반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
[행사] 브레인즈컴퍼니 전략사업본부 ‘happy 호프데이’
[전시회] ‘CDA 컨퍼런스’를 통해 해법을 제시한 브레인즈컴퍼니
이화정
2023.12.05
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
[전시회] 브레인즈컴퍼니 ‘소프트웨이브 2023’에서 새로운 비전 제시
지난 11월 29일, 브레인즈컴퍼니가 잠실 롯데호텔에서 열린
「CDA컨퍼런스」
에 참가했어요. 브레인즈컴퍼니는 이번 컨퍼런스를 통해
성공적인 클라우드 전환을 위한 비전과 해법
을 제시했는데요. 자세한 후기를 바로 들려드릴게요!
CDA
컨퍼런스는
「클라우드 데
이터센터 협의회(이하 CDA)」에서 주관한 이번 컨퍼런스는, '클라우드 네이티브 및 SaaS 전환을 위한 클라우드 데이터 센터의 첫걸음'이라는 주제로 클라우드 분야별(SaaS, Cloud, Infra) 전문기업 30개사가 참여했는데요.
▲CDA 컨퍼런스 2023 개회식
▲
CDA 컨퍼런스 2023 기조강연
이번 컨퍼런스는 기업·공공·의료·교육 등 다양한 영역에서 디지털 서비스/솔루션/인프라를 제공하는 많은 회원사들이 참가하여, 클라우드에 대한 비전과 서비스의 우수성을 소개했어요. 총 천명 이상이 참가한 이번 컨퍼런스는 크게 기조강연·주제별강연·전시부스로 나누어 진행됐어요.
성공적인 클라우드 전환을 위한 모니터링 방안 강연
브레인즈컴퍼니는 강연과 부스 운영을 통해, 클라우드 전환기의 성공적인 모니터링에 대한 비전을 제시했는데요. 먼저
'성공적인 클라우드 전환을 위한 효율적인 모니터링 방안'
이라는 주제로 강연을 진행했어요.
브레인즈컴퍼니의 오다인 님께서
과도기에 봉착한 클라우드 전환 현황, 클라우드 전환 과도기 하이브리드 환경에서의 모니터링 전략, 성공적인 모니터링 솔루션 선택 기준
이렇게 세 가지 이슈를 중심으로 구성하여 강연을 진행하셨어요.
이날 강연을 통해 브레인즈컴퍼니는, 과도기에 봉착한 클라우드 전환기에서 성공적으로 모니터링할 수 있는 명확한 해법을 제시해 드렸어요.
총 이백여 명 이상의 참관객들이 브레인즈컴퍼니의 강연을 경청해 주셨는데요. 강연의 뜨거운 열기는 브레인즈컴퍼니의 부스에 대한 관심으로 이어졌어요.
열띤
관심이 이어진 브레인즈컴퍼니의 부스
브레인즈컴
퍼니 부스에선, 브로슈어와 제품데모(Demo) 시연을 통해 제니우스(Zenius)에 대해 자세히 알리는 시간을 가졌는데요.
▲큰 관심을 끌었던 브레인즈컴퍼니의 부스
부스에 방문한 참관객분들은 클라우드뿐 아니라, 온프
레미스 환경도 모니터링이 가능한 점과 EMS·APM·SIEM·ITSM 등 핵심제품들의 기능을 모듈화하여 사용할 수 있는 부분에도 큰 관심을 보여주셨어요.
브레인즈컴퍼니의 심재걸, 김선효, 오다인, 최승훈 님께서 Zenius 제품에 대한 구체적인 설명을 진행해 주셨는데요. 기본적인 설명 이후에 참관객분들의 상황별로 다양한 문의가 이어졌어요. 이에 대해 막힘없이 답변을 해드리며 열띤 분위기를 이어갔답니다!
부스에 방문하신 한 참관객분은
"지금 회사가 클라우드로의 전환기에 있어, 모니터링 서비스가 필요했었어요. 오늘 설명을 들어보니 Zenius가 적합하다고 판단되어 도입에 대해 긍정적으로 검토할 계획이에요"
라며 만족감을 나타내셨어요.
