반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
기술이야기
검색
기술이야기
SMS를 통한 서버관리는 꼭 이렇게 해야만 한다?!
기술이야기
SMS를 통한 서버관리는 꼭 이렇게 해야만 한다?!
Gartner에서 진행한 연구에 따르면 기업에서 서버의 다운타임이 발생할 경우, 시간당 약 748억 ~ 1,202억의 손실 비용이 발생한다고 합니다. 또한 서버 다운타임등 서버를 제대로 관리하지 못했을 경우에는, 금전적인 손실뿐 아니라 고객이탈이나 브랜드이미지 하락 등의 치명적인 손실도 입게 되죠. 따라서 올바른 서버 관리를 통해 문제를 미리 예방하고, 혹여나 문제가 발생할 경우에는 빠르게 대응할 수 있어야 합니다. 그렇다면 '올바른 서버 관리'란 정확히 무엇을 의미하는 걸까요? ㅣ올바른 서버 관리를 위한 첫 걸음 ⓒoutsource2india 올바른 서버 관리를 위한 첫걸음은 바로 '통합 서버 관리' 도구의 도입입니다. 가장 많이 활용하는 도구가 바로 SMS(Server Management System)죠. SMS는 복잡한 IT 인프라를 효과적으로 관리하고, 모니터링할 수 있는 해결책을 제공하여, 서버 사태를 쉽게 파악하고, 필요한 조치를 신속하게 처리할 수 있도록 도와줍니다. SMS는 기업의 서비스 안정성과 비즈니스 연속성을 보장하는 데 필수적인 도구인 셈이죠. 최근에는 관리하는 서버의 규모와 상관없이 대부분 SMS을 사용하고 있습니다. 하지만 SMS를 도입하고 구축만 한다고 해서, 모든 과제를 해결할 수 있을까요? ㅣSMS를 제대로 활용하는 방법 SMS를 '제대로' 활용하기 위해서는 단순한 모니터링을 넘어, 문제 발생 시 알림을 받고 이를 통해 신속하게 문제를 해결할 수 있는 적극적인 조치가 필요합니다. 적극적인 조치 중의 대표적인 예이자 서버 관리의 핵심은 바로 '감시 설정'입니다. 그렇다면 구체적으로 '감시 설정'을 통해 어떻게 서버를 관리해야 하는지, 이를 위한 SMS의 조건은 무엇인지 살펴보겠습니다. 최적화된 감시 설정 값을 간편하게 설정할 수 있어야 한다 SMS의 감시항목설정은 사용자가 기본적인 모니터링 환경을 빠르게 구축할 수 있도록 간편하게 설정할 수 있어야 합니다. 통합 서버 관리에 대한 경험이 부족한 사용자더라도, 제품을 쉽게 설정하고 사용할 수 있도록 최적화된 감시 설정 값을 제공해야 하죠. 예를 들면 CPU 사용률이 몇% 였을 때 심각하고 위험한지를 각 항목별로 제공해야 합니다. Zenius SMS의 경우 사용자의 OS에 따라 감시 설정 항목(CPU 사용률, MEM 사용률 등)의 심각도와 임계치 조건은 어떻게 해야 하는지 기본적인 디폴트 값을 제공합니다. 더불어서 제니우스만의 최적의 감시 설정 가이드라인을 제공하여, 복잡한 설정 과정을 거치지 않더라도 모니터링할 수 있도록 도와주죠. 물론 기업과 조직의 환경에 맞춰 감시 설정을 조정할 수 있습니다. 필수적인 감시 설정 기능을 갖추고 있어야 한다 또한 SMS의 감시 항목을 설정할 때는 필요한 주요 기능으로 구성되어야 합니다. 사용자는 복잡한 설정 절차 없이 필요한 감시 항목을 설정해야 하고, 서버 관리에 소요되는 시간을 줄일 수 있어야 하기 때문이죠. 예를 들어 시스템의 중요한 지표(예: CPU 사용량, 메모리 사용량, 디스크 I/O 사용률)를 확인할 수 있는 감시 항목 설정이 있는지, 각 감시 항목에 대해 심각도 수준과 임계치를 설정할 수 있는지, 다양한 방식의 알림 방식 기능을 제공하는지 등을 직관적으로 확인할 수 있어야 합니다. Zenius SMS의 경우 사용자에게 꼭 필요한 기능(감시 항목, 서버, 심각도, 임계치, 알림 설정, 복구 스크립트 등)만 집중할 수 있도록 구성되어 있습니다. 감시 항목에서는 사용 중인 OS를 설정하고, 원하는 감시 항목을 선택하여, 원하는 서버를 감시 설정 할 수도 있죠. 또한 심각도와 임계치 설정에서는 무해-주의-위험-긴급-치명 각 값에 맞게 임계치 값을 설정할 수 있습니다. 예를 들어 '긴급'이라는 항목에 80%라고 설정했는데 임계치 값이 80%를 넘어설 경우, 사용자에게 즉각적으로 알려줍니다. 또한 지속시간을 1분 발생 횟수를 1이라고 설정할 경우, 1분을 넘길 때 사용자에게 알림을 통보해 주죠. 알림 통보 서비스가 잘 갖춰져 있어야 한다 감시 항목 설정 중 알림 통보는 서버를 관리하는 데 있어 매우 중요한 기능입니다. 서버에 문제점이 발생할 경우, 사용자에게 즉각적으로 알려줄 수 있는 장치이기 때문이죠. 또한 문제가 더 심각해지기 전에 신속하게 조치를 취할 수 있게 해주며, 시스템의 다운타임을 최소화하는 데 결정적인 역할을 합니다. 이 밖에도 알림 통보 기능에서는 사용자의 업무 환경과 선호도에 따라, 알림의 유형이나 수신자를 유연하게 선택할 수 있어야 합니다. Zenius SMS를 예를 들어 살펴보면 감시 설정에 임계값을 초과하거나, 예상치 못한 이벤트가 발생했을 때 다양한 형태로 알림 서비스를 제공하고 있습니다. 이메일, 문자 Push App은 물론 외부 연동을 통해 슬랙이나, 카카오톡으로도 편리하게 알람을 받아볼 수 있죠. 이 밖에도 알림의 임계값과 조건, 적용 시간이나 요일, 알림을 받을 사용자도 별도로 지정할 수 있습니다. 자동화 복구스크립트 기능을 제공해야 한다 서버에 문제가 감지되었을 때는 알림 통보 기능뿐만 아니라, 사전에 정의된 스크립트를 자동으로 실행하여 문제를 신속하게 해결할 수 있어야 합니다. 예를 들어 데이터베이스 서버의 응답 지연이 감지될 때 '캐시를 클리어하고 서비스를 재시작해 줘!'라는 스크립트 실행을 통해 즉각적으로 문제를 해결할 수 있어야 하죠. 이러한 자동화 복구스크립트 기능은 사용자가 알림을 받고 대응하기까지의 시간을 대폭 줄여줄 수 있고, 이에 따라 시스템 다운타임을 최소화할 수 있습니다. 또한 반복적이거나 단순한 문제 해결 과정을 자동화함으로써, 더 중요한 작업에 집중할 수 있겠죠. 위에 언급한 내용을 Zenius SMS를 통해 살펴보면, 장비에 장애가 발생할 경우 즉시 복구스크립트가 구동되어 문제를 자동적으로 해결할 수 있게 합니다. 예를 들어 A 서버에 임계치를 80%로 설정한 후, 복구스크립트를 통해 'C라는 방법으로 조치를 취해줘!'라고 미리 설정할 경우 자동적으로 문제를 해결할 수 있죠. 이러한 자동화 복구스크립트 기능은 수백 혹은 수천 대의 서버와 장비를 효율적으로 관리할 수 있어, 관리 부담을 줄이는 데 매우 효과적입니다. 또한 '정상 복구 시 통보' 옵션을 설정하면, 복구 스크립트가 완료됨에 따라 알림 통보를 사용자에게 재차 알려줍니다. 이 과정을 통해 사용자는 만족도와 제품에 대한 신뢰도를 높일 수 있겠죠. 감시 항목들을 한눈에 관리할 수 있어야 한다 이젠 앞에서 감시 설정하고 등록했던 감시 항목들을 모니터링할 수 있어야 하겠죠? 이때 중요한 점은 필수적인 감시 항목은 보여주되, UI는 단순화해야 한다는 점입니다. 이는 주요 감시 항목의 상태를 신속하게 파악하고, 문제가 발생했을 때 즉각적으로 대응하기 위해서죠. 또한 감시 항목 상태를 색상 코드(예: 녹색은 정상, 노란색은 경고, 빨간색은 심각)와 아이콘으로 구분하여, 사용자가 감시 항목의 상황을 즉각적으로 인식할 수 있도록 해야 합니다. Zenius SMS의 경우 주요 감시 항목들의 현황을 통합적으로 모니터링할 수 있습니다. 불필요한 항목들을 줄이고 핵심적인 항목들만 선별하여, 서버의 감시 항목을 신속하게 모니터링할 수 있죠. 감시 현황은 직관적인 UI가 중요한 만큼, 심각도 현황(정상-무해-주의-위험-긴급-치명)을 색상으로 구분하여 문제가 생겼을 때 신속하게 대응할 수 있도록 구성하였습니다. 또한 사용자의 환경에 맞춰 필수적인 감시 항목을 쉽게 선택하여 모니터링할 수 있습니다. 이 밖에도 많은 서버의 감시 항목을 관리하다 보면, 중요한 감시 항목을 추가하지 못한 상황이 발생할 수 있는데요. 최악의 경우에는 막대한 손실 비용 발생 등의 심각한 결과를 초래할 수 있겠죠. 이에 따라 감시 현황은 더더욱 직관적으로 모니터링할 수 있어야 합니다. 주요한 감시 항목을 실수로 설정하지 않더라도, 신속하게 파악하고 등록하여 대처할 수 있기 때문이죠. Zenius SMS는 감시 설정해 둔 항목 수가 예상과 다를 경우(예: 만약 관리하는 서버에 감시 항목이 2건이어야 하는데 → 1건으로 표기된 경우) 미등록 건 감시 항목을 조회하여 등록할 수 있습니다. 주요 감시 항목을 설정하고 동작여부에 '미등록' 항목으로 검색하면, 감시 설정하지 않은 항목을 조회할 수 있죠. 이처럼 Zenius SMS은 자칫 놓칠 수 있는 주요 감시 항목도 신속하게 찾아 등록할 수 있습니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼 Zenius와 같은 SMS를 통해서 서버를 한눈에 모니터링하고, 감시 설정 기능을 통해 체계적으로 관리하며, 문제 발생 시 다양한 알림과 자동화된 복구스크립트로 문제점을 신속히 해결해야 합니다. Zenius SMS 대규모 서버자원을 관리하고 있는 한 고객사 관계자의 말씀으로 이 글을 마무리하려고 합니다. "이 많은 서버의 감시 항목들을 휴일 없이 24시간 동안 지켜볼 수는 없잖아요. 그래서 서버를 통합 관리할 수 있는 Zenius SMS을 도입했죠. 이용하면서 좋았던 점은 감시 현황 페이지를 통해 한눈에 감시 항목을 관리할 수 있어 편리하다는 점이에요. 감시 설정을 걸어둔 항목들이 많아 종종 등록을 못한 경우가 발생해도, 직관적으로 확인하고 감시 항목을 추가할 수 있어요. 특히 복구 스크립트 기능을 애용하는 편인데요. 서버에 장애가 발생했을 때 복구 스크립트를 미리 걸어두면, 장비에 장애가 발생해도 신속하게 문제 해결을 할 수 있어 매우 만족스럽습니다!"
2024.02.22
기술이야기
데브옵스(DevOps)에 대한 오해, 그리고 진실은?!
기술이야기
데브옵스(DevOps)에 대한 오해, 그리고 진실은?!
