반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
기술이야기
검색
기술이야기
NMS(네트워크 관리 시스템)에 대해서 꼭 알아야 할 네 가지
기술이야기
NMS(네트워크 관리 시스템)에 대해서 꼭 알아야 할 네 가지
산업 분야를 통틀어서 최근 모든 기업과 공공기관들의 ‘네트워크’ 활용도와 의존도가 빠르게 증가하고 있습니다. 따라서 이제 ‘안정적인 네트워크 관리 = 성공적인 비즈니스 운영’이라고도 할 수 있는데요. 오늘은 네트워크를 안정적으로 유지해서 성공적인 비즈니스 운영을 도와주는, NMS(Network Management System, 네트워크 관리 시스템)에 대해서 자세히 알아보겠습니다. NMS의 등장 배경, 시대별 변화, 그리고 핵심 개념과 실제 사례까지 NMS에 대해서 꼭 알아야 할 네 가지는 무엇일까요? 。。。。。。。。。。。。 │NMS(네트워크 관리 시스템)의 기본 개념과 등장 배경 NMS란 다양한 이기종 네트워크 장치(Network device)를 중앙에서 관리하고 감시할 수 있는 시스템입니다. 즉 전체 네트워크를 중앙 시스템을 통해 모니터링, 진단, 분석, 가용성을 유지하기 위해 만들어진 시스템을 말합니다. NMS의 필요성과 등장 배경은 OSI의 SMFAs(Specific Management Functional Areas)의 다섯 가지 영역(FCAPS)로 정리할 수 있습니다. 장애관리(Fault Management): 경보 감시, 고장 위치의 측정 시험 등 NMS의 첫 번째 관심사는 네트워크의 가용성을 보장하는 것입니다. 네트워크에서 발생하는 장애를 감지·격리·복구하는 과정으로, 네트워크 가동 시간을 최대화하고 서비스 중단을 최소화하는 것이 목적입니다. 구성 관리(Configuration Management): 설비제공, 상태 제어, 설치 지원 등 네트워크의 구성 요소(하드웨어, 소프트웨어, 네트워크 설정 등)를 관리하는 과정으로, 네트워크의 변경 사항을 추적하고 일관된 네트워크 성능과 안정성을 유지하는 데 중요합니다. 계정관리(Accounting Management): 계정(과금) 정보의 수집/저장/제어 등 네트워크 자원의 사용량을 추적하고 기록하는 과정이며, 자원의 할당과 과금에 사용됩니다. 사용량, 사용시간, 서비스 품질, 장비 사용률 등 네트워크 관리 및 운영에 관한 비용 할당 시 필요합니다. 성능 관리(Performance Management): 성능감시/트래픽 관리/품질관리/통계관리 네트워크의 트래픽이 특정 시간에 급증하는 것을 성능 관리 시스템이 감지했을 때, 이 정보를 사용하여 네트워크 용량을 적절히 조정하거나 트래픽을 분산시킬 수 있습니다. 보안 관리(Security Management): 보안/안전/기밀 관리 등 보안 관리 시스템은 사용자의 무단 엑세스 시도를 감지하며 즉시 차단할 수 있는 접근 제어, 인증, 암호화, 키관리 등을 관리하는 것과 관련이 있습니다. 네트워크 인프라의 로그 모니터링을 통해 잠재적인 보안 문제를 사전에 예방할 수 있습니다. 위와 같은 등장 배경과 필요성을 가진 NMS, 시대별로는 어떻게 변해왔는지 살펴보겠습니다. │NMS(네트워크 관리 시스템)의 시대별 변화 1980년대 초부터 현재에 이르기까지 NMS의 시대별 변화를 간략히 살펴보면 다음과 같습니다. 1980년대 ~ 2010년대 초 1980년대에 등장한 초기 NMS는 단순한 모니터링과 제어에 둔 간단한 형태였고, 특정 벤더의 하드웨어에 종속되고 표준화가 제대로 이루어지지 않았었습니다. 1990년대에 들어서 네트워크의 복잡성이 커지면서 NMS의 필요성도 증가했습니다. 이때 보안 기능이 향상된 SNMPv2와 같은 표준 프로토콜이 도입되면서, 다양한 제조사의 장비를 하나의 시스템으로 통합 관리할 수 있게 되었습니다. 또한 네트워크뿐만 아니라 서버까지 같이 관리하기 위한 SNMS(Server and network Management System)와, 더 나아가 EMS(ITIM)도 나오게 되었습니다. 이후 2000년대 초반에 웹 기반 NMS 솔루션이 등장하면서, 사용자 친화적인 인터페이스와 원격 접근 기능 등을 통해 효율적인 네트워크 관리가 가능해졌습니다. 2010년대 중반 ~ 2010년대 후반 NMS는 2010년대 중반부터 등장한 클라우드 컴퓨팅, 빅데이터, 인공지능(AI) 등의 기술과 함께 더욱 고도화되었습니다. 