반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
기술이야기
검색
기술이야기
로그 수집기 Fluentd에 대해 알아야 할 5가지!
기술이야기
로그 수집기 Fluentd에 대해 알아야 할 5가지!
IT 환경의 변화가 점점 빨라지면서 기업들은 매일 쏟아지는 데이터를 관리해야 합니다. 특히 로그 데이터는 시스템 상태를 모니터링하고 문제를 사전에 발견하는 데 필수적이죠. 이때 다양한 장치와 프로그램에서 생성되는 로그를 제대로 수집하지 못하면 혼란이 커질 수 있습니다. 따라서 로그 관리를 위한 도구들이 주목을 받고 있는데요, 그 중 하나가 오늘 살펴 볼 Fluentd입니다. Fluentd는 여러 소스에서 발생할 수 있는 로그 데이터를 한 곳에 모아, 일관된 형식으로 변환하고 중앙에서 효율적으로 수집해주는 오픈소스 데이터 수집기인데요. 이번 시간에는 Fluentd가 어떤 방식으로 로그 수집을 하고 효율성을 높이는지, 함께 자세히 살펴보겠습니다. │Fluentd란 무엇일까요? Treasure Data가 게작하고 후원 한, Fluentd는 다양한 소스에서 발생하는 로그 데이터를 한 곳에 모아 수집합니다. 강력한 플러그인 시스템을 갖추어 있어 여러 상황에 유연하게 대처할 수 있죠. Fluentd는 데이터를 주로 *JSON 형식으로 처리하여 기계가 쉽게 읽고 분석할 수 있도록 하는데요. 주로 *Ruby로 개발되었고, 일부 성능 향상을 위해 C언어로 작성된 컴포넌트도 포함되어 있습니다. 대규모 환경에서도 잘 작동하여, 현재는 5만 개 이상의 시스템에서 로그를 수집하고 있는 사용자도 있죠. *JSON: JavaScript Object Notaion 약어로, 데이터를 교환하기 위한 경량 데이터 형식 *Ruby: 간결한 문법을 가진 객체 지향 프로그래밍 언어 이러한 성능과 효율성 덕분에 라인(Line), 아틀라시안(Atlassian), 아마존 웹서비스(AWS) 등과 같은 주요 기업들이 Fluentd를 사용하고 있습니다. │Fluentd가 필요해진 이유 앞에서도 간략히 설명했지만, Fluentd가 필요한 대표적인 이유는 다음과 같은데요. 데이터 통합과 관리의 필요성 증가 첫 번째 이유는 데이터 통합과 관리의 필요성이 증가하고 있다는 점입니다. 디지털 전환이 가속화되면서 기업들은 다양한 소스에서 엄청난 양의 데이터를 수집하고 관리해야 합니다. 이 과정에서 로그 데이터의 통합과 처리가 중요한 과제가 되었는데요. Fluentd가 다양한 로그 데이터를 중앙에서 효율적으로 수집하고 통합하는 데 최적화해 줍니다. 또한 데이터를 일관된 형식으로 변환하여, 다양한 시스템과 쉽게 연동할 수 있게 도와주죠. 클라우드 네이티브 환경에서의 유연한 확장성 두 번째 이유는 클라우드 네이티브 환경에서 쉽게 확장할 수 있다는 점입니다. 클라우드 네이티브 환경이 표준이 되면서, 애플리케이션과 서비스들이 분산된 환경에서 운영되고 있는데요. 이런 환경에서는 로그 수집과 관리가 더욱 까다로워집니다. Fluentd는 가볍과 확장 가능한 구조를 가지고 있어, 클라우드 환경에 최적화되어 있습니다. 특히 쿠버네티스(K8s, Kubernetes)와 같은 오케스트레이션 플랫폼과 잘 통합되어, 로그 데이터를 효율적으로 수집하고 처리할 수 있죠. 이러한 유연한 확장성과 클라우드 친화적인 특성 덕분에 Fluentd가 꾸준히 활용되고 있습니다. │Fluentd의 5가지 특징 Fluentd는 다양한 환경에서 효율적이고 안정적으로 로그 데이터를 수집할 수 있는데요. 대표적인 특장점을 살펴본다면 다음과 같습니다. 다양한 플러그인 지원 500개가 넘는 커뮤니티에서 만든 플러그인을 통해, 다양한 데이터 소스와 출력을 연결할 수 있습니다. 특정 로그 형식을 처리하거나 여러 데이터베이스와 연동할 수 있도록, 필요한 플러그인을 쉽게 추하여 기능을 확장할 수 있죠. 이 덕분에 사용자는 다양한 요구에 맞춰 시스템을 유연하게 구성할 수 있습니다. 효율적인 자원 사용 메모리 사용량이 적고(30-40mb) 높은 성능을 발휘합니다. 이는 시스템 리소스를 절약하면서도 많은 양의 로그 데이터를 빠르게 처리할 수 있게 하죠. 또한 대규모 서버 환경에서도 원활하게 동작하며, 리소스를 효율적으로 운영할 수 있습니다. 안정적인 로그 수집 Fluentd의 메모리와 파일 기반의 버퍼링 옵션을 제공하여, 데이터 손실을 방지합니다. 네트워크 장애가 발생해도 로그 데이터가 손실되지 않도록 보장하죠. 또한 장애 조치 구성과 고가용성(HA, High Availability) 설정을 통해 안정적으로 로그를 수집하고 처리할 수 있습니다. 클라우드 네이티브 친화성 Fluentd는 쿠버네티스와 같은 클라우드 네이티브 환경에서 원활하게 동작하도록 최적화되어 있는데요. 이러한 최적화는 현대적인 인프라에서 로그 수집을 용이하게 하며, 클라우드 기반 애플리케이션의 로그를 효과적으로 전송하고 관리할 수 있습니다. │Fluentd의 주요 구성요소 Fluentd는 로그 데이터를 효율적으로 수집하고 처리할 수 있도록, 8가지 주요 구성 요소로 이루어져 있습니다. 아래 내용을 통해 좀 더 자세히 살펴볼게요. Input Plugins : 로그를 수집 우선 서버나 애플리케이션에서 발생하는 다양한 형식의 데이터를 수집합니다. 대표적인 플러그인으로 tail, forward, http 등이 있는데요. 예를 들어 tail 플러그인은 리눅스의 tail 명령어처럼 파일의 끝부분을 지속적으로 읽습니다. 상황에 맞는 플러그인을 선택하여, 데이터를 중앙에서 효율적으로 수집할 수 있죠. Parser : 로그를 이해할 수 있는 형식으로 변환 Input 플러그인을 통해 들어온 여러 형태의 로그 데이터를 표준화된 형식으로 변환합니다. JSON, 정규 표현식, *Apache 로그 형식 등 다양한 포맷을 지원하여 로그 데이터를 구조화하고 분석에 적합한 형태로 바꿀 수 있습니다. 이를 통해 로그 데이터를 일관성 있게 처리할 수 있죠. *Apache 로그 형식: 웹 서버에서 생성하는 로그 파일의 형식으로, 주로 정보를 기록하는 구조화된 로그 형식 Engine : 로그 처리의 중심 Fluentd의 중앙 처리 장치입니다. Input에서 수집한 데이터를 처리하고, Filter와 Formatter를 거쳐 Output으로 전송합니다. 사용자 설정에 따라 Parser, Buffer, Filter, Formatter를 추가하거나 제외할 수도 있죠. 이를 통해 데이터 흐름을 유연하게 관리하고, 다양한 요구사항에 맞게 로그 처리를 최적화할 수 있습니다. Filter Plugins : 로그 필터링 로그 데이터를 변환하거나 특정 조건에 따라 필터링합니다. 불필요한 데이터를 제거하고 필요한 데이터만 추출할 수 있습니다. 예를 들어 특정 키워드가 포함된 로그만을 추출하거나, 민감한 정보를 마스킹하여 보안성을 높일 수 있습니다. 어렇게 하면 로그 데이터의 품질이 향상되고, 분석과 저장 효율성이 개선됩니다. Buffering : 로그 임시 저장 Input 플러그인에서 들어온 데이터를 바로 Output으로 보내지 않고, 중간에 Buffer에 임시 저장합니다. 데이터를 임시 저장하기 때문에 안정적으로 전달하고, 손실을 최소화하며, 로그 트래픽을 조절할 수 있습니다. Output Plugins : 로그 저장 수집한 로그 데이터를 최종 목적지로 전달하는 플러그인입니다. HDFS, AWS S3, Elasticsearch(엘라스틱서치)와 같은 다양한 저장소뿐만 아니라, Kafka와 같은 대규모 데이터 스트리밍 플랫폼에도 로그 데이터를 효율적으로 보낼 수 있습니다. 이를 통해 여러 저장소와 분석 도구에 로그 데이터를 통합하고, 실시간으로 처리하거나, 일정 시간마다 모아서 한꺼번에 처리하는 방식으로 워크플로우를 구성할 수 있죠. Formatter : 로그를 최종 형식으로 변환 데이터를 목적지에 맞는 형식으로 변환하는 플러그인입니다. 이를 통해 최종목적지에서 데이터를 쉽게 처리할 수 있도록 도와줍니다. 예를 들어 JSON 형식으로 변환해서 Elasticsearch에 저장하면, Elasticsearch가 데이터를 쉽게 검색하고 분석할 수 있습니다. 또는 데이터를 *CSV 형식으로 변환해서 데이터 분석 도구에 전달할 수도 있습니다. *CSV: 쉼표로 구분된 값들로 이루어진 간단한 텍스트 파일 형식 Routing and Tagging : 로그 데이터의 흐름 제어 로그를 수집하고 처리하는 과정에서 각 데이터의 태그를 붙여 분류합니다. 이 태그를 이용해 로그 데이터를 특정 조건에 따라 다양한 목적지로 보냅니다. 이렇게 하면 로그 데이터를 효율적으로 관리하고, 분석 및 모니터링 요구사항에 맞게 데이터를 나눌 수 있습니다. 예를 들어 에러 로그는 즉시 실시간 모니터링 시스템으로 보내고, 일반 정보 로그는 장기 저장소에 보관하는 등 다양한 방식으로 데이터를 처리할 수 있죠. 이렇게 Fluentd는 주요 구성을 통해 로그 수집과 전송 과정을 효과적으로 처리할 수 있습니다. 이 덕분에 로그 관리가 한결 쉬워지고, 수집된 로그 데이터는 다양한 분석 작업에 유용하게 활용될 수 있습니다. 이번 시간에는 Fluentd가 왜 필요해졌는지, 주요 특징과 어떤 주요 구성 요소로 이루어져 있는지 자세히 알아보았습니다. 내용에서도 살펴보았듯이 데이터 통합과 관리의 필요성이 증가하면서 다양한 소스에서 발생하는 로그 데이터를 중앙에서 효율적으로 수집하고 일관된 형식으로 변환할 수 있는, Fluentd의 중요성이 더욱 커지고 있습니다. 특히, 클라우드 네이티브 환경에 최적화된 유연한 확장성과 다양한 플러그인 지원, 안정적인 로그 수집, 효율적인 자원 사용 등으로 AWS, Atlassian 등 주요 기업들이 Fluentd를 채택하고 있죠. 다음 시간에는 Fluentd와 유사한 로그 수집기인 Logstash와 Filebeat에 대해 살펴보겠습니다.
2024.07.28
기술이야기
좋은 대시보드(Dashboard) 설계를 위한 4가지 핵심 가이드
기술이야기
좋은 대시보드(Dashboard) 설계를 위한 4가지 핵심 가이드
급변하는 IT 환경에서 우리는 많은 데이터를 접하고 있습니다. 이러한 방대한 데이터를 효율적으로 관리하고 시각화하기 위해 '대시보드'가 등장한 후 널리 활용되고 있습니다. 대시보드(Dashboard)는 필요한 데이터를 통합하여 시각화하는 화면으로, 사용자에게 중요한 정보를 한눈에 보여주는 도구입니다. 2023년 가트너(Gartner) 연구에 따르면, 전 세계 기업 72%가 데이터 시각화 도구를 사용하고 있기도 합니다. 데이터 시각화 도구를 활용한 기업이 비활용 기업에 비해 의사 결정 속도가 5배 빠르다는 연구 결과도 나왔죠. 그렇다면 기업운영에 있어 대시보드가 왜 중요한지, 좀 더 자세히 살펴보겠습니다. │대시보드(Dashboard), 왜 중요할까요? 대시보드가 중요한 이유는 여러 가지 있지만, 그중에서도 가장 핵심적인 이유는 다음과 같습니다. 첫째, 대시보드는 빠르고 정확한 의사 결정을 가능하게 합니다. 대시보드는 실시간으로 데이터를 시각화하고 중요한 정보를 즉각적으로 제공하여, 빠르고 정확한 의사 결정을 가능하게 합니다. 예를 들어 서버의 성능 문제나 네트워크 장애를 실시간으로 감지하고 즉각적으로 대응할 수 있습니다. 이는 기업이 비즈니스 연속성을 유지하고, 예기치 않은 문제로 인한 손실을 최소화할 수 있게 도와주죠. 둘째, 대시보드는 전체적인 상황을 한눈에 파악할 수 있게 합니다. 여러 출처에서 수집된 데이터를 하나의 화면에 통합하여 보여주기 때문에, 전체적인 상황을 한눈에 파악할 수 있습니다. 이를 통해 데이터 간의 관계를 쉽게 분석하고, 복잡한 문제를 효율적으로 해결할 수 있죠. 이는 전략적 계획 수립과 운영 효율성을 높이는 데 매우 중요한 역할을 합니다. 위에서 살펴본 두 가지 핵심 이유로 인해서 대시보드는, 기업의 비즈니스 경쟁력 확보를 위한 핵심 도구로 자리 잡고 있습니다. │어떤 종류의 대시보드가 있을까요? 대시보드 종류는 매우 다양한데요. IT 인프라 통합 관리 대시보드 기준에서, 대표적으로 세 가지 대시보드 유형을 살펴보겠습니다. 서비스형 대시보드 [그림] Zenius 서비스형 대시보드 일반적으로 많이 사용하는 서비스형 대시보드는 IT 서비스 성능 상태를 실시간으로 모니터링할 수 있게 도와줍니다. CPU, 메모리 사용량, 디스크 I/O, 네트워크 트래픽 등을 한눈에 확인할 수 있죠. 이를 통해 성능 저하나 장애가 발생하면 즉각 알림을 받아 빠르게 대응할 수 있습니다. 또한 클라우드와 온 프레미스 환경 모두 사용 가능해 유연성이 뛰어납니다. 지도형 대시보드 [그림] Zenius 지도형 대시보드 지도형 대시보드는 여러 지역에 분산된 IT 인프라를 한 지도에서 통합적으로 보여줍니다. 서버, 데이터 센터, 네트워크 장비 위치와 상태를 지도 위에 표시해 한눈에 파악할 수 있죠. 이때 특정 지역에서 문제가 발생하면 즉시 감지하고 대응할 수 있습니다. 또한 지리적 데이터를 바탕으로 장애 패턴을 분석하여 효율적인 관리가 가능하며, 실제 지리 정보 시스템(GIS)와 연동해 정교한 위치 기반 관리도 가능합니다. 이러한 기능 덕분에 이 대시보드는, 특히 글로벌 기업이나 여러 지사와 데이터 센터를 운영하는 조직에서 유용하게 사용됩니다. 구성도형 대시보드 [그림] Zenius 구성형 대시보드 구성도형 대시보드는 네트워크 자원의 상태와 관계를 시각적으로 표현해 줍니다. 이를 통해 네트워크 장비 간의 트래픽 흐름을 실시간으로 모니터링하고, 병목 지점이나 장애 발생 지점을 쉽게 찾아낼 수 있습니다. 또한 각 장비의 상태, 성능 지표, 로그 데이터를 시각적으로 제공해 문제를 조기에 발견하고 해결할 수 있도록 도와줍니다. 더 나아가 네트워크 트래픽을 분석해 최적화 방안을 도출할 수 있으며, 다양한 네트워크 인프라를 지원해 유연한 관리가 가능합니다. 하지만 이러한 대시보드는 '어떻게 구현하고 설계했느냐'에 따라서 좋은 대시보드가 될 수도, 그렇지 못할 수도 있는데요. 그렇다면 좋은 대시보드를 만들기 위해 어떤 점을 고려해야 할까요? 다음 내용을 통해 자세히 살펴보겠습니다. │좋은 대시보드를 만들기 위한 고려사항 핵심 데이터 우선 제공 우선 좋은 대시보드를 만들기 위해 가장 먼저 고려해야 할 점은, 시각화할 대상과 데이터를 명확히 파악해야 한다는 것입니다. 어떤 데이터가 가장 중요한지, 결정하는 것이 우선이죠. 반대로 너무 많은 데이터를 시각화하지 않도록 주의해야 합니다. 과도한 데이터 시각화는 사용자가 중요한 정보를 파악하는 데 어려울 수 있습니다. 따라서 핵심 데이터를 선별하여 우선적으로 표시해야 합니다. 좀 더 구체적인 사례를 통해 살펴볼게요. 대시보드는 서버, 네트워크, DB 등 기본 인프라 데이터를 수집하고 시각화해야 하는데요. 이 데이터는 CPU, 메모리, bps, 스토리지, 데이터 파일 등과 같이 시스템 성능과 운영 상태를 파악하는 필수적인 핵심 지표들입니다. 