브레인즈컴퍼니는 이번 CDA 컨퍼런스를 통해, 새로운 비전을 제시하고 많은 분들께 Zenius를 알릴 수 있었어요.
앞으로 CDA 컨퍼런스뿐만 아니라 다양한 온·오프라인을 통해 IT 인프라 모니터링의 새로운 비전을 제시하고, Zenius의 우수성을 알릴 예정인데요. 여러분들의 많은 관심과 응원 부탁드릴게요?
#CDA
#CDA컨퍼런스
#브레인즈컴퍼니
이화정
프리세일즈팀
프리세일즈팀에서 마케팅, 내외부 홍보, 콘텐츠 제작을 담당하고 있어요.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
이상 징후 탐지 솔루션, Zenius AI의 주요기능과 특장점
이상 징후 탐지 솔루션, Zenius AI의 주요기능과 특장점
IT 인프라의 복잡성과 운영 환경이 점점 더 고도화됨에 따라, 시스템 장애를 사전에 탐지하고 선제적으로 대응하는 기술의 중요성이 크게 부각되고 있습니다. 기존의 장애 관리 방식은 주로 장애 발생 이후에 원인을 분석하고 복구 조치를 취하는 사후 대응(Post-Mortem Response) 중심이었습니다. 그러나 이러한 접근 방식은 서비스 다운타임 증가, 운영 비용 상승, 장애의 반복 발생과 같은 문제를 야기하며, 기업의 디지털 운영 안정성을 위협합니다. Zenius AI는 이러한 한계를 극복하기 위해 머신러닝 기반의 이상징후 탐지 및 장애 예측 기능을 제공하는 이상 징후 탐지 솔루션입니다. 대규모 IT 인프라 환경에서 수집되는 로그, 메트릭, 이벤트 데이터를 실시간으로 분석하여 정상 패턴에서 벗어나는 이상 징후를 조기에 감지하고, 잠재적인 장애를 사전에 예측할 수 있도록 지원하는 Zenius AI의 주요기능과 특장점을 자세히 알아보겠습니다. 이상 징후 탐지 솔루션, Zenius AI의 주요 기능 Zenius AI는 IT 운영 환경에서 이상징후를 실시간으로 감지하고 대응할 수 있도록 설계된 AI 기반의 모니터링 솔루션입니다. 이 솔루션은 데이터 수집 및 관리, AI 모델 학습 및 예측, 이상징후 감지 및 대응, 대시보드 시각화 및 운영관리의 네 가지 핵심 기능을 제공합니다. 1) 데이터 수집 및 관리 Zenius AI는 Kafka 기반의 고성능 메시징 시스템과 OpenSearch 기반의 스토리지 및 검색 엔진을 통해, 대규모 로그 및 메트릭 데이터를 실시간으로 안정적이고 유실 없이 수집할 수 있도록 설계되었습니다. 이를 통해 시스템 전반에서 발생하는 다양한 이벤트 및 상태 정보를 정밀하게 추적하고, 이상징후 탐지에 최적화된 정제된 학습용 데이터셋을 구축할 수 있습니다. 특히 Zenius EMS(Enterprise Monitoring System)와의 직접적인 연동 기능을 제공함으로써, 서버, 네트워크, 애플리케이션 등 다양한 IT 인프라에서 생성되는 실시간 성능 데이터를 효과적으로 수집할 수 있습니다. 이를 통해 기존 IT 운영 환경과 유기적으로 연결된 데이터 수집·분석 체계를 구현할 수 있으며, 수집된 데이터를 기반으로 한 AI 기반 이상징후 탐지 및 선제적 대응 체계 구축이 가능해집니다. 또한, 데이터 수집 단계에서부터 AI 학습 및 예측 모델 구축에 이르기까지 전체 파이프라인이 긴밀하게 통합되어 있어, 운영 효율성과 데이터 신뢰성을 동시에 확보할 수 있는 것이 Zenius AI의 큰 강점입니다. 