점점 더 다양한 네트워크와 서비스를 통합 관리하며, 자동화된 분석과 의사결정을 지원하게 되었습니다. 최신 동향 최근에는 AI와 머신러닝을 활용하여 예측 분석, 네트워크의 자동 최적화, 사이버 보안 통합 등이 NMS의 중요한 요소로 강조되고 있습니다. 또한 새로운 네트워크 기술인 5G의 도입으로 NMS는 더욱 복잡해지고 다양한 네트워크 환경을 관리하게 되었습니다. 이처럼 NMS는 네트워크 기술의 발전과 산업의 변화에 발맞추어, 지속적이고 빠르게 발전하고 있습니다. 이제 NMS의 구조에 대해서 자세히 알아보겠습니다. │NMS(네트워크 관리 시스템)의 3-Tier 아키텍처 NMS는 3-Tier 아키텍처(수집-저장-표출)로 구성되어 있습니다. 각각 독립된 계층으로 구분되어 있는데요. 특정 부분의 업그레이드가 필요할 때 해당 계층만 영향을 주기 때문에 시스템을 보다 쉽게 관리할 수 있습니다. 다시 정리한다면 NMS Manager에서 SNMP · ICMP · RMON 등 다양한 네트워크 프로토콜을 활용하여, 네트워크 자원의 성능 데이터를 수집합니다. 만약 Managed Device 장비들이 한계치에 도달하거나 장애가 발생했을 경우, 즉각적으로 User Interface를 통해 사용자에게 알립니다. 그렇다면 NMS의 핵심 기능은 무엇일까요? │NMS(네트워크 관리 시스템)의 핵심 기능 네트워크 장애에 대한 신속한 파악과 대응이 반드시 필요한 NMS의 핵심 기능에는 어떤 것들이 있는지 자세히 살펴보겠습니다. 장애 관리 네트워크 인프라의 결함이나 오류를 탐지하고 경고 및 알림을 생성하여, 관리자가 신속하게 대응할 수 있도록 지원합니다. 이를 통해 다운타임을 최소화하고 서비스 지속성을 보장합니다. 예를 들어 네트워크의 라우터가 다운될 경우, NMS는 즉시 관리자에게 경고를 보내 신속한 문제 해결을 도와줍니다. 성능 관리 네트워크 구성 자원인 트래픽 가용성, 응답시간, 사용량, 오류량, 처리 속도 등을 추적하고 최적화합니다. 또한 부하가 발생하지 않도록 문제점을 미리 검출해 안정적인 네트워크 운영이 될 수 있도록 합니다. 예를 들어 특정 애플리케이션이 과도한 대역폭을 소비할 경우, NMS가 문제를 정확히 찾아내서 관리자가 네트워크를 최적화할 수 있도록 돕습니다. ▲ 제니우스(Zenius)를 활용한 성능 모니터링 화면 예시 구성 관리 관리자는 NMS를 통해 분산된 네트워크 장치 구성 프로세스를 자동화하여, 네트워크 전반에 걸쳐 일관성과 정확성을 보장할 수 있습니다. 이러한 핵심 기능을 하는 NMS의 구체적인 활용 사례를 살펴보겠습니다. │NMS(네트워크 관리 시스템)의 활용 사례 IT 분야뿐 아니라 제조업, 금융, 여행, 유통 및 물류 등 전 분야에 걸쳐서 NMS가 사용되고 있습니다. 특히 처리 속도, 가용성, 보안 등이 중요한 금융산업의 경우에 NMS를 통한 안정적인 관리가 중요한데요. 브레인즈컴퍼니의 제니우스(Zenius) EMS를 사용하고 있는 S금융사의 사례를 자세히 살펴보겠습니다. S금융사, Zenius NMS를 통해 완벽하게 네트워크를 관리하게 되다 S금융사는 서버만 800ea, NW 14,000ea 이상의 대규모 인프라를 보유하고 있었습니다. 하지만 Zenius NMS 도입 전까지는 서비스 장애에 영향을 준 네트워크 장애 원인 파악을 위한 장기간 투자하고 있는 상황이었고, 네트워크 운영 현황 데이터 수집과 분석에 많은 시간이 소요되고 있었습니다. 무엇보다 신속한 장애 인지와 처리가 어려워서 큰 고민이 있었는데요. 위 도표에서도 살펴본 것처럼 Zenius NMS 도입을 통해, 이전에 고민과 단점을 극복하고 안정적으로 네트워크 관리를 할 수 있게 되었습니다. 특히 Zenius NMS는 고성능의 Manager를 제공하고 있어 대규모 환경에서도 장애를 신속하게 판단하여, 타사 대비 많은 자원을 효율적으로 관리할 수 있습니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼 NMS는 네트워크 인프라를 효율적으로 관리하는데 가장 중요한 역할을 합니다. 제니우스(Zenius) NMS처럼 고성능의 Manager를 기반으로 네트워크 상태를 신속하게 판단하며, 유저 중심의 통합 UI를 제공하는 NMS 솔루션을 꼭 선택하시기 바랍니다!
