀리는 못 가고 국내 어딘가 가족여행을 갈 거 같네요. 누가 좋은 곳 알고 있으시면 추천 좀 해주세요.^^
2022.12.22
AWS Opensearch(오픈서치) Alerting plugin 활용 방법
AWS Opensearch(오픈서치) Alerting plugin 활용 방법
AWS OpenSearch(오픈서치)는 핵심 기능을 확장하기 위해 다양한 Plugin을 제공합니다. 이를 통해 운영 환경에 맞게 안정적이고 효율적인 기능을 추가할 수 있습니다. 그중에서도 Alerting Plugin 은 조건 기반 탐지와 알림 기능을 제공하며, 보안 모니터링이나 장애 대응 같은 영역에서 자주 활용됩니다. 특정 이벤트를 실시간으로 감시하고, 정의한 조건을 만족할 경우 자동으로 알림을 발생시켜 운영자의 대응 속도를 높일 수 있습니다. 이번 글을 통해서 Alerting Plugin의 주요 구성 요소와, 실제 적용 과정에서 고려해야 할 부분을 함께 살펴보겠습니다. 1. Alerting plugin이란? 보안기능의 기본은 특정 조건에 대한 탐지설정을 하고 설정한 탐지 조건에 만족하는 데이터를 찾게 되면 원하는 형태로 알림을 발생시키는 것입니다. Alerting 은 Opensearch 내에 데이터를 탐지 대상으로 하여 기본 탐지 기능을 안정적으로 제공하는 plugin 입니다. Opensearch 문서에서는 대략적으로 아래 키워드로 설명 하고 있습니다. - Monitor: 검색조건에 해당하는 쿼리를 작성하고, 실행주기를 설정합니다. 여기에서 정의된 쿼리의 실행 결과는 Trigger 의 입력 데이터로 사용됩니다. - Trigger: 입력되는 쿼리 결과를 기준으로 실제 행위를 발생시키는 조건을 정의합니다. - Alert: Trigger 에서 정의된 조건이 만족하는 경우 Alert 이라는 이벤트를 생성합니다. - Action: Alert 이 발생했을 때 수정행 할 작업을 정의합니다. - Notification: Alert 이 발생했을 때 전송되는 알림 메시지를 정의합니다. 2. 어떤 버전을 사용하면 될까? Alerting 기능은 Opensearch 1.1.0 버전부터 제공된다고 되어 있지만, 알림(Notification) 기능이 추가되는 2.0 이후 버전부터 활용성이 높아졌다고 생각되네요. 개발의 편의성이나 시각적인 결과를 원한다면 OpenSearch Dashboards에 도입되는 2.9 버전 부터가 OpenSearch Dashboards 에 도입되기 때문에 시각적인 결과확인이 가능하여 개발이나 테스트 시에 도움이 많이 될 수 있습니다. Openserach 가 설치되어 있다면 다음 방법으로 plugin 상태를 확인해 볼 수 있는데요. curl -X GET http://localhost:9200/_plugins/_alerting 결과 opensearch-alerting 2.16.0.0 opensearch-notifications 2.16.0.0 opensearch-notifications-core 2.16.0.0 실제 사용해봤던 버전은 2.10, 2.16 으로 기능상으로 큰 차이는 없었기에 적당한 버전을 선택하여 사용하면 될 것 같네요. 아래는 openserach-dashboard 명령어로 설치된 plugin 리스트를 확인한 결과입니다. ./opensearch-dashboards-plugin list --allow-root alertingDashboards@2.16.0.0 anomalyDetectionDashboards@2.16.0.0 assistantDashboards@2.16.0.0 customImportMapDashboards@2.16.0.0 ganttChartDashboards@2.16.0.0 indexManagementDashboards@2.16.0.0 mlCommonsDashboards@2.16.0.0 notificationsDashboards@2.16.0.0 observabilityDashboards@2.16.0.0 queryWorkbenchDashboards@2.16.0.0 reportsDashboards@2.16.0.0 searchRelevanceDashboards@2.16.0.0 securityAnalyticsDashboards@2.16.0.0 securityDashboards@2.16.0.0 아래는 Opensearch Dashboard 에서 설치된 plugin 을 메뉴로 확인상태 입니다. 이처럼 필요한 플러그인을 적절한 버전으로 설치했다면, 이제 Alerting의 핵심 기능인 Monitor 와 Trigger 설정 방법을 살펴보겠습니다. 3. Monitor 실제로 탐지를 수행하고 alert을 발생시키기 위한 trigger의 입력 값이 되는 검색조건과 실행 주기를 설정하는 부분입니다. Monitor 는 Alerting 의 출발점이자 이후 Trigger, Alert, Action 으로 이어지는 전체 탐지 프로세스의 기반이 되는 구성 요소입니다. 