2) AI 모델 학습 및 예측 Zenius AI는 시계열 데이터 기반의 정밀한 이상징후 탐지를 위해 Amazon Web Services(AWS)에서 제공하는 DeepAR 시계열 예측 모델을 활용합니다. DeepAR은 다수의 시계열 데이터를 동시에 처리하고, 시간 축을 따라 변화하는 패턴을 학습하여 정상 범위를 벗어나는 이상 징후를 사전에 감지할 수 있도록 지원합니다. 이를 통해 단순 임계값 기반 감지를 넘어선 지능형 예측 분석이 가능해집니다. 또한, Zenius AI는 AutoGluon 기반의 AutoML 기능을 통합하여 모델 개발 전반을 자동화합니다. 하이퍼파라미터 최적화, 특성 선택, 다양한 알고리즘 기반 학습 등을 자동으로 수행하고, 정확도 기준에 따라 최적의 모델을 자동으로 선택함으로써 분석 정확도와 효율성을 동시에 향상시킵니다. 데이터의 특성과 계절성이 반영된 학습 모델은, 각 서비스에 맞는 맞춤형 예측 알고리즘으로 적용되며, 모델 자동 배포, 버전 관리, 스케줄 기반 재학습 기능을 통해 지속적으로 개선되고 고도화됩니다. 3) 이상 징후 감지 및 대응 Zenius AI는 머신러닝 기반의 시계열 예측 모델을 활용하여, 시간에 따라 변화하는 메트릭 데이터의 정상적인 흐름을 학습하고, 예측값과 실제 관측값 간의 오차를 분석함으로써 예상 범위를 벗어나는 이상징후를 조기에 감지합니다. 이 방식은 단순한 임계치 설정을 넘어서, 모델이 정상 상태를 스스로 학습하고 예외 상황을 자동으로 판별함으로써, 더 높은 민감도와 신뢰성을 갖춘 예측 기반 감지 체계를 구현합니다. 또한, 감지된 이상징후에 대해 이벤트의 심각도를 자동 분류하고, 사전에 정의된 조건에 따라 이메일, 문자, 사운드 등 다양한 채널을 통한 실시간 알림을 제공함으로써, 운영자가 신속하게 대응할 수 있도록 지원합니다. 뿐만 아니라, Zenius AI는 메트릭 기반 탐지 외에도 로그 기반 이상징후 감지 기능을 제공합니다. 특히, 로그가 정상적으로 수집되지 않거나 누락될 경우를 실시간으로 탐지하는 로그 미수집 감지 기능을 통해, 분석에 필요한 데이터의 공백을 사전에 차단하고 이상 탐지 누락을 방지할 수 있습니다. 이 기능은 장애의 근본 원인을 조기에 식별하는 데 중요한 역할을 하며, 호스트 단위의 로그 수집 현황을 시각화하여 운영자가 이상 상황을 한눈에 파악하고 조치할 수 있도록 지원합니다. 4) 대시보드 및 시각화 기능 Zenius AI는 실시간 이상징후 감지 결과를 직관적으로 파악할 수 있도록, 고도화된 대시보드 및 시각화 기능을 제공합니다. 서비스 그룹, 호스트, 모델별로 논리적으로 구성된 시각화 컴포넌트를 통해, 운영자는 전체 IT 인프라의 상태와 이상징후 발생 현황을 한눈에 파악할 수 있으며, 각종 지표에 대한 심층 분석도 즉각적으로 수행할 수 있습니다. 또한, WYSIWYG(What You See Is What You Get) 기반의 시각 보고서 생성 기능을 통해, 이상징후 탐지 결과와 예측 데이터를 시각적으로 정리하고, 이를 분기별 보고서, 사용자 정의 통계 리포트 등 다양한 형식으로 출력할 수 있어 IT 운영팀 및 경영진과의 효율적인 커뮤니케이션과 의사결정을 지원합니다. 