이러한 핵심 데이터를 명확하게 정의하고 제공하는 것은 대시보드 설계의 첫 번째 단계에서 중요한 요소이죠. [그림] Zenius 서비스형 대시보드 Zenius 대시보드는 이러한 기본 인프라 데이터를 우선적으로 수집하고 시각화하여, 사용자가 가장 중요한 정보를 빠르게 파악할 수 있도록 합니다. 사용자가 어떤 데이터를 가장 먼저 확인해야 하는지, 즉 우선순위를 명확히 하여 중요한 정보를 놓치지 않도록 도와주죠. 효율적이고 직관적인 정보 전달 좋은 대시보드를 만들기 위해 두 번째로 고려해야 할 점은, 사용자가 필요한 정보를 쉽고 빠르게 확인할 수 있도록 설계되어야 합니다. 데이터의 가독성을 높이는 색상과 그래픽 요소를 적절히 사용하여, 사용자 인터페이스가 직관적이고 사용하기 쉬워야 합니다. 여기서 유의할 점은 시각적 요소에 너무 몰두하지 않도록 주의해야 합니다. 디자인에만 집중하면 필요한 정보가 제대로 전달되지 않을 위험이 있기 때문이죠. 따라서 실용성과 사용성을 중시하여 사용자 중심의 인터페이스를 설계해야 합니다. 이번에도 대시보드 사례를 통해 구체적으로 살펴볼게요. Zenius는 '사용자 맞춤형 대시보드'를 제공하고 있는데요. 사용자의 모니터링 환경에 맞게 자유롭게 편집할 수 있습니다. 관리 대상이 많아지거나, 관리 목표를 변경해도 컴포넌트와 디스플레이 항목을 손쉽게 편집할 수 있습니다. 또한 Zenius의 직관적이고 유연한 편집 기능을 통해, 사용자에게 필요에 따라 색상이나 차트 유형을 쉽게 변경할 수 있도록 설계했습니다. 데이터를 가독성 있게 시각화하여 사용자가 인터페이스 직관적이고 사용하기 쉽도록 구성했죠. 외부 데이터 통합 좋은 대시보드를 만들기 위해 세 번째로 고려해야 할 점은, 기업 내 여러 솔루션의 핵심 지표를 한 화면에서 확인할 수 있도록 구성해야 합니다. 외부 데이터와의 연동으로 여러 시스템의 데이터를 통합하면, 전체 상황을 한눈에 파악할 수 있는데요. 이를 통해 분석과 의사결정을 용이하게 해줍니다. Zenius 사례를 통해 다시 한번 살펴보겠습니다. Zenius 대시보드는 3rd Party 시스템 연동을 통해, 외부 데이터를 통합하여 한 화면에서 핵심 지표를 확인할 수 있도록 설계했습니다. 이를 통해 사용자가 기업 내 다양한 솔루션 지표를 한눈에 파악할 수 있죠. 비즈니스 전반의 통합 관제 좋은 대시보드를 만들기 위해 네 번째로 고려해야 할 점은, 비즈니스 관점에서 모니터링과 이상 상황을 감지할 수 있도록 설계되어야 합니다. 조직의 전반적인 운영 상태를 실시간으로 파악하고, 문제 발생 시 신속하게 대응해야 하기 때문이죠. 또한 서비스 단위로 인프라를 구성하여, 비즈니스 문제 여부를 즉각적으로 파악할 수 있도록 해야 합니다. 다시 Zenius 사례를 통해 살펴볼게요. Zenius 대시보드는 수집된 다양한 정보를 바탕으로, 최상위 레벨에서 비즈니스 관점 모니터링과 이상 상황을 감지할 수 있는 화면을 제공합니다. 다양한 컴포넌트와 차트, 다이나믹한 요소들을 적용하여 시각적인 효과를 극대화할 수 있죠. 이번 시간에는 대시보드가 왜 필요한지, 좋은 대시보드를 구현하기 위해서는 어떠한 점들을 고려해야 하는지 알아보았습니다. 하지만 이러한 좋은 대시보드를 성공적으로 구현하기 위해서는, 전문가의 도움이 필요합니다. 데이터를 시각화하여 구성하는 것은 보는 이에 따라 관점이 다르고 다양하여, 하나부터 열까지 구성하는 것이 어려울 수 있기 때문이죠. 또한 조직 상황이나 사용자 관점마다 중요한 데이터가 다르고 시각화해야 하는 방식도 다를 수 있습니다. 따라서 제니우스(Zenius)와 같이 수많은 구축 노하우를 보유하고 있고, 고객의 상황에 따라 최적화된 대시보드 구현이 가능한 솔루션 활용을 통해 비즈니스 경쟁력을 확보하시기 바랍니다. 🔍더보기 Zenius Dashboard 더 자세히 보기
2024.07.26
기술이야기
엣지 컴퓨팅을 위한 CNCF 프로젝트, KubeEdge 활용법
기술이야기
엣지 컴퓨팅을 위한 CNCF 프로젝트, KubeEdge 활용법
최근 몇 년 간 IT 분야는 급속한 발전을 거듭하고 있습니다. 특히 2010년대 중반부터 데이터를 온라인에 저장하는 기존 방식을 넘어서, 보다 진보된 컴퓨팅 기술이 등장하며 클라우드 컴퓨팅이 중요한 역할을 하게 되었습니다. 아마존 웹 서비스(AWS), 마이크로소프트(Microsoft), 구글(Google) 등의 대형 기업들이 클라우드 서비스를 주도해 나갔죠. 하지만 점점 IT 산업이 커지고 사물인터넷(IoT) 기술이 발전하면서 IT 장비에서 생성되는 데이터양이 기하급수적으로 많아졌습니다. IDC의 2018년 자료에 따르면, 2025년에는 전 세계에서 생성되는 데이터가 175ZB(*제타바이트1)에 도달할 예정이라고 합니다. 이처럼 수많은 데이터가 생성되고 중앙 서버에 저장/연산이 될 경우, 서버에 부하가 증가하는 문제가 발생하게 됩니다. *1. 1 ZB = 1021 bytes = 1,000,000,000,000,000,000,000 bytes 이를 해결하기 위해 2020년부터 중앙 서버에만 저장하지 않고, 클라우드 하위개념인 '클라우드렛'을 통해 데이터를 분산 처리하는 새로운 기술이 등장했는데요. 그 기술이 바로 엣지 컴퓨팅(Edge Computing)입니다. │엣지 컴퓨팅(Edge Computing)이란? 엣지 컴퓨팅은 데이터를 중앙 집중형 데이터 센터나 클라우드 대신, 데이터가 생성되는 가장 가까운 곳에서 처리하는 기술입니다. 쉽게 말해 중앙 서버가 아닌 데이터가 발생하는 '엣지(가장자리)'에서 직접 처리하는 것을 의미하죠. 엣지 컴퓨팅의 목적은 데이터 처리 응답 지연을 없애고, 실시간 성능을 개선하는 것입니다. 따라서 엣지 컴퓨팅의 가장 큰 특징이 '분산 처리 기능'이기도 합니다. 즉 가까운 곳에서 데이터를 처리하여, 부하를 분산하고, 통신 지역을 최소화하는 것이 엣지 컴퓨팅의 주목적입니다. │Edge Computing 필요성 그렇다면 엣지 컴퓨팅은 왜 점점 중요해지고 있을까요? 앞에서 언급했던 것처럼, IoT 시대가 도래하면서 다양한 디바이스에서 처리하는 데이터의 양이 폭발적으로 증가하고 있습니다. 이에 따라 요구되는 처리 속도와 응답 속도도 높아지고 있죠. 방대한 양의 데이터를 처리하기 위해서는 대규모 데이터 센터가 필요하지만, 각 위치에 데이터 센터를 두는 것보다 한 곳에서 중앙 집중식으로 처리하는 것이 더 효율적입니다. 이것이 클라우드 컴퓨팅이 대중화된 이유 중 하나입니다. 그러나 인터넷을 통해 클라우드로 데이터를 전송하고 처리한 후 반환할 때, 약간의 시간 지연이 발생합니다. 물론 로봇과 산업 장비의 센서 기술은 나날이 발전하고 있어, 어느 순간에도 상황을 정확하게 파악할 수 있게 되었습니다. 하지만 데이터 처리와 반응 사이에 시간 지연이 발생하면 정교한 *센싱 기술2 은 아직 어려운 편이죠. *2. 센싱 기술: 다양한 센서를 활용해 물리적 환경으로부터 데이터를 감지하고 수집하는 기술 이처럼 정밀하고 복잡한 동작을 수행하는 디바이스에는 고정밀 IoT가 필요한데요. 이를 위해서는 최대한 실시간에 가깝게 정보와 데이터를 주고받아야 하는데, 엣지 컴퓨팅가 이를 가능하게 합니다. 따라서 엣지 컴퓨팅은 IoT가 다음 단계로 나아가기 위해 필요한 기술로 주목받고 있죠. │Edge Computing 장점 엣지 컴퓨팅의 구체적인 이점은 무엇일까요? 엣지 컴퓨팅을 활용하면 얻을 수 있는 이점을 살펴보겠습니다. • 네트워크 트래픽 감소: 엣지 컴퓨팅은 데이터를 중앙 클라우드 서버로 보내지 않고 엣지(사용자 근처 단말기)에서 직접 처리하기 때문에, 네트워크 트래픽이 큰 폭으로 감소합니다. • 빠른 데이터 처리 응답시간: 데이터를 단말기에서 바로 처리하므로, 데이터 처리 응답 시간이 매우 빠릅니다. 실시간 응답이 중요한 애플리케이션에서는 큰 이점이죠. • 향상된 보안성: 개인정보 등 중요한 데이터를 중앙 데이터 센터로 전송하지 않아도 되므로 보안성이 높아집니다. 데이터가 로컬에서 처리되기 때문에 데이터 유출 위험이 줄어듭니다. • 장애 포인트 감소: 서버에 장애가 발생할 경우, 전체 서비스로 장애가 확대되는 클라우드 컴퓨팅과 달리 엣지 컴퓨팅은 개별 엣지의 장애가 다른 엣지로 전파되지 않게 합니다. 따라서 전체 시스템의 안정성이 향상되고 장애 포인트가 감소됩니다. │Edge Computing 활용 분야 엣지 컴퓨팅 활용분야는 다양하지만, 대표적인 엣지 컴퓨팅 적용사례로 스마트팩토리가 있습니다. 스마트 팩토리는 IoT, AI를 활용해 공정을 자동화하고 최적화하는 공장을 의미하는데요. 스마트팩토리에서는 제품 생산 과정에서 발생하는 모든 데이터를 중앙 클라우드 서버에 저장하면, 서버에 부하가 걸리기 쉽습니다. 이를 해결하기 위해 단순히 매일 반복되는 프로세스는 근처 엣지서버에 저장하고 데이터 연산 작업을 진행하죠. 반면 복잡하고 자주 처리되지 않는 데이터는 중앙 클라우드 서버에 저장합니다. 이렇게 하면 AI가 기기를 운영할 때 실시간 데이터 처리가 가능하여 지연 시간을 줄이고 효율성을 높일 수 있습니다. 여기서 엣지 서버는 지사 개념으로, 중앙 클라우드 서버는 본사 개념으로 이해할 수 있습니다. 엣지 컴퓨팅 활용 분야는 계속해서 확대되고 있습니다. 스마트팩토리 외에도 에너지 스트리밍, 게임, 헬스케어, 농업, 데이터센터, 자율주행, 스마트 시티 등 대규모 산업분야에 많이 사용되고 있습니다. │Edge Computing 도전 과제 하지만 엣지 컴퓨팅 기술에는 여러 도전과제가 있는데요, 대표적으로 애플리케이션 배포관리가 있습니다. 다양한 엣지 환경에서 애플리케이션을 배포하고 관리하는 것은, 생각만 해도 복잡한 프로세스이기 때문이죠. 이때 애플리케이션 버전 관리를 일관되게 하고 다양한 엣지 장치와 위치에서 호환성을 유지하려면, 효율적인 오케스트레이션 배포 시스템이 필요합니다. 이러한 과제를 해결하기 위해 여러 솔루션들이 연구되고 있는데요. 그중 하나가 쿠버네티스(Kubernetes, K8s)입니다. 쿠버네티스는 컨테이너화된 애플리케이션을 자동 배포하고, 확장하며, 관리하기 위한 오픈 소스 플랫폼입니다. 이때 쿠버네티스 기술에 + Edge를 접목한 것이 바로 KubeEdge입니다. 좀 더 자세히 알아볼까요? │KubeEdge란? KubeEdge는 쿠버네티스를 확장하여 엣지 컴퓨팅 환경을 지원하는 오픈 소스 플랫폼입니다. 엣지 컴퓨팅의 잠재력을 최대한 활용할 수 있는 플랫폼이죠. KubeEdge는 클라우드 컴퓨팅과 엣지 컴퓨팅의 경계를 허물기 위해 설계되었는데요. CNCF 재단에서 엣지 컴퓨팅 커뮤니티 구성원에 의해 개발되었고, 2018년 11월 상하이 KubeCon에서 처음 발표되었습니다. 쿠버네티스 기반으로 설계된 KubeEdge는, 2019년 3월에 첫 릴리즈 이후로 점차 안정화되고 있습니다. │KubeEdge 주요 기능 KubeEdge는 쿠버네티스를 사용해 클라우드와 엣지 리소스를 일관되게 관리할 수 있습니다. 또한 클라우드에서 운영하던 애플리케이션과 서비스를 동일한 방식으로 다룰 수 있죠. 이 밖에도 KubeEdge 주요 기능은 다음과 같습니다. • 엣지 클러스터 관리: KubeEdge는 엣지 환경에서도 쿠버네티스 클러스터를 효율적으로 관리할 수 있습니다. • 데이터 처리: 엣지에서 생성된 데이터를 로컬에서 처리하여, 네트워크 대역폭을 절약하고 응답 시간을 단축합니다. • 애플리케이션 오케스트레이션: 클라우드와 유사한 방식으로 엣지 애플리케이션을 배포하고 관리할 수 있습니다. • 보안: 엣지와 클라우드 간의 안전한 통신을 보장하여, 데이터 보안을 강화합니다. │KubeEdge 주요특징 KubeEdge 기능이 좀 더 원활하게 작업을 할 수 있도록 도와주는 주요 특징이 있는데요. 자세히 살펴보겠습니다. • 분산 아키텍처: KubeEdge는 클라우드와 엣지를 각각 포함하는 분산된 환경을 지원합니다. 클라우드에는 Kube-apiserver가 있으며, 엣지에는 실제 IoT 디바이스가 있습니다. 이를 통해 중앙 집중식 관리와 로컬 처리를 모두 가능하게 합니다. • 쿠버네티스 API 호환성: KubeEdge는 쿠버네티스 API와 호환됩니다. 이를 통해 기존에 쿠버네티스에 익숙한 사용자는 엣지 컴퓨팅 환경을 쉽게 관리할 수 있죠. • 리소스 제약 환경 지원: 엣지 디바이스는 일반적으로 제한된 컴퓨팅 자원을 가지고 있습니다. KubeEdge는 이러한 환경을 고려하여 설계되었기 때문에, 리소스가 제한된 환경에서도 효율적으로 작동합니다. • 오프라인 작동 지원: 엣지 노드는 네트워크에 연결되어 있지 않더라도, 일정 부분을 독립적으로 작동할 수 있습니다. 이는 인터넷 연결이 불안정한 환경에서 매우 유용합니다. • 경량화된 엣지 컴포넌트: KubeEdge는 엣지 측에 'EdgeCore'라는 경량화된 컴포넌트를 사용합니다. EdgeCore는 IoT 디바이스와의 통신/관리를 담당합니다. • 효율적인 통신: 클라우드와 엣지 사이의 통신은 *MQTT3와 같은 프로토콜을 사용하여 효율적으로 이루어집니다. 이는 데이터의 신속한 전송과 처리를 가능하게 합니다. *3. MQTT: Message Queuing Telementry Transport의 약자로 경량 메시지 전송 프로토콜 │KubeEdge 구성도 KubeEdge 구성도를 살펴보면 크게 Cloud, Edge, Device로 나누어져 있는데요. 각각 구성요소에 대한 설명은 아래와 같습니다. • Edged: Edge에서 컨테이너화된 애플리케이션을 관리합니다. 이는 엣지 디바이스에서 애플리케이션을 배포하고 실행하는 역할을 합니다. • EdgeHub: Edge에 위치한 통신 인터페이스 모듈로, 엣지 컴퓨팅을 위해 클라우드 서비스와 상호 작용하는 *웹 소켓4 클라이언트입니다. 클라우드와 실시간 데이터 통신을 담당합니다. • CloudHub: 클라우드에서의 통신 인터페이스 모듈입니다. 클라우드 측의 변경 사항을 감시하고, EdgeHub에 메시지를 캐싱하고 보내는 역할을 담당하는 웹 소켓 서버입니다. • Edge Controller: Edge 노드를 관리하는 모듈입니다. 이 모듈은 데이터를 특정 엣지 노드로 전달될 수 있도록, 엣지 노드와 포드 *메타데이터5를 관리합니다. 즉 Edge Controller는 쿠버네티스 컨트롤러 역할을 확장하여, 엣지 컴퓨팅 환경에서도 효율적인 노드 관리와 데이터 흐름을 가능하게 합니다. • EventBus: MQTT를 사용하여 내부 엣지 통신을 처리하는 모듈입니다. 이는 MQTT 서버와 상호 작용하여 다른 구성 요소에 게시와 구독 기능을 제공하는 MQTT 클라이언트 역할을 합니다. • Device Twin: 장치 메타 데이터를 처리하는 장치용 소프트웨어 미러입니다. 이 모듈은 장치 상태를 처리하고 이를 클라우드에 동기화하는 데 도움을 줍니다. 또한 경량 데이터베이스(SQLite)에 연결되어, 애플리케이션에 대한 쿼리 인터페이스도 제공합니다. • MetaManager: Edge 노드에서 메타데이터를 관리하는 모듈입니다. 