2024.01.31
기술이야기
가트너부터 딜로이트까지, 2024 IT트렌드 총정리
기술이야기
가트너부터 딜로이트까지, 2024 IT트렌드 총정리
지난해는 AI를 중심으로 IT 전 분야에서 혁신적인 변화가 있었고, 올 2024년에는 변화의 속도가 더 빨라질 것으로 예상됩니다. 따라서 이와 같은 빠른 변화를에 얼마나 잘 대처하는지가 점점 더 중요해지고 있는데요. 변화를 더 자세하고 빠르게 파악하기 위해서 가트너, 딜로이트, 포레스터 리서치가 발표한 2024 IT 트렌드의 핵심 내용을 모아봤습니다. 。。。。。。。。。。。。 가트너, AI가 가져올 구체적인 변화에 주목하다 가트너는 AI TRiSM부터 Machine Customers까지 총 10개의 주제로 2024년 IT 트렌드를 정리했습니다. 특히 AI와 클라우드를 통한 산업에서의 구체적인 변화에 주목했는데요. 자세한 내용을 살펴보겠습니다. [1] AI TRiSM: AI의 신뢰, 위험 및 보안 관리 AI TRiSM(AI Trust, Risk, and Security Management)은 인공지능 시스템의 신뢰성, 위험, 보안을 관리하는 프레임워크입니다. AI가 윤리적이고 공정하며 투명해야 함을 의미하며, 잠재적 위험을 식별하고 완화하는 데 중점을 둡니다. 보안 관리는 AI 시스템을 사이버 공격과 데이터 유출로부터 보호합니다. AI TRiSM은 의료·금융·자율주행 차량 등, 다양한 분야에서 AI의 안전하고 책임 있는 사용을 보장하는 데 필수적입니다. 이를 통해서 AI 기술의 지속 가능한 발전과 사회적 신뢰를 유지할 수 있습니다. [2] CTEM: 지속적인 위협 노출 관리 Continuous Threat Exposure Management(CTEM)은 사이버 보안 분야에서 조직의 지속적인 위협 노출을 관리하는 전략입니다. 이 방법론은 실시간 모니터링, 자동화된 위험 평가, 적응적 대응 전략을 포함하며 장기적으로 비즈니스의 연속성을 보장하는데 기여합니다. 예를 들어 금융 서비스 회사는 네트워크와 시스템을 지속적으로 스캔하여 취약점을 탐지하고, 감지된 위협에 대해 우선순위를 매겨 신속하게 대응해야 합니다. 또한 소프트웨어 개발 회사는 개발 중인 소프트웨어와 인프라를 모니터링하여 보안 취약점을 조기에 발견하고, 자동화된 도구를 사용해 코드의 취약점을 수정해야 합니다. [3] Sustainable Technology: 지속 가능한 기술 지속 가능한 기술은 환경 영향을 줄이고 지속 가능성을 촉진하는 혁신 및 관행을 포함합니다. IIoT(산업용 사물 인터넷) 센서와 AI를 사용하여 공급망 작업을 최적화하고, 탄소 배출을 줄이며 전반적인 장비 효율성을 향상시키는 산업이 좋은 예입니다. 또한 자급자족 LED 조명, 전기 교통, 태양 에너지, 탄소 포집 및 저장 기술 등의 지속 가능한 기술과 관행도 포함됩니다. 가트너는 또한 지속 가능한 기술이 위험 감소, 운영 효율성 향상, 경쟁 우위 획득, 인재 유치, 환경 및 사회적 책임 강화와 같은 비즈니스 이점을 제공한다고 강조합니다. [4] Platform Engineering: 플랫폼 엔지니어링 플랫폼 엔지니어링은 개발자와 사용자가 쉽게 사용할 수 있는 도구, 기능 및 프로세스 세트를 제공하는 방식입니다. 사용자의 생산성을 높이고 부담을 줄이는데 중점을 둡니다. 플랫폼 엔지니어링은 사용자의 특정 요구와 비즈니스 요구에 맞게 플랫폼을 수정합니다. 전담 제품 팀은 재사용 가능한 도구와 적절한 기능을 제공하며, 사용자 친화적인 인터페이스 솔루션을 제공합니다. 