2000년 대 후반 IT 분야에서 데브옵스(DevOps)라는 움직임이 시작된 후, 꾸준하게 관심이 이어지고 있습니다. 데브옵스와 관련된 전 세계 시장의 규모는 2023년 기준 약 15조 원으로 추산되며, 올해부터는 연평균 25.5%씩 성장하여 2032년에 118조 원에 이를 것으로 예상됩니다(*출처: Grand View Research). 우리나라의 경우 네이버, 카카오, 우아한 형제들, 토스 등과 같은 국내 대기업부터 스타트업까지 데브옵스 팀을 구축하여 적극적으로 활용하고 있기도 한데요. 이처럼 많은 기업들이 말하는 데브옵스란 과연 무엇일까요? 그리고 어떻게 하면 데브옵스를 성공적으로 도입하고 활용할 수 있을까요? │ 데브옵스(DevOps)란 무엇인가? [그림 1] DevOps 개념 ⓒdevopedia 우선 데브옵스가 무엇인지부터 살펴봅시다. 검색 사이트에서 '데브옵스 혹은 DevOps'라고 검색하면 위 [그림1]과 같은 결과를 찾을 수 있는데요. [그림 2] DevOps에 대한 필자의 첫인상 하지만 처음 데브옵스라는 단어를 접할 경우 [그림 2]처럼 오버랩되는 건, 필자만 그런 것은 아니라고 생각합니다. 위 그림처럼 "개발자 보러 운영까지 하라는 거야? 아니면 운영자에게 개발까지 하라는 거야?"라는 질문을 던질 수 있겠죠. 데브옵스(DevOps)는 소프트웨어의 개발(Developmnet)과 + 운영(Operations)의 합성어이다. 이는 소프트웨어 개발자와 정보기술 전문가 간의 소통, 협업 및 통합을 강조하는 개발 환경이나 문화를 말한다. 데브옵스는 소프트웨어 개발조직과 운영조직 간의 상호 의존적 대응이며, 조직이 소프트웨어 제품과 서비스를 빠른 시간에 개발 및 배포하는 것을 목적으로 한다. ⓒ위키백과 위 내용에도 언급되었듯이, 데브옵스라는 것은 결국 단순한 기술이 아닌 환경 또는 사람들 간에 관계라고 할 수 있습니다. 그렇다면 데브옵스는 어떤 이유로 주목받을 수 있었을까요? │ 데브옵스(DevOps)가 주목받게 된 배경은? 데브옵스가 주목받은 이유는 여러 가지 있을 수 있지만, 주요한 이유 중 몇 가지를 설명하면 다음과 같습니다. 클라우드 컴퓨팅 기술의 발전 IT 산업의 발전에 따라 빠른 개발과 빠른 배포, 그리고 고객의 요구에 신속하게 대응하는 능력이 중요해졌습니다. 특히 클라우드 컴퓨팅(Cloud Computing) 기술의 발전으로 데브옵스의 필요성이 더 대두되었는데요. 클라우드 자원의 가상화 기술과 빠른 프로비저닝*1을 통해 기존의 개발과 운영 간의 경계가 허물어지며, 서로 간의 협력이 필수적으로 요구되었기 때문입니다. 실제로 데브옵스만으로는 52%, 클라우드 단독 사용으로는 53%의 성능 향상을 얻었지만, 데브옵스와 클라우드가 결합된 환경에서는 평균 81%의 성능을 향상시킬 수 있다는 조사 결과도 있습니다. *1 프로비저닝(Provisioning): 사용자가 요청한 IT 자원을 사용할 수 있는 상태로 준비하는 것 MSA의 등장 [그림 4] 모놀리식 구조 예시(왼) [그림 5] MSA 구조 예시(오) 지금까지 운영 중인 시스템 혹은 서비스는, 하나의 큰 덩어리로 구성된 [그림 4] 모놀리식(Monolithic) 구조를 많이 사용하고 있습니다. 안정성을 확보하고 기능 추가를 편리하게 할 수 있었기 때문이죠. 하지만 한 부분의 변경이 전체 시스템에 영향을 미칠 수 있어, 유지보수가 어렵다는 한계점이 있습니다. 예를 든다면 특정 기능이 수정이 필요한 경우에도, 전체 시스템을 수정해야 해서 번거롭고 비효율적인 부분이 있습니다. 이러한 모놀리식 구조의 한계점으로 소프트웨어의 구조가 서서히 [그림 5] MSA(Micro Service Architecture)로 변화되고 있습니다. MSA는 통합된 하나의 덩어리를 관리하는 것이 아닌, 작은 단위로 쪼개어 관리하는 방식인데요. 관리하기도 효율적이고, 소프트웨어 품질개선과 요구사항 반영이 비교적 편리해졌습니다. 각 서비스가 독립적으로 배포되고 운영되기 때문에, 특정 기능을 수정할 때 전체 기능을 수정하거나 다시 배포할 필요가 없어진 거죠. 하지만 이러한 변화는 기존의 개발 환경과 조직 문화로 대응하기엔 어려움이 있었습니다. 이때 '데브옵스(DevOps)'가 좋은 솔루션으로 등장한 것이죠! 데브옵스가 지속적인 통합(CI)1과 지속적인 배포(CD)2를 통해 빠른 개발 주기를 실현하고 배포할 수 있을 뿐만 아니라, 다수의 독립적인 서비스가 상호작용할 수 있도록 원활한 협업과 통합을 가능하게 했기 때문입니다. *1 지속적인 통합(Continuous Integration, CI) 개발자가 코드를 변경할 때마다 자동으로 통합하고 빌드 하여, 소프트웨어의 품질을 빠르게 확인하는 과정 *2 지속적인 배포(Continuous Delivery, CD) 통합된 코드를 자동으로 테스트하고, 안정적으로 통과한 경우에는 자동으로 프로덕션 환경에 소프트웨어를 배포하는 것. 이에 따라 사용자에게 새로운 기능이나 수정 사항을 신속히 제공하는 과정 │ 데브옵스(DevOps) 도입 성공사례는? 이처럼 데브옵스의 정의와 주목받게 된 배경을 살펴봤는데요. 이번에는 데브옵스를 실제로 기업에 적용해 보고 성공한 사례를 자세히 살펴볼까요? 넷플릭스 넷플릭스(Netflix)는 데브옵스를 성공의 핵심요소로 삼아, 지속적으로 새로운 기능과 업데이트를 제공했습니다. 자동화된 유연한 인프라로 사용자 경험을 향상시켰죠. 이를 통해 빠르게 변화하는 스트리밍 산업에서 앞서 나갈 수 있게 되었고, 많은 비즈니스 이점을 얻게 되었습니다. 사실 넷플릭스는 2008년 큰 장애를 겪은 후, 클라우드로 이전되면서 인프라를 혁신적으로 개편했습니다. 이로써 기존의 수직적 단일 장애 지점에서 벗어나, 수평적으로 확장 가능한 분산 시스템을 구축할 수 있었습니다. 아마존 아마존(Amazon)은 데브옵스 원칙을 초기에 채택하여, 개발과 운영팀 간의 협력을 강화했습니다. 자동화와 지속적인 통합을 강조함에 따라, 빠른 배포 주기와 개선된 확장성을 달성할 수 있었죠. 이러한 아마존의 데브옵스 접근 방식은, 시장에서 경쟁 우위를 유지하는데 중요한 역할을 했습니다. 아마존 창립자인 제프 베이조스는 아마존의 데브옵스에 대해 '고객에게 집중하고, 혁신을 포용하며, 실험할 용기'를 강조했습니다. 베이조스는 혁신을 위해, 오해를 받고 비판받을 의향이 있어야 한다고 말했던 것이죠. 페이스북 페이스북(Facebook)은 "빠르게 움직이고 물건을 부수라"는 문화에 뿌리를 둔 데브옵스 관행을 택했습니다. 실험, 민첩성, 위험 감수를 중시하는 접근 방식을 포함해서 말이죠. 이처럼 페이스북은 지속적인 통합과 배포, 자동화된 테스팅, 모니터링을 사용하여 사용자에게 더 빠르고 높은 품질의 새로운 기능과 업데이트를 제공하고 있습니다. 월마트 2011년부터 데브옵스를 도입한 월마트(Walmart)는 자동화와 협업 그리고 지속적인 배포에 중점을 두었습니다. 애자일(Agile) 방법론과 클라우드 기반의 인프라 및 데브옵스 툴체인을 활용하여, 하루에 최대 100번까지 코드를 배포할 수 있게 된 것이죠. 이를 통해 디지털 변환을 가속화하고, 전자상거래 플랫폼을 개선하며, 고객 경험을 향상시킬 수 있었습니다. 위 기업들은 데브옵스라는 도구를 효과적으로 활용하여 비즈니스 성과를 창출하고, 경쟁 우위를 확보할 수 있었습니다. 그렇다면 데브옵스를 도입하기만 하면 무조건 성공할 수 있을까요? │ 데브옵스(DevOps)의 오해와 한계 앞선 질문에 대한 대답은 아쉽게도 NO입니다. 데브옵스는 개발 환경과 문화를 전부 해결해 줄 수 있는 '만능책'은 아니라는 것이죠. 데브옵스가 도입된 이후 새로운 한계점이 발견되었고, 실패할 사례들도 적지 않게 나왔습니다. 이러한 결과는 아래와 같은 오해들에서 비롯될 확률이 높은데요. 대표적으로 3가지만 살펴봅시다. [그림 6] DevOps 구현을 위한 도구 ⓒMedium_Ajesh Martin 오해 1. 데브옵스는 일종의 단순한 도구일 뿐이다? 데브옵스를 '일종의 도구'로만 보는 것은 잘못된 판단입니다. 물론 여러 팀에서 보다 더 나은 환경과 문화를 위해 슬랙(Slack), 젠킨즈(Jenkins), 도커(Docker) 등 여러 도구를 사용하는 것은 좋습니다. 하지만 데브옵스는 이보다 더 광범위한 접근 방식을 담고 있습니다. 즉 개발과 운영팀 간의 협력과 더 빠른 소프트웨어 개발과 배포를 가능하게 하는 방법론을 포함한다는 것이죠. 다시 말해 데브옵스라는 '도구'를 이용하기 이전에, 문화적 그리고 기술적 접근 방식이 바탕이 되어야 데브옵스라는 툴이 도움 될 수 있습니다. 오해 2. 데브옵스는 모든 조직에 적합하다? 만약 '다른 회사에 데브옵스라는 팀이 있으니, 우리도 데브옵스 팀을 만들자'라는 식으로 접근한다면, [그림 2]와 같은 모습이 될 것으로 예상됩니다. 즉 데브옵스의 조직 체계를 구성한다고 해서 데브옵스가 실현될 순 없습니다. 서로 다른 입장과 상황이 있는 개발자-팀-회사, 운영자-팀-회사 간에 상당한 노력을 통해 만들어 내는 것이 더 중요한 것이죠. 이와 비슷한 사례로 애자일(Agile) 문화가 있습니다. 2000년대 초반 '애자일 소프트웨어 선언문'으로 다양한 애자일 방법론이 주목을 받았었죠. 개발에서 빠르고 유연한 방법을 강조하며, 이후 많은 기업들이 애자일 방법론을 도입하게 되며 유행처럼 번져갔습니다. [그림 7] Agile 프로세스 여기서 애자일 문화를 도입한 많은 기업들이 간과했던 사실은, 애자일 문화 도입 자체가 '해결책'이라고 생각했다는 점입니다. 이보다 기존의 조직 문화에서 애자일 문화를 도입하는 것이 적합한 상황인지, 기존의 프로세스보다 효과를 발휘할 수 있는지, 팀 구성원들이 충분히 적응할 수 있는 문화인지 등을 우선적으로 고려하는 것이 더 중요합니다. 데브옵스 역시 마찬가지로 기존의 조직 규모, 문화, 프로젝트의 특성에 대한 명확한 이해가 먼저 선행되어야 합니다. 데브옵스 도입 전에 조직의 현재 상황과 목표를 면밀히 평가한 후, 점진적으로 도입하는 것이 중요하죠. 대기업이나 캐시카우가 있는 기업들이 데브옵스를 실행했다고 해서, 또는 단지 트렌드라는 이유만으로 도입하는 것은 위험할 수 있습니다. 오해 3. 데브옵스는 빠른 소프트웨어 배포만을 목표로 한다? 데브옵스는 속도만 중시하고 품질이나 안정성을 소홀히 한다는 인식이 있습니다. 하지만 데브옵스는 소프트웨어의 빠른 배포뿐만 아니라, 품질과 안정성 그리고 보안을 동시에 추구해야 합니다. 이에 따라 지속적인 통합과 배포(CI/CD), 자동화된 테스트, 모니터링 등을 통해 이러한 목표를 달성하려고 노력해야 하죠. 이처럼 데브옵스라는 도구를 도입하고 데브옵스 팀을 구성했다고 해서, 데브옵스가 즉각적으로 실현되는 것은 아닙니다. │ 데브옵스(DevOps) 보다 선행되어야 하는 '이것' 진정한 데브옵스를 실현하기 위한 방법을 한 문장으로 표현한다면 다음과 같습니다. "싸우지 말고 함께 소프트웨어 시스템 혹은 서비스를 만들어봐요" 힘 빠지는 결론일 수도 있습니다. 하지만 데브옵스를 도입하기 이전에 더 선행되어야 할 것은 각각 다른 업무의 조직원들끼리 서로를 이해하고, 협력하며, 보다 안정적인 시스템과 서비스를 제공하는 '문화'를 만드는 것이 더 현실적인 행동이라고 생각합니다. 물론 데브(Dev)와 옵스(Ops)는 우선순위가 동일하지 않고, 동일한 언어를 사용하지 않을 수 있으며, 매우 다른 관점에서 문제 해결될 가능성이 높습니다. 이처럼 팀을 하나로 모으기 위해서는 상당한 시간과 지속적인 노력이 필요한 것이죠. 그렇다면 어떤 방식으로 팀 협업 문화를 만들어야, 데브옵스를 보다 성공적으로 도입할 수 있을까요? │ 데브옵스(DevOps) 성공을 위한 첫걸음 먼저 조직 내의 문화를 이해한 다음, 조직 내 교육과 커뮤니케이션을 강화하는 것이 중요한데요. 구체적인 방안을 제안한다면 다음과 같습니다. 로테이션 프로그램 도입 진정한 데브옵스를 실현하려면, 무엇보다 각 부서의 업무적인 이해가 중요합니다. 가장 직관적인 방법으로는 다른 부서의 업무를 '직접 체험'해 보는 것입니다. 예를 든다면 개발자가 운영팀의 업무를 수행하거나, 보안 팀이 개발 업무에 참여하는 등, 다양한 부서 간의 경험을 쌓아 보는 것이죠. 이를 통해 서로의 업무 환경과 각 부서 간의 역할을 이해하는 데 큰 도움을 받을 수 있습니다. 지식 공유 플랫폼 구축 내부 플랫폼이나 문서화된 지식 공유 시스템을 구축하는 방법도 있습니다. 각 부서의 업무와 프로세스에 대한 정보를 쉽게 접근할 수 있도록 하는 것이죠. 예를 들면 데브옵스 문화나 기술적인 도구, 프로세스 등을 포함하여 다양한 지식을 공유합니다. 이를 통해 각 부서의 업무 특성을 명확히 이해할 수 있고, 협업을 원활하게 진행할 수 있겠죠. 정기적인 교육 세션 빠르게 변화하는 기술에 대응하기 위해, 팀원들이 지속적으로 학습하고 발전해야 합니다. 정기적인 교육은 이러한 학습을 지원하는 데 중요한 역할을 하는데요. 예를 든다면 새로 도입된 CI/CD 도구에 대한 워크숍을 개최하여, 팀원들이 해당 도구의 사용법과 이점을 학습할 수 있도록 합니다. 또한 현재 사용 중인 프로세스 개선점에 대한 세션을 주기적으로 열어, 팀원들이 학습한 내용을 바탕으로 업무에 효율적으로 적용할 수 있습니다. 만약 특정 분야에 강점을 가진 팀원이 있어 주기적으로 자신의 경험과 성과를 공유한다면, 팀 전체에게 영감을 주고 학습 기회를 제공할 수도 있겠죠. 스탠드 업 미팅 활성화 매일 정해진 시간에 각 팀원이 자신의 진행 상황이나 이슈, 계획을 간결하게 공유합니다. 정해진 시간을 지키고 효율적인 미팅 진행을 위해, 공유하는 팀원들의 말에 집중하되 '총 15분'을 초과하지 않도록 노력하는 것이 중요합니다. 이를 통해 짧은 시간 동안 팀 전체가 빠르게 현재 상황을 파악하고, 실시간으로 정보를 공유하며, 신속하게 문제를 해결할 수 있습니다. 이처럼 위와 같은 방법들을 통해 구성원들이 효과적으로 협력할 수 있는 환경을 조성하는 노력들이 필요합니다. 。。。。。。。。。。。。 많은 기업들이 경쟁에서 지지 않기 위해 도입하고 있는 데브옵스(DevOps). 하지만 진정한 데브옵스를 실현하기 위해서는 "싸우지 말고 소프트웨어 시스템 혹은 서비스를 만들어 봐요"라는 문장처럼 각각 다른 업무의 조직원들끼리 서로 이해하고, 협력하는 문화가 선행되는 것이 매우 중요합니다. 즉 너희 팀 vs 우리 팀 업무를 구분하지 않고 함께 협력하여, 아이디어를 생산하고, 가치를 창출해야 하는 것이죠. 혹시 아직 데브옵스를 도입하기 전이거나, 도입 이후에 올바르게 활용되고 있는지 궁금하시다면, 오늘 이 글을 통해 심도 있게 생각해 보시는 건 어떨까요?
2024.02.14
기술이야기
ICMP와 SNMP를 비롯한 NMS의 구성요소와 주요 기능은?
기술이야기
ICMP와 SNMP를 비롯한 NMS의 구성요소와 주요 기능은?