이는 Edged와 EdgeHub 사이의 메세지 프로세서로, 경량 데이터베이스(SQLite)와의 메타데이터를 저장/검색하는 역할을 담당합니다. *4. 웹 소켓: 웹 브라우저와 서버 간의 실시간 양방향 통신을 가능하게 하는 프로토콜 *5. 포드 메타데이터: 파일 원본 데이터 외에 추가적인 속성이나 정보를 포함하는 메타데이터 이러한 각 구성 요소는 엣지와 클라우드 간의 원활한 통신, 애플리케이션 배포, 데이터 관리 등을 담당하여 엣지 컴퓨팅의 성능과 효율성을 극대화합니다. 이를 통해 실시간 데이터 처리와 안정적인 시스템 운영이 가능하죠. │엣지 컴퓨팅과 KubeEdge 미래 전망 그렇다면 엣지컴퓨팅과 KubeEdge 미래 전망은 어떨까요? 엣지 컴퓨팅과 KubeEdge의 결합은 데이터 생성 지점에서 즉시 처리를 가능하게 하여 지연 시간을 줄이고, 클라우드 네이티브 애플리케이션을 엣지 환경에서도 원활하게 실행할 수 있도록 지원합니다. 따라서 이러한 기술의 결합은 5g와 함께 자율주행차, 스마트 시티 등 다양한 분야에서 혁신을 이끌며, 향후 지속적인 성장이 예상됩니다. IDC에 따르면, 전 세계 엣지 컴퓨팅 지출은 2023년 2080억 달러에서 2026년까지 연평균 13.1%씩 성장하여 3170억 달러에 이를 것으로 예상됩니다. 이러한 성장은 디지털 전환 이니셔티브의 중요한 요소로 엣지 컴퓨팅의 역할이 확대되면서 더욱 가속화될 예정입니다. 국내에서도 엣지 컴퓨팅과 관련한 기술 발전과 시장 확장이 활발히 이루어지고 있습니다. 정부가 민간사업에게 5G 주파수를 할당하면서 이음 5G(5G 특화망) 서비스가 시작되었고, 이를 통해 자율 주행 로봇 등의 엣지 컴퓨팅 관련 서비스가 확대되고 있습니다. 결론적으로 엣지 컴퓨팅과 KubeEdge의 결합은, 미래의 디지털 트랜스 포메이션을 가속화할 핵심 기술로 자리 잡을 것으로 전망하고 있습니다. 이들의 발전은 다양한 산업 분야에서 새로운 비즈니스 모델과 기회를 창출하여, 우리의 생활 방식을 더욱 안전하고 편리하게 만들어 줄 것입니다. 📚참고 자료 • MichaelShirer, "New IDC Spending Guide Forecasts Edge Computing Investments Will Reach $232 Billion in 2024", IDC • GordonHaff, "Edge computing: 4 trends for 2023", enterprisersproject • ShirleyStark, "Future Of Edge Computing: Top 6 Trends 2023", justtotaltech • TonyFyler, "Edge computing trends in 2023", techhq • Bluefriday, "KubeEdge concept", tistory • Mansoor Ahmed, "Kubernetes Native Edge Computing Framework, KubeEdge", linkedin • "TDK의 고급 HDD 헤드 기술은 사회의 디지털 변혁을 가속화합니다", shunlongwei • 양대규기자, 엣지에서 AI와 시각적 처리가 증가하는 이유, aitimes
2024.07.26
기술이야기
GPU 모니터링의 중요성과 솔루션 선택 기준은?!
기술이야기
GPU 모니터링의 중요성과 솔루션 선택 기준은?!
인공지능(AI), 클라우드 컴퓨팅, 가상 현실(VR) 및 증강 현실(AR), 빅데이터 분석 등 정말 다양한 분야의 기술이 고도화 됨에 따라서 GPU(Graphic Processing Unit, 그래픽 처리 장치) 시장도 빠르게 커지고 있습니다. GPU 시장은 2024년부터 2029년까지 32.9%의 CAGR(연평균 성장률)을 기록하며, 2029년에 280조 원을 돌파할 것으로 예측됩니다. GPU의 활용도가 커지면서 그와 동시에 GPU를 효율적으로 관리하는 'GPU 모니터링'의 중요성도 점점 더 부각되고 있는데요, 자세한 이유부터 살펴보겠습니다. │GPU 모니터링이 필요한 이유는?! GPU 모니터링이 필요한 가장 큰 이유는 효율적인 자원 관리와 성능 최적화입니다. GPU는 고성능을 제공하기 때문에 리소스를 많이 소모합니다. 따라서 실시간 모니터링을 통해 GPU의 사용량, 소모 전력, 온도, 메모리 사용량 등을 파악하고 대응해야 합니다. 이는 곧 시스템이 과열되거나 과부하 되는 것을 막아주고 GPU 성능을 최적의 상태로 유지시켜주기 때문이죠. 이와 더불어서 빠른 문제 진단과 해결을 위해서도 모니터링이 필요합니다. GPU 관련 문제나 오류는 단순한 시스템 성능 저하를 넘어서 서비스/비즈니스 전반의 문제로 확대될 수 있습니다. 따라서 GPU 모니터링 솔루션을 사용하여 메모리 누수 등의 이상 징후를 빠르게 발견하고 조치할 수 있어야 합니다. 또한 실시간 GPU 모니터링을 통해서 에너지 사용량 최적화하면 전체 시스템의 에너지 효율도 향상시킬 수 있습니다. 그렇다면 구체적으로 어떤 GPU 모니터링 솔루션을 선택해야 할까요?! │GPU 모니터링 솔루션 선택 방법?! GPU 솔루션 선택 시 가장 중요하게 확인해야 할 부분은, 'GPU의 특성을 고려한 모니터링이 가능한가?'입니다. GPU는 한 개 서버라 하더라도 각각의 GPU 별로 모니터링이 되어야 하고, 온도 상승에 따른 성능 저하와 'Out of memory'와 같은 문제를 신속하게 파악해야 하는 특성이 있습니다. [그림] 제니우스의 GPU 모니터링 화면 예시 예를 들어 브레인즈컴퍼니의 제니우스(Zenius) EMS는 GPU의 특성을 고려하여 GPU 별 모니터링을 제공하고 있습니다. 또한 GPU 온도의 추이 분석 및 감시 기능도 제공하여 일정치 이상으로 온도가 상승하거나 메모리가 증가하면 즉각적인 알림을 제공합니다. 이와 더불어서 프로세스 별 GPU 사용량과 OS 관점의 네트워크 트래픽, CPU 등 전반적인 상태에 대한 모니터링 기능도 함께 제공합니다. 제니우스 EMS와 같이 GPU 특성에 맞춘 모니터링 솔루션을 활용하면, GPU 성능을 최적화하고 효율도 최대한 높일 수 있습니다. GPU가 점점 더 중요한 역할을 맡고 있고, 그에 따른 비용도 크게 들어가는 만큼 모니터링 솔루션을 활용한 실시간 관리는 더 중요해지고 있습니다. 또한 GPU뿐 아니라 다른 IT 인프라도 통합 관리할 수 있는 솔루션을 사용하는 것도 경쟁력을 높일 수 있는 좋은 방법입니다. 애플리케이션, GPU, 네트워크 서버, 트래픽, 클라우드, 무선 AP 등 모든 IT 인프라 환경을 통합 관리할 수 있는 제니우스 같은 솔루션 도입을 통해 한 발 더 앞서 나가시기 바랍니다.
2024.07.15
기술이야기
APM에서 꼭 관리해야 할 주요 지표는?
기술이야기
APM에서 꼭 관리해야 할 주요 지표는?
웹 애플리케이션, 모바일 애플리케이션, 데스크탑 소프트웨어, 그리고 클라우드 기반 서비스까지 애플리케이션 서비스의 범위는 점점 더 광범위해지고 있습니다. 온라인 쇼핑, OTT, 게임, 금융, SNS, 기업 ERP 서비스 등 거의 모든 산업 분야에서 애플리케이션을 활용하는 가운데 애플리케이션 서비스가 원활하게 제공되지 않으면 기업은 고객의 신뢰를 잃고, 브랜드 이미지와 매출에도 큰 타격을 입게 됩니다. 이에 따라서 애플리케이션의 성능을 지속적으로 모니터링하고 문제를 신속하게 감지하고 해결하게 해주는 APM(Application Performance Monitoring)의 중요성이 빠르게 커지고 있습니다. 그렇다면 구체적으로 APM이 왜 필요한지와 APM을 통해 꼭 살펴봐야 하는 지표들에 대해서 자세히 알아보겠습니다. │APM(Application Performance Monitoring)의 필요성 앞서 언급한 것처럼 APM은 애플리케이션의 성능을 추적하여, 사용자 만족도를 높이기 위한 필수적인 도구입니다. APM이 왜 점점 더 중요해졌는지 좀 더 구체적으로 살펴볼게요. 시스템 복잡성 관리 현대 IT 환경은 마이크로서비스(MSA), 클라우드, 서버리스 컴퓨팅 등 다양한 기술을 복합적으로 사용합니다. 이로 인해 시스템은 점점 더 복잡해지고, 전통적인 모니터링 도구로는 파악하기 어려운 문제가 발생할 수 있는데요. APM은 이러한 복잡한 시스템에서 발생하는 성능 저하나 오류를 정확히 파악하고, 문제의 근원지를 신속하게 찾아내는 데 도움을 줍니다. 예를 들어 대형 은행이 APM을 통해 실시간 거래 처리 시스템의 성능 저하를 조기에 발견하고 해결하여, 고객 불편을 최소화한 사례가 있습니다. 비즈니스 효율성 및 비용절감 오늘날 기업들은 웹사이트, 모바일 앱, 클라우드 서비스 등 다양한 디지털 플랫폼을 원활하게 운영하기를 원합니다. 동시에 어떻게 하면 이 많은 플랫폼들을 효율적으로 운영하면서, 비용을 절감할지 고민하는데요. APM은 이러한 고민을 해결해 줍니다. 예를 든다면 APM은 클라우드 환경에서 비효율적으로 사용되는 리소스를 식별하고, 필요한 경우에만 리소스를 확장하거나 축소할 수 있도록 지원합니다. 이를 통해 클라우드 비용을 절감하면서도, 시스템 성능을 유지할 수 있게 도와주죠. 고객 경험 개선 다양한 웹/모바일 서비스들이 생겨나면서 소비자들은 점점 더 빠르고, 안정적이며, 개인에게 특화된 맞춤형 서비스를 원하고 있습니다. 애플리케이션의 성능을 개선할수록 사용자 만족도 역시 높아지죠. 만약 소비자 입장에서 필요한 물건을 구매하려고 할 때 버그가 발생하여 구매페이지가 넘어가지 않거나, 결제 과정에 문제가 생긴다면, 고객은 구매를 포기할 수도 있습니다. 이러한 상황에서 APM은 웹 애플리케이션의 성능을 실시간으로 감시하고 문제를 빠르게 해결해 줍니다. 이를 통해 사용자 만족도를 높이고 기업의 잠재적인 매출을 방지할 수 있습니다. 이번엔 개발자/운영자의 관점으로 보는 APM의 필요성을 살펴보겠습니다. 개발자: 개발자는 APM을 통해 애플리케이션의 성능 저하를 유발하는 코드 문제점을 상세히 파악합니다. 예를 들어 느린 데이터베이스 쿼리라던지, 비효율적인 로직, 예기치 않은 오류나 버그 등을 실시간으로 개선합니다. 운영자: 웹/모바일 서비스에 성능 저하나 장애가 발생할 경우 운영자는 APM을 사용하면 어떤 부분이 원인인지 신속하게 진단하고, 필요한 조치를 취할 수 있습니다. 예를 들어 시스템의 디스크, 네트워크, 애플리케이션 등 어느 부분이 문제인지 빠르게 파악할 수 있죠. 또한 시스템의 리소스 사용률을 분석하여, 비효율적으로 사용되는 리소스를 조정합니다. 이처럼 APM을 적극적으로 활용하는 기업은, 웹 애플리케이션 성능을 효과적으로 관리할 수 있어 고객 만족을 높일 수 있습니다. 그렇다면 APM을 통해 웹 애플리케이션을 효율적으로 관리하기 위해서는 어떤 지표를 구체적으로 확인하고 관리해야 할까요? │APM에서 꼭 확인해야 할 주요 지표들 APM으로 웹 애플리케이션을 효과적으로 관리하기 위해서는, 먼저 트랜잭션(Transaction) 처리 현황을 확인하는 것이 중요합니다. APM을 통해 사용자가 웹페이지를 조회하거나, API 호출을 통해 특정 작업을 요청할 때, 이 요청이 정상적으로 활성화되고 완료되기까지 전 과정을 살펴볼 수 있어야 하죠. 이밖에도 확인해야 할 주요 지표들이 있는데요. 좀 더 자세히 살펴보겠습니다. 트랜잭션 처리량 [그림] Zenius-APM 서비스 처리 현황 이 차트는 시스템이 일정 시간동안 처리할 수 있는 트랜잭션의 수를 말합니다. 쉽게 말해 웹 애플리케이션이 얼마나 많은 일을 할 수 있는지를 보여주는 지표이죠. 예를 든다면 온라인 쇼핑몰에는 초당 몇 건의 주문을 처리할 수 있는지를 나타냅니다. 여기서 트랜잭션 처리량이 높다는 것은 그만큼 많은 작업을 빠르게 처리할 수 있다는 것을 의미합니다. 정리한다면 시스템 부하가 증가할 경우 처리량이 어떻게 변화하는지 파악하여, 시스템이 사용자 요구와 피크 타임에 충분한 성능을 발휘할 수 있는지 확인하는데 유용합니다. 트랜잭션 상세 성능 : CPU, 힙메모리 등 [그림] Zenius-APM CPU, 힙 메모리 사용률 APM은 트랜잭션의 상세 성능인 CPU 사용률, 힙 메모리 사용률 등 같은 중요한 지표들을 측정합니다. 'CPU 사용률'은 애플리케이션이 얼마나 많은 리소스를 사용하는지를 보여줍니다. '힙 메모리 사용률'은 애플리케이션의 메모리 관리 효율성을 진단하는 지표인데요. 높은 사용률은 메모리 누수를, 낮은 사용률은 리소스 부족과 성능 저하를 나타낼 수 있죠. 이 지표를 모니터링함으로써 개발자는 메모리 관리를 최적화할 수 있습니다. 트랜잭션 응답 분포 : 응답시간 [그림] Zenius-APM 서비스 응답분포 트랜잭션 응답 분포는 사용자의 요청에 대한 시스템의 응답 시간을 말합니다. 사용자가 웹 애플리케이션에 어떤 요청을 했을 때, 시스템이 얼마나 빨리 응답하는지를 나타내주죠. 예를 들어 웹사이트에서 페이지를 클릭했을 때, 그 페이지가 얼마나 빨리 응답하는지에 대한 시간을 말합니다. 응답 시간이 짧으면 사용자는 웹사이트에 더 오래 머무르고, 더 많은 페이지를 탐색하게 해, 사용자의 이탈률을 줄일 수 있겠죠. 사용자 수 모니터링 지표 제공 : 동시 접속 사용자 수, 시간당 방문자 수, 액티브 사용자 수 [그림] Zenius-APM 동시 사용자수, 시간대별 방문자 수 등 이 지표는 웹 애플리케이션을 이용하는 사용자 활동을 측정합니다. 여기서 꼭 확인해야 하는 세 가지 지표가 있는데요. '동시 접속 사용자 수'는 특정 시점에 애플리케이션을 이용하는 사용자 수를 나타내며, 시스템의 부하를 파악하는 데 중요한 지표입니다. '시간당 방문자 수'는 한 시간 동안 애플리케이션 트래픽 패턴을 이해하는 데 도움을 주며 '액티브 사용자 수'는 일정 기간 동안 활동적으로 애플리케이션을 이용하는 사용자 수를 의미하죠. 예를 든다면 온라인 게임 서버에 동시 접속 사용자 수가 급격히 증가하는 시간대를 파악하여, 그 시간대에 서버 리소스를 늘리거나 최적화하여 끊김 없는 게임을 경험할 수 있게 하죠. 이처럼 APM은 트랜잭션을 모니터링하여, 애플리케이션의 성능을 측정하고 분석할 수 있어야 합니다. 이를 통해 웹 애플리케이션에 문제가 발생했을 때 어디서부터 해결해야 할지에 대한 방향을 잡을 수 있죠. │APM, 효과적으로 활용하고 있으신가요? 이번 시간에는 APM이 왜 점차 중요해지고, 웹 애플리케이션을 효과적으로 관리하기 위해 어떤 APM 핵심 지표를 살펴봐야 하는지 알아보았습니다. 다양한 분야에서 애플리케이션 활용이 필수가 되고 있고 AI와 클라우드 컴퓨팅 기술 채택으로 인한 복잡성이 증가하고 있습니다. 이에 따라서 Mordor Intelligence는 APM 시장의 가치가 2024년에 약 94억 달러에 이른 후 2029년까지 연평균 성장률(CAGR) 31%로 급성장할 것으로 예측했습니다. 이처럼 급격하게 중요성과 활용도가 커지는 APM. 혹시 아직 도입하지 않으셨다면 Zenius-APM과 같은 효율적인 솔루션을 통해 애플리케이션 성능을 최적화 하시기 바랍니다.