아래와 같이 몇 가지 검색조건을 구분하는 기능을 제공하는데, Per Query Monitor, Per Bucket Monitor에 대해서 먼저 알아보겠습니다. - Per Query Monitor 설정한 쿼리 결과의 개수를 그대로 Trigger 조건의 입력 값으로 사용하도록 처리하는 방식이기 때문에 기본적이면서 단순 조건을 처리할 때 주로 사용하는 방식입니다. 예를 들어 시스템 로그를 대상으로 특정 사용자에 대한 로그인 실패 이력을 조건으로 건다고 했을때 아래와 같은 쿼리가 가능합니다. { "size": 0, "query": { "bool": { "must": [ { "bool": { "must": [ { "match_phrase": { "userid": { "query": "root", "slop": 0 } } }, { "match_phrase": { "action": { "query": "failed_password", "slop": 0 } } } ] } } ], "filter": [ { "bool": { "must": [ { "range": { "@timestamp": { "from": "now-30m", "to": "now" } } } ] } } 쿼리에 만족하는 조건이 있다면 아래와 같은 결과가 나타납니다. { "_shards": { "total": 9, "failed": 0, "successful": 9, "skipped": 0 }, "hits": { "hits": [], "total": { "value": 4, "relation": "eq" }, "max_score": null }, Per Query Monitor 은 위와 같은 결과가 나왔을 경우 trigger 조건에 만족한다면 단일 alert 이 한 개 발생하는 방식입니다. - Per Bucket Monitor 이 방식은 쿼리에 Aggregation 를 설정하여 Bucket 단위 별로 trigger 조건을 검사하고 alert 을 발생시키는 방식입니다. Per Query Monitor 과 동일한 조건의 쿼리에 아래와 같은 Aggregation query 가 추가되는 형태입니다. "aggregations": { "by_agg": { "terms": { "field": "host.keyword", "order": [ { "_count": "desc" }, { "_key": "asc" } ] } } } host 라는 필드로 group by 와 같은 집계를 하면 결과는 host 단위의 buckets 가 생성되고 각각의 bucket 에 개수가 포함되게 됩니다. 각각의 bucket 에 포함된 개수가 trigger 조건에 만족한다면 만족하는 만큼 alert 이 발생하게 되는데 이 부분이 Per Query Monitor 방식과 차이점이 되겠습니다. { ... "aggregations": { "by_agg": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "doc_count": 2, "key": "testhostname1" }, { "doc_count": 2, "key": "testhostname2" } ] } } } - Monitor API curl -X POST "https://localhost:9200/_plugins/_alerting/monitors/_search?pretty=true" -k -H "Content-Type: application/json" -d '{}' 아래와 같이 등록한 monitor 정보를 JSON 포맷으로 조회할 수 있습니다. Monitor 관련 몇 가지 API를 소개합니다. Create, Update 등 기본적인 기능 외에 설정한 Monitor 를 실행 시킬 수 있는 Monitor RUN API 도 제공 됩니다. 필요에 따라서 자신의 시스템에서 직접 실행시키는 로직을 구현해 볼 수 도 있을 것 같구요. 설정 내용을 미리 시뮬레이션 해서 결과를 테스트 해볼 수 있는 기능으로 활용해도 좋을 것 같습니다. Monitor Create POST _plugins/_alerting/monitors Monitor Update PUT _plugins/_alerting/monitors/<monitor_id> Monitor Delete DELETE _plugins/_alerting/monitors/<monitor_id> Monitor Run POST _plugins/_alerting/monitors/<monitor_id>/_execute 4. Trigger Trigger 는 Monitor 에 설정한 쿼리의 결과를 입력으로 Alert 을 발생 시킬 조건을 설정하는 과정입니다. 이 부분도 Per Query Monitor 과 Per Bucket Monitor 방식이 차이가 있습니다. Per Query Monitor는 쿼리의 결과가 단순 개수(hits)이기 때문에 개수 연상에 대한 true, false 로 결과를 얻습니다. 