지난 포스팅을 통해서 NMS의 기본 개념과 시대별 변화, 그리고 활용 사례 등을 살펴보았는데요. 오늘은 ICMP와 SNMP를 비롯한 NMS의 구성 요소와 주요 기능에 대해서 자세히 알아보겠습니다. 。。。。。。。。。。。。 │ NMS(네트워크 관리 시스템)의 구성 요소와 역할 NMS의 구성 요소와 역할은 크게 다섯 가지로 나눌 수 있습니다. NMS Manager NMS Manager는 Managed Device를 모니터링하고 제어하는 역할을 합니다. SNMP, ICMP, RMON 등의 망 관리 프로토콜을 이용하여 Managed Device 정보를 수집하며 User Interface도 제공합니다. Management Agent (SNMP Agent) 독자적으로 트래픽을 모니터링하고, 통계 정보를 자신의 MIB에 저장해 두었다가 트래픽 정보 요구나 특정 동작 요청에 응답합니다. 또한 망 관리 프로토콜을 활용하여 Manager에게 관리 정보를 전달합니다. Managed Device 백본, 스위치, 라우터, 허브와 같은 네트워크 장비를 말하며 Management Information을 수집하여 MIB에 보관합니다. MIB (Management Information Base) Managed Device의 정보를 포함한 Database 역할을 수행합니다. 관리되는 정보들을 계층적 트리 구조로 구성되고, 망 관리용 프로토콜인 SNMP 등에 의해서 읽힙니다. SNMP Protocol 네트워크 장치로부터 정보를 수집하여 작업을 수행하는 응용 계층의 프로토콜입니다. MIB에 정의되어 있는 객체들의 OID 값을 전달받아 해당 장비의 상태를 나타냅니다. │ NMS 구성 요소의 상호작용 NMS 구성 요소의 상호 작용을 자세히 살펴보면 각각의 네트워크 장비에는 SNMP Agent가 내장되어 있고, MIB를 이용해 네트워크의 상태 및 구성에 대한 정보를 요청하고 응답받습니다. Agent는 관리 정보를 수집하며, SNMP 프로토콜을 이용하여 NMS Manager와 통신을 합니다. NMS Manager의 Server 단에서는 SNMP가 수집한 데이터를 기반으로 분석, 가공, 성능, 구성, 장애, 보안, 운영 등의 관리 작업을 수행합니다. 또한 DB 단에서는 이벤트 및 로그를 기록하여 문제 해결 및 보고에 사용하는데요. 최종적으로는 User Interface를 통해 운영자가 네트워크 장비들을 효율적으로 모니터링하고 관리하기 위한 가시적인 화면을 제공합니다. │ NMS의 데이터 수집 방식 (관련 프로토콜) NMS는 여러 가지 성능 정보를 수집하여 모니터링하기 위해 다양한 프로토콜을 사용합니다. ① SNMP(Simple Network Management Protocol) 네트워크 장비를 관리하고 모니터링하기 위해 사용되는 인터넷 표준 프로토콜입니다. 네트워크 관리자가 네트워크에 연결된 상태를 확인하고 필요한 경우 설정을 변경할 수 있도록 설계되었고, 대부분 NMS 상에 구현되어 이용되고 있습니다. TCP/IP 기반에서 망관리를 위한 프로토콜이며, 관리 대상과 시스템 간 관리 정보(MIB)를 주고받기 위한 규정입니다. Manager(NMS), Agent, MIB(Management Information Base), Managed Device 등으로 구성됩니다. SNMP의 처리 단계는 Get/Set/Trap의 단순 명령 구조로 구성됩니다. SNMP의 메시지 타입은 Get/Set/Trap의 단순 명령 구조로 구성되는데요, 메세지 타입별 역할은 아래와 같습니다. ② ICMP (Internet Control Message Protocol) IP(Internet Protocol) 네트워크의 기기들이 서로 통신 상태 정보와 오류 메시지를 교환하기 위해 사용하는 네트워크 레벨 프로토콜로, 주로 네트워크 장비와 서버 간의 연결 문제를 진단하고 보고하는 데 사용됩니다. ICMP의 주요 기능은 크게 두 가지입니다. ◾ 오류보고(Error Reporting): 네트워크에서 데이터를 전송하는 동안 발생할 수 있는 여러 종류의 오류를 감지하고, 이에 대한 정보를 송신자에게 알리는 기능 ◾ 진단도구(Diagnostic Functions): 네트워크 연결 문제를 진단하는 데 사용되는 유틸리티(예: ping, traceroute)는 ICMP 메시지를 활용하여 네트워크의 상태를 확인합니다. 이를 통해 네트워크의 연결 상태, 지연 시간, 패킷 손실 등을 평가할 수 있습니다. 먼저 SNMP와 ICMP를 살펴보았는데요, 잠깐 두 가지 방식을 자세히 비교해 보면 SNMP는 장치 모니터링, 구성 변경, 이벤트 알림을 제공하며 주로 관리자 중심의 기능을 수행합니다. 반면 ICMP는 네트워크 통신의 에러 및 상태를 보고하고 호스트 간의 연결성을 테스트하는 데 사용되며, 주로 이벤트 기반 및 연결성 확인을 위한 메시지를 전송하는 데 중점을 둡니다. NMS의 데이터 수집 방식에 대해서 계속 살펴보겠습니다. ③ RMON (Remote Network Monitering) SNMP의 확장 형태로 개발된 RMON은, 분산되어 있는 망에 대한 트래픽을 측정하여 망을 감시하고 분석을 제공하는 프로토콜입니다. 원격에 위치한 Probe에서 망자원의 상태 정보를 수집하여 에러를 방지하고 효율적으로 이용하는 것을 목적으로 합니다. NMS의 대표적인 수집 방식을 살펴보았는데요, 이 외에도 다양한 방식이 있기 때문에 NMS 솔루션은 다양한 방식을 지원하는 것이 중요합니다. (*브레인즈컴퍼니의 Zenius-NMS는 SNMP와 ICMP 외에도 RMON, CDP, LLDP 프로토콜 등 다양한 수집 방식을 지원하고 있습니다.) │ NMS의 경보 알림 연계 방식 네트워크 내의 장애나 이상 상태를 감지했을 때 관리자나 담당자에게 이를 알리는 방법으로, NMS의 핵심이라고 할 수 있습니다. 다양한 경보 알림 방식이 있으며, 각 방식은 특정 상황이나 니즈에 맞게 선택되고 있는데요 가장 대표적인 방식들을 알아보겠습니다. 이메일(E-mail) 알림 네트워크 성능이 저하되는 등의 문제가 발생하면, 이메일 시스템과 연계하여 설정된 이메일 주소로 자동으로 알림을 발송합니다. 문제 발생 시 기록을 남기기 쉽다는 장점이 있지만, 긴급한 문제에는 이메일을 확인하는데 지연이 발생할 수 있습니다. 문자 메시지(SMS) 알림 네트워크의 문제 감지 시, NMS는 사전에 등록된 휴대전화 번호로 경보의 성격과 간단한 설명을 포함한 SMS 메시지를 보냅니다. 신속한 알림이 가능하다는 장점은 있지만, 메시지 길이에 제한이 있다는 단점도 있습니다. 메신저 및 협업 툴을 사용한 알림 최근 많이 사용되는 슬랙, 텔레그램, 팀스, 카카오톡을 통해 네트워크의 이상을 알리는 방식입니다. 문자 메시지와 같이 신속한 알림이 가능하면서 메시지 길이에 크게 제한이 없다는 장점도 있습니다. Dashboard를 통한 이벤트 관제 특정 경보가 발생하면, 웹 기반의 대시보드에 경보 메시지를 포함하여 관리자가 시각적으로 확인할 수 있도록 알립니다. 직관적으로 실시간 네트워크 상태를 모니터링할 수 있는 것이 가장 큰 장점입니다. 서버, 네트워크, 부대설비 모듈을 포함한 Zenius-Dashboard 예시 화면 위와 같이 다양한 알림 연계 방식을 통해, 담당자에게 즉시 장애 처리를 할 수 있도록 지원하는 기능도 중요합니다. NMS에서 즉각적인 장애를 처리하기 위해 제공하는 기능은 다음과 같습니다. ◾ 다중 수신자 지원: 여러 관리자나 담당자에게 동시에 경보를 전송하여 여러 관리자가 신속하게 대응할 수 있게 합니다. ◾ 알림 임계값 설정: 관리자는 경보 발생을 위한 임계값을 설정할 수 있습니다. (예: 특정 장치의 성능이 일정 수준 이하로 떨어질 때 알림을 발생시키도록 설정) ◾ 장애 관리 자동화: 특정 이벤트에 대해 미리 정의된 복구 스크립트 및 시나리오를 통해 장애 감지부터 처리까지의 장애 관리 업무를 자동화할 수 있습니다. NMS의 경보 알림 방식을 살펴보았는데요, 이제 NMS의 주요 기능을 자세하게 알아보겠습니다. │ NMS의 주요 기능 자세히 보기 NMS는 네트워크의 효율성, 가용성, 보안 등을 관리하고 감시하기 위한 다양한 기능을 제공합니다. 보편적으로 NMS에서 제공하는 상세 기능들은 아래와 같이 정리할 수 있습니다. NMS는 장애 관리, 구성 관리, 성능 관리를 중심으로 다양한 세부 기능을 가지고 있습니다. NMS의 많은 기능 중에서도 특히 네트워크 장비들을 실시간으로 모니터링할 수 있는 '성능 관리' 기능과, 성능 저하 또는 병목 현상을 빠르게 식별하여 해결할 수 있는 '장애 관리' 기능이 중요합니다. │ NMS의 발전 방향 NMS는 복잡하고 빠르게 변화하는 기술 트렌드에 맞춰 지속적으로 발전하고 있습니다. 클라우드, 가상화, 5G, IoT와 같은 기술의 발전에 따라서 사용자에게 높은 품질의 서비스를 제공하기 위한 방향으로 진화하고 있습니다. 온 프레미스와 클라우드의 조화 온 프레미스 환경은 보안, 규정 준수, 네트워크 제어와 같은 니즈 때문에 여전히 중요한 역할을 하고 있습니다. 반면 클라우드 기반 NMS 솔루션은 비용 효율성, 안정성, 용이한 배포와 같은 이점을 제공하는데요. 따라서 NMS도 온 프레미스와 클라우드의 장점을 조화롭게 포함하며 발전하고 있습니다. 클라우드 네이티브 환경으로의 진화 기업과 기관들이 클라우드 서비스를 적극적으로 채택함에 따라 NMS는 클라우드의 유연성, 확장성, 효율성을 극대화하는 등 클라우드 환경에 더욱 적합한 구조로 발전하고 있습니다. 분산형 아키텍처와 기술 혁신 최근의 NMS는 중앙 집중식에서 벗어나 더욱 분산된 아키텍처를 채택하고 있습니다. 마이크로 서비스 아키텍처(MSA)를 통해 모듈화되고 유연한 시스템 구조를 도입하여, 필요한 기능을 쉽게 추가하거나 변경할 수 있습니다. 또한 AI 기반의 NMS는 네트워크 데이터를 분석하고, 문제의 예측 및 해결 능력 향상에 기여하고 있습니다. 이 밖에도 NMS는 5G와 IoT 등의 신기술에 효과적으로 대응하기 위해 지속적으로 발전하고 있습니다. 。。。。。。。。。。。。 NMS의 구성 요소와 주요 기능 그리고 발전 방향에 대해서 살펴봤습니다. NMS 솔루션을 선택할 때는 기본적인 기능을 잘 갖추고 있을 뿐 아니라, 혁신적인 기술과 트렌드를 적극적으로 채택하고 지속적인 연구와 개선을 지속하는 기업의 솔루션을 선택해야 합니다. 안정적인 네트워크 운영은 이제 비즈니스의 필수 요소입니다. 성공적인 NMS 솔루션 선택을 통해 네트워크 성능을 극대화하여 비즈니스의 경쟁력을 확보하시기 바랍니다!
2024.02.08
기술이야기
쿠버네티스를 통해 본 컨테이너 오케스트레이션
기술이야기
쿠버네티스를 통해 본 컨테이너 오케스트레이션
‘쿠버네티스(kubernetes)’는 2013년 구글에서 공개한 이후 컨테이터 오케스트레이션 도구의 표준으로 자리 잡았습니다. CNCF의 1호 졸업 프로젝트이기도 한 쿠버네티스는 지속적인 릴리즈를 거쳐 꽤 성숙한 제품이 됐는데요. 쿠버네티스는 컨테이너화된 어플리케이션을 자동으로 배포하고 스케일링 및 관리하기 위한 컨테이너 오케스트레이션 도구라고 간단하게 정의할 수 있습니다. 일반적으로 컨테이너를 사용할 때 ‘도커(Docker)’를 많이 사용한다는 이야기를 들으셨을 것입니다. 도커는 컨테이너를 쉽게 만들고, 내려받고, 공유할 수 있도록 사용되는 컨테이너 플랫폼입니다. 온프레미스 환경 아래의 배포에서 가상환경의 배포로 발전하고 더 나아가 컨테이너 환경 아래에서 리소스를 관리하게 되면서, 도커는 컨테이너 런타임의 표준으로 자리 잡았습니다. 이미지 출처 ⓒ https://kubernetes.io/ko 컨테이너 환경의 배포는 온프레미스 환경과 가상화 환경의 배포보다 관리는 용이하지만, 컨테이너 수가 많아지게 되면서 부하 분산과 안정적인 배포를 위해 관리해야 할 필요성이 지속적으로 증가하였습니다. 이 때 등장하는 것이 컨테이너의 오케스트레이션 도구라고 할 수 있는 쿠버네티스입니다. 이번 시간에는 컨테이너 오케스트레이션의 주요 도구인 쿠버네티스를 통해 컨테이너 오케스트레이션에 대해 알아보고자 합니다. │쿠버네티스의 주요 목적 쿠버네티스의 주요 목적을 이해하려면 컨테이너 오케스트레이션의 개념을 먼저 짚고 넘어가야 합니다. 컨테이너 오케스트레이션 위키피디아의 정의에 따르면 ‘컴퓨터 리소스 자원과 애플리케이션 및 서비스에 대한 자동화된 설정 및 관리’를 의미합니다. 이를 컨테이너에 적용하면, 여러 컨테이너에 대한 프로세스를 최적화하고 적절한 자원의 할당과 자동으로 컨테이너를 생성하고 배포할 수 있도록 해야 합니다. 소수 사용자를 위한 비교적 단순한 컨테이너 앱은 보통 별도의 오케스트레이션이 필요하지 않을 수 있습니다. 관리자가 각 컨테이너 별 리소스 자원을 할당하면 그만이겠죠. 하지만 만약 앱의 기능과 사용자 수가 사소한 수준 이상이라면, 컨테이너 오케스트레이션 시스템을 사용하지 않고 직접 해결하기 어려워집니다. 무엇보다 아키텍처의 트렌드가 모놀리식(Monolithic Architecture)에서 마이크로서비스(Microservice Architecture)로 변화하는 과정에서 컨테이너의 수는 계속 증가할 것이고 무중단 서비스, 즉 고가용성을 제공해야 하는 환경이라면 컨테이너 오케스트레이션은 원활한 서비스 구성을 위한 필수 요소라고 할 수 있습니다. 마이크로서비스 아키텍처 환경에서는 애플리케이션의 세부 기능들이 작은 서비스 단위로 분리되어 있습니다. 이 각각의 서비스를 구현하는데 컨테이너 기술이 가장 흔하게 이용되는데요, 다수의 컨테이너를 관리하는 상황이라면 위의 4가지 이슈에 대한 해답을 찾아야 합니다. │쿠버네티스의 핵심 아키텍처 앞서 살펴본 4가지 이슈를 해결하기 위해 쿠버네티스는 아래와 같은 네 가지 핵심 아키텍처로 구성되어 있습니다. ① 선언적 구성 기반의 배포 환경 쿠버네티스는 동작을 지시하는 개념보다는 원하는 상태를 선언하는 개념을 주로 사용합니다. 즉 사용자가 설정한 원하는 상태(Desired State)와 현재의 상태(Current State)가 일치하는지를 지속적으로 체크하면서 업데이트합니다. 결과적으로 ‘이렇게 되어야 해!’ 라는 선언적 방식으로 명령을 주면 쿠버네티스는 이를 해석하여 컨테이너들을 자동으로 관리하게 됩니다. ② 기능 단위의 분산 쿠버네티스에서는 각각의 기능들이 모두 독립적인 컴포넌트로 분산되어 있습니다. 앞으로 후술할 쿠버네티스 ‘APIserver’를 통해 내부 컴포넌트들을 컨트롤 하고 있습니다. ③ 클라스터 단위의 중앙 제어 쿠버네티스는 가용할 수 있는 리소스를 클러스터 > 노드 > 파드 단위로 추상화 하여 관리합니다. 각각의 클러스터를 통해 노드를 관리하고 노드 안의 컨테이너를 효율적으로 관리할 수 있습니다. ④ API 기반의 네트워킹 쿠버네티스의 구성 요소들은 오직 ‘APIserver’를 통해서만 상호 접근이 가능한 구조를 가지고 있습니다. 마스터 노드의 ‘Kubectl’라는 컴포넌트를 거쳐 실행되는 모든 명령은 이 API 서버를 거쳐 수행되며, 워커 노드에 포함된 ‘Kubelet’, ‘Kube-proxy’ 역시 API 서버를 통해 상호작용하게 되어 있습니다. │쿠버네티스의 오케스트레이션 기능 컨테이너 오케스트레이션의 핵심은 컨테이너의 프로비저닝, 배포, 네트워킹, 확장 가용성, 라이프사이클 관리, 상태 모니터링 일체를 자동화하는 데 있습니다. 쿠버네티스가 제공하는 오케스트레이션 기능은 위의 컨테이너 관리 이슈에 대한 적절한 해결책을 제공합니다. 이미지 출처 ⓒ https://kubernetes.io/ko ① 오토스케일링 (Auto-Scaling) 쿠버네티스에서 생성하고 관리할 수 있는 가장 작은 컴퓨팅 단위를 파드(Pod)라고 부르는데요. 쿠버네티스는 각 클러스터 안에 있는 노드의 CPU와 메모리 자원에 대한 할당을 Pod를 통해 자동으로 조정합니다. 만약 부하가 증가하여 리소스를 과하게 점유하고 있다면 자동으로 파드 복제본이 실행되어 가용성을 확보할 수 있습니다. ② 스케줄링 (Scheduling) 컨테이너를 일정한 알고리즘에 기초하여 구체적으로 어떤 노드에서 움직이게 할지 배치하는 것을 스케줄링이라고 합니다. ‘Kube Scheduler’라는 컴포넌트를 통해 클러스터 내에 실행할 파드를 노드에 스케줄링 할 수 있습니다. ③ 오토 힐링 (Auto-Healing) 쿠버네티스는 사용자가 지정한 컨테이너의 상태를 지속적으로 관찰하여 비정상적인 상태를 감지하면 컨테이너를 재시작하고 스케줄링을 빠르게 재시작 할 수 있습니다. 