2024.07.12
기술이야기
무선 AP에 대해서 꼭 알아야 할 세 가지
기술이야기
무선 AP에 대해서 꼭 알아야 할 세 가지
지난 시간에는 무선 AP를 '어떻게' 하면 효과적으로 관리할 수 있는지에 대한 TIP을 알려 드렸었는데요(링크). 여기서 잠깐, 무선 AP란? '무선 AP'는 Access Point의 약자로 Wireless Access Point 라고 하며, WAP으로 불리기도 합니다. 실제 인터넷으로 연결되는 신호는, 무선 신호를 받아서 유선 신호 체계로 전달해 주는 매개체가 필요한데요. 이를 AP가 담당합니다. 이름 그대로 Access Point로서 유선 신호를 무선으로 바꿔주거나, 무선 신호를 유선으로 바꾸는 접촉 지점의 역할을 하죠. 이번 시간에는 구성요소, 주요 활용사례, 관리 시스템 등 AP와 관련해서 꼭 알아야 할 세 가지를 살펴볼 예정입니다. 우선 그전에 무선 AP가 최근에 '왜' 필요해졌는지부터 짚어보겠습니다. │무선 AP의 필요성 무선 AP는 일반적인 유선 공유기보다, 설치 장소에 구애받지 않는다는 점에서 차별점을 가지고 있습니다. 무선 안테나가 AP에 자체적으로 내장되어 있고 PoE 기능을 통해 일반적인 가정에서 사용하는 유선 공유기보다 자유롭게 설치될 수 있죠. 이외에도 AP는 아래와 같은 특장점으로 각광받고 있습니다. 가용성 무선 AP는 일반적인 유무선 공유기보다 무선으로 연결된 기기를 더 많이 수용할 수 있는데요. 대규모 인원을 수용해야 하는 기업/공공 지자체/백화점/카페 등 대규모 클라이언트가 필요한 장소의 원활한 네트워크 연결을 용이하게 한다는 점에서 가용성이 뛰어납니다. 관리적 측면 무선 AP는 자신을 포함하여 대역을 무선으로 연결해 주는 기능이 기본적인 역할입니다. 하지만 부가적으로 무선관리 시스템으로부터 중앙 컨트롤을 받으며, 클라이언트의 통신 상태를 체크하는 기능을 가지고 있는데요. 사용자 확인부터 트래픽 양, 웹 접속 권한 설정과 알람까지 폭넓은 관리 기능을 제공하고 있습니다. 대규모 클라이언트 지원 일반적인 가정이 아닌 학교/기업/공공장소와 같은 대규모 클라이언트에 동시 접속을 하기 위해선, 대규모 접속을 처리할 수 있는 무선 AP가 필요합니다. 일반적인 공유기의 경우 약 한정된 IP만 할당받을 수 있으며, 인원이 많아질수록 속도 저하나 부하가 발생하기 때문이죠. 반면 무선 AP는 이러한 대규모 환경에서 접속을 효과적으로 처리할 수 있습니다. 편리성 무선 AP는 *SSID(Service Set Identifier)1가 하나로 통합되어, 접속 환경이 달라지더라도 무선 신호를 다시 잡을 필요가 없습니다. 반면 가정용 공유기의 경우 SSID가 별도로 분리되어 있어, 무선 신호 연결을 할 때마다 별도의 인증 절차를 거치게 되죠. 물론 공유기도 AP 모드로 SSID를 통합하여 사용할 수 있지만, 이는 네트워크 속도의 저하를 일으킬 수 있습니다. *SSID1: Wifi 공유기 검색할 때 나오는 명칭 이름(ex. SK_WifiXXXX) │무선 AP를 활용한 주요 사례 무선 AP는 앞에서도 언급했지만 대규모 환경에 적합하여, 다양한 분야에서 지속적으로 확대되고 있는데요. 몇 가지 대표적인 사례를 통해 좀 더 살펴보겠습니다. 디지털 뉴딜 정책 : 공공 와이파이 전환 사업 한국지능정보진흥원(NIA)에서는 2023년에 전국의 공공장소에 무선 인터넷 인프라를 대폭 확장하는 사업을 진행했습니다. 이 계획에 따라 그 해에만 4,400개의 새로운 공공장소에 공공 와이파이가 설치되어, 전체적으로 5.8만 개의 공공장소에서 공공 와이파이를 이용할 수 있게 되었습니다. 당진시 공공 와이파이 존 구축 당진시는 2018년까지 꾸준히 인구가 증가한 도시 중 하나입니다. 이러한 변화에 맞춰 교통과 물류의 인프라가 획기적으로 개선되었습니다. 더불어 당진시는 공공 와이파이 수요 증가에 대응하기 위해, Cisco AP 제품을 사용하여 시내 주요 지점에 공공 와이파이존을 확대하는 사업을 추진했습니다. 이 밖에도 국내 여러 도시에서는 스마트 시티 구축을 목표로, 도시 곳곳에 무선 AP를 설치하여 시민들이 어디서나 인터넷에 쉽게 접속할 수 있는 환경을 조성하고 있습니다. 대형 쇼핑몰, 카페 체인점(ex. 스타벅스), 호텔 등 상업 시설에서도 고객 경험 개선을 위해 무선 AP를 활용한 와이파이 서비스를 제공하고 있죠. 그렇다면 네트워크 환경에서 AP가 잘 관리될 수 있도록, 필수적으로 확인해야 하는 구성 요소는 무엇일까요? │무선 AP의 네트워크 환경 구성 요소 [그림] 무선 AP의 네트워크 환경 구성 요소 무선 AP를 구축하고 잘 관리하기 위해서는 AP 컨트롤러, LWAPP 프로토콜, PoE, UI 구성 요소들이 필요한데요. 각각 구성 요소들이 어떤 역할을 하는지 파악해 보겠습니다. AP 컨트롤러 AP 컨트롤러(WLC, Wireless Lan Controller)는 다량의 AP를 관리합니다. AP의 작동 상태를 실시간으로 모니터링하며, 접속 상태 확인과 AP 설정하는 역할을 담당하죠. 또한 로드밸런싱(대역폭 분산)과 함께 일부 AP 장애 시 주변 AP를 통한 장애 감지 기능, 플랫폼을 통한 클라이언트 접속 상태에 대한 실시간 모니터링 기능을 제공합니다. LWAPP 프로토콜 이때 AP 컨트롤러와 무선 AP 간의 통신을 위한 프로토콜인 LWAPP(Lightweight Access Point Protocol)가 필요한데요. LWAPP 프로토콜을 통해 각 AP는 컨트롤러로부터 자동으로 구성되고, 보안 업데이트를 받으며, 사용자 접속을 관리할 수 있기 때문이죠. 예를 들어 LWAPP 프로토콜 덕분에 쇼핑몰 방문객들은 어디서나 끊김 없는 와이파이 접속을 경험할 수 있으며, 운영자는 효율적으로 네트워크를 관리할 수 있습니다. PoE PoE(Power of Ethernet)는 무선 AP에 붙어 있는 이더넷 전원 장치로, 인터넷 케이블 하나에 데이터와 전원을 동시에 보내는 기술입니다. PoE를 이용하여 전원 코드를 따로 꽂을 필요가 없어, 설치가 간편하죠. 또한 별도의 어댑터 연결 없이 PoE 전송이 가능한 WAN 케이블 연결만 하면, 네트워크 기능과 전원 기능을 모두 구현할 수 있습니다. 이를 통해 AP의 벽면이나 천장에 설치가 가능합니다. UI AP 컨트롤러와 연계된 UI(UserInterface)로 AP 관리가 가능하며, AP에 연결된 클라이언트까지 확인할 수 있습니다. UI 화면을 통해 어느 정도의 트래픽을 사용했는지 확인할 수 있으며, AP의 이름(SSID)과 암호를 지정할 수 있습니다. 또한 AP에 연결된 클라이언트의 외/내부 관리가 가능합니다. Cisco Meraki와 Ruckus의 경우, AP 컨트롤러와 AP를 웹 화면으로 관리할 수 있는 UI 환경을 제공하는데요. 다음 사례를 통해 좀 더 자세히 살펴보겠습니다. │무선 AP와 컨트롤러 관리 시스템 앞에서 살펴본 것처럼 대규모의 무선 AP와 컨트롤러를 관리하기 위해서는 UI 환경, 즉 '모니터링'이 필수적인데요. 무선 AP와 컨트롤러를 모니터링할 수 있는 대표적인 사례를 살펴본다면 다음과 같습니다. Cisco Meraki [그림] Cisco Meraki 주요 장비 Cisco Meraki는 Cisco의 주요 AP, WAN, 스위치, 제품에 대한 모니터링이 가능합니다. Cisco 자체의 대시보드를 통해 장비와 현황 헬스 체크가 가능하며, 클라이언트의 실시간 사용속도와 AP에 연결된 클라이언트 리스트 역시 확인할 수 있죠. 또한 구글맵을 연동하여 주요 네트워크 장비의 위치 기반 모니터링이 가능합니다. Ruckus Networks Ruckus는 자사 네트워크 장비인 스위치, AP, AP 컨트롤러와 클라우드 관리 시스템을 제공하는 AP 전문 기업입니다. 컨트롤러와 연계된 웹 UI로 네트워크 상태를 원격으로 파악할 수 있죠. 또한 Ruckus의 대시 보드를 통해 주요 장비의 네트워크의 지리적 위치와 AP, 그리고 클라이언트 모니터링이 가능합니다. WNMS AP 벤더가 제공하는 AP 컨트롤러 관리 솔루션 외에도 WNMS(Wireless Network Monitoring System)를 통한 이기종 AP 관리가 가능합니다. 대규모 엔터프라이즈 환경에서는 다양한 이기종의 AP를 사용하는 경우가 많은데요. 이러한 환경에서 WNMS는 트래픽과 클라이언트 사용량을 확인할 수 있을 뿐만 아니라, 다양한 종류의 AP를 함께 관리할 수 있습니다. 이처럼 다양한 제조사의 AP를 하나의 시스템에서 통합적으로 관리할 수 있기 때문에, 대규모 환경에서 네트워크 관리를 효율적으로 운영할 수 있겠죠. [그림] Zenius-WNMS 모니터링 뷰 Zenius-WNMS 모니터링 화면을 보며 좀 더 자세히 살펴볼게요. Cisco와 Ruckus는 자사의 AP 무선 장비만 모니터링할 수 있는 솔루션인 반면, Zenius-WNMS는 AP 장비의 전체 운영 상황과 세부정보들을 모니터링할 수 있습니다. 컨트롤러, AP 장비 운영 상태, 벤더명, 주요 모델 및 트래픽 현황, 접속된 클라이언트 수 등 또한 확인이 가능합니다. [그림] Zenius-WNMS로 보는 무선 AP 트래픽 현황 이뿐만 아니라 Zenius-WNMS는 현재 운영중인 AP의 2.4GHz 대역, 5GH 대역에서의 트래픽 현황과 연결된 클라이언트 이벤트 현황도 모니터링할 수 있습니다. 다양한 감시 항목 설정을 통해, 주요 AP와 관련된 장애 이벤트와 운영 항목에 대한 모니터링도 가능합니다. 이를 통해 네트워크 관리자는 복잡한 네트워크 환경에서 발생할 수 있는 다양한 문제를 빠르게 대응할 수 있고, 네트워크의 성능 저하를 일으킬 수 있는 요소를 즉각적으로 식별하고 조치할 수 있죠. [그림] **대학교 종합상황판 Zenius-WNMS의 대표적인 사례로 **대학교를 들어볼 수 있는데요. 3,000여 개 이상의 대량 무선 AP를 관리하기 위해 통합 대시보드 UI 환경을 구축하였습니다. 이처럼 대규모 환경에서도 Zenius-WNMS는 효과적으로 무선 네트워크를 관리할 수 있습니다. 무선 AP와 이를 구성하는 요소들을 관리하는 체계적인 모니터링 시스템은, 이제 현대 사회에서 필수적으로 자리 잡았습니다. Zenius-WNMS을 활용하여 무선 AP를 하나의 시스템에서 통합적으로 관리하고, 대량의 무선 AP를 효율적으로 관리해 보세요!
2024.05.21
기술이야기
성공적인 네트워크 관리의 세 가지 조건!
기술이야기
성공적인 네트워크 관리의 세 가지 조건!