물론 결과가 true 인 경우에만 alert 이 발생하는 조건이 되겠죠. Per Bucket Monitor 방식은 개수 조건을 설정 하는 건 동일하지만 Aggregation 문에 정의된 key 명을 parent_bucket_path 에 맞춰 줘야 된다는게 다른 점입니다. Trigger condition 에서 설정한 조건이 만족한다면 bucket 단위로 결과 구해지게 됩니다. [ { "doc_count": 3, "key": "testhostname1" }, { "doc_count": 4, "key": "testhostname2" } ] 만약 실제로 이런 결과가 나왔다면 alert testhostname1, testhostname2 두 개의 alert 이 발생하게 됩니다. 5. Alert Monitor -> Trigger 조건이 만족하였다면 Alert 이라는 단위의 알림이 생성됩니다. Alert 은 Action 과 연계되었을 때 외부로 통보 등의 전달 기능을 수행할 수가 있고, 이런 연계 설정이 없다면 단순히 alert 이라는 데이터가 하나 신규로 생성되었다고 보면 됩니다. Opensearch Dashboard Alerts 메뉴에서는 아래와 같이 발생된 Alert 이 조회 됩니다. Alert 단위 별로 구체적으로 확인할 수 있는 방법은 없는 것 같고, Opensearch Dashboard 에서는 조회할 수 있는 정보는 이 정도가 전부인 것 같습니다. Alert은 발생 시점부터 Completed 될 때까지 아래 상태로 관리가 됩니다. - Active 조건이 만족하여 발생된 상태이고 아무런 처리가 되지 않은 상태라고도 합니다. - Acknowledged 관리자가 확인했다 정도의 의미를 부여할 수 있을 것 같은데요. 이 상태로 변경된 후부터 조건이 만족 했는데도 Alert 이 발생하지 않는 것처럼 보여질 수도 있습니다. 하지만 특정 시점이 되면 다시 Alert 이 발생하게 되는데 좀 애매한 운영 상태라고 보여집니다. 정확한 것은 이 상태 이후 실제 Alert을 발생시키는 조건이 해제 되었다가 다시 조건이 만족하게 된다면 Alert 이 발생하게 됩니다. Alert이 계속 발생되는 조건이라면 계속 Acknowledged 상태가 유지 되는 거라서 추가 Alert 이 발생되지 않는다는 오해에 소지가 있을 수도 있겠네요. 1번과 같이 Acknowledged 상태라도 조건이 만족하고 있는 상태라면 기존 상태가 유지가 되고, 2번 처럼 조건이 불만족 상태가 되면 상태는 Completed 상태가 되어 Alert 은 종료 처리됩니다. 3번처럼 이후 다시 조건이 만족한다면 새로운 Alert 이 발생하게 됩니다. - Completed Alert이 발생하는 조건 즉 Trigger 조건이 만족하지 않는 경우 기존 발생된 Alert 상태는 Completed 상태로 전환됩니다. 이후 다시 조건이 만족한다면 새로운 Alert 이 발생하게 됩니다. 개발 중에 이슈 사항 중 하나였다면 Completed 상태를 관리자가 임의로 변경할 수 없다는 것입니다. Alerting 시스템의 철학인지는 모르겠지만 상태 변경은 Acknowledged 만 가능하다는 것입니다. 즉 Completed는 Alerting 자체에서 조건의 만족 상태에 따라 변경해 주는 상태이고, 개발중인 시스템에서 Completed 상태를 별도로 운영하기 위해서는 자체적인 상태 처리 로직이 추가 되어야 됩니다. -Alert API curl -XGET "https://localhost:9200/_plugins/_alerting/monitors/alerts?pretty=true" -k 아래와 같이 발생한 Alert 리스트를 JSON 포맷으로 조회할 수 있습니다. 6. Action Alert 이 발생했을 때 관리자에게 통보하는 방식과 통보 메시지 등을 설정하는 기능입니다. Channel 이라는 설정을 하게 되는데 쉽게 말하면 통보 수단을 의미하는 거고 기본적으로 아래와 같은 통보 수단을 제공합니다. 기존에 자체적인 alert 처리 서비스가 있어서 이 서비스를 활용하고자 Custom webhook 방식을 사용했습니다. Action > Notification 에서 정의하는 Message 를 JSON 형식으로 우리의 alert 처리 서비스에 전달하는게 목적입니다. 전체적인 Action > Notification 설정은 아래와 같습니다. - Message 통보 수단을 통해 전달된 메시지 내용을 정의합니다. { "alertmessage": { "monitor": "{{ctx.monitor.name}}", "monitorid": "{{ctx.monitor._id}}", "trigger": "{{ctx.trigger.name}}", "severity": "{{ctx.trigger.severity}}", "period_start": "{{ctx.periodStart}}", "period_end": "{{ctx.periodEnd}}", "results": {{#toJson}}ctx.results{{/toJson}}, "deduped_alerts": [ {{#ctx.dedupedAlerts}} { "id": "{{id}}", "bucket_keys": "{{bucket_keys}}" } {{/ctx.dedupedAlerts}} ], "new_alerts": [ {{#ctx.newAlerts}} { "id": "{{id}}", "bucket_keys": "{{bucket_keys}}" } {{/ctx.newAlerts}} ], "completed_alerts": [ {{#ctx.completedAlerts}} { "id": "{{id}}", "bucket_keys": "{{bucket_keys}}" } {{/ctx.completedAlerts}} ] } } Message 에 사용할 수 있도록 제공되는 대략적인 정보 입니다. - ctx.monitor : Moniter 설정 정보 - ctx.trigger : Trigger 설정 정보 - ctx.newAlerts : 신규 생성 Alert 정보 - ctx.completedAlert : 완료된 Alert 정보 - ctx.dedupedAlerts : 기존 생성된 Alert 중복 생성 정보 ctx 내용 전체를 확인해 보면 활용할 수 있는 내용이 그렇게 많지는 않습니다. 목표로 했던 기능 중에 Alert 서비스에 발생된 Alert 의 실제 쿼리 범위 시간을 구해야 되는 했던 기능이 있었습니다. 아래 두 가지 값이 제공되어 값을 확인해 보니 조건 쿼리가 실행되는 interval 시간으로 확인 되어 실제로 사용하지는 못했습니다. ctx.periodStart ctx.periodEnd 대신 ctx.periodEnd 시간에 실제 쿼리 내에 정의된 time range 값을 계산하여 실제 쿼리 범위 시간을 구하는 방식으로 처리 했습니다. - Perform action Alert 단위에 대한 Action 처리 방식은 아래와 같은 종류도 설정할 수 있습니다. - Per execution: 조건을 만족하는 alert 이 여러 개여도 action 은 한번만 처리. - Per alert: 조건을 만족하는 alert 이 여러 개면 각각마다 action 을 수행함. 우리는 각각의 Alert 마다 action 처리가 필요하기 때문에 Per alert 방식을 사용했고, Actionable alerts 아래와 같이 설정 했습니다. - New: 신규 Alert 에 대한 Action 처리를 위해서 반드시 필요한 부분이고 - De-duplicated: 이미 생성된 Alert 에 대해 동일한 조건이 만족되었을 때 Action 을 처리할 것인가를 설정하는 내용입니다. 기존 생성된 Alert 의 상태 정보를 업데이트 시켜 주기 위해서는 이 설정을 추가해줘야 됩니다. - Completed: 발생된 Alert 의 조건이 만족하지 않게 된 경우 Action 처리 여부를 설정합니다. 기존 발생된 Alert을 자동으로 완료 처리해주려면 이 설정을 추가해줘야 됩니다. Action 에서 설정된 내용 데로 통보 수단을 통해 충실히 전달된다면, 실제 서비스 로직 에서 제대로 처리해줘야만 됩니다. - Notication message 처리 Alert 을 처리하는 서비스 로직 에서는 아래 같이 Alerting Notication 으로 message 를 전달 받게 됩니다. 자체 서비스 로직 에서는 이 정보를 분석하여 발생된 Alert 를 관리하는 기능을 구현할 수 있습니다. 어떤 감시설정으로 발생된 Alert 인지를 식별할 수 있는 정보입니다. 서비스 로직에서 감시설정, Alert 을 식별하여 처리하는데 필요한 정보 입니다. priod_start, period_end : 감시설정의 조건 쿼리가 실행되는 interval 시간 입니다. 만약 쿼리문에 time range 값이 아래처럼 정의 되어 있고 alert 이 발생된 시점에 time range 를 구하려 한다면 위의 시간 값 만으로는 어렵습니다. "range": { "@timestamp": { "from": "now-30m", "to": "now", "include_lower": true, "include_upper": true, "boost": 1 } } } } Period_start 에 30m을 더하거나 period_end 에서 30m 빼는 방식으로 실제 time range 값을 구할 수 있었습니다. results[0].aggregations.by_agg.buckets 이 값에서는 검색조건 결과에 해당하는 buckets 결과 값을 구체적으로 조회할 수 있습니다. New_alerts : 신규 생성 alert deduped_alerts : 기존 발생된 alert completed_alerts : 완료된 alert 위와 이 서비스 로직에서 alert 의 상태를 구분하여 처리할 수 있습니다. 7. 마치며 이번 글에서는 Alerting Plugin 기능을 큰 카테고리별로 나누어, 주로 OpenSearch Dashboard 를 기반으로 설명했습니다. Alerting Plugin 은 기본적인 API 를 제공하므로, 위에서 다룬 모든 기능은 REST API 를 통해서도 동일하게 활용할 수 있습니다. 따라서 Alerting Plugin 을 탐지 엔진으로 잘 활용한다면, 운영 환경에서 안정적이고 효율적인 탐지 체계를 구축할 수 있습니다.