사용자의 선언적 상태에 따라 응답하지 않은 컨테이너를 새롭게 구동 시킬 수 있습니다. ④ 분산 부하 (Load-Balancing) 하나의 서비스에 여러 개의 컨테이너가 구동 시, 서비스에 들어오는 요청을 컨테이너들 사이에 균등하게 분배하여 부하를 분산시킵니다. 이를 통해 급증하는 서비스 요청에 대해 효율적인 대응이 가능합니다. │쿠버네티스의 구성요소 쿠버네티스는 총 네 가지의 구성요소로 이루어져 있습니다. 이미지 출처 ⓒ https://kubernetes.io/ko ① 클러스터 (Cluster) CNCF 재단에 따르면 클러스터는 공통의 목표를 위해 작동하는 애플리케이션의 그룹이라고 정의하고 있습니다. 쉽게 표현하면, 클러스터는 컨테이너를 통해 실행되는 여러 서비스들의 집합이라고 할 수 있겠는데요. 클러스터의 구성 목적은 애플리케이션의 효율적인 관리에 그 목적이 있습니다. 일반적으로 컨트롤 타워 역할을 하는 마스터 노드와 컨테이너가 실행되는 워커 노드로 구성되어 있습니다. ② 마스터 노드 (Master Nodes) 마스터 노드는 클러스터 전체를 관리하는 컨트롤 타워의 역할을 합니다. 대규모의 컨테이너 관리를 위해 각 워커 노드들의 리소스 사용률을 고려하여 컨테이너 배치와 모니터링이 필요한데요. 클러스터 내에서 이 역할을 수행하는 노드를 마스터 노드라고 부릅니다. ③ 워커 노드 (Worker Nodes) 워커 노드는 마스터 노드의 컨트롤을 받아 실제 컨테이너를 실행하고 쿠버네티스 실행 환경을 관리합니다. ‘Kubelet’이라는 노드 컴포넌트를 통해 파드의 실행을 직접 관리하며 APIserver와 통신하게 됩니다. 하나의 노드는 일반적으로 여러 개의 파드로 구성됩니다. 마스터 노드를 통해 파드에 대한 스케줄링을 자동으로 처리할 수 있습니다. ④ 파드 (Pod) 쿠버네티스에서 생성하고 관리할 수 있는 가장 작은 컴퓨팅 단위입니다. 위의 그림과 같이 하나의 파드 안에 다수의 컨테이너 혹은 단일 컨테이너로 구성될 수 있는데요. 쿠버네티스는 파드를 통해 컨테이너가 동일한 리소스 및 로컬 네트워크를 공유하게 합니다. 위와 같은 방식으로 컨테이너를 그룹화하면 분산된 환경에서도 동일한 하드웨어를 공유하는 것처럼 컨테이너를 서로 통신할 수 있도록 만듭니다. 파드의 사용 목적은 단순합니다. 일반적으로 서로 다른 컨테이너들이 각기 다른 기능들을 수행하며 하나의 완전한 애플리케이션으로 이루어 지게 되는데요. 이 때, 파드를 통해 각 컨테이너들의 내부 통신이 가능하게 하고 모든 컨테이너에 동일한 환경을 제공해 줄 수 있습니다. 요약하면 파드는 컨테이너가 제공하는 모든 기능을 활용하는 동시에 프로세스가 함께 실행되는 것처럼 보이게 하는 역할을 합니다. │쿠버네티스의 주요 컴포넌트 쿠버네티스의 주요 컴포턴트를 컨트롤 플레인 컴포넌트와 노드 컴포넌트로 나눠서 살펴보겠습니다. ① 컨트롤 플레인 컴포넌트 (Control Plane Components) 마스터 노드의 컨테이너, 워커 노드의 관리는 컨트롤 플레인 컴포넌트를 통해 이루어집니다. 컨트롤 플레인 컴포넌트는 클러스터 전체의 워크로드 리소스 등 주요 구성 요소들을 배포하고 제어하는 역할을 합니다. * Kube-APIserver API서버 라는 이름에서 말해주듯이 쿠버네티스의 컴포넌트와 사용자와의 접점 역할을 맡고 있습니다. 쿠버네티스에서 클러스터의 모든 구성 요소들은 오직 API서버를 통해서만 상호 접근이 가능하도록 설계되어 있습니다. 쿠버네티스의 중앙관리자라는 표현이 어울릴지 모르겠지만, 파드의 생성부터 스케줄링, etcd와의 통신까지 쿠버네티스의 모든 동작 과정에 API서버는 쿠버네티스의 중심에 있습니다. * etcd etcd는 클러스터 안의 각 구성요소에 대한 정보가 키-값 형태로 저장된 자체적인 데이터베이스입니다. 현재 클러스터에 있는 컴포넌트가 몇 개인지, 각각의 파드들이 어떤 노드에 붙어 있는지, 어떤 컨테이너를 들고 있는지에 대한 모든 정보가 etcd에 저장됩니다. 중요한 점은 etcd가 다운된다면 클러스터는 제대로 동작하지 못하게 되므로 자체적인 백업 스케줄링은 쿠버네티스 관리에 필수 요소라고 할 수 있습니다. * kube-controller-manager 컨트롤러 매니저는 클러스터 내에 작업 중인 다양한 리소스들을 모니터링하며 사용자가 설정한 원하는 상태(Desired State)와 현재의 상태(Current State)가 일치하도록 관리하는 작업을 합니다. 주요 컨트롤러로는 파드 복제를 유지해 주는 레플리카셋(ReplicaSet), 앱 배포를 세밀하게 관리할 수 있는 디플로이먼트(Deployment) 등으로 구성되어 있으며, 하나의 패키징 된 형태를 가지고 있습니다. * Kube-Scheduler 스케줄러는 각 파드들이 어떤 노드에서 작업을 수행할지 결정해 주는 역할을 맡고 있습니다. 비유하자면 작업 장소를 선택해 주는 의사 결정만 담당하고 있으며 실질적인 배치 작업은 아래 설명할 Kubelet이 담당하고 있습니다. ② 노드 컴포넌트 (Node Components) 노드 컴포넌트는 노드에서 작동하는 파드들을 관리하기 컴포넌트입니다. 워커 노드뿐 아니라 마스터 노드에서도 존재합니다. * Kubelet Kebelet은 클러스터의 모든 노드에서 실행되는 에이전트입니다. 파드의 실행을 직접적으로 관리한다고 볼 수 있는데요. 컨테이너디(Containerd), 크라이오(CRI-O) 같은 컨테이너 런타임과도 통신이 가능하며 노드 내에 구동 중인 컨테이너에 대한 라이프사이클을 관리합니다. 본래 쿠버네티스에서는 컨테이너 생성과 실행을 위한 런타임 엔진으로 도커(Docker)를 지원해왔으나, 2022년 2월 기준으로 완전히 중단되었습니다. 물론 런타임 엔진에서 도커가 제외된다는 것이 클러스터에서 도커 자체를 사용하지 못하게 된다는 뜻은 아닙니다. * Kube-proxy Kube-proxy는 노드에서 구동되는 쿠버네티스 네트워크 프록시입니다. 쿠버네티스에서 서비스라고 불리는 내부/외부 트래픽을 어느 파드로 전달할 것인지에 대한 규칙을 생성하고 관리하는 역할을 합니다. 。。。。。。。。。。。。 쿠버네티스의 주요 오케스트레이션 기능과 쿠버네티스의 주요 구성 요소 및 컴포넌트들을 살펴보았는데요. 쿠버네티스만이 컨테이너의 관리 복잡성을 해결할 수 있는 유일한 오픈소스는 아닙니다. 아파치 소프트웨어 재단에서 개발한 ‘아파치 메소스(Apache Mesos)’, 도커에서 개발한 ‘도커 스웜(Docker Swarm)’ 등의 컨테이너 관리 오픈소스도 있지만 2024년 현재 쿠버네티스는 독점적인 위치를 차지하고 있습니다. 무엇보다 3대 퍼블릭 클라우드사인 AWS, Azure, GCP 모두 매니지드 쿠버네티스 플랫폼을 제공하고 있습니다. 국내 퍼블릭 클라우드인 kt cloud, 네이버클라우드, NHN클라우드, 가비아, 카카오클라우드, 삼성클라우드플랫폼 등 모두 각 클라우드 환경에 최적화된 쿠버네티스 서비스를 제공하고 있죠. 또한, RedHat은 쿠버네티스 기반의 오픈시프트(OpenShift)를 통해 CaaS(Container as a Service) 시장의 선점을 노리고 있습니다. 스타트업과 대기업을 가리지 않고 기업에서 운영하는 컨테이너 기반의 애플리케이션이 복잡화됨에 따라 컨테이너 오케스트레이션 관리 도구인 쿠버네티스는 이제 기업 IT 운영전략의 핵심 요소가 되었습니다. 제니우스 쿠버네티스 모니터링 화면 예시 브레인즈컴퍼니의 제니우스(Zenius) 역시 컨테이너 모니터링뿐 아니라 쿠버네티스에 대한 모니터링을 환경을 제공하고 있습니다. 멀티 클러스터 환경에서의 모든 클러스터에 대한 모니터링뿐 아니라 Object Meta 정보를 제공하며 다양한 임계치 기반의 이벤트 감시 설정으로 선제적 장애 대응이 가능합니다. 📚참고 자료 쿠버네티스 공식 문서: Kubernetes Components 쿠버네티스 공식 문서: Options for Highly Available Topology 쿠버네티스 공식 문서: Container runtimes
2024.02.05
기술이야기
NMS(네트워크 관리 시스템)에 대해서 꼭 알아야 할 네 가지
기술이야기
NMS(네트워크 관리 시스템)에 대해서 꼭 알아야 할 네 가지
산업 분야를 통틀어서 최근 모든 기업과 공공기관들의 ‘네트워크’ 활용도와 의존도가 빠르게 증가하고 있습니다. 따라서 이제 ‘안정적인 네트워크 관리 = 성공적인 비즈니스 운영’이라고도 할 수 있는데요. 오늘은 네트워크를 안정적으로 유지해서 성공적인 비즈니스 운영을 도와주는, NMS(Network Management System, 네트워크 관리 시스템)에 대해서 자세히 알아보겠습니다. NMS의 등장 배경, 시대별 변화, 그리고 핵심 개념과 실제 사례까지 NMS에 대해서 꼭 알아야 할 네 가지는 무엇일까요? 。。。。。。。。。。。。 │NMS(네트워크 관리 시스템)의 기본 개념과 등장 배경 NMS란 다양한 이기종 네트워크 장치(Network device)를 중앙에서 관리하고 감시할 수 있는 시스템입니다. 즉 전체 네트워크를 중앙 시스템을 통해 모니터링, 진단, 분석, 가용성을 유지하기 위해 만들어진 시스템을 말합니다. NMS의 필요성과 등장 배경은 OSI의 SMFAs(Specific Management Functional Areas)의 다섯 가지 영역(FCAPS)로 정리할 수 있습니다. 장애관리(Fault Management): 경보 감시, 고장 위치의 측정 시험 등 NMS의 첫 번째 관심사는 네트워크의 가용성을 보장하는 것입니다. 네트워크에서 발생하는 장애를 감지·격리·복구하는 과정으로, 네트워크 가동 시간을 최대화하고 서비스 중단을 최소화하는 것이 목적입니다. 구성 관리(Configuration Management): 설비제공, 상태 제어, 설치 지원 등 네트워크의 구성 요소(하드웨어, 소프트웨어, 네트워크 설정 등)를 관리하는 과정으로, 네트워크의 변경 사항을 추적하고 일관된 네트워크 성능과 안정성을 유지하는 데 중요합니다. 계정관리(Accounting Management): 계정(과금) 정보의 수집/저장/제어 등 네트워크 자원의 사용량을 추적하고 기록하는 과정이며, 자원의 할당과 과금에 사용됩니다. 사용량, 사용시간, 서비스 품질, 장비 사용률 등 네트워크 관리 및 운영에 관한 비용 할당 시 필요합니다. 성능 관리(Performance Management): 성능감시/트래픽 관리/품질관리/통계관리 네트워크의 트래픽이 특정 시간에 급증하는 것을 성능 관리 시스템이 감지했을 때, 이 정보를 사용하여 네트워크 용량을 적절히 조정하거나 트래픽을 분산시킬 수 있습니다. 보안 관리(Security Management): 보안/안전/기밀 관리 등 보안 관리 시스템은 사용자의 무단 엑세스 시도를 감지하며 즉시 차단할 수 있는 접근 제어, 인증, 암호화, 키관리 등을 관리하는 것과 관련이 있습니다. 네트워크 인프라의 로그 모니터링을 통해 잠재적인 보안 문제를 사전에 예방할 수 있습니다. 위와 같은 등장 배경과 필요성을 가진 NMS, 시대별로는 어떻게 변해왔는지 살펴보겠습니다. │NMS(네트워크 관리 시스템)의 시대별 변화 1980년대 초부터 현재에 이르기까지 NMS의 시대별 변화를 간략히 살펴보면 다음과 같습니다. 1980년대 ~ 2010년대 초 1980년대에 등장한 초기 NMS는 단순한 모니터링과 제어에 둔 간단한 형태였고, 특정 벤더의 하드웨어에 종속되고 표준화가 제대로 이루어지지 않았었습니다. 1990년대에 들어서 네트워크의 복잡성이 커지면서 NMS의 필요성도 증가했습니다. 이때 보안 기능이 향상된 SNMPv2와 같은 표준 프로토콜이 도입되면서, 다양한 제조사의 장비를 하나의 시스템으로 통합 관리할 수 있게 되었습니다. 또한 네트워크뿐만 아니라 서버까지 같이 관리하기 위한 SNMS(Server and network Management System)와, 더 나아가 EMS(ITIM)도 나오게 되었습니다. 이후 2000년대 초반에 웹 기반 NMS 솔루션이 등장하면서, 사용자 친화적인 인터페이스와 원격 접근 기능 등을 통해 효율적인 네트워크 관리가 가능해졌습니다. 2010년대 중반 ~ 2010년대 후반 NMS는 2010년대 중반부터 등장한 클라우드 컴퓨팅, 빅데이터, 인공지능(AI) 등의 기술과 함께 더욱 고도화되었습니다. 점점 더 다양한 네트워크와 서비스를 통합 관리하며, 자동화된 분석과 의사결정을 지원하게 되었습니다. 최신 동향 최근에는 AI와 머신러닝을 활용하여 예측 분석, 네트워크의 자동 최적화, 사이버 보안 통합 등이 NMS의 중요한 요소로 강조되고 있습니다. 또한 새로운 네트워크 기술인 5G의 도입으로 NMS는 더욱 복잡해지고 다양한 네트워크 환경을 관리하게 되었습니다. 이처럼 NMS는 네트워크 기술의 발전과 산업의 변화에 발맞추어, 지속적이고 빠르게 발전하고 있습니다. 이제 NMS의 구조에 대해서 자세히 알아보겠습니다. │NMS(네트워크 관리 시스템)의 3-Tier 아키텍처 NMS는 3-Tier 아키텍처(수집-저장-표출)로 구성되어 있습니다. 각각 독립된 계층으로 구분되어 있는데요. 특정 부분의 업그레이드가 필요할 때 해당 계층만 영향을 주기 때문에 시스템을 보다 쉽게 관리할 수 있습니다. 다시 정리한다면 NMS Manager에서 SNMP · ICMP · RMON 등 다양한 네트워크 프로토콜을 활용하여, 네트워크 자원의 성능 데이터를 수집합니다. 만약 Managed Device 장비들이 한계치에 도달하거나 장애가 발생했을 경우, 즉각적으로 User Interface를 통해 사용자에게 알립니다. 그렇다면 NMS의 핵심 기능은 무엇일까요? │NMS(네트워크 관리 시스템)의 핵심 기능 네트워크 장애에 대한 신속한 파악과 대응이 반드시 필요한 NMS의 핵심 기능에는 어떤 것들이 있는지 자세히 살펴보겠습니다. 장애 관리 네트워크 인프라의 결함이나 오류를 탐지하고 경고 및 알림을 생성하여, 관리자가 신속하게 대응할 수 있도록 지원합니다. 이를 통해 다운타임을 최소화하고 서비스 지속성을 보장합니다. 예를 들어 네트워크의 라우터가 다운될 경우, NMS는 즉시 관리자에게 경고를 보내 신속한 문제 해결을 도와줍니다. 성능 관리 네트워크 구성 자원인 트래픽 가용성, 응답시간, 사용량, 오류량, 처리 속도 등을 추적하고 최적화합니다. 또한 부하가 발생하지 않도록 문제점을 미리 검출해 안정적인 네트워크 운영이 될 수 있도록 합니다. 예를 들어 특정 애플리케이션이 과도한 대역폭을 소비할 경우, NMS가 문제를 정확히 찾아내서 관리자가 네트워크를 최적화할 수 있도록 돕습니다. ▲ 제니우스(Zenius)를 활용한 성능 모니터링 화면 예시 구성 관리 관리자는 NMS를 통해 분산된 네트워크 장치 구성 프로세스를 자동화하여, 네트워크 전반에 걸쳐 일관성과 정확성을 보장할 수 있습니다. 이러한 핵심 기능을 하는 NMS의 구체적인 활용 사례를 살펴보겠습니다. │NMS(네트워크 관리 시스템)의 활용 사례 IT 분야뿐 아니라 제조업, 금융, 여행, 유통 및 물류 등 전 분야에 걸쳐서 NMS가 사용되고 있습니다. 특히 처리 속도, 가용성, 보안 등이 중요한 금융산업의 경우에 NMS를 통한 안정적인 관리가 중요한데요. 브레인즈컴퍼니의 제니우스(Zenius) EMS를 사용하고 있는 S금융사의 사례를 자세히 살펴보겠습니다. S금융사, Zenius NMS를 통해 완벽하게 네트워크를 관리하게 되다 S금융사는 서버만 800ea, NW 14,000ea 이상의 대규모 인프라를 보유하고 있었습니다. 하지만 Zenius NMS 도입 전까지는 서비스 장애에 영향을 준 네트워크 장애 원인 파악을 위한 장기간 투자하고 있는 상황이었고, 네트워크 운영 현황 데이터 수집과 분석에 많은 시간이 소요되고 있었습니다. 무엇보다 신속한 장애 인지와 처리가 어려워서 큰 고민이 있었는데요. 위 도표에서도 살펴본 것처럼 Zenius NMS 도입을 통해, 이전에 고민과 단점을 극복하고 안정적으로 네트워크 관리를 할 수 있게 되었습니다. 특히 Zenius NMS는 고성능의 Manager를 제공하고 있어 대규모 환경에서도 장애를 신속하게 판단하여, 타사 대비 많은 자원을 효율적으로 관리할 수 있습니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼 NMS는 네트워크 인프라를 효율적으로 관리하는데 가장 중요한 역할을 합니다. 제니우스(Zenius) NMS처럼 고성능의 Manager를 기반으로 네트워크 상태를 신속하게 판단하며, 유저 중심의 통합 UI를 제공하는 NMS 솔루션을 꼭 선택하시기 바랍니다!