한 기업에서 네트워크 지연 및 접속 오류 등의 장애가 생기면 어느 정도의 피해 비용이 발생할까요? Gartner 리포트에 따르면, 1분당 평균 700만 원 이상의 비용이 발생한다고 합니다. 여기에 브랜드 신뢰도나 이미지 추락 등 당장 보이지 않는 부분까지 포함하면 피해 비용은 기하급수적으로 늘어납니다. 따라서 IT 산업에 속한 기업뿐 아니라 다른 분야의 민간기업, 그리고 정부기관과 공기업에 이르기까지 안정적으로 네트워크를 관리하기 위한 노력을 이어가고 있습니다. [그림] 네트워크 장애를 막기 위한 정부 차원의 노력 네트워크 활용도와 중요성이 증가함에 따라서 NMS(Network Management System) 시장의 규모도 빠르게 확대되고 있습니다. 전 세계적인 NMS 시장의 규모는 2022년 12조 원을 넘어서 2027년에는 19조 원에 이를 것으로 예상됩니다. 하지만 NMS를 사용한다고 네트워크 관리가 무조건 수월해지는 것은 아닙니다. 성공적인 네트워크 관리를 위한 도구로써 NMS가 갖춰야 할 세 가지 필수 항목이 있는데요, 지금부터 자세히 알아보겠습니다. ㅣNMS(네트워크 관리 시스템)의 세 가지 필수 조건 NMS 솔루션 선택 시 아래 세 가지를 꼭 점검해 보시기 바랍니다. 첫 번째, 유/무선/가상 네트워크 환경에 대한 성능 모니터링이 가능한가? NMS는 네트워크 장비부터 무선 엑세스 포인트(AP), 소프트웨어 정의 네트워크(SDN)에 이르기까지 다양한 네트워크 환경에 대해서 통합적으로 모니터링할 수 있어야 합니다. 또한 라우터, 스위치, 서버, 애플리케이션 등 네트워크로 연결된 모든 환경에 대한 가시성 확보가 중요합니다. 이를 통해서 트래픽, CPU 사용률, 지연시간, 장비의 다운타임 등 주요 지표들에 대한 모니터링을 통해 네트워크 성능을 최적화할 수 있게 때문이죠. [그림] NMS 예시화면 (제니우스: 전체 네트워크에 대한 통합 모니터링) 두 번째, 연관 장비에 대한 복합적인 관리가 가능한가? NMS는 네트워크 장비 관점의 트래픽과, 네트워크 장비에 연결된 서버 관점의 트래픽까지 복합적으로 분석할 수 있어야 합니다. 이러한 기능을 통해 하드웨어 오류 및 소프트웨어 장애 관리를 넘어서 서비스의 통신 상태, 트래픽 양과 흐름을 모니터링하여 전체 서비스에 대한 가용성 및 병목현상을 확인할 수 있기 때문입니다. [그림] NMS 예시화면(제니우스: 네트워크 장비 요약 view) 세 번째, 다양한 이벤트에 대한 관리가 가능한가? NMS는 임계치 기반의 즉각적인 문제 원인 식별과 정상 범위 이탈 시의 통보 기능을 통해 문제 해결 및 예방에 활용될 수 있어야 합니다. 이뿐 아니라 이벤트가 발생할 경우 스크립트를 통한 자동화 프로세스로 관리자의 업무 효율도 향상시킬 수 있어야 합니다. 더불어서 보안 취약점을 관리하여 보안 위협을 사전에 막고, 사용자의 접근으로부터 보호하는 기능도 반드시 필요합니다. 지금까지 살펴본 NMS의 세 가지 조건은 네트워크의 안정성, 보안성, 효율성을 보장하기 위한 필수조건입니다. 네트워크의 중요성과 활용도가 커지는 가운데 '제대로 된' NMS의 활용을 통해 높은 경쟁력을 확보하시기 바랍니다.
2024.05.10
기술이야기
SDN(소프트웨어 정의 네트워크)의 주요 특징과 성공사례는?!
기술이야기
SDN(소프트웨어 정의 네트워크)의 주요 특징과 성공사례는?!
지메일, 유튜브, 구글맵스, 구글 클라우드까지.. 구글은 자사의 다양한 서비스들이 어디에서나 원활하게 돌아갈 수 있도록, 전 세계 곳곳의 수많은 데이터 센터를 운영하고 있습니다. 구글의 한 데이터 센터 전경(출처ⓒ google.com) 그리고 이 데이터 센터간의 효율적이고 안정적인 '네트워크' 구축을 위해, 다양한 노력을 펼치고 있습니다. 사용자에게 빠른 서비스를 제공하기 위해선 데이터 센터간의 높은 연결성과 효율성이 필수조건이기 때문이죠. 구글의 네트워크 운영은 2012년에 큰 전환점을 맞이합니다. 이 변화의 중심에는 SDN(Software Defined Network, 소프트웨어 정의 네트워크)이란 기술이 있는데요. 구글의 네트워크 운영 효율과 안정성을 극적으로 개선시킨 SDN은 과연 무엇일까요? 우선 SDN의 주요 특징부터 살펴보겠습니다. ㅣSDN의 두 가지 핵심특징 SDN은 네트워크 관리를 간소화하고 네트워크 구성의 유연성을 높이기 위해 고안된 기술입니다. SDN에는 두 가지 핵심적인 특징이 있는데요. 첫 번째 특징, 컨트롤 플레인과 데이터 플레인의 분리 SDN을 대표하는 첫 번째 특징은, 네트워크 장비의 전반적인 데이터를 중앙 집중적으로 관리할 수 있는 컨트롤 플레인(Control Plane)과, 트래픽 전송 역할을 하는 데이터 플레인(Data Plane)이 분리된 것입니다. 이러한 분리에 따른 두 가지 효과를 살펴보겠습니다. (1) 최적의 로드밸런싱이 가능해짐 기존에는 라우터와 스위치 등의 네트워크 장비가 경로를 결정했었습니다. 이 장비들은 주로 최단 경로 알고리즘을 통해 패킷을 전달하기 때문에, 네트워크 관리자가 특정 경로를 원하는대로 설정하기엔 어려움이 있었습니다. 즉 '로드밸런싱'이 어려웠었죠. 하지만 SDN은 이러한 상황의 변화를 가져왔습니다. [그림] SDN 로드밸런싱 예를 들어 보겠습니다. 기존에는 경로 정보가 있을 때 U에서 나가는 트래픽을 V와 X에 각각 분산시키고 싶을 경우, 기존의 최단 알고리즘을 통하면 항상 최단의 경로로만 라우팅할 수 있었습니다. 하지만 위 [그림]처럼 SDN을 사용하면 네트워크 관리자는 전체 네트워크의 상태를 실시간으로 파악하고, 트래픽을 V와 X로 균등하게 분산시키는 등 세밀한 조정을 할 수 있습니다. 이를 통해 네트워크의 효율성을 극대화하고, 트래픽 과부하나 장애 발생 시 빠르게 대응할 수 있게 되었죠. (2) 비용 절감과 효율성 증대 SDN을 통해 기업들은 고가의 전용 네트워크 장비를 사용하지 않고도, 필요한 네트워크 기능을 구현할 수 있게 되었습니다. 이에 따라서 초기 장비 투자 비용(CapEx)과 네트워크의 운영 비용(OpEx)을 모두 줄일 수 있습니다. 또한 네트워크 관리의 자동화와 최적화로 운영의 효율성을 높여주며, 장기적으로는 인적 자원에 대한 비용 절감으로도 이어집니다. 두 번째 특징, 중앙 집중식 관리 시스템 SDN을 대표하는 또다른 특징은 소프트웨어(SDN 컨트롤러)가 중앙에서 제어한다는 것입니다. 이 소프트웨어가 네트워크의 '두뇌' 역할을 하며, 네트워크의 각 기능이 어떻게 동작할지 지시합니다. 이러한 특징으로 인한 대표적인 효과를 살펴보겠습니다. (1) 유연성과 신속한 대응 기존 네트워크 시스템은 하드웨어 중심으로 돌아가기 때문에, 이 변화에 적응하기 위해선 실제 장비를 교체하거나 수동으로 설정을 변경해야 했습니다. 하지만 SDN에서는 모든 제어 기능이 '중앙'에서 소프트웨어로 이루어지기 때문에, 변경 사항이나 새로운 요구 사항이 발생했을 경우 관리자는 물리적 장비에 접근하거나 개별 설정을 조정할 필요없이 소프트웨어를 통해 네트워크를 즉시 업데이트할 수 있게 되었습니다. 이 덕분에 기존에 며칠이나 몇 주가 걸리던 네트워크 변경 작업을 몇 분 안에 할 수 있게 됐습니다. (2) 보안과 성능 최적화 기존의 전통적인 네트워크 관리 방식에서는, 네트워크의 각 부분에 대해서 심층적으로 들여다 보는 것이 어려웠습니다. 네트워크 장비와 시스템이 서로 다른 플랫폼과 프로토콜을 사용했기 때문에, 전체적인 네트워크 상태의 모니터링이 사실상 불가능했었죠. 하지만 SDN은 소프트웨어를 통한 중앙집중식 관리 시스템으로 이루어져 있기에, 네트워크의 모든 부분에 대한 실시간 통합 관리가 가능합니다. 이를 통해서 보안 위협을 빠르게 식별하고 대응할 수 있게 되었죠. 또한 트래픽 패턴을 정밀하게 분석하여 재분배하고, 트래픽 병목 현상을 예방하여 전반적인 네트워크 성능도 개선할 수 있게 됐습니다. SDN의 두 가지 특징과 그로 인한 효과를 알아봤는데요. 이제 SDN의 아키텍처와 구현 방식에 대해서도 한번 살펴보겠습니다. ㅣSDN의 아키텍처와 구현 방식 SDN 아키텍처: 세 가지 주요 계층 SDN은 네트워크 관리를 더 유연하고 효율적으로 만들기 위해, '세 가지' 주요 계층으로 구성되어 있습니다. 세 가지 계층은 앞서 언급했던 Control Plane(컨트롤 플레인)과 Data Plane(데이터 플레인), 그리고 Application Plane(응용 프로그램 계층)입니다. 각 계층은 네트워크를 관리하고 운영하는데 있어 중요한 역할을 하는데요. 각 계층별 역할과 연관성에 대해서 알아보겠습니다. 우선 아래 [그림]에 가장 하단에 위치한 Data Plane(데이터 플레인)은 Control Plane(컨트롤 플레인)이 내린 결정에 따라 실제 데이터 패킷(Data packet)을 전송하는 역할을 합니다. 데이터 플레인은 스위치, 라우터 같은 물리적 장비를 통해 구현되며, 이들 장비는 데이터 패킷을 처리하고 전달하죠. [그림] SDN 아키텍처 중간에 위치한 Control Plane(컨트롤 플레인)은 네트워크에서 어떤 데이터가 어디로 가야 하는지 결정하는 역할을 합니다. 즉 Control Plane(컨트롤 플레인)은 네트워크 트래픽을 어디로 보낼지 결정하는 역할을 합니다. 가장 위에 위치한 Application Plane(응용 프로그램 계층)은 사용자에게 서비스를 제공하는 소프트웨어 애플리케이션을 말합니다. 이 계층은 SDN의 나머지 두 계층 위에 있으며, 네트워크의 다양한 리소스를 활용해 실제 사용자에게 서비스를 제공합니다. 클라우드 스토리지 서비스나 스트리밍 서비스 같은 것이 여기에 해당됩니다. 이 서비스들은 Control Plane(컨트롤 플레인)과 Data Plane(데이터 플레인)을 통해 데이터를 주고 받으며, 사용자에게 콘텐츠를 제공하죠. 이처럼 세 계층은 서로 밀접하게 연결되어 있습니다. 다시 말해 Control Plane(컨트롤 플레인)이 네트워크의 전반적인 관리와 결정을 담당하면, Data Plane(데이터 플레인)은 그 결정을 바탕으로 실제 데이터를 전송하죠. 그리고 Application Plane(응용 프로그램 계층)은 이 모든 네트워크 인프라 위에서 동작하며, 최종 사용자에게 서비스를 제공합니다. SDN의 구현 방식 위에서 살펴본 것 처럼 SDN은 세 개의 층으로 이루어져 있는데요. 이 각각의 층이 '제대로' 역할을 수행하기 위해서 꼭 필요한 것이 SDN Controller, OpenFlow 프로토콜입니다. OpenFlow 프로토콜은 SDN 컨트롤러와 네트워크 장비 사이에서 동작하는 프로토콜입니다. 컨트롤 플레인과 데이터 플레인 사이의 소통을 담당하고 있죠. OpenFlow 프로토콜은 컨트롤 플레인이 네트워크 장비에 구체적인 지시를 내리고, 그 지시에 따라 트래픽을 어디로 보낼지 결정할 수 있게 해줍니다. [그림] SDN 컨트롤러, OpenFlow 프로토콜 SDN 컨트롤러는 이 모든 과정을 조율하는 '중앙 집중식 지휘소'라 할 수 있는데요. 컨트롤러는 네트워크의 전반적인 상황을 파악하고, 데이터 플로우를 최적화하기 위한 결정을 내리며, OpenFlow를 통해 그 결정을 네트워크 장비에 전달합니다. 컨트롤러가 없다면 마치 중앙 교통 관리 시스템이 없이 각자의 판단에 따라 움직이는 차량들처럼 혼란스러워 지겠죠. 이처럼 SDN 컨트롤러와 OpenFlow 프로토콜을 통해 구현된 중앙 집중식 네트워크 관리는 효율적이고 유연한 트래픽 조정을 가능하게 합니다. 이제 마지막으로 맨 앞에서 잠시 살펴 본 구글(Google)의 사례를 자세히 들여다보겠습니다. ㅣ사례를 통해 보는 SDN: 구글의 G-Scale 구글의 'G-Scale SDN 프로젝트(2012)'는 SDN을 가장 효과적으로 활용한 대표적인 사례입니다. 이 프로젝트는 구글이 2010년부터 진행한 OpenFlow 프로젝트의 일환으로, 구글 데이터센터 백본(BackBone)1 구간을 SDN 기반으로 전환하는 대담한 시도였죠. 구글 이 프로젝트를 통해 성취한 결과는 인상적인 수준을 넘어, 네트워크 관리 방식에 혁신을 일으켰다고 평가받고 있습니다. 구글은 얻은 대표적인 세 가지 이득을 살펴보겠습니다. *1: 백본: 전산망 속에서 근간이 되는 네트워크를 연결시켜주는 대규모 전송회선 [그림] 구글 G-Scale 프로젝트를 통해 구축된 데이터 센터(2012) 1. 인프라 리소스의 최적 활용 구글은 OpenFlow를 기반으로 한 SDN을 적용해 기존에 40~50% 수준에 머물렀던 네트워크 인프라의 활용도를 거의 100% 가까이 끌어올렸습니다. 기존 네트워크 시스템에서는 다양한 벤더의 장비들이 서로 완벽하게 호환되지 않은 문제로 인해, 전체 네트워크 장비의 효율성이 제한되곤 했었죠. 하지만 구글의 SDN 구현은 이러한 한계를 넘어서, 네트워크 자원을 훨씬 유연하게 관리할 수 있는 방법을 제시할 수 있게 했습니다. 2. WAN 대역의 경로 최적화 WAN(Wide Area Network)에서의 데이터 전송 속도와 효율성은, 전 세계 사용자들에게 고품질의 서비스를 제공하는 데 핵심적인 요소인데요. 구글은 SDN을 통해 이러한 WAN 대역의 데이터 전송 경로를 최적화하여, 사용자 경험을 크게 향상시킬 수 있었습니다. 이는 전 세계 서비스를 제공하는 구글에게 있어 대단히 중요한 성과였죠. 3. 네트워크 구축 비용의 절감 구글은 SDN 컨트롤러와 화이트박스 스위치의 조합을 통해, 데이터센터 내 네트워크 구축 비용을 대폭 낮출 수 있었습니다. 화이트박스 스위치는 사용자가 네트워크 장비의 동작방식을 직접 결정할 수 있게 하는 개방형 장비로, 구글은 이를 통해 더 효율적이고 경제적인 네트워크 인프라를 구축할 수 있게 됐습니다. 또한 구축 비용의 절감 뿐 아니라 전반적인 서비스 품질의 향상 효과도 거둘 수 있었습니다. [그림] 구글의 다양한 SDN 기술 이처럼 구글의 'G-Scale SDN 프로젝트'는 단순히 기술적 성공을 넘어서, 전 세계 통신사와 네트워크 장비 제조사들이 SDN을 도입하고 네트워크 가상화에 뛰어들게 만든 결정적 계기가 되었습니다. 구글은 여기서 한 발자국 더 나아가 BGP, Espresso, B4, Andromeda, Jupiter 등 다양한 SDN 기술을 적극적으로 활용하고 있습니다. 이러한 노력은 네트워크의 효율성을 극대화하고, 비용을 최적화하여, 데이터 중심의 세계에서 경쟁력을 유지하고, 사용자에게 더 나은 서비스를 제공하는 성과를 만들어내고 있습니다. 구글의 G-Scale 프로젝트라는 큰 성공을 만들어낸 SDN도 '어떻게 하면 안정적으로 네트워크를 관리하고 운영할 수 있을까?'라는 고민에서 시작됐습니다. 네트워크 관리의 중요성은 더욱 더 커지고 있습니다. SDN이라는 혁신적인 기술을 바로 도입하는 것도 물론 좋지만, 그 전에 현재의 네트워크를 제대로 모니터링 하고 있는지 부터 점검해봐야 합니다. 여러분의 네트워크는 제대로 관리되고 있나요?