2025.09.15
제니우스(Zenius), 웰메이드 드라마와 언론사에서도 주목하다
제니우스(Zenius), 웰메이드 드라마와 언론사에서도 주목하다
오늘 벌써 금요일이네요! 여러분들은 주말 동안 어떻게 보내시나요? 대부분 휴식 시간을 갖거나 등, 소중한 사람들과 함께 시간을 보내실 텐데요. 저 또한 주말 동안 푹 쉬면서, 웰메이드 드라마 를 보며 충전하는 편입니다. 최근에 저는 ENA에서 방영했던 ‘악인전기’를 몰아봤습니다. 악인전기는 생계형 변호사가 엘리트 악인으로 변모하는 이야기를 담고 있습니다. 개인적으로 웰메이드의 완성은 명품 연기력이라고 생각하는데요. 흠잡을 때 없는 명품 연기를 선보여주신 신하균 배우님이 출연하여, 드라마에 더 몰입할 수 있었습니다. 그렇게 악인전기를 몰아보며 에너지를 충전하던 중, 깜짝! 놀라고야 말았는데요. 。。。。。。。。。。。。 웰메이드 드라마에 등장한 어디서 많이 본 화면 ▲악인전기 5화 캡쳐 ⓒGENIE TV 악인전기 5화에 정말 낯익은 화면을 볼 수 있었습니다. 바로 제니우스(Zenius) 모니터링 화면이었습니다. 극 중에서 서버 관련된 에피소드 중, 제니우스 SMS(Zenius SMS) 모니터링 화면이 등장한 것이죠! 이 장면을 캡처해서 같은 팀원분들에게 자랑하기도 하고, 메일로도 공유했습니다. 매번 보는 Zenius 제품이었지만, 드라마를 통해 볼 수 있어서 신기하고 뿌듯했습니다. 여기서 잠깐! Zenius SMS의 깨알 자랑을 더 한다면, 초 단위 실시간 그래프를 통해 주요 성능 정밀한 분석이 가능합니다. 이 밖에도 임계치 기반의 장애를 감지하고 통보하며, 체계적인 장애관리를 지원하고 있습니다. Zenius SMS는 모니터링뿐만 아니라, 보안 관리까지 추가적으로 제공해 드리고 있는데요. 행정안전부가 권고하는 보안 항목들을 자동적으로 점검해 드리며, 보안 가이드까지 제공하여 사용자 편의성을 향상시킵니다(더 많은 자랑을 하고 싶지만 일단 여기까지..!). 한국인터넷진흥원도 선택한 제니우스 대시보드 ▲ⓒvoakorea 사실 드라마 ‘악인전기’뿐만 아니라, 제니우스 대시보드(Zenius Dashboard)가 기사와 신문 지면에 노출된 이력도 있는데요. 위 사진은 한국인터넷진흥원(KISA) 침해대응센터에 제공해 드린 대시보드 화면입니다. 고객사에서 사용하던 로그와 데이터를 연계하여, 원하는 방향으로 화면을 커스터마이징한 것인데요. ‘맞춤’으로 제작된 대시보드를 통해 보안 침해 상황을 직관적이고 효율적으로 관리할 수 있어, 고객사에서도 크게 만족하셨습니다. 특히 최근 소프트웨이브2023 전시회에서도 “대시보드가 예쁘다”라는 피드백과 참관객들 또한 매우 많았습니다. 。。。。。。。。。。。。 제가 재미있게 본 드라마에서 제니우스 제품을 우연히 발견하며, 신기하고 자랑스럽기도 했던 순간이었습니다. 앞으로도 제니우스 찾기는 계속 됩니다 To be continued-!
2024.01.12
다음 슬라이드 보기