2024.01.31
기술이야기
가트너부터 딜로이트까지, 2024 IT트렌드 총정리
기술이야기
가트너부터 딜로이트까지, 2024 IT트렌드 총정리
지난해는 AI를 중심으로 IT 전 분야에서 혁신적인 변화가 있었고, 올 2024년에는 변화의 속도가 더 빨라질 것으로 예상됩니다. 따라서 이와 같은 빠른 변화를에 얼마나 잘 대처하는지가 점점 더 중요해지고 있는데요. 변화를 더 자세하고 빠르게 파악하기 위해서 가트너, 딜로이트, 포레스터 리서치가 발표한 2024 IT 트렌드의 핵심 내용을 모아봤습니다. 。。。。。。。。。。。。 가트너, AI가 가져올 구체적인 변화에 주목하다 가트너는 AI TRiSM부터 Machine Customers까지 총 10개의 주제로 2024년 IT 트렌드를 정리했습니다. 특히 AI와 클라우드를 통한 산업에서의 구체적인 변화에 주목했는데요. 자세한 내용을 살펴보겠습니다. [1] AI TRiSM: AI의 신뢰, 위험 및 보안 관리 AI TRiSM(AI Trust, Risk, and Security Management)은 인공지능 시스템의 신뢰성, 위험, 보안을 관리하는 프레임워크입니다. AI가 윤리적이고 공정하며 투명해야 함을 의미하며, 잠재적 위험을 식별하고 완화하는 데 중점을 둡니다. 보안 관리는 AI 시스템을 사이버 공격과 데이터 유출로부터 보호합니다. AI TRiSM은 의료·금융·자율주행 차량 등, 다양한 분야에서 AI의 안전하고 책임 있는 사용을 보장하는 데 필수적입니다. 이를 통해서 AI 기술의 지속 가능한 발전과 사회적 신뢰를 유지할 수 있습니다. [2] CTEM: 지속적인 위협 노출 관리 Continuous Threat Exposure Management(CTEM)은 사이버 보안 분야에서 조직의 지속적인 위협 노출을 관리하는 전략입니다. 이 방법론은 실시간 모니터링, 자동화된 위험 평가, 적응적 대응 전략을 포함하며 장기적으로 비즈니스의 연속성을 보장하는데 기여합니다. 예를 들어 금융 서비스 회사는 네트워크와 시스템을 지속적으로 스캔하여 취약점을 탐지하고, 감지된 위협에 대해 우선순위를 매겨 신속하게 대응해야 합니다. 또한 소프트웨어 개발 회사는 개발 중인 소프트웨어와 인프라를 모니터링하여 보안 취약점을 조기에 발견하고, 자동화된 도구를 사용해 코드의 취약점을 수정해야 합니다. [3] Sustainable Technology: 지속 가능한 기술 지속 가능한 기술은 환경 영향을 줄이고 지속 가능성을 촉진하는 혁신 및 관행을 포함합니다. IIoT(산업용 사물 인터넷) 센서와 AI를 사용하여 공급망 작업을 최적화하고, 탄소 배출을 줄이며 전반적인 장비 효율성을 향상시키는 산업이 좋은 예입니다. 또한 자급자족 LED 조명, 전기 교통, 태양 에너지, 탄소 포집 및 저장 기술 등의 지속 가능한 기술과 관행도 포함됩니다. 가트너는 또한 지속 가능한 기술이 위험 감소, 운영 효율성 향상, 경쟁 우위 획득, 인재 유치, 환경 및 사회적 책임 강화와 같은 비즈니스 이점을 제공한다고 강조합니다. [4] Platform Engineering: 플랫폼 엔지니어링 플랫폼 엔지니어링은 개발자와 사용자가 쉽게 사용할 수 있는 도구, 기능 및 프로세스 세트를 제공하는 방식입니다. 사용자의 생산성을 높이고 부담을 줄이는데 중점을 둡니다. 플랫폼 엔지니어링은 사용자의 특정 요구와 비즈니스 요구에 맞게 플랫폼을 수정합니다. 전담 제품 팀은 재사용 가능한 도구와 적절한 기능을 제공하며, 사용자 친화적인 인터페이스 솔루션을 제공합니다. 자동화된 프로세스 및 의사 결정을 위한 기초를 제공하며, 복잡한 상황에서도 디지털 개발을 가속화하게 하는 Be Informed 플랫폼이 좋은 예입니다. [5] AI-Augmented Development: AI 증강 개발 소프트웨어 개발 과정에서 AI를 활용하여 개발자의 작업을 돕고, 테스트 플랫폼과 문서 작성을 지원하는 것을 뜻합니다. GitHub Copilot, Replit GhostWriter, Amazon CodeWhisperer와 같은 AI 기반 코드 생성 서비스가 좋은 예입니다. 이러한 AI 기반 코딩 도우미를 사용하여 업무의 효율을 높일 수 있지만, AI가 오류를 발생시킬 수 있고 독창적인 코드를 생성할 수 없기에 개발자의 역할은 여전히 중요합니다. [6] Industry Cloud Platforms: 산업 클라우드 플랫폼 Industry Cloud Platforms은 특정 산업에 특화된 기능을 제공하는 클라우드 서비스입니다. SaaS(Software as a Service), PaaS(Platform as a Service), IaaS(Infrastructure as a Service)를 결합하여 업계별 맞춤형 기능을 제공합니다. 구체적으로 네 가지의 서비스를 예로 들 수 있습니다. ◾ AWS for Healthcare AWS는 의료 산업에 특화된 클라우드 서비스를 제공하여 의료 데이터 관리, 환자 관리, 의료 연구 등을 지원합니다. ◾ Microsoft Cloud for Financial Services 금융 산업에 맞춤화된 클라우드 솔루션을 제공하여 은행업, 보험 업계에서 사용되고 있습니다. ◾ GCP for Retail Google은 소매 산업에 특화된 클라우드 서비스를 통해 고객 데이터 분석, 재고 관리, 전자상거래 솔루션 등을 지원합니다. ◾ IBM Cloud for Telecommunications 통신 산업에 최적화된 클라우드 서비스를 제공하여 네트워크 운영, 고객 서비스 향상, 신기술 적용 등을 지원합니다. 이러한 산업별 클라우드 플랫폼은 기업이 보다 효율적으로 운영하고 혁신을 가속화하는 데 도움을 줍니다. [7] Intelligent Applications: 지능형 애플리케이션 Intelligent Applications은 인공지능(AI)과 머신러닝 기술을 활용하여 데이터를 분석하고, 사용자 행동을 예측하는 등의 기능을 제공합니다. 자동화된 의사결정, 사용자 맞춤형 경험 제공, 그리고 비즈니스 프로세스의 효율성 향상을 위해 설계되었습니다. 예를 들어 고객 서비스를 위한 AI 기반 챗봇, 데이터 분석을 통해 사용자에게 맞춤형 추천을 제공하는 소매 애플리케이션, 또는 실시간 의료 데이터 분석을 제공하는 헬스케어 애플리케이션 등이 있습니다. Salesforce Einstein, Google Cloud AI, IBM Watson, Microsoft Azure AI가 지능형 애플리케이션에 해당합니다. [8] Democratized Generative AI: 민주화된 생성 AI Democratized Generative AI는 인공지능의 생성 능력을 널리 사용할 수 있게 하는 개념으로, 비전문가도 쉽게 사용할 수 있는 AI 도구와 플랫폼을 의미합니다. 창작물 생성, 데이터 분석, 예측 모델링 등 다양한 분야에서 사용됩니다. 구체적인 서비스나 회사로는 OpenAI의 GPT-, Google의 DeepMind, Adobe의 Sensei와 같은 플랫폼들이 이에 해당합니다. 이러한 도구들은 사용자가 복잡한 알고리즘을 직접 다루지 않고도 AI의 혜택을 누릴 수 있게 해줍니다. [9] Augmented Connected Workforce: 증강 연결된 노동력 기술을 활용하여 직원들의 작업 능력을 향상시키고 원격 협업을 강화하는 전략입니다. 가상 현실, 증강 현실, 인공지능 등을 포함하는 다양한 기술을 활용하여 직원들이 더 효율적이고 효과적으로 협업하고 작업할 수 있도록 지원합니다. Microsoft의 HoloLens와 같은 증강 현실 기기나 Slack, Microsoft Teams와 같은 협업 플랫폼이 좋은 예입니다. 이러한 기술들은 직원들이 시간과 장소의 제약 없이, 효과적으로 협업하고 작업할 수 있는 환경을 만들어줍니다. [10] Machine Customers: 기계 고객 기계나 소프트웨어가 독립적으로 결정을 내리고 트랜잭션을 수행하는 시나리오를 말합니다. 예를 들어 IoT(사물 인터넷) 기기나 자동화 시스템이 소비자 역할을 수행하여 자동으로 주문하거나, 서비스를 요청하는 것입니다. Amazone Dash의 예시 소모품의 사용량을 체크하여 필요할 때 자동으로 주문하는 Amazon의 Dash Service가 대표적인 예입니다. 이러한 기술은 자동화된 공급 체인 관리와 효율적인 재고 관리 등에 기여하며, 비즈니스와 소비자 모두에게 편리함을 제공합니다. 딜로이트, 6가지 트렌드에 주목하다 딜로이트(Deloitte)는 2024 IT 트렌드를 아래와 같은 여섯 개의 주제로 정리했습니다. [1] 공간 컴퓨팅과 메타버스 메타버스는 기업의 주요 도구로 자리 잡고 있으며, 공간 컴퓨팅 기술도 점점 더 중요한 역할을 할 예정입니다. 디지털 트윈, 5G, 클라우드, 엣지, AI 기술에 대한 투자가 이 변화를 주도하고 있습니다. [2] 생성형 AI 생성형 AI는 비즈니스를 개선하고 혁신을 촉진하는 강력한 도구로, 전략적 계획과 특정 비즈니스 요구에 초점을 맞추어 구현되고 있습니다. 기업은 이 기술을 통해 각 분야에서 높은 경쟁력을 확보할 수 있습니다. 사용자의 시청 패턴과 선호도를 분석하여, 개인화된 추천 콘텐츠를 제공하는 Netflix와 Spotify가 가장 기본적이고 좋은 예입니다. [3] 새로운 컴퓨팅 방식의 도입 비즈니스는 기존 인프라를 더 효율적으로 활용하고, 최첨단 하드웨어를 추가하여 프로세스를 가속화하고 있습니다. 일부 기업은 이전 컴퓨팅을 넘어서 클라우드, 엣지, 양자 컴퓨팅 등 새로운 컴퓨팅 방식을 모색하고 있습니다. [4] 개발자 경험 강화(DevOps를 넘어 DevEx로) 기술 인재를 유치하고 유지하기 위해 회사들은 개발자 경험에 초점을 맞추고 있습니다. Github Copilot 같은 코드 자동 완성 및 분석 도구의 도입, 통합 개발 환경(IDE) 최적화, 컨테이너화 및 오케스트레이션 도구 도입 등이 이에 해당합니다. 이러한 노력은 결국 최종 사용자의 경험을 향상시켜 비지니스 성과를 높여줄 예정입니다. [5] 합성 미디어 시대의 진실 방어 AI의 부상으로 인해 악의적인 딥페이크 콘텐츠가 증가함에 따라, 각 기업과 조직들은 유해 콘텐츠를 식별하고 잠재적 공격을 예측하기 위한 방법을 도입하고 있습니다. 특히 2024년은 미국 대통령 선거 등 중요한 이벤트가 많기에 중요한 이슈로 떠오를 예정입니다. [6] 기술적 부채에서 기술적 웰니스로 각 회사와 조직은 기존 코어 시스템, 인프라, 데이터, 애플리케이션을 포함한 노후화된 시스템을 현대화해야 합니다. 이를 위해 정기적인 점검과 예방적 관리에 중점을 두는 새로운 접근 방식이 필요합니다. 포레스터 리서치, 생성형 AI와 디지털 혁신에 주목하다 포레스터 리서치에 따르면 전 세계 기술 분야에 대한 투자는 5.3% 증가할 것으로 예상됩니다. 이 중 금융 서비스와 헬스케어가 가장 빠른 성장세를 보일 것이고, 클라우드 컴퓨팅을 포함한 IT 서비스와 소프트웨어 분야는 2027년까지 가장 높은 비중을 차지할 예정입니다. 또한 기업이 위험을 줄이고 경쟁력을 확보하기 위해선 생성형 AI, 그리고 녹색 및 디지털 혁신 등에 주목해야 합니다. 생성형 AI 생성형 AI는 2024년에 중요한 역할을 할 것으로 예상됩니다. 대형 컨설팅 회사들은 생성형 AI에 큰 규모의 투자를 할 것이며, 해당 기업들은 경쟁력을 높이기 위해 AWS, Microsoft Azure, GCP 등과 파트너십을 맺을 것으로 예상됩니다. 이제 각 기업이 생성형 AI를 활용하여 실질적인 이윤을 추구하기 시작할 것이기 때문에, 2024년을 '의도적 AI 시대(era of intentional AI)의 원년'이라고도 말할 수 있습니다. 녹색 및 디지털 혁신 데이터 센터의 에너지 효율을 높이기 위한 노력이 진전을 보이고 있습니다. 2030년까지 데이터 센터를 탄소 중립으로 만들겠다는 약속이 강화되고 있습니다. 이는 지속 가능하고 환경친화적인 기술로의 전환의 시작을 뜻합니다. 기술 리더들의 도전 기술 분야의 리더들이 인재를 발굴하고 비즈니스 전략과 기술을 조화시키는데 어려움을 겪을 것으로 예상됩니다. 또한 AI와 관련된 기술의 수요가 빠르게 증가할 것이기에, 관련된 기술과 경험을 기르는 것도 매우 중요해지고 있습니다. 마지막으로 포레스터는 기업들의 경쟁력 유지와 성장 촉진을 위해 위와 같은 트렌드를 빠르게 받아들여야 한다고 강조했습니다. 매튜 구아리니 포레스터 리서치 부사장은, "전체 기술 전략을 핵심까지 현대화하고 조직과 운영을 크게 향상시켜야 성과를 얻을 수 있다"라고 말했습니다. 。。。。。。。。。。。。 가트너, 포레스터 리서치, 딜로이트가 전망한 2024 IT 트렌드를 살펴봤습니다. 트렌드를 아는 것에서 그치는 것이 아니라 발 빠르게 대응하는 것이 가장 중요합니다. 브레인즈컴퍼니는 트렌드에 빠르고 효과적으로 대응할 수 있도록, 제니우스(Zenius)를 통해 쿠버네티스(Kubernetes)를 비롯한 프라이빗/퍼블릭/하이브리드 클라우드 환경, 온-프레미스 환경 모두를 완벽하게 관리할 수 있는 서비스를 제공하고 있습니다. 또한 브레인즈컴퍼니의 자회사인 에이프리카는 AI 비즈니스를 위한 쿠버네티스 기반의 AI 개발 통합 플랫폼 솔루션과, 멀티 클라우드 통합 관리 플랫폼(CMP) 솔루션을 제공하고 있습니다(🔍에이프리카 솔루션 자세히 보기). 힘차게 시작한 2024년, 올 한 해는 또 얼마나 큰 변화가 있을까요? 이 글을 읽으시는 모두가 변화에 앞서가서 성공 스토리를 만들 수 있기를 기원합니다.