2024.05.09
기술이야기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
기술이야기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
앞선 글들을 통해서 NMS의 기본 개념, 구성요소와 기능, 정보 수집 프로토콜에 대해서 알아봤었는데요. 이번 글에서는 NMS의 역사와 진화 과정, 그리고 최근 트렌드에 대해서 자세히 알아보겠습니다. EMS, NPM, 그리고 AIOps에 이르기까지 네트워크의 빠른 변화에 발맞추어 진화하고 있는 NMS에 대해서 하나씩 하나씩 살펴보겠습니다. ㅣNMS의 역사와 진화 과정 우선 NMS의 전반적인 역사와 진화 과정을 살펴보겠습니다. [1] 초기 단계 (1980년대 이전) 초기에는 네트워크 관리가 수동적이었습니다. 네트워크 운영자들은 네트워크를 모니터링하고 문제를 해결하기 위해 로그 파일을 수동으로 분석하고 감독했습니다. [2] SNMP의 등장 (1988년) SNMP(Simple Network Management Protocol)의 등장으로 네트워크 장비에서 데이터를 수집하고 이를 중앙 집중식으로 관리하는 표준 프로토콜을 통해 네트워크 관리자들이 네트워크 장비의 상태를 실시간으로 모니터링하고 제어할 수 있게 됐습니다. [3] 네트워크 관리 플랫폼의 출현 (1990년대 중후반) 1990년대 후반부에는 상용 및 오픈 소스 기반의 통합된 네트워크 관리 플랫폼이 등장했습니다. 이러한 플랫폼들은 다양한 네트워크 장비와 프로토콜을 지원하고, 시각화된 대시보드와 경고 기능 등을 제공하여 네트워크 관리의 편의성을 높였습니다. [4] 웹 기반 NMS (2000년대 중반) 2000년대 중반에는 웹 기반의 NMS가 등장했습니다. 이러한 시스템은 사용자 친화적인 웹 인터페이스를 통해 네트워크 상태를 모니터링하고 관리할 수 있게 했습니다. [5] 클라우드 기반 NMS (2010년대 이후) 최근 몇 년간 클라우드 기반 NMS의 등장으로 네트워크 관리의 패러다임이 변화하고 있습니다. 또한 빅데이터 기술과 인공지능(AI) 기술을 활용하여 네트워크 성능을 최적화하고, 향후 성능을 예측할 수 있는 성능 예측 기능까지 NMS에서 제공하고 있습니다. ㅣNMS에서 EMS로의 진화 네트워크 환경은 빠르게 변화하게 되고, 이에 따라서 NMS도 EMS로 진화하게 됩니다. NMS의 진화는 총 세 가지 세대로 나눌 수 있습니다. 1세대: 디바이스 관리 시스템 기존의 NMS는 외산 제조사에서 제공하는 전용 네트워크 솔루션이 주를 이루었습니다. CISCO의 시스코웍스(CiscoWorks), IBM의 넷뷰(NetView) HP의 네트워크 노드 매니저(Network Node Manager) 등 다양한 벤더들이 자사의 제품에 대한 모니터링 서비스를 제공하기 위해 특화된 디바이스 관리 솔루션을 내놓았죠. HP Network Node Manager 예시 화면(출처ⓒ omgfreeet.live) 물론 자사의 제품을 관리하기 위한 목적에서 출발한 솔루션이었기에, 대규모 이기종 IT 인프라 환경에 대한 모니터링 기능은 제공하지 못했습니다. 2세대: IT 인프라 관리 시스템 EMS의 등장 1세대의 NMS의 경우 빠르게 급변하는 네트워크 트렌드를 따라갈 수 없었습니다. 가상랜(VLAN), 클라이언트-서버 기술이 발달하게 되자, IP 네트워크 관계만으로 실제 토폴로지를 파악하기 어려웠습니다. 또한 네트워크장비 및 회선의 상태뿐 아니라, 서버 등의 이기종 IT 인프라 통합 모니터링에 대한 니즈와 함께 EMS(Enterprise Management System)의 시대가 시작됩니다. 이에 따라 서비스 관리 차원의 통합 관제 서비스가 등장합니다. 기존의 네트워크 모니터링뿐 아니라 서버, DBMS, WAS 등 IT 서비스를 이루고 있는 모든 인프라들에 대한 통합 모니터링에 대한 관심과 니즈가 증가했기 때문입니다. 3세대: 클라우드 네이티브 환경의 EMS 2010년 중 이후 서버, 네트워크 등 IT 인프라에 대한 클라우드 네이티브로의 전환이 가속화되었습니다. 기존의 레거시 환경에 대한 모니터링과 함께 퍼블릭, 프라이빗 클라우드에 대한 모니터링 니즈가 증가하면서 모든 환경에 대한 통합적인 가시성을 제공해 줄 수 있는 EMS가 필요하게 되었죠. 이외에도 AI의 발전을 통해 AIOps, Observability라는 이름으로 인프라에 대한 장애를 사전적으로 예측할 수 있는 기능이 필요하게 됐습니다. ㅣ네트워크 환경 변화(가상화)와 NMS의 변화 이번에는 네트워크 환경 변화에 따른 NMS의 변화에 대해서 알아보겠습니다. 네트워크 환경 변화(네트워크 가상화) 네트워크 구성 방식은 지속적으로 변화해왔습니다. 클라이언트-서버 모델부터 중앙 집중식 네트워크, MSA 환경에서의 네트워크 구성까지 이러한 변화는 기술 발전, 비즈니스 요구 사항, 보안 요구 사항 등 다양한 요인에 의해 영향을 받았는데요. 무엇보다 가장 중요한 변화는 전통적인 온 프레미스 네트워크 구조에서 네트워크 자원이 더 이상 물리적인 장비 기반의 구성이 아닌 가상화 환경에서 구성된다는 점입니다. ▪소프트웨어 정의 네트워킹(SDN, 2000년대 후반 - 현재): 네트워크 관리와 제어를 분리하고 소프트웨어로 정의하여 유연성과 자동화를 향상시키는 접근 방식입니다. SDN은 네트워크 관리의 복잡성을 줄이고 가상화, 클라우드 컴퓨팅 및 컨테이너화와 같은 새로운 기술의 통합을 촉진시켰습니다. ▪네트워크 가상화 (NFV, 현재): 기존 하드웨어 기반 전용 장비에서 수행되던 네트워크 기능을 소프트웨어로 가상화하여 하드웨어 의존성과 장비 벤더에 대한 종속성을 배제하고, 네트워크 오케스트레이션을 통해 네트워크 환경 변화에 민첩한 대응을 가능하게 합니다. ㅣ클라우드, AI 등의 등장에 따른 NMS의 방향 클라우드 네이티브가 가속화되고, AI를 통한 인프라 관리가 주요 화두로 급부상하면서 네트워크 구성과 이를 모니터링하는 NMS의 환경 역시 급변하고 있습니다. 클라우드 내의 네트워크: VPC VPC(Virtual Private Cloud)는 퍼블릭 클라우드 환경에서 사용할 수 있는 전용 사설 네트워크입니다. VPC 개념에 앞서 VPN에 대한 개념을 단단히 잡고 넘어가야 합니다. VPN(Virtual Private Network)은 가상사설망으로 '가상'이라는 단어에서 유추할 수 있듯이 실제 사설망이 아닌 가상의 사설망입니다. VPN을 통해 하나의 네트워크를 가상의 망으로 분리하여, 논리적으로 다른 네트워크인 것처럼 구성할 수 있습니다. VPC도 이와 마찬가지로 클라우드 환경을 퍼블릭과 프라이빗의 논리적인 독립된 네트워크 영역으로 분리할 수 있게 해줍니다. VPC가 등장한 후 클라우드 내에 있는 여러 리소스를 격리할 수 있게 되었는데요. 예를 들어 'IP 주소 간에는 중첩되는 부분이 없었는지', '클라우드 내에 네트워크 분리 방안' 등 다양한 문제들을 VPC를 통해 해결할 수 있었습니다. ▪서브넷(Subnet): 서브넷은 서브 네트워크(Subnetwork)의 줄임말로 IP 네트워크의 논리적인 영역을 부분적으로 나눈 하위망을 말합니다. AWS, Azure, KT클라우드, NHN 등 다양한 퍼블릭 클라우드의 VPC 서브넷을 통해 네트워크를 분리할 수 있습니다. ▪서브넷은 크게 퍼블릿 서브넷과 프라이빗 서브넷으로 나눌 수 있습니다. 말 그대로 외부 인터넷 구간과 직접적으로 통신할 수 있는 공공, 폐쇄적인 네트워크 망입니다. VPC를 이용하면 Public subnet, Private subnet, VPN only subnet 등 필요에 따라 다양한 서브넷을 생성할 수 있습니다. ▪가상 라우터와 라우트 테이블(routing table): VPC를 통해 가상의 라우터와 라우트 테이블이 생성됩니다. NPM(Network Performance Monitoring) 네트워크 퍼포먼스 모니터링(NPM)은 전통적인 네트워크 모니터링을 넘어 사용자가 경험하는 네트워크 서비스 품질을 측정, 진단, 최적화하는 프로세스입니다. NPM 솔루션은 다양한 유형의 네트워크 데이터(ex: packet, flow, metric, test result)를 결합하여 네트워크의 성능과 가용성, 그리고 사용자의 비즈니스와 연관된 네트워크 지표들을 분석합니다. 단순하게 네트워크 성능 데이터(Packet, SNMP, Flow 등)를 수집하는 수동적인 과거의 네트워크 모니터링과는 다릅니다. 우선 NPM은 네트워크 테스트(Synthetic test)를 통해 수집한 데이터까지 활용하여, 실제 네트워크 사용자가 경험하는 네트워킹 서비스 품질을 높이는데 그 목적이 있습니다. NPM 솔루션은 NPMD라는 이름으로 불리기도 합니다. Gartner는 네트워크 성능 모니터링 시장을 NPMD 시장으로 명명하고 다양한 데이터를 조합하여 활용하는 솔루션이라고 정의했습니다. 즉 기존의 ICMP, SNMP 활용 및 Flow 데이터 활용과 패킷 캡처(PCAP), 퍼블릭 클라우드에서 제공하는 네트워크 데이터 활용까지 모든 네트워크 데이터를 조합하는 것이 핵심이라 할 수 있습니다. AIOps: AI를 활용한 네트워크 모니터링 AI 모델을 활용한 IT 운영을 'AIOps'라고 부릅니다. 2014년 Gartner를 통해 처음으로 등장한 이 단어는 IT 인프라 운영에 머신러닝, 빅데이터 등 AI 모델을 활용하여 리소스 관리 및 성능에 대한 예측 관리를 실현하는 것을 말합니다. 가트너에서는 AIOps에 대한 이해를 위해 관제 서비스, 운영, 자동화라는 세 가지 영역으로 분류해서 설명하고 있습니다. ▪관제(Observe): AIOps는 장애 이벤트가 발생할 때 분석에 필요한 로그, 성능 메트릭 정보 및 기타 데이터를 자동으로 수집하여 모든 데이터를 통합하고 패턴을 식별할 수 있는 관제 단계가 필요합니다. ▪운영(Engine): 수집된 데이터를 분석하여 장애의 근본 원인을 판단하고 진단하는 단계로, 장애 해결을 위해 상황에 맞는 정보를 IT 운영 담당자에게 전달하여 반복적인 장애에 대한 조치 방안을 자동화하는 과정입니다. ▪자동화(Automation): 장애 발생 시 적절한 해결책을 제시하고 정상 복구할 수 있는 방안을 제시하여, 유사 상황에도 AIOps가 자동으로 조치할 수 있는 방안을 마련하는 단계입니다. 위의 세 단계를 거쳐 AIOps를 적용하면 IT 운영을 사전 예방의 성격으로 사용자가 이용하는 서비스, 애플리케이션, 그리고 인프라까지 전 구간의 사전 예방적 모니터링을 가능하게 합니다. 또한 구축한 데이터를 기반으로 AI 알고리즘 및 머신 러닝을 활용하여 그 어떠한 장애에 대한 신속한 조치와 대응도 자동으로 가능하게 합니다. Zenius를 통한 클라우드 네트워크 모니터링 참고로 Zenius를 통해 각 퍼블릭 클라우드 별 VPC 모니터링이 가능합니다. VPC의 상태 정보와 라우팅 테이블, 서브넷 목록 및 서브넷 별 상세 정보 (Subnet ID, Available IP, Availability Zone 등)에 대한 모니터링 할 수 있습니다. Zenius-CMS를 통한 AWS VPC 모니터링 이외에도 각 클라우드 서비스에 대한 상세 모니터링을 통해 클라우드 모니터링 및 온 프레미스를 하나의 화면에서 모니터링하실 수 있습니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼, 네트워크의 변화에 따라서 NMS는 계속해서 진화하고 있습니다. 현재의 네트워크 환경과 변화할 환경을 모두 완벽하게 관리할 수 있는 NMS 솔루션을 통해 안정적으로 서비스를 운영하시기 바랍니다.
2024.04.03
기술이야기
무선 AP를 WNMS를 통해 올바르게 관리하는 방법
기술이야기
무선 AP를 WNMS를 통해 올바르게 관리하는 방법
이제 어디서나 인터넷을 빠르고 쉽게 이용하는 것은 '기본'이 되었습니다. 우리나라 정부와 지차체는 공공장소에서의 무료 와이파이(WiFi) 접근성을 높이기 위해, 공공와이파이 확대 프로젝트를 진행하고 있습니다. 한국 지능정보사회진흥원(NIA)에서는 23년에 공공와이파이를 4,400개소에 신규 구축하여 총 5만 8000개소의 공공장소에서 이용할 수 있게 된 것이죠. 또한 교육부에서는 디지털뉴딜 사업의 일환으로 「전교실 무선망 구축 사업」을 크게 확대시켜, 약 21만 개의 무선 AP(Access Points)를 교실에 설치했습니다. 이를 통해 온라인 학습 자료의 접근성을 높이고, 디지털 콘텐츠의 활용을 원활하게 하고 있습니다. 이 밖에도 대형 쇼핑몰, 카페 체인점, 호텔 등 무선 AP의 활용 범위가 지속적으로 확대되고 있는데요. 하지만 여러 장소에서 더 많은 무선 AP들이 설치됨에 따라, AP를 감지하고 관리하는 부분의 필요성이 커지고 있습니다. 이에 따라 AP를 중앙에서 관리할 수 있는 WLC(Wireless LAN Controller, 무선랜 컨트롤러)나 WNMS(Wireless Network Management System)의 중요성도 점점 더 커지고 있습니다. 이 중에서도 광범위한 네트워크 관리 기능을 제공하는 WNMS를 활용하는 사례가 많은데요. 오늘은 WNMS를 통해 '제대로' 무선 AP를 관리할 수 있는 방법을 알아보겠습니다. ㅣ무선 AP를 효과적으로 관리하는 법 WNMS는 AP 장비와 컨트롤러에 수집된 데이터를 바탕으로, 다양한 View를 통해 실시간으로 성능을 모니터링하고, 개선할 수 있도록 돕는 시스템입니다. 즉 무선 네트워크의 '눈'이 되어, 사용자들이 일상생활이나 업무에서 끊김 없이 높은 품질의 무선 인터넷 서비스를 이용할 수 있도록 제공하죠. 하지만 WNMS을 무조건 도입만 한다고 해서 AP와 컨트롤러를 올바르게 관리할 수 있을까요? WNMS를 제대로 '잘' 이용하기 위해서는, 다음과 같은 2가지 핵심 개념을 기억해야 합니다. 하나, AP 장비를 한눈에 모니터링할 수 있어야 합니다 우선 핵심 개념 첫 번째는 여러 위치에 분산된 무선 AP와 컨트롤러를 한눈에 쉽게 모니터링할 수 있어야 한다는 점입니다. 다시 말해, 네트워크 관리자가 AP의 핵심 현황들을 종합적으로 모니터링할 수 있어야 하죠. 예를 들어 AP가 네트워크에 연결되어 정상적으로 작동하는지(UP), 연결이 끊어지거나 오류 상태가 있는지(Down)는 필수적으로 확인할 수 있어야 합니다. AP Up/Down은 무선 네트워크 관리의 핵심 요소로, 네트워크의 신뢰성과 성능을 보장하는 데 필수적이기 때문이죠. 또한 전송량이 높은 AP와 전송량이 많은 사용자 또한 파악할 수 있어야 합니다. [그림] Zenius-WNMS : 핵심 요약 페이지 Zenius(제니우스) WNMS를 통해 구체적으로 살펴볼까요? Zenius WNMS는 무선 AP 관제 상황에 대한 핵심 요약 페이지를 제공하여, 한 화면에서 무선 네트워크 상황을 일목요연하게 확인할 수 있습니다. AP의 핵심 현황인 AP Up/Down 상태는 물론, 전송량이 높은 AP 장비, 사용자 별로 전송량이 많은 항목들을 Top 10으로 선별하여 제공하고 있죠. 이처럼 AP 핵심 요약 페이지를 통해 무선 네트워크 상태를 신속하게 파악할 수 있습니다. 둘, AP 장비의 성능을 직관적으로 확인할 수 있어야 합니다 두 번째 핵심 개념은 컨트롤러에 연결된 무선 AP 장비별 성능을 직관적으로 확인할 수 있어야 한다는 점입니다. 특히 각 AP 별로 In/Out bps(bits per second) 정보를 기간 단위로 성능 추이를 확인할 수 있어야 하는데요. 이는 네트워크 트래픽의 흐름을 파악하여, 어느 시간대에 트래픽이 집중되는지를 알 수 있는 중요한 지표이기 때문이죠. 이에 따라 잠재적인 네트워크 문제나 과부하 상황을 사전에 식별하고, 이에 대응할 수 있습니다. 쉽게 예를 든다면 온라인 대형 쇼핑몰에서 특별 이벤트 기간일 경우 방문객이 급증하곤 하는데요. 이때 WNMS를 통해 AP 별 In/Out bps 정보를 모니터링한다면, 트래픽 패턴을 파악할 수 있습니다. 이 정보를 바탕으로 관리자는 네트워크 용량을 사전에 조정하고, 방문객에게 끊김 없는 와이파이 서비스를 제공할 수 있게 되죠. [그림] Zenius-WNMS : AP 장비 성능 모니터링 페이지 Zenius WNMS를 통해 좀 더 자세히 살펴보겠습니다. 위 이미지에 나와있듯이, Zenius WNMS는 무선 AP 장비 별 In/Out bps 성능 추이를 직관적으로 모니터링할 수 있습니다. 특정 시간대에 데이터 트래픽이 집중되는 경우, 추가적인 네트워크 자원을 할당하여 사용자의 불편을 최소화할 수 있죠. 이처럼 네트워크의 전반적인 성능을 평가하고, 필요한 경우 네트워크 구성을 조정하여, 전체 성능을 최적화할 수 있습니다. 또한 커서의 움직임에 따라 실시간으로 In/Out bps와 AP 사용자 수를 동시에 확인할 수 있습니다. 이에 따라 평소보다 많은 데이터를 소비하는 AP나, 비정상적으로 많은 사용자가 연결된 AP를 모니터링하고 조치할 수 있죠. 이처럼 가시성 높은 직관적인 UI를 통해 네트워크의 성능을 지속적으로 개선하고, 사용자에게 최적의 서비스를 제공할 수 있습니다. [그림] Zenius-WNMS : AP 장비 세부 항목별 추이 모니터링 뿐만 아니라 관리하고 있는 무선 AP 장비와 컨트롤러 페이지를 각각 한눈에 확인할 수 있고, 성능 항목에 대해서 일/주/월/년 기간 별 추이 모니터링도 지원하고 있습니다. 이를 통해 장기적인 네트워크 사용 패턴을 파악할 수 있으며, 예측 가능한 네트워크 용량 계획을 수립할 수 있습니다. 。。。。。。。。。。。。 스마트시티 구축, IoT(사물인터넷)의 증가, 산업 자동화 확대 등 무선 네트워크를 활용한 다양한 분야에서 WNMS의 역할이 확대되고 있습니다. 앞서 언급했듯 WNMS는 '사용자 입장'에서 무선 AP 장비와 성능을 직관적으로 모니터링할 수 있는지가 매우 중요합니다. 사용자가 손쉽게 네트워크 상태를 확인할 수 있어야, 필요한 조치를 신속하게 취할 수 있기 때문이죠. 분산된 AP 장비에 대한 통합 모니터링 UI를 제공하여 장애 발생 시 빠른 조치를 할 수 있게 하는 Zenius(제니우스) WNMS와 같은 도구를 활용하여, 성공적으로 무선 AP를 관리하시길 바랍니다!