운영관리 측면에서는 사용자 권한 및 알림 통보 설정 기능이 포함되어 있어, 역할 기반 접근 제어(RBAC)를 통해 사용자별 접근 권한을 세밀하게 관리할 수 있습니다. 장애 또는 이상 이벤트 발생 시에는 이메일, 문자, 사운드 알람 등 다양한 매체를 통해 실시간 경보를 전송하고, 알림의 심각도, 전송 시간대, 수신자 그룹 등을 세분화하여 설정할 수 있어 운영의 유연성과 대응 속도를 크게 향상시킵니다. 이상 징후 탐지 솔루션, Zenius AI의 특장점 Zenius AI는 실시간 데이터 분석 역량과 AI 기반 모델 최적화 기능을 결합한 차세대 이상징후 탐지 솔루션으로, 기존 시스템 대비 한층 정교하고 신속한 대응 체계를 제공합니다. 이를 통해 IT 운영 환경에서 보다 신뢰도 높은 장애 예측과 효율적인 운영 관리가 가능해집니다. 첫째, Zenius AI는 초고속 인덱싱 및 검색 성능을 통해 대규모 로그 데이터를 실시간으로 분석할 수 있습니다. 최대 162만 EPS(Events Per Second)의 로그 인덱싱 처리 속도를 제공하며, 1TB 규모의 로그도 단 0.02초 내에 검색할 수 있어, 장애 발생 시 즉각적인 원인 진단과 대응이 가능합니다. 또한, 대용량 환경에서도 로그 유실 없이 안정적인 저장 및 분석이 가능하여, 운영 신뢰성과 가용성을 크게 향상시킵니다. 둘째, Zenius AI는 AI 기반의 자동화된 모델 관리 기능을 갖추고 있어, 모델의 학습, 최적화, 배포를 전 과정 자동화할 수 있습니다. 수작업 없이도 성능을 지속적으로 개선할 수 있으며, 스케줄 기반 학습 관리를 통해 최신 데이터를 반영한 정기적 모델 업데이트가 가능합니다. 또한, Zenius EMS(Enterprise Monitoring System) 및 다양한 3rd Party 시스템과의 연동 기능을 통해 기존 IT 인프라와 유기적으로 통합된 분석 환경을 구현할 수 있습니다. 셋째, 머신러닝 기반의 이상징후 조기 탐지 및 대응 체계를 통해 서비스 장애를 사전에 감지하고 신속하게 대응할 수 있습니다. 예측값과 실제값의 오차 기반 분석을 통해 정밀한 이상징후를 탐지하며, 장애 패턴 분석 기능을 통해 유사 장애의 반복 가능성을 최소화합니다. 이를 통해 운영자는 보다 체계적이고 선제적인 장애 대응이 가능하며, 전체 IT 서비스의 안정성과 연속성을 효과적으로 유지할 수 있습니다. Zenius AI는 AI 기반의 이상징후 탐지를 통해 IT 운영의 효율성을 높이고, 장애를 사전에 방지할 수 있도록 지원합니다. 머신러닝 기반의 학습과 장애 패턴 분석을 통해 장애 재발 가능성을 최소화하고, 선제적인 예방 및 대응 체계를 구축함으로써 장애 원인을 조기에 차단할 수 있습니다. 이를 통해 서비스 다운타임을 최소화하고, 안정적인 운영 환경을 유지하여 서비스품질과 신뢰도를 향상시킵니다. 또한, Zenius AI는 운영 비용 절감과 IT 생산성 향상에도 기여합니다. 장애 처리에 소요되는 인력과 시간을 절감해 운영팀이 핵심 업무에 집중할 수 있도록 돕고, 자동화된 감지 및 대응 시스템을 통해 전반적인 운영 부담을 효과적으로 완화합니다. 이상 징후 탐지 솔루션 Zenius AI도입을 통해 IT 운영의 안정성과 효율성을 강화하고, 보다 신뢰도 높은 서비스 환경을 구축하시기 바랍니다.
2025.04.03
다음 슬라이드 보기