2024.01.19
기술이야기
클라우드 전환과 하이브리드 클라우드가 성공하려면?
기술이야기
클라우드 전환과 하이브리드 클라우드가 성공하려면?
정부와 공공기관, 그리고 금융권과 대기업 등 모든 분야에서 클라우드 전환이 가속화되고 있습니다. 이에 따라서 가트너(Gartner)는 2018년 약 2.1조 원이었던 국내 클라우드 시장 규모가 2024년에는 약 '6조 원'에 이를 것으로 내다봤습니다. 。。。。。。。。。。。。 1. 클라우드 전환 단계 ▪초창기: 소규모 Workload가 시범적으로 전환되는 시기 ▪과도기: 인프라, 네이티브 앱 등 주요 Workload가 전환되는 시기 ▪정착기: 모든 Workload가 클라우드에서 개발/구축되는 시기 클라우드 전환은 크게 세 단계로 나누어서 진행됩니다. 대부분의 기업과 기관이 현재 '클라우드 전환 과도기'에 접어든 가운데, 몇 가지 작지 않은 이슈로 인한 어려움을 겪고 있습니다. 2. 클라우드 송환? 클라우드에서 On-Premise로 복귀?! IDC는 최근, "향후 2년 내 프라이빗 클라우드(Private Cloud) 또는 비 클라우드 환경으로의 이전을 계획하고 있는 기업의 비중이 70%가 넘는 것으로 나타났으며, 이러한 현상은 더욱 심화될 전망이다"라고 발표했습니다. '클라우드 송환(Cloud Repatriation)'이라고도 부를 수 있는 이 같은 현상은, 주로 클라우드의 높은 비용·성능 문제·보안 및 규제·공급자 Lock-in 등이 주요 원인으로 지적되고 있습니다. 이와 같은 클라우드 전환 과도기에서의 어려움을 극복하고 효율성을 높이기 위해, '하이브리드 클라우드'로의 전환이 새로운 트렌드로 자리 잡았습니다. 3. 유연하게 활용한다! ‘하이브리드 클라우드’로의 전환 트렌드 하이브리드 클라우드(Hybrid Cloud)는 퍼블릭·프라이빗 클라우드와 대형 IDC 센터와 같은, 온프레미스(On-Premise) 환경을 조합하여 사용하는 것을 말합니다. ⓒ디지털 서비스 이용 지원 시스템 현재 87% 이상의 기업이 2가지 이상의 멀티 클라우드를 사용하며, 72% 이상은 하이브리드 클라우드를 사용하는 것으로 나타났습니다. 하이브리드 클라우드의 장점 ▪다양한 환경을 조합하여 유연하게 리소스를 확장하거나 축소 가능 ▪민감정보를 프라이빗 클라우드에 유지하여 보안성 강화 ▪서로 다른 클라우드 환경의 장점의 조합 및 활용 가능 하이브리드 클라우드는 위와 같은 분명한 장점이 있기에, 계속해서 많은 기업과 기관이 사용할 것으로 예상됩니다. 하지만 하이브리드 클라우드도 반드시 극복해야 할 한계와 문제점이 있습니다. 하이브리드 클라우드의 한계는 크게 세 가지로 나눠볼 수 있는데요. 4. 하이브리드 클라우드의 세 가지 한계, 그리고 극복 방안 관리의 복잡성 Complexity On-Premise, 하이브리드 클라우드, 퍼블릭 클라우드 등은 모두 서로 다른 인프라 구성과 특성을 보유하고 있습니다. 따라서 다양한 CSP와 Legacy 시스템 등을 종합적으로 관제하기 위한 모니터링 기술이 필요합니다. 정책의 분산화 Decentralization 각 CSP의 독자적인 기술과 운영환경에 따라, 기업의 IT 인프라 관리 정책이 분산화될 우려가 있습니다. 따라서 서로 다른 API 환경에 대응할 수 있는 중립적인 모니터링 접근 방식이 필요합니다. 서비스 품질 이슈 Quality 이기종 환경에서의 실시간 성능 모니터링 부재로, 서비스 품질 및 성능 문제가 발생할 수 있습니다. 따라서 실시간 상태 및 성능 지표 모니터링을 통한 최적의 프로비저닝 역량 확보가 중요합니다. 결국 하이브리드 클라우드의 세 가지 한계를 극복할 수 있는 '성공적인 모니터링 전략'이 필요합니다. 5. 하이브리드 클라우드 환경에서의 성공적인 모니터링 전략 앞서 살펴본 것처럼 하이브리드 클라우드의 효율을 높이고 한계를 극복하기 위해선, 성공적인 클라우드 & On-Premise 통합 모니터링이 필요합니다. 통합 모니터링을 통해서 다양한 관리 Point를 단일화하고, 일관된 IT 정책을 적용하며, 다양한 관점별 View를 통한 데이터 가시성을 확보할 수 있습니다. 또한 각 환경에 대한 실시간 성능 지표 모니터링과 신속한 장애 감지 및 원인 분석을 통해, 높은 서비스 품질을 유지할 수 있습니다. 주요 Point에 대해서 자세히 살펴본다면 다음과 같습니다. l 단일 Framework 기반의 통합 모니터링 환경 구성 성공적인 모니터링을 위해서는 Public/Private 클라우드와 On-Premise를 아우르는 단일 Framework 기반의 통합 모니터링 환경을 구성해야 합니다. 다양한 환경에 대한 통합 모니터링 시스템을 구축하여, 대시보드와 토폴로지 맵 등을 통해 분산된 IT 리소스와 서비스 정보를 한눈에 볼 수 있어야 하는 것이죠. l 퍼블릭 클라우드 모니터링: 통합 관리 및 운영 가시성 확보 제니우스(Zenius)의 클라우드 서비스 맵 이용 중인 클라우드 서비스 전체 및 개별 단위의 주요 지표 상세 모니터링으로, 가시성을 확보해야 합니다. 이를 통해서 다양한 서비스의 주요 지표를 관리, 이용 서비스 간의 연관관계 관리, 과금(Billing) 관리, 즉각적인 장애 관리를 할 수 있습니다. l 프라이빗 클라우드 모니터링: 개별적인 구성 환경을 고려한 모니터링 각 기업과 공공기관 개별적인 클라우드 구성 환경을 고려하여, 클라우드 인프라 자원을 관리하고 활용도를 높이기 위한 모니터링 전략도 필요합니다. 위의 설명처럼 쿠버네티스(Kubernetes), 컨테이너(Container), SDN 등 프라이빗 클라우드 환경을 구성하는 요소를 다각적으로 관리하여 IT 인프라 자원의 활용도를 향상시켜야 합니다. l MSA 기반 애플리케이션 모니터링 IDC에 따르면 2025년에 출시되는 앱의 90% 이상이 '클라우드 네이티브'로 구현될 전망이라고 합니다. 클라우드 네이티브의 핵심은 'MSA(Micro Service Architecture)' 방법론으로의 전환입니다. 애플리케이션을 효과적으로 실행·배포·활용하기 위한 핵심요소는 'Container'이죠. 따라서 MSA 환경에서의 성공적인 애플리케이션 관리를 위해서는 실시간 모니터링, 분산 시스템 관제, 서비스 수요 변화 대응 이 세 가지가 가장 중요합니다. 위 도표에 정리된 것처럼 컨테이너 기반의 마이크로 서비스 모니터링, 복잡화된 시스템 간 트랜잭션 분석 및 가시화, 오토스케일링 자동 대응을 통한 관제 연속성 확보 전략을 구축한다면 성공적으로 MSA 기반의 애플리케이션 모니터링을 할 수 있습니다. l 레거시 환경 모니터링 마지막으로 On-premise로 자체 보유하고 있는 레거시 장비와 프라이빗 클라우드 장비가 있는 전산실의 성공적인 모니터링을 위해서는, 먼저 On-premise 환경을 고려한 최적의 포인트 솔루션과 통합 플랫폼 기반 모니터링이 확보되어야 합니다. 또한 안정적인 On-Premise 환경 운영을 위해 전산실 부대설비(UPS, 항온 항습기 등), 환경감시(온/습도, 누수 등)에 대한 레거시 환경 맞춤형 관리가 가능해야 합니다. 물리/가상 자원 간의 그룹화 관리 기능, 다양한 자원 간의 이벤트 연관 설정 및 분석 기능도 성공적인 레거시 환경 모니터링을 위한 필수조건입니다. 6. 성공적인 모니터링 솔루션 선택 기준은? 클라우드 전환기, 하이브리드 클라우드 환경에서 성공적인 모니터링을 위한 루션 선택 기준은 1) 기술력이 있는지 2) 검증된 솔루션인지 3) 믿을 수 있는 기업인지 이렇게 세 가지로 정리할 수 있습니다. 하나, 기술력이 있는 솔루션인가? 클라우드와 레거시 통합을 위한 프레임워크 기반의 솔루션인지, 그리고 여러 환경에 존재하는 IT 자원을 통합적으로 가시화할 수 있는지, 변화에 쉽게 대응할 수 있는 사용자 맞춤 설계형 대시보드를 제공하는지를 꼭 살펴봐야 합니다. 브레인즈컴퍼니 제니우스(Zenius)의 퍼블릭 클라우드 서비스 관제 예시 또한 AI 기술을 통해 장애를 사전에 예방하는 제니우스(Zenius) 처럼, 서비스 장애로 인한 손실을 방지하기 위한 사전 장애 감지 및 대응도 지원하는지 꼭 살펴봐야 합니다. 업무 효율과 편의성을 높이기 위한 오토스케일링 자동 대응, 장애/이벤트 오토리커버리 등 운영 자동화 기능도 필수 요소입니다. 둘, 검증된 솔루션인가? 클라우드 서비스 보안인증(CSAP), 마켓플레이스 등록 등 클라우드 환경에서의 성능 검증 절차 등 거친 솔루션인지도 중요하게 살펴봐야 합니다. 또한 다수의 공공기관 및 다양한 산업군에서 사용되고 있는지도 중요한 판단 기준입니다. 셋, 믿을 수 있는 기업의 솔루션인가? 마지막으로 모니터링 서비스를 개발 및 운영한 업력, 재무 상태 안정성, 전문 인력 보유 등으로 지속적인 지원이 가능한 기업의 솔루션인지를 검토해 봐야 합니다. 。。。。。。。。。。。。 브레인즈컴퍼니는 전통적인 IT 인프라 모니터링 시장에서의 경험을 바탕으로, 하이브리드 환경에서의 성공적인 모니터링을 수행하고 있습니다. 이제 필수가 된 클라우드 전환, 제대로 된 솔루션 선택을 통해 성공적으로 진행하시기 바랍니다!
2024.01.18
기술이야기
테라폼(Terraform)의 모든 것, 그리고 AWS EC2 생성하기
기술이야기
테라폼(Terraform)의 모든 것, 그리고 AWS EC2 생성하기
클라우드 환경이 도래하면서 CSP(Cloud Service Provider)에서는 콘솔을 통해 클라우드 자원에 쉽게 접근할 수 있게 되었습니다. 하지만 서비스를 운영하며 발생하는 다양한 이슈를 콘솔에서 전부 관리하기에는 무리가 있습니다. 반복적인 작업과 휴먼에러가 발생하기 때문이죠. 이러한 문제를 한 번에 해결할 수 있는 방법이 바로 IaC(Infrastructure as Code)입니다. 인프라를 코드로 관리하는 컨셉으로, 효율적인 데브옵스와 클라우드 자동화 구축을 위해 ‘꼭’ 필요한 기술로 각광받고 있죠. 그중에서도 ‘테라폼(Terraform)’은 가장 강력한 IaC 도구로 꼽힙니다. “테라폼(Terraform)이란?” 테라폼은 하시코프(Hashicorp) 사에서 Go 언어로 개발한 오픈소스 IaC 도구입니다. 테라폼에서는 HCL(Hashicorp Configuration Language, 하시코프 설정 언어)을 사용해 클라우드 리소스를 선언합니다. *쉽게 설명한다면 코드로서 클라우드 인프라 서버를 더 효율적으로 구축하고, 운영할 수 있는 오픈소스 소프트웨어죠. 따라서 이번 시간에는 테라폼의 기본동작방식, 특장점, 명령어의 종류, 구체적인 활용 예시에 대해서 살펴보겠습니다. 。。。。。。。。。。。。 테라폼의 기본동작방식 테라폼은 Write, Plan, Apply 기본동작방식으로 이루어져 있는데요. Write 단계에서는 HCL 언어로 필요한 리소스를 선언하고, Plan 단계에서는 앞에서 선언된 리소스들이 생성 가능한지 테스트 및 예측 실행을 수행하며, Apply 단계에서는 선언된 리소스들을 CSP에 적용하는 과정을 거칩니다. *쉽게 설명한다면 Write 단계는 코드 기반으로 선언하고, Plan 단계는 코드 기반으로 검토하며, Apply 단계는 코드 기반으로 리소스를 생성하는 것이죠. 테라폼의 기본개념 테라폼의 주요 기본개념이자 구성요소입니다. 전부 필수적인 내용이지만 특히 Resource, Provider, State는 많이 쓰이는 중요 개념이며 하단 예시에도 나오니 꼭 기억해 두세요! 테라폼의 장점 테라폼은 다양한 장점들이 있는데요. 그중 가장 큰 장점은 자동화를 통해 코드 기반으로 서버 운영 및 관리가 가능한 점입니다. 초보자도 쉬운 코드 재사용을 통해, 효율적인 협업이 가능하고 생산성도 향상시킬 수 있죠. 또한 테라폼은 AWS, GCP(구글), Azure(MS), Naver Cloud(네이버클라우드) 등 다양한 환경에서 지원이 가능한데요. 즉 테라폼만으로도 멀티 클라우드 리소스들을 선언하고 코드로 관리할 수 있습니다. 테라폼의 명령어 테라폼에서 자주 쓰이는 명령어입니다. 그중에서도 코드를 통해 실행될 내용을 미리 확인하는 Plan, 코드 기반으로 리소스를 생성하는 Apply, 그리고 상태를 확인하는 State가 핵심 명령어로 많이 사용되고 있습니다. 테라폼의 활용예시 테라폼을 통해 많은 것을 할 수 있지만, 이번 시간에는 테라폼을 이용하여 AWS에 가장 중심이 되는 서비스인 EC2(AWS에서 제공하는 서버)를 생성해 보겠습니다. 또한 제니우스(Zenius) 모니터링까지 살펴봅시다! 우선 앞서 [테라폼의 기본동작방식]에서 설명했던 것처럼 테라폼은 Write, Plan, Apply 단계를 거치게 되는데요. 테라폼 명령어가 어떤 방식으로 쓰이고 반응하는지, 예시를 통해 확인해 볼까요? > Write 단계: Provider 및 Resource 선언하기 Writer 단계에서는 [테라폼의 기본개념]으로 언급된 *Provider, Resource를 코드 기반으로 선언한 부분을 확인할 수 있습니다. > Plan 단계: Terraform plan Plan 단계에서는 *Terraform plan을 통해 검증을 하게 되는데요. 위 사진 하단에 나와있듯 1개가 추가되고, 0개가 변하고 0개가 없어진다는 의미입니다. 이처럼 +을 통해 추가되는 인프라의 상세정보를 확인할 수 있습니다. > Apply 단계: Terraform apply Apply 단계에서는 앞서 구축 계획에 문제가 없다면 *Terraform apply를 통해 검증된 결과를 바탕으로 실제 인프라에 적용하는 단계입니다. apply 명령을 이용하여 리소스를 생성·수정·삭제하는 것이죠. > State로 확인해 보기 State list 명령어를 통해서도 확인해 보니, 1개의 인스턴스(instance, 클래스의 현재 생성된 오브젝트)가 확인 되네요. 앞서 State list 명령어를 통해 생성된 ‘부분’만 확인했다면, 이번에는 State show 명령어를 통해 어떻게 생성이 됐는지 ‘상세’하게 확인해 봅시다. State 명령어뿐만 아니라 State는 terraform.tfstate 파일로도 확인 가능해 인스턴스 Name 또한 비교해 보았습니다. 테라폼을 이용해 최종 목표였던 AWS에 EC2 인스턴스가 잘 생성이 되었는지 확인해 봐야겠죠? *빨간색 네모 박스에 표기되어 있는 것처럼 잘 생성 되었습니다. 여기서 다시 주목할 점은 AWS의 인스턴스를 생성하기 위해선, 여러 가지 절차를 거쳐야 하는데요. 테라폼을 이용하면 ‘코드’ 하나로 바로 생성이 가능하다는 점입니다. 코드 기반으로 서버운영 및 관리의 자동화라는 특장점 또한 다시 한번 상기해 볼 수 있겠죠? 이처럼 인프라 서버를 효율적으로 구축하는 테라폼을 이용하여, AWS에 EC2를 생성해 보았습니다. 하지만 ‘생성’만 중요한 게 아닌, 효율적인 클라우드 인프라 관리를 극대화하기 위해 ‘모니터링’하는 점도 매우 중요한데요. 테라폼처럼 매우 쉽고 효율적인 방법을 소개하겠습니다. 바로 AWS EC2 모니터링이 가능한 클라우드 서비스 모니터링 시스템인 제니우스-CMS(Zenius-CMS) 예시를 통해, 다양한 환경에서 인프라 모니터링을 어떻게 하고 있는지 살펴보겠습니다! Zenius에서 AWS 모니터링하기 Zenius-CMS는 API를 통해 AWS 계정 기반으로 자동 모니터링을 제공하고 있는데요. 테라폼을 통해 AWS에서 EC2가 코드 기반으로 쉽게 생성했던 것처럼, CMS도 간편한 AWS 모니터링 실행이 가능합니다. 위 사진처럼 EC2 클라우드 서버에 대한 성능도 모니터링이 가능하죠. 여기서 새로운 인스턴스를 추가하면, 이 또한 자동으로 모니터링이 됩니다. Zenius-CMS는 EC2뿐만 아니라 RDS, VPC 등 과금 현황까지 통합 모니터링할 수 있는데요. AWS 콘솔에 접속하지 않고도, AWS 주요 성능 지표에 대한 모니터링 추이도 확인할 수 있습니다. 。。。。。。。。。。。。 이번 시간에는 인프라 서버를 효율적으로 구축하는 테라폼에 대해 학습하고, AWS에 EC2를 생성해 보며 활용 예시까지 살펴보았습니다. 또한 제니우스-CMS(Zenius-CMS) 예시를 통해, AWS EC2 모니터링뿐만 아니라 다양한 환경에서 인프라 모니터링 방법을 알 수 있었는데요. 앞으로도 클라우드 환경에서의 인프라 관리뿐만 아니라, 다양한 환경에서의 모니터링이 가능한 제니우스 제품에 많은 관심 부탁드릴게요! 📚참고 자료 모두의 Terraform(테라폼) PART1 - 개념(230313) Terraform(테라폼)이란? 간단 사용기(220711) 테라폼(Terraform) 기초 튜토리얼(200314)