2024.03.04
기술이야기
네트워크 정보 수집 프로토콜의 모든 것 (SNMP, RMON, ICMP, Syslog)
기술이야기
네트워크 정보 수집 프로토콜의 모든 것 (SNMP, RMON, ICMP, Syslog)
지난 포스팅을 통해 NMS의 기본 개념과 NMS의 구성요소와 역할에 대해서 살펴보았는데요. 오늘은 네트워크 정보 수집을 위한 다양한 프로토콜에 대해서 자세히 알아보겠습니다. 네트워크 프로토콜(Network Protocol)은 네트워크에 연결된 장비 간의 메시지 흐름을 통제하고 관리하는 기본적인 절차와 규칙을 정한 규약입니다. 웹 브라우저, 파일 전송, 이메일 송수신, 미디어 스트리밍 등과 같은 모든 온라인 활동을 가능하게 하기 때문에 네트워크 정보 전달의 핵심요소라고 할 수 있죠. 이번 시간에는 주요 네트워크 프로토콜인 ICMP, SNMP를 중점적으로 알아보겠습니다. ㅣICMP는 무엇이고 어떻게 동작하는가? ICMP(Internet Control Message Protocol)는 주로 네트워크의 경로상의 문제나, 호스트(단말)의 문제 등을 파악할 때 사용하는 프로토콜인데요. 대표적인 서비스가 ping입니다. 구체적인 동작원리를 살펴보면 다음과 같습니다. 오류 보고 ◾ 네트워크에서 데이터를 보낼 때 오류가 발생하면, 오류를 발생시킨 장비(예: 라우터, 스위치)는 오류 정보를 담아 ICMP 메시지를 처음 보낸 사람에게 전송합니다. 이를 통해 무엇이 잘못됐는지 정확히 파악하고 문제를 해결할 수 있습니다. ◾ 예를 들어 한 컴퓨터에서 인터넷을 통해 데이터를 보내는데, 그 데이터가 목적지에 도달하지 못하면 ICMP가 '이 주소로는 데이터를 배달할 수 없어!'라고 알려주는 역할을 하죠. 이렇게 사용자나 네트워크 관리자가 문제를 알리고 대응할 수 있게 도와주는 게 ICMP의 주요 역할입니다. [그림] ICMP 동작 방식 진단 및 테스트 ◾ 네트워크의 연결 상태나 성능을 테스트하기 위해 ICMP 에코 요청과 에코 응답 메시지를 사용합니다. 이를 통해 네트워크의 지연시간(latency)이나 패킷 손실(packet loss) 등을 측정할 수 있습니다. '핑(ping, Packet INternet Groper)'을 대표적인 예로 들 수 있습니다. ◾ 쉽게 표현하면 '너 지금 연결 잘 되어 있니?'라고 물었을 경우 대상 장비가 '응, 잘 되어 있어!'라고 대답하면 연결이 잘 되어 있는 것이고, 대답이 없거나 늦는 것과 같은 문제를 식별하는 것이죠. ICMP도 좋은 도구이지만, 네트워크의 복잡성이 빠르게 증가하고 호스트 수가 증가하면서 ICMP만으로는 네트워크 관리가 어려워지는 문제가 발생했는데요. 이를 개선하기 위해서 탄생한 것이 바로 SNMP입니다. 우선 SNMP의 히스토리부터 살펴보겠습니다. ㅣSNMP 히스토리: 각 버전별 개념과 차이점은? SNMP(Simple Network Management Protocol)는 1988년에 아래의 세 가지 니즈에 부합하기 위해 등장했습니다. ◾ ICMP보다 많은 기능의 탑재 ◾ 네트워크 문제를 직관적이고 쉽게 해결할 수 있어야 함 ◾ 표준화된 프로토콜의 사용 이후 몇 가지 버전을 거쳐서 현재는 네트워크 장비를 모니터링하기 위한 프로토콜로 자리를 잡아서 대부분의 NMS 상에서 이용되고 있습니다. 잠깐 SNMP의 처리단계를 살펴보면, SNMP는 Get/Set/Trap의 단순 명령 구조로 구성되는데요, 메시지 타입별 역할은 아래와 같이 정리할 수 있습니다. 위와 같은 처리단계를 가지고 있는 SNMP는 보안 기능 강화 및 기능 개선을 위해서 초기 v1 버전에서 v3 버전까지 업그레이드됐습니다. 각 버전은 보안, 성능, 유연성 등의 측면에서 발전되었으며 현재는 SNMPv2가 가장 많이 사용되고 있죠. SNMP 버전 별 특징에 대해서 자세히 알아보겠습니다. SNMP v1 가장 초기에 만들어진 프로토콜로 기본적인 정보만을 주고받아서 네트워크 장비들의 상태를 확인하고, 간단한 명령 정도만 내릴 수 있습니다. 보안에 많이 약한 편이고, 정보를 주고받을 때 특별한 암호화나 보호 방법을 사용하지 않기에 정보가 노출될 위험이 있습니다. SNMP v2 SNMPv1의 단점을 해결하기 위해 개발된 버전입니다. 보안 기능과 네트워크 과부하, 관리 효율성 등에 대한 기능이 향상되었습니다. MIB(Management Information Base) 구조를 개선하여, 새로운 데이터 타입과 객체 식별자(프로그래밍에서 특정 객체를 식별하는 데 사용되는 값이나 이름)을 도입했습니다. 이로써 더 많은 종류의 데이터를 효과적으로 다룰 수 있게 되었지만, v1과 호환이 안되는 문제가 있어 상용화에는 실패했습니다. SNMP v2c (Community-Based Security) SNMPv2c는 '커뮤니티 기반' 방식을 사용하며 'Community String' (공동체 문자열)을 이용합니다. Community String은 정보를 주고받기 위해 인증 과정에서 비밀번호를 사용하는 것으로, 학교에서 특정 비밀번호를 알고 있는 사람들만 특정 정보를 볼 수 있게 하는 것과 비슷합니다. 하지만 비밀번호가 복잡하지 않은 편이라, 조금 더 높은 보안을 필요로 하는 경우에는 적합하지 않을 수 있습니다. 현재 가장 많이 사용되고 있는 버전입니다. SNMP v3 보안과 관리 기능을 대폭 강화한 버전입니다. SNMPv3는 정보를 주고받을 때 강력한 인증과 암호화를 사용하여, 네트워크 상의 중요한 정보를 안전하게 지킬 수 있습니다. 또한 복잡한 네트워크 환경에서 사용자가 많을 경우에도, 각 사용자의 접근 권한을 관리할 수 있는 기능이 있습니다. 하지만 이전 버전들보다 더 복잡한 보안 모델과 설정 등의 이유로 널리 사용되고 있지는 않습니다. [그림] SNMP 버전과 수를 한눈에 볼 수 있는 제니우스 EMS 화면 참고로 SNMP에는 위와 같이 다양한 버전이 있기 때문에 모든 NMS는 제니우스처럼 어떤 버전으로 수집했는지와 수를 파악할 수 있어야 합니다. 이제 SNMP에 대해서 조금 더 자세하게 살펴보겠습니다. ㅣSNMP 자세히 보기: MIB의 개념과 구조 MIB(Management Information Base)는 관리 정보 기반이라고 불립니다. SNMP를 통해 관리되어야 할 정보나 자원들을 모아둔 것으로, Manager와 Agent 간 정보를 주고받는 정보의 집합체입니다. MIB에는 SNMP를 통해 주고받는 정보가 어떤 의미를 가지고 어떻게 사용될 수 있는지에 대한 정의가 포함되어 있습니다. 또한 각각의 정보는 '객체'라고 불리며, 이 객체들은 계층적으로 구성되어 있기에 관리하고자 하는 정보를 쉽게 찾을 수 있게 도와주죠. 대표적으로 CPU 사용량, 메모리 사용량, 포트의 up/down 같은 상태 정보 등이 MIB에 포함됩니다. 마치 항해사가 바다를 항해하기 위해 지도를 사용하는 것처럼, MIB를 통해 네트워크의 상태를 정확히 파악하고 필요한 조치를 취할 수 있습니다. MIB의 구조를 자세히 살펴보면 우선 큰 나무를 뒤집어 놓았다고 생각한다면 이해하기 쉽습니다. 큰 나무의 밑동(Root) → 각각의 가지(Branches) → 잎사귀(Leavers)로 나누어져 내려오는 형태인데요, 부분별로 자세히 살펴보겠습니다. ◾ 밑동(Root): 모든 MIB 트리의 시작점으로, 'iso(1)', 'org(3)', 'dod(6)', 'internet(1)' 등으로 구성되어 있습니다. 여기서 'internet'은 네트워크 장비와 관련된 표준 MIB를 나타냅니다. ◾ 가지(Branches): 밑동에서 나온 큰 가지들은 네트워크 장비의 다양한 부분을 나타냅니다. 예를 들어 'mgmt(2)' 가지는 일반적인 관리 정보, 'private(4)' 가지는 각 제조업체의 고유 정보 등을 의미합니다. ◾ 잎사귀(Leaves): 가장 작은 단위의 정보를 나타내는 부분으로 특정 장비의 상태, 성능 지표, 설정값 등 구체적인 데이터가 저장됩니다. MIB에서는 네트워크 장비의 정보가 여러 '분류'로 나누어져 있는데, '네트워크 인터페이스'라는 분류 아래에는 네트워크 카드의 상태, 속도, 전송된 데이터의 양과 같은 정보들이 담겨 있습니다. MIB는 복잡해 보일 수 있지만, 네트워크 장비와 관련된 정보를 체계적으로 관리하고 접근할 수 있도록 설계되어 있습니다. 이 구조 덕분에 네트워크 관리자는 네트워크의 건강 상태를 쉽게 체크하고 필요한 조정을 할 수 있습니다. 다음으로는 MIB 내의 각 객체를 고유하게 식별하는 OID에 대해서 알아보겠습니다. ㅣSNMP 자세히 보기: OID 확인 방법과 수집항목 OID(Object Identifier)는 MIB 내에 포함되어 있는 각 개별 정도에 대한 ID 값입니다. 아래 그림에서 볼 수 있듯이, 트리의 하단 값이 OID인데 MIB의 각 개별 정보에 대한 ID를 의미합니다. [그림] OID Tree 구조 대형 도서관에서 원하는 책을 찾을 때 책의 번호를 확인하여 빠르고 정확하게 찾는 것처럼, 특정 오브젝트의 ID(Num)을 부여한 게 OID입니다. OID는 포함하고 있는 각 정보를 숫자로 표현합니다. ◾ Enterprise OID: 네트워크 업계에서 공통으로 사용하는 OID ◾ Private OID: 각 네트워크 벤더사에서 사용하는 독자적인 OID 예를 들어 Juniper Networks라는 네트워크 스위치 벤더에서 사용하고 있는 OID 값을 [1.3.5.6.1.9 ]라는 전용 OID 값을 사용한다고 가정하면, Juniper Networks 라우터의 경우 뒤에 라우터 제품별 OID '11'이 더 붙은 [1.3.5.6.1.9.11 ] 형태의 OID로 구성됩니다. [그림] 제니우스 예시 화면 지금까지 네트워크 모니터링에 필요한 ICMP, SNMP 그리고 MIB, OID에 대해 살펴봤습니다. 참고로 제니우스(Zenius)-NMS에서는 OID 사전을 제공하고 있으며, 이를 통하여 관리하고 싶은 항목의 MIB 항목 및 OID 정보를 쉽게 찾을 수 있습니다. 이제 SNMP의 주요 개념 중 하나인 SNMP Trap에 대해서 알아보겠습니다. ㅣSNMP Trap의 개념 그리고 특징은? Manager(관리자)는 Server(Agent)로 메시지 요청(Polling)을 하게 되고, Server(Agent)는 응답(Notifying)을 하는 방식으로 진행됩니다. 그런데 Server가 비정상적인 이벤트를 감지하면 Manager의 Polling을 기다리지 않고 바로 Manager에게 메시지를 보내는데요, 이 긴급 메시지를 Trap(트랩)이라고 합니다. 우리가 날씨에 대해서 찾아보지 않아도 폭설이 예상될 때 폭설을 경고하는 자동 알림 시스템과 비슷한 개념입니다. [그림] SNMP 프로토콜 동작 방식 SNMP Trap은 일반적으로 높은 CPU 사용량이나 디스크 공간 부족과 같이 해결해야 할 문제를 나타냅니다. 중앙 모니터링 시스템으로 전송되어 분석 및 조치를 취할 수 있죠. 이를 통해 Manager는 큰 문제가 발생하기 전에 잠재적인 문제를 신속하게 식별하고 해결할 수 있습니다. SNMP Trap의 방식과 기능을 네 가지로 나누어 살펴보겠습니다. (1) 비동기적 알림 SNMP Trap는 주기적인 폴링이 아닌, 이벤트 기반의 알림을 통해 즉각적으로 대응할 수 있도록 비동기적인 방법을 제공합니다. (2) 실시간 알림 SNMP Trap은 이벤트가 발생하는 즉시 알림을 제공하여, 실시간으로 네트워크 상태 및 장치 상태를 모니터링해서 문제 발생 시 즉각적인 대응과 조치를 가능하게 합니다. (3) 이벤트 기반 모니터링 SNMP Trap은 장치나 응용 프로그램에서 특정 이벤트가 발생했을 때만 알림을 보내기 때문에, 불필요한 트래픽을 발생시키지 않습니다. 따라서 자원을 효율적으로 사용하면서 중요한 상태 변경을 식별합니다. (4) 자동화된 대응 SNMP Trap을 사용하면 이벤트 발생 시, 자동으로 대응 조치를 취할 수 있는 자동화 시스템을 구축할 수 있습니다. 이를 통해 관리자의 개입 없이 특정 이벤트에 대한 대응을 효과적으로 수행할 수 있습니다. [그림] Zenius Syslog 감시 설정 등록 페이지(위), Zenius Syslog 이벤트 페이지(아래) 이와 같은 SNMP Trap을 통해 빠르게 이상을 탐지하는 것이 중요한데요. 제니우스(Zenius)-Syslog와 Trap에서는 Syslog, Trap에 각각 특정 이벤트 조건을 설정하여 이벤트를 감지하고, 장애를 통보할 수 있는 기능을 제공하고 있습니다. 이제 마지막으로 SNMP 못지않게 네트워크 관리에 중요한 역할을 하는 Syslog, RMON에 대해서 알아보겠습니다. ㅣ Syslog, RMON의 개념과 동작원리는? Syslog Syslog는 컴퓨터 시스템, 네트워크 장비, 보안 장비 등에서 일어나는 모든 상황과 변화를 서버에 기록하는 프로토콜입니다. 관리 대상인 장비에서 일어나는 모든 상황을 메모리에 기록하죠. 로그/오류 관리가 주 목적이고 Unix와 Linux에서 많이 사용됩니다. 대부분의 라우터와 스위치들은 Syslog 프로토콜을 이용하여 Log들을 Syslog 서버로 보내고, 수백수천 대의 장비에 일일이 접속하여 로그를 볼 수 없기 때문에 '중앙 집중식'으로 관리합니다. 작업 방식은 주로 Client-Push 모델로 이러우지고 있고, 장비에서 일어나는 모든 상황 변화를 Layer4 프로토콜이 메모리에 기록하며, Syslog 서버는 UDP 포트 514에서 메세지를 수신합니다. Syslog 수집항목은 시스템 운영/네트워크/보안/애플리케이션 등과 관련된 로그를 수집 및 분석하고, 각 항목별로 오류와 트랜잭션 등에 대한 내용을 확인합니다. 출처ⓒ viettelco.net RMON RMON(Remote Network Monitoring)은 네트워크 장비나 서버에서 발생하는 트래픽과 문제들을 원격에서 감시하기 위해 만들어진 프로토콜로, SNMP보다 확장된 개념이라고 할 수 있습니다. 네트워크 관리자는 RMON을 통해, 네트워크의 성능을 측정하고 문제가 발생했을 때 신속하게 해결할 수 있습니다. 회사에서 인터넷이 느려지거나 연결이 되지 않을 때 RMON을 사용하면 원인을 빠르게 찾아내어 문제를 해결할 수 있죠. RMON과 SNMP의 연관성을 우선 아래 이미지를 통해 살펴보겠습니다. 출처ⓒ dpstele.com/blog/what-is-rmon.php 좀 더 자세히 살펴보면 ◾ RMON은 SNMP 위에서 작동하며, SNMP 보다 더 광범위한 데이터를 수집/분석할 수 있는 기능을 제공합니다. ◾ SNMP가 네트워크의 '기본적인 통신'을 담당한다면, RMON은 그 위에서 보다 '세밀한 관찰과 분석'을 가능하게 합니다. ◾ RMON은 SNMP의 특정 데이터를 사용하여 네트워크 트래픽 패턴이나, 성능 문제, 네트워크 내의 비정상적인 활동 등을 실시간으로 감시하고 기록할 수 있게 해줍니다. ◾ RMON에서 Probe라는 수행 장비를 사용하며, 네트워크 트래픽 및 통계 수집 그리고 성능 모니터링을 위해 활용합니다. 결과적으로 RMON의 기능을 통해 네트워크의 문제를 더 빨리 발견하고, 효율적으로 대응할 수 있죠. 마지막으로 SNMP, RMON, ICMP, Syslog의 주요 내용들을 아래 표를 통해 한눈에 살펴보겠습니다. 。。。。。。。。。。。。 지금까지 네트워크 정보 수집을 위한 다양한 프로토콜의 종류와 특징에 대해서 알아보았습니다. 효과적인 네트워크 관리를 위해서 혁신적인 기술들이 많이 개발되고 있는데요, 이를 활용해서 성공적으로 네트워크를 운영하시기를 바라겠습니다!