2024.01.11
기술이야기
쿠버네티스와 Helm 등 CNCF의 주요 프로젝트
기술이야기
쿠버네티스와 Helm 등 CNCF의 주요 프로젝트
지난 포스팅을 통해 정리한 것처럼 CNCF는 클라우드 네이티브 생태계의 활성화를 위해, 다양한 오픈소스 프로젝트를 개발하고 공급하고 있습니다. 또한 프로젝트 채택 단계부터 사용 빈도까지의 성숙도를 관리하기 위한, 프로세스 체계를 보유하고 있는데요. 이번 시간에는 CNCF의 주요 프로세스인 쿠버네티스(K8s), Helm 등과 CNCF 프로세스에 대해서 알아보고자 합니다. 。。。。。。。。。。。。 CNCF 프로젝트 프로세스 2023년 10월 기준으로 약 170여 개의 CNCF 프로젝트가 진행 중인데요. 이들 프로젝트는 성숙도에 따라서 샌드박스(Sandbox), 인큐베이팅(Incubating), 졸업(Graduated)으로 나뉩니다. 성숙도 수준에 대한 평가는 CNCF 위원회 멤버들에 의해서 결정되며, 졸업(Graduated) 단계의 프로젝트로 인정받기 위해서는 3분의 2 이상의 찬성 표가 필요합니다. ▲프로젝트 성숙도 단계 Step1. 샌드박스(Sandbox) CNCF의 새로운 프로젝트가 채택되면 Sandbox 단계에서 시작합니다. 이 단계에서는 프로젝트가 CNCF의 가이드라인과 정책에 부합되는지를 확인하는 절차를 주로 거칩니다. Step2. 인큐베이팅(Incubating) Sandbox를 통과한 프로젝트는 Incubating 단계로 집입하며, 이 단계에서는 프로젝트의 커뮤니티와 기술적 성숙도를 더욱 강화하도록 합니다. 해당 프로젝트의 커뮤니티의 규모와 다양성을 평가하고 기능들의 안정성을 검증합니다. Step3. 졸업(Graduated) Incubating 단계를 성공적으로 통과한 프로젝트는 Graduated 단계로 올라갑니다. 높은 수준의 품질과 안정성이 보장되어야 이 단계에 올라갈 수 있는 거죠. 커뮤니티가 활발하게 유지되고 관련자의 참여가 적극적으로 이루어져야 하며, 실제 사용 사례에서 성공한 경험들이 존재해야 합니다. Step4. 사용 사례 검증 Graduated 프로젝트 중 실제로 다양한 산업에서 사용되고, 기업과 조직이 해당 프로젝트를 많이 채택하는지를 평가하여, 지속적인 성장 가능성과 성숙도를 평가합니다. CNCF에서 관리하는 프로젝트 영역은 꽤 넓고 다양한데요. 애플리케이션 개발을 위한 도구부터 컨테이너 오케스트레이션, 서비스 프로비저닝, 모니터링 도구 등 소프트웨어 개발부터 운영까지를 위한 도구들이 존재합니다. 이제부터는 가장 성공적인 프로젝트인 쿠버네티스를 포함하여, Incubating 단계 이상의 프로젝트를 알아보고자 합니다. CNCF의 주요 프로젝트 쿠버네티스(kubernetes) 쿠버네티스는 CNCF에서 최초로 Graduated 단계에 진입한 프로젝트입니다. 컨테이너 오케스트레이션 기능을 통해, 애플리케이션 컨테이너 기반으로 자동화하고 확장할 수 있는 플랫폼을 제공합니다. A. 컨테이너 오케스트레이션 기능 컨테이너화된 애플리케이션을 자동으로 배포·확장하고 관리하는 기능을 제공합니다. 애플리케이션의 변경이 필요할 경우, 개발자가 애플리케이션을 빠르게 수정 및 배포하고 운영할 수 있게 합니다. B. 스케일링 기능 리소스 사용량이나 사용자 트래픽 증가에 따라 자동으로 애플리케이션을 확장·축소하는 오토 스케일링 기능을 제공합니다. C. 롤백 기능 문제가 발생된 애플리케이션의 경우, 롤백 기능을 제공하여 서비스 장애에 신속히 대응합니다. Helm Helm은 쿠버네티스 환경에서 애플리케이션을 관리하기 위한 도구로 사용됩니다. Helm은 차트라고 불리는 패키지로 애플리케이션을 패키징 하는데요. 이 차트에는 애플리케이션의 설치부터 관리에 필요한 모든 것을 포함합니다. 쉽게 말하면 이 차트라는 기능을 통해 애플리케이션을 탬플릿화하고, 배포하며, 롤백 및 공유하는 역할을 하는 프로젝트입니다. Envoy ▲Envoy를 사용하는 주요 업체 리스트 ⓒenvoyproxy.io Envoy는 클라우드 네이티브 환경에서 애플리케이션의 네트워크 트래픽을 관리하고, 제어하기 위한 프로젝트입니다. 프록시 기능을 수행하고, 클라이언트 서버 간의 통신을 관리하며, 애플리케이션 간의 통신의 보안 향상시킵니다. 여러 애플리케이션 사이에서 부하 분산을 자동화하여 가용성과 성능을 향상시킬 수 있도록 합니다. 부하 분산을 함에도 불구하고 특정 시스템에 부하가 생겨 장애 발생이 생길 경우, 트래픽을 가중치에 따라 다른 시스템으로 분산시키는 역할을 합니다. Containerd Containerd는 쿠버네티스 환경에서 컨테이너를 만들고 실행하는 데 도움을 주는 프로젝트입니다. 개발자가 컨테이너를 만들고 실행시키는 역할을 하며, 필요할 때는 중지하거나 삭제하는 작업을 지원합니다. 컨테이너 실행에 필요한 파일과 설정을 모아 놓은 이미지를 다운로드하고, 저장하며, 불러오는 역할과 같은 이미지 관리 기능도 제공하고 있습니다. Prometheus Prometheus는 시스템이나 애플리케이션의 동작을 실시간으로 모니터링하고, 이상 상황이 발생할 경우 알림을 줄 수 있는 도구입니다. 다양한 데이터를 수집하고 기록하여 차후 분석 용도로 활용할 수 있습니다. 또한 핵심 지표들을 유형 및 종류별로 제공하여, 다각적인 관점에서의 관찰을 지원합니다. 시스템의 리소스부터 애플리케이션의 동작 및 응답 상태를 적시에 확인하게 해줍니다. Fluentd ▲Fluentd 개념 설명 ⓒfluentd.org Fluentd는 다양한 시스템에서 발생되는 로그 데이터를 수집·처리·전송하는 데이터 수집 도구로서, 스플렁크(SPLUNK)와 유사한 역할을 수행하는 프로젝트입니다. 다양한 소스에서 발생되는 로그를 수집할 수 있을 뿐만 아니라, 원하는 목적지의 저장소까지 전송하는 역할을 수행합니다. 예를 들어 Syslog 등을 실시간 수집하고, 이를 Elasticsearch나 Amazon S3 등의 원하는 저장소로 목적지를 설정할 수 있게 합니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼, CNCF에서 클라우드 네이티브 생태계 활성화를 위해 다양한 프로젝트를 진행하고 있는데요. 브레인즈컴퍼니 역시 클라우드 네이티브 모니터링을 위한 다양한 제품과 기능 등을 속속 출시하고 있습니다. 대표 제품인 제니우스(Zenius)를 통해 클라우드 네이티브의 핵심요소인 컨테이너(Docker)의 상태와 리소를 실시간으로 모니터링할 수 있습니다. MSA 환경을 만들기 위한 필수 도구인 쿠버네티스(K8s)의 Cluster·Node·Pod 등의 구성과 변화를 관찰하며, 이상 상황 알림을 통해 선제적 장애 대응 또한 가능합니다. Zenius에 대해 더 자세히 알고 싶으시다면, 바로 아래 링크를 클릭해 주세요! 🔍더보기 Zenius로 클라우드 네이티브 모니터링하기 CNCF 세 가지 핵심가치(1탄)도 있어요
2024.01.03
기술이야기
클라우드 네이티브의 핵심! CNCF의 세 가지 핵심가치
기술이야기
클라우드 네이티브의 핵심! CNCF의 세 가지 핵심가치
최근 디지털 트랜스포매이션(Digital Transformation)이 IT 트렌드로 자리 잡았습니다. 기업과 조직은 빠르게 변화하는 환경에 대응하고 경쟁에서 앞서기 위해 '클라우드 네이티브 컴퓨팅' 기술을 채택하고 있는데요. 여기서 클라우드 네이티브 컴퓨팅 기술을 연구 및 발전시키고, 생태계를 촉진하는데 중추적인 역할을 하는 커뮤니티가 바로 'CNCF(Cloud Native Computing Foundation)'입니다. 현재 CNCF에서는 Google, Intel, Azure 등 700여 곳 이상의 회원사들이 활동에 참가하고 있습니다. 이번 시간에는 CNCF가 정확히 무엇이고, 추구하는 핵심가치와 주요 프로젝트에 대해 자세히 알아보겠습니다. 。。。。。。。。。。。。 CNCF(Cloud Native Computing Foundation)란 CNCF는 2015년 12월에 리눅스 재단에 의해서 출범된 비영리 단체로, 네이티브 컴퓨팅 기술의 채택을 촉진하는 오픈소스 소프트웨어 재단입니다. CNCF는 클라우드 네이티브 컴퓨팅 플랫폼에서 사용하며, 확장 가능한 애플리케이션을 개발하는데요. 이와 관련된 기술인 컨테이너, 마이크로서비스, 서비스 메쉬 등의 발전을 촉진하여 이러한 기술 패턴을 누구나 이해하고 활용할 수 있도록 하는 것이 목표입니다. ▲총 24개의 CNCF Platinum Members 이러한 클라우드 네이티브 컴퓨팅 환경을 대중화하기 위해 Google Cloud, AWS, MS Azure, Cisco, IBM, Apple, Oracle, Red Hat, VMware, SAP 등 유수의 기업들이 플래티넘 회원사로 참여하여 뜻을 같이 하고 있습니다. CNCF의 세 가지 핵심 가치 CNCF의 핵심가치는 1) 클라우드 네이티브 기술의 촉진 2) 오픈소스 프로젝트 생태계 육성 3) 기술의 표준화 수립으로 정리할 수 있습니다. 이 세 가지 핵심 가치를 더 자세하게 살펴볼까요? CNCF 핵심가치1 : 클라우드 네이티브 기술의 촉진 CNCF는 현대적이고 미래 지향적인 '클라우드 네이티브 기술의 촉진'을 중요한 핵심 가치로 규정하고 있는데요. 이는 CNCF가 오늘날의 IT 생태계의 중심에 서서, 클라우드 네이티브 기술을 지속적으로 연구 및 개발하여 새로운 디지털 전환의 시대를 선도하고자 하는 의지가 담겨 있다고 볼 수 있습니다. CNCF는 기존 온 프레미스(On-Premise) 환경, 그리고 모놀리식(Monolithic)한 개발 환경에서 탈피한 컨테이너, 마이크로서비스, 서비스 메시, 서버리스 등. 보다 혁신적이고 미래지향적인 기술 영역을 보급하고 대중화하기 위한 노력과 지원을 아끼지 않습니다. ▲기존 모놀리식 아키텍처와 마이크로서비스 아키텍처 비교 또한 디지털 트랜스포메이션 과정에서 클라우드 환경으로의 전환이 더욱 효율적으로 이루어질 수 있도록, 클라우드 네이티브 기술과 기업들의 서비스 모델을 재구성하기 위한 방법들을 안내하고 있습니다. 이렇게 새로운 서비스 모델 구축을 통해 민첩성과 효율성을 강화하여, 빠르게 변화하는 IT서비스의 수요에 기민하게 대응하고 고객 요구에 부응할 수 있도록 지원합니다. 여기서 계속 언급되고 있는 '클라우드 네이티브'는 정확히 무엇을 뜻할까요? CNCF의 활동에 대한 이해도를 높이기 위해, 클라우드 네이티브의 의미를 짚어보겠습니다! 📑클라우드 네이티브(Cloud Native)란? 클라우드 네이티브는, 클라우드 컴퓨팅 환경에서 현대적 애플리케이션을 구축·배포·관리할 때의 소프트웨어 접근 방식입니다. 기업과 조직은 고객의 요구를 충족하기 위해 신속하게 업데이트할 수 있는 확장성과 유연성, 그리고 복원력이 뛰어난 애플리케이션을 구축하고자 합니다. 이를 위해 클라우드 네이티브에서 사용되는 기술들은, IT 서비스에 영향을 미치지 않고 애플리케이션을 신속하게 변경합니다. 또한 리소스를 효율적으로 활용하여 빠르게 변화에 대응할 수 있도록 지원하고 있습니다. 위의 개념을 '클라우드 컴퓨팅'과 비교한다면 보다 더 쉽게 이해할 수 있는데요. 클라우드 컴퓨팅은, 클라우드 서비스 제공 업체가 단순히 리소스와 인프라를 클라우드 형태로 제공하는 방식입니다. 여기서 서비스 제공 방식은 기존 '모놀리식' 방식과 크게 다르지 않습니다. ▲클라우드 네이티브의 핵심요소 ⓒPivotal 클라우드 네이티브는 마이크로서비스 아키텍처(MSA)와 컨테이너를 기반으로, IT 서비스의 확장·변경 등에 대응이 용이한 환경입니다. 예를 들어 Ex1) 서비스 수요가 폭증하거나 장애가 생겼을 경우 Ex2) 자동적으로 애플리케이션을 확장하거나 장애가 발생했을 경우에는 대체 가능한 모델을 바로 적용하여 Fail-Over가 손쉽게 이루어질 수 있도록 합니다. CNCF에서는 위 그림과 같이 클라우드 네이티브의 핵심 요소를 마이크로서비스, 컨테이너, 애플리케이션의 개발·통합·배포의 의미를 내포하는 DevOps, CI/CD의 개발 방법론을 포함하여 설명하고 있습니다. CNCF 핵심가치2 : 오픈소스 프로젝트 생태계 육성 CNCF는 다양하고 혁신적인 '오픈소스 프로젝트'를 개발·공급·대중화하여, 클라우드 네이티브 생태계를 활성화하는데 큰 기여를 하고 있습니다. 또한 클라우드 네이티브 컴퓨팅 환경을 구성하고 효율적으로 운영하기 위해, 다양한 오픈소스를 개발하고 있는데요. 누구나 이와 같은 기술들을 이용할 수 있도록 지원합니다. 가장 성공적인 프로젝트는 2018년 8월에 컨테이너 오케스레이션 플랫폼인 'Kubernetes' 프로젝트이며, 컨테이너 생성·실행·종료 등의 역할을 하는 'Containerd', 시스템 모니터링 및 경고 역할을 하는 'Prometheus' 그리고 여러 시스템의 트래픽을 균등하게 분배하여 로드밸런싱을 제공하는 'Envoy' 등이 있습니다. 이처럼 클라우드 네이티브 생태계 활성화를 위한 다양한 프로젝트를 실행하며 배포하고 있습니다. ▲CNCF 개발 완료된 프로젝트 이외에도 클라우드 네이티브 커뮤니티인 이벤트·웨비나·워크샵 등을 활성화하여, 온오프라인 영역에서 개발자들 간의 교류를 원활하게 합니다. 개발자들이 오픈소스 프로젝트를 효과적으로 활용할 수 있도록, 사용법에 대한 교육과 튜토리얼을 제공하기도 합니다. 이를 통해 많은 기업과 이용자들이 클라우드 네이티브 환경에 손쉽게 접근할 수 있도록 지원하고 있습니다. CNCF 핵심가치3 : 기술의 표준화 수립 CNCF는 클라우드 네이티브 관련 기술의 무분별한 확장과 사용으로 인한 혼란을 방지하고자, 기술의 표준화를 촉진하고 정책의 일관성을 확보하는 노력 또한 지속하고 있는데요. 기술의 안정성과 품질 확보를 위해 재단 자체적으로 테스트와 벤치마킹 등을 수행하고, Best Practice를 공유하여, 기술의 표준화와 성숙도를 유지합니다. 이 외에도 CNCF는 새로운 기술의 적용 가능성과 성숙도를 평가하고, 클라우드 관련 기술을 보유한 회원사 및 파트너와의 협력을 촉진합니다. 이처럼 다양한 형태로 클라우드 네이티브 생태계의 지속적인 발전을 지원하고 있습니다. 。。。。。。。。。。。。 이번 시간에는 CNCF의 정의와 핵심가치를 알아보았는데요. CNCF는 앞에서 소개해 드린 내용처럼, 클라우드 네이티브 생태계 활성화를 위해 다양한 노력을 기울이고 있습니다. 브레인즈컴퍼니 역시 클라우드 네이티브 모니터링을 위한 다양한 제품과 기능들을 속속 출시하고 있으니, 많은 관심 부탁드립니다. 다음 시간에는 [CNCF의 핵심 프로젝트] 주제로 돌아오겠습니다!
2023.12.27
기술이야기
디자인 시스템이 필요한 이유와 핵심요소는?
기술이야기
디자인 시스템이 필요한 이유와 핵심요소는?
“우리나라 금융 유니콘 기업이 개발과정에서 1,000시간을 아낀 비결” “애플과 구글이 제품을 기획하고 개발할 때 가장 중요하게 생각하는 것” 디자인 시스템은 무엇일까? 위에 있는 두 문장의 답은 바로 ‘디자인 시스템’이에요. 고객이 하나의 브랜드를 접하는 순간부터 끝까지 지속적으로 동일한 경험을 하게 해주는 디자인 시스템의 중요도는, 점점 더 커지고 있죠. 디자인 시스템은 시맨틱 컬러, 컴포넌트 디자인, 디자인 토큰 등을 구축하여 제품 전반에서 사용자가 일괄적인 시각적 경험을 할 수 있도록 도와주고 있어요. 제품을 더 빠르고 효율적으로 만들어주기도 해요. 그리하여 이번 시간에는 1) 디자인 시스템은 구체적으로 무엇이고 2) 브레인즈컴퍼니는 어떤 노력을 하고 있는지 살펴볼게요! 디자인 시스템의 요소1 : 시맨틱 컬러 ▲Zenius ITSM 버튼에 적용된 컬러 시스템 디자인 시스템의 중요 요소 중 하나인 '시맨틱 컬러'는, 사용 방법에 따라 색상 이름을 지정하는 방법이에요. 브레인즈컴퍼니의 제니우스(Zenius)도 시맨틱 컬러를 사용하고 있는데요. Primary, Secondary, Tertiary, Ghost, Gray, Severity Color 등으로 구성되어 있어요. 여기서 Primary 컬러는 UI 전체의 주요 구성 요소에 대한 역할을 해줘요. 가장 중요한 액션에 사용하며, 화면에서 가장 강력한 클릭 유도 문안인 CTA(call to action)을 강조하기 위해 사용하기도 하죠. ▲Zenius ITSM Primary 컬러의 변천사 Zenius ITSM은 BI 컬러를 보완한 Primary 색상을 사용 중이며, Secondary와 Tertiary는 이와 어울리는 색상을 지정해 사용하고 있어요. 브레인즈컴퍼니의 컬러는 선명한 파란색이지만, 제품 화면에 사용하기에는 채도가 너무 높아 두 번의 GUI 테스트를 거쳐 위와 같이 보완한 색상이 나왔어요. Secondary와 Tertiaty 사용 시 화면 구성의 위계질서에 따라 색상을 설정하여 중요도(중요, 보조, 부가)를 표현하기도 해요. [잠깐의 TMI🤭] 브레인즈컴퍼니 브랜드 색상인 Blue는 한국에서 가장 선호도가 높은 색상이며, 신뢰·젊음·성실·책임감 등의 이미지를 지닌 색상이에요. ▲컬러 팔레트 디자인 시스템의 요소2 : 심각도 컬러 ▲심각도 컬러 팔레트 '심각도 컬러'는 Zenius에서 사용하는 시맨틱 컬러의 일종이에요. Zenius에서 발생한 이벤트를 알려주는 색상으로 총 6단계의 색상을 구축하여서 사용하고 있답니다. 정상, 무해, 주의, 위험, 긴급, 치명의 6단계이며 위와 같은 컬러를 사용하고 있어요. 디자인 시스템의 요소3 : 디자인 토큰 '디자인 토큰'은 디자인 시스템의 시각적 디자인 요소이며, 디자인 관련 변수를 저장하는 데 사용하는 기본 요소에요. 기존에는 피그마(Figma)에서 컬러나 폰트 등을 Style로만 지정할 수 있었어요. 같은 색상을 여러 개의 항목에 적용할 경우, 토큰 별로 사용할 수 없는 점이 굉장히 불편했죠. 하지만 Figma의 Variable 기능이 업데이트된 후, 토큰을 만들 수 있게 되었어요! 브레인즈컴퍼니의 메인 제품 Zenius는 총 세 개의 테마를 사용 중이라, 디자인 토큰 시스템을 테스트하고 있답니다. ▲컬러 토큰 시스템 위와 같이 속성이 다른 두 개의 디자인에 동일하게 Neutral-500 컬러를 사용했는데요, 토큰별로 색상을 적용할 수 있는 시스템이라, 같은 색상을 지닌 다른 속성이어도 개별로 컬러 관리가 가능한 장점이 있어요. 개발자와의 협업에도 굉장히 좋은 시스템이랍니다! 。。。。。。。。。。。。 제니우스(Zenius) 제품이 태어난 지 오래된 만큼, 제품 디자이너가 여러 번 바뀌었어요. 컬러 시스템에 대한 가이드도 중간중간 변경되었죠. 브레인즈컴퍼니 디자인팀은 컬러 시스템을 다시 재정비하기 위해, 여러 가지 테스트 과정을 거치고 있어요. 아직은 구축 단계에 있어 디자인 팀 내의 규칙이나, 개발자들과 네이밍 규칙 등 협의해야 할 일이 적진 않아요. 그래도 구축이 완료된다면 정말 소통하기 편해질 거 같아요! 이제 곧 완성될 '디자인 시스템'을 통해 한층 더 성숙해질 Zenius! 많은 기대 부탁드려요😊
2023.12.12
기술이야기
클라우드(Cloud) 관리와 AWS가 뭔가요?
기술이야기
클라우드(Cloud) 관리와 AWS가 뭔가요?
오늘날 IT 인프라 운영환경은 매우 복잡해졌어요. 갑작스러운 환경 변화에 따라 신속한 대응도 필요한 시점이죠. 이러한 현상으로 많은 기업들이 온프레미스(On-premise) 환경에서 클라우드(Cloud) 환경으로 전환하는 추세이기도 해요. 클라우드 컴퓨팅 서비스 중에는 여러 벤더가 있는데요. 대표적으론 Amazon Web Services(AWS), Microsoft Azure, Google Cloud Platform(GCP)가 있어요. 그중 ‘AWS’는 국내 클라우드 시장에서 3년 간 70% 내외의 시장점유율로, 1위를 차지했는데요(*클라우드 서비스 분야 실태조사(2022), 공정거래위원회) 이처럼 높은 점유율을 가진 1) AWS의 주요 서비스를 살펴보고 2) 하이브리드 클라우드 모니터링이 필요한 이유는 무엇인지 3) AWS의 각종 서비스를 모니터링할 수 있는 제니우스(Zenius)도 함께 소개해 드릴게요! AWS(Amazon Web Services)란? AWS는 ‘Amazon Web Services’의 약어로, 아마존 닷컴이 제공하는 클라우드 컴퓨팅 플랫폼 및 서비스의 집합이에요. AWS에서 제공하는 여러 가지 서비스를 이용하면, 기업 및 개인이 필요한 컴퓨팅 리소스를 유연하게 확장하고 관리할 수 있죠. AWS 주요 서비스는 다음과 같아요! AWS 주요 서비스 ▪Amazon VPC(Amazon Virtual Private Cloud) 격리된 네트워크 환경을 구성하게 해주는 서비스예요. AWS의 동일 계정이나, 서로 다른 계정 간에 격리된 네트워크를 연결할 수 있도록 다양한 옵션들을 제공해 줘요. ▪Amazon EC2(Amazon Elastic Compute Cloud) AWS에서 가장 많이 사용되는 컴퓨팅 서비스예요. 가상 서버를 호스팅 할 때 사용하죠. 리눅스나 윈도우 환경 등 다양한 인스턴스 유형을 지원하고, 필요에 따라 성능을 조정할 수 있어요. 생성 가능한 인스턴스 타입은 리전 별 차이가 있으나, 100개~300개에 이를 정도로 방대하답니다. ▪AWS Lambda AWS에서 제공하는 서버리스 컴퓨팅 플랫폼이에요. 여기서 ‘서버리스’란 개발자가 서버의 존재를 신경 쓸 필요가 없다는 뜻이에요. AWS에서는 서버 인프라에 대한 프로비저닝, 유지관리 등을 대신 처리해 주죠. 이처럼 개발자가 비즈니스 로직에 집중하여 코드를 실행하게 해줘요. ▪Amazon S3 AWS에서 제공하는 스토리지 서비스예요. S3는 파일시스템이 아닌 오브젝트 스토리지 서비스로, 모든 파일에 API를 통해 접근 가능해요. 무제한적인 확장성, 높은 가용성과 내구성을 제공하며 단일 파일을 최대 5TB까지 업로드할 수 있어요. ▪Amazon EBS(Amazon Elastic Block Store) EC2 인스턴스에 장착하여 사용할 수 있는 가상 저장 장치에요. EBS를 연결하여 파일을 저장하면, EC2 인스턴스와 관계없이 데이터를 영구적으로 보관 가능해요. 이 밖에도 AWS에서 제공하는 서비스는 매우 방대한대요. 아래 URL로 접속 시, 필요한 서비스 목록 확인이 가능하답니다! 🔍 더 많은 AWS 서비스가 궁금하다면? 온프레미스와 AWS의 차이 온프레미스 방식은, 클라우드 컴퓨팅 서비스가 나오기 전까지 기업에서 전통적으로 사용한 ‘일반적인 인프라 구축 방식’이에요. 온프레미스 환경에서 서버를 운영하면, 호스팅 서비스를 이용하거나 서버를 직접 구매 또는 임대하죠. 그다음 데이터 센터(IDC, Internet Data Center) 또는 기업 전산실에 설치하여 운영해요. 하지만 물리적인 서버를 직접 설치할 경우, 많은 시간과 비용이 소모되어 이를 위한 운영 공간과 인력이 필요할 수 있어요. 예시를 들어 볼게요. 대형 콘서트 예매, 대학교 수강신청, 입시 원서 접수 등 단기간에 트래픽이 급증했다가 감소되는 경우를 생각해 볼까요? 이때 ‘온프레미스 방식’으로 시스템을 구축한다면, 매우 많은 비용 낭비가 발생하게 될 거예요. 반면 AWS의 경우는 어떨까요? 인터넷이 연결된 어디에서든 쉽게 인프라를 구축하고, 사용한 만큼 비용을 지불할 수 있어요. 큰 이벤트를 처리한 후 생성된 리소스를 간편하게 삭제할 수 있죠. 이처럼 온프레미스 방식과 대비한다면, 남는 자원에 대한 비용 고민이 없어지겠죠? 하이브리드 클라우드 모니터링이 필요한 이유 이처럼 AWS는 매우 유연하고 확장성 있는 클라우드 서비스예요. 하지만 모든 서비스를 AWS를 이용해서 서비스하는 것은 한계가 있는데요. 이유는 다음과 같아요. ▪보안 및 규정 준수 민감한 데이터나 규정 준수가 필요한 업무의 경우, 사설 클라우드나 온프레미스 환경의 자체 데이터 센터를 통해 운영하려는 경향이 있어요. ▪비용 효율 AWS는 사용한 만큼 비용을 지불하기 때문에, 예측할 수 없는 트래픽 증가 등에 대응하기에 좋아요. 하지만 서비스에 따라 온프레미스 환경에서 운영하는 것이 비용 측면에서 더 효율적인 경우가 있죠. 이처럼 많은 기업이 AWS를 이용한 클라우드 서비스로 전환하는 추세지만, 당분간 온프레미스 방식과 결합한 하이브리드 클라우드 운영환경이 많은 편이에요. 그렇다면 이러한 하이브리드 클라우드 운영 환경을 모니터링할 수 있는 방법이 없을까요? 바로 ‘제니우스’를 활용한다면 가능해요! 제니우스를 이용한 하이브리드 클라우드 모니터링 구성도 제니우스 하이브리드 클라우드 모니터링 프로세스를 간략히 소개할게요! 우선 클라우드 환경 단계에서는 AWS 서비스를 이용하여 구축된 클라우드 환경 정보를 RestAPI 방식으로 수집해요. CMS Manager는 AWS 클라우드 환경에서 수집한 정보를 취합 후 스토리지에 저장해 주죠. EMS Manager는 온프레미스 환경에서 수집한 정보를 취합 후 스토리지에 저장해 줘요. Web UI에서는 스토리지에 저장된 데이터를 이용하여, 사용자에게 모니터링 정보를 제공한답니다! 제니우스에서 AWS 모니터링하기 제니우스를 이용한 ‘하이브리드 클라우드 모니터링 구성’을 좀 더 자세히 살펴볼까요? ▪CMS > 모니터링 > 요약 : 위 그림은 AWS 통합 요약 페이지인데요. EC2, RDS, VPC 등 과금 현황까지 통합 모니터링할 수 있어요. ▪EMS > 토폴로지 > 클라우드 맵 : 리전 별 자동 구성형 클라우드 맵 페이지에서는, AWS 리전 별 이용하는 서비스와 연관관계를 클라우드 맵이 자동으로 구성해 줘요. ▪CMS > 클라우드서비스 > EC2 > 주요 성능 지표 : 주요 성능지표 모니터링 페이지에서는 AWS 콘솔에 접속하지 않고, AWS 주요 성능 지표에 대한 모니터링 추이를 확인할 수 있어요. ▪EMS > 오버뷰 : 오버뷰를 통한 온프레미스 + AWS 통합 모니터링 페이지에서는, AWS 모니터링 항목과 온프레미스 환경 모니터링 항목의 통합 현황판을 확인할 수 있어요. 이처럼 AWS와 온프레미스 환경은 물론, 더 다양한 환경의 인프라 모니터링을 위해 제니우스를 사용을 해보는 건 어떨까요?
2023.11.16
1
2
3
4
5
6