2024.03.04
기술이야기
ICMP와 SNMP를 비롯한 NMS의 구성요소와 주요 기능은?
기술이야기
ICMP와 SNMP를 비롯한 NMS의 구성요소와 주요 기능은?
지난 포스팅을 통해서 NMS의 기본 개념과 시대별 변화, 그리고 활용 사례 등을 살펴보았는데요. 오늘은 ICMP와 SNMP를 비롯한 NMS의 구성 요소와 주요 기능에 대해서 자세히 알아보겠습니다. 。。。。。。。。。。。。 │ NMS(네트워크 관리 시스템)의 구성 요소와 역할 NMS의 구성 요소와 역할은 크게 다섯 가지로 나눌 수 있습니다. NMS Manager NMS Manager는 Managed Device를 모니터링하고 제어하는 역할을 합니다. SNMP, ICMP, RMON 등의 망 관리 프로토콜을 이용하여 Managed Device 정보를 수집하며 User Interface도 제공합니다. Management Agent (SNMP Agent) 독자적으로 트래픽을 모니터링하고, 통계 정보를 자신의 MIB에 저장해 두었다가 트래픽 정보 요구나 특정 동작 요청에 응답합니다. 또한 망 관리 프로토콜을 활용하여 Manager에게 관리 정보를 전달합니다. Managed Device 백본, 스위치, 라우터, 허브와 같은 네트워크 장비를 말하며 Management Information을 수집하여 MIB에 보관합니다. MIB (Management Information Base) Managed Device의 정보를 포함한 Database 역할을 수행합니다. 관리되는 정보들을 계층적 트리 구조로 구성되고, 망 관리용 프로토콜인 SNMP 등에 의해서 읽힙니다. SNMP Protocol 네트워크 장치로부터 정보를 수집하여 작업을 수행하는 응용 계층의 프로토콜입니다. MIB에 정의되어 있는 객체들의 OID 값을 전달받아 해당 장비의 상태를 나타냅니다. │ NMS 구성 요소의 상호작용 NMS 구성 요소의 상호 작용을 자세히 살펴보면 각각의 네트워크 장비에는 SNMP Agent가 내장되어 있고, MIB를 이용해 네트워크의 상태 및 구성에 대한 정보를 요청하고 응답받습니다. Agent는 관리 정보를 수집하며, SNMP 프로토콜을 이용하여 NMS Manager와 통신을 합니다. NMS Manager의 Server 단에서는 SNMP가 수집한 데이터를 기반으로 분석, 가공, 성능, 구성, 장애, 보안, 운영 등의 관리 작업을 수행합니다. 또한 DB 단에서는 이벤트 및 로그를 기록하여 문제 해결 및 보고에 사용하는데요. 최종적으로는 User Interface를 통해 운영자가 네트워크 장비들을 효율적으로 모니터링하고 관리하기 위한 가시적인 화면을 제공합니다. │ NMS의 데이터 수집 방식 (관련 프로토콜) NMS는 여러 가지 성능 정보를 수집하여 모니터링하기 위해 다양한 프로토콜을 사용합니다. ① SNMP(Simple Network Management Protocol) 네트워크 장비를 관리하고 모니터링하기 위해 사용되는 인터넷 표준 프로토콜입니다. 네트워크 관리자가 네트워크에 연결된 상태를 확인하고 필요한 경우 설정을 변경할 수 있도록 설계되었고, 대부분 NMS 상에 구현되어 이용되고 있습니다. TCP/IP 기반에서 망관리를 위한 프로토콜이며, 관리 대상과 시스템 간 관리 정보(MIB)를 주고받기 위한 규정입니다. Manager(NMS), Agent, MIB(Management Information Base), Managed Device 등으로 구성됩니다. SNMP의 처리 단계는 Get/Set/Trap의 단순 명령 구조로 구성됩니다. SNMP의 메시지 타입은 Get/Set/Trap의 단순 명령 구조로 구성되는데요, 메세지 타입별 역할은 아래와 같습니다. ② ICMP (Internet Control Message Protocol) IP(Internet Protocol) 네트워크의 기기들이 서로 통신 상태 정보와 오류 메시지를 교환하기 위해 사용하는 네트워크 레벨 프로토콜로, 주로 네트워크 장비와 서버 간의 연결 문제를 진단하고 보고하는 데 사용됩니다. ICMP의 주요 기능은 크게 두 가지입니다. ◾ 오류보고(Error Reporting): 네트워크에서 데이터를 전송하는 동안 발생할 수 있는 여러 종류의 오류를 감지하고, 이에 대한 정보를 송신자에게 알리는 기능 ◾ 진단도구(Diagnostic Functions): 네트워크 연결 문제를 진단하는 데 사용되는 유틸리티(예: ping, traceroute)는 ICMP 메시지를 활용하여 네트워크의 상태를 확인합니다. 이를 통해 네트워크의 연결 상태, 지연 시간, 패킷 손실 등을 평가할 수 있습니다. 먼저 SNMP와 ICMP를 살펴보았는데요, 잠깐 두 가지 방식을 자세히 비교해 보면 SNMP는 장치 모니터링, 구성 변경, 이벤트 알림을 제공하며 주로 관리자 중심의 기능을 수행합니다. 반면 ICMP는 네트워크 통신의 에러 및 상태를 보고하고 호스트 간의 연결성을 테스트하는 데 사용되며, 주로 이벤트 기반 및 연결성 확인을 위한 메시지를 전송하는 데 중점을 둡니다. NMS의 데이터 수집 방식에 대해서 계속 살펴보겠습니다. ③ RMON (Remote Network Monitering) SNMP의 확장 형태로 개발된 RMON은, 분산되어 있는 망에 대한 트래픽을 측정하여 망을 감시하고 분석을 제공하는 프로토콜입니다. 원격에 위치한 Probe에서 망자원의 상태 정보를 수집하여 에러를 방지하고 효율적으로 이용하는 것을 목적으로 합니다. NMS의 대표적인 수집 방식을 살펴보았는데요, 이 외에도 다양한 방식이 있기 때문에 NMS 솔루션은 다양한 방식을 지원하는 것이 중요합니다. (*브레인즈컴퍼니의 Zenius-NMS는 SNMP와 ICMP 외에도 RMON, CDP, LLDP 프로토콜 등 다양한 수집 방식을 지원하고 있습니다.) │ NMS의 경보 알림 연계 방식 네트워크 내의 장애나 이상 상태를 감지했을 때 관리자나 담당자에게 이를 알리는 방법으로, NMS의 핵심이라고 할 수 있습니다. 다양한 경보 알림 방식이 있으며, 각 방식은 특정 상황이나 니즈에 맞게 선택되고 있는데요 가장 대표적인 방식들을 알아보겠습니다. 이메일(E-mail) 알림 네트워크 성능이 저하되는 등의 문제가 발생하면, 이메일 시스템과 연계하여 설정된 이메일 주소로 자동으로 알림을 발송합니다. 문제 발생 시 기록을 남기기 쉽다는 장점이 있지만, 긴급한 문제에는 이메일을 확인하는데 지연이 발생할 수 있습니다. 문자 메시지(SMS) 알림 네트워크의 문제 감지 시, NMS는 사전에 등록된 휴대전화 번호로 경보의 성격과 간단한 설명을 포함한 SMS 메시지를 보냅니다. 신속한 알림이 가능하다는 장점은 있지만, 메시지 길이에 제한이 있다는 단점도 있습니다. 메신저 및 협업 툴을 사용한 알림 최근 많이 사용되는 슬랙, 텔레그램, 팀스, 카카오톡을 통해 네트워크의 이상을 알리는 방식입니다. 문자 메시지와 같이 신속한 알림이 가능하면서 메시지 길이에 크게 제한이 없다는 장점도 있습니다. Dashboard를 통한 이벤트 관제 특정 경보가 발생하면, 웹 기반의 대시보드에 경보 메시지를 포함하여 관리자가 시각적으로 확인할 수 있도록 알립니다. 직관적으로 실시간 네트워크 상태를 모니터링할 수 있는 것이 가장 큰 장점입니다. 서버, 네트워크, 부대설비 모듈을 포함한 Zenius-Dashboard 예시 화면 위와 같이 다양한 알림 연계 방식을 통해, 담당자에게 즉시 장애 처리를 할 수 있도록 지원하는 기능도 중요합니다. NMS에서 즉각적인 장애를 처리하기 위해 제공하는 기능은 다음과 같습니다. ◾ 다중 수신자 지원: 여러 관리자나 담당자에게 동시에 경보를 전송하여 여러 관리자가 신속하게 대응할 수 있게 합니다. ◾ 알림 임계값 설정: 관리자는 경보 발생을 위한 임계값을 설정할 수 있습니다. (예: 특정 장치의 성능이 일정 수준 이하로 떨어질 때 알림을 발생시키도록 설정) ◾ 장애 관리 자동화: 특정 이벤트에 대해 미리 정의된 복구 스크립트 및 시나리오를 통해 장애 감지부터 처리까지의 장애 관리 업무를 자동화할 수 있습니다. NMS의 경보 알림 방식을 살펴보았는데요, 이제 NMS의 주요 기능을 자세하게 알아보겠습니다. │ NMS의 주요 기능 자세히 보기 NMS는 네트워크의 효율성, 가용성, 보안 등을 관리하고 감시하기 위한 다양한 기능을 제공합니다. 보편적으로 NMS에서 제공하는 상세 기능들은 아래와 같이 정리할 수 있습니다. NMS는 장애 관리, 구성 관리, 성능 관리를 중심으로 다양한 세부 기능을 가지고 있습니다. NMS의 많은 기능 중에서도 특히 네트워크 장비들을 실시간으로 모니터링할 수 있는 '성능 관리' 기능과, 성능 저하 또는 병목 현상을 빠르게 식별하여 해결할 수 있는 '장애 관리' 기능이 중요합니다. │ NMS의 발전 방향 NMS는 복잡하고 빠르게 변화하는 기술 트렌드에 맞춰 지속적으로 발전하고 있습니다. 클라우드, 가상화, 5G, IoT와 같은 기술의 발전에 따라서 사용자에게 높은 품질의 서비스를 제공하기 위한 방향으로 진화하고 있습니다. 온 프레미스와 클라우드의 조화 온 프레미스 환경은 보안, 규정 준수, 네트워크 제어와 같은 니즈 때문에 여전히 중요한 역할을 하고 있습니다. 반면 클라우드 기반 NMS 솔루션은 비용 효율성, 안정성, 용이한 배포와 같은 이점을 제공하는데요. 따라서 NMS도 온 프레미스와 클라우드의 장점을 조화롭게 포함하며 발전하고 있습니다. 클라우드 네이티브 환경으로의 진화 기업과 기관들이 클라우드 서비스를 적극적으로 채택함에 따라 NMS는 클라우드의 유연성, 확장성, 효율성을 극대화하는 등 클라우드 환경에 더욱 적합한 구조로 발전하고 있습니다. 분산형 아키텍처와 기술 혁신 최근의 NMS는 중앙 집중식에서 벗어나 더욱 분산된 아키텍처를 채택하고 있습니다. 마이크로 서비스 아키텍처(MSA)를 통해 모듈화되고 유연한 시스템 구조를 도입하여, 필요한 기능을 쉽게 추가하거나 변경할 수 있습니다. 또한 AI 기반의 NMS는 네트워크 데이터를 분석하고, 문제의 예측 및 해결 능력 향상에 기여하고 있습니다. 이 밖에도 NMS는 5G와 IoT 등의 신기술에 효과적으로 대응하기 위해 지속적으로 발전하고 있습니다. 。。。。。。。。。。。。 NMS의 구성 요소와 주요 기능 그리고 발전 방향에 대해서 살펴봤습니다. NMS 솔루션을 선택할 때는 기본적인 기능을 잘 갖추고 있을 뿐 아니라, 혁신적인 기술과 트렌드를 적극적으로 채택하고 지속적인 연구와 개선을 지속하는 기업의 솔루션을 선택해야 합니다. 안정적인 네트워크 운영은 이제 비즈니스의 필수 요소입니다. 성공적인 NMS 솔루션 선택을 통해 네트워크 성능을 극대화하여 비즈니스의 경쟁력을 확보하시기 바랍니다!
2024.02.08
1
2
3
4