자동화된 프로세스 및 의사 결정을 위한 기초를 제공하며, 복잡한 상황에서도 디지털 개발을 가속화하게 하는 Be Informed 플랫폼이 좋은 예입니다. [5] AI-Augmented Development: AI 증강 개발 소프트웨어 개발 과정에서 AI를 활용하여 개발자의 작업을 돕고, 테스트 플랫폼과 문서 작성을 지원하는 것을 뜻합니다. GitHub Copilot, Replit GhostWriter, Amazon CodeWhisperer와 같은 AI 기반 코드 생성 서비스가 좋은 예입니다. 이러한 AI 기반 코딩 도우미를 사용하여 업무의 효율을 높일 수 있지만, AI가 오류를 발생시킬 수 있고 독창적인 코드를 생성할 수 없기에 개발자의 역할은 여전히 중요합니다. [6] Industry Cloud Platforms: 산업 클라우드 플랫폼 Industry Cloud Platforms은 특정 산업에 특화된 기능을 제공하는 클라우드 서비스입니다. SaaS(Software as a Service), PaaS(Platform as a Service), IaaS(Infrastructure as a Service)를 결합하여 업계별 맞춤형 기능을 제공합니다. 구체적으로 네 가지의 서비스를 예로 들 수 있습니다. ◾ AWS for Healthcare AWS는 의료 산업에 특화된 클라우드 서비스를 제공하여 의료 데이터 관리, 환자 관리, 의료 연구 등을 지원합니다. ◾ Microsoft Cloud for Financial Services 금융 산업에 맞춤화된 클라우드 솔루션을 제공하여 은행업, 보험 업계에서 사용되고 있습니다. ◾ GCP for Retail Google은 소매 산업에 특화된 클라우드 서비스를 통해 고객 데이터 분석, 재고 관리, 전자상거래 솔루션 등을 지원합니다. ◾ IBM Cloud for Telecommunications 통신 산업에 최적화된 클라우드 서비스를 제공하여 네트워크 운영, 고객 서비스 향상, 신기술 적용 등을 지원합니다. 이러한 산업별 클라우드 플랫폼은 기업이 보다 효율적으로 운영하고 혁신을 가속화하는 데 도움을 줍니다. [7] Intelligent Applications: 지능형 애플리케이션 Intelligent Applications은 인공지능(AI)과 머신러닝 기술을 활용하여 데이터를 분석하고, 사용자 행동을 예측하는 등의 기능을 제공합니다. 자동화된 의사결정, 사용자 맞춤형 경험 제공, 그리고 비즈니스 프로세스의 효율성 향상을 위해 설계되었습니다. 예를 들어 고객 서비스를 위한 AI 기반 챗봇, 데이터 분석을 통해 사용자에게 맞춤형 추천을 제공하는 소매 애플리케이션, 또는 실시간 의료 데이터 분석을 제공하는 헬스케어 애플리케이션 등이 있습니다. Salesforce Einstein, Google Cloud AI, IBM Watson, Microsoft Azure AI가 지능형 애플리케이션에 해당합니다. [8] Democratized Generative AI: 민주화된 생성 AI Democratized Generative AI는 인공지능의 생성 능력을 널리 사용할 수 있게 하는 개념으로, 비전문가도 쉽게 사용할 수 있는 AI 도구와 플랫폼을 의미합니다. 창작물 생성, 데이터 분석, 예측 모델링 등 다양한 분야에서 사용됩니다. 구체적인 서비스나 회사로는 OpenAI의 GPT-, Google의 DeepMind, Adobe의 Sensei와 같은 플랫폼들이 이에 해당합니다. 이러한 도구들은 사용자가 복잡한 알고리즘을 직접 다루지 않고도 AI의 혜택을 누릴 수 있게 해줍니다. [9] Augmented Connected Workforce: 증강 연결된 노동력 기술을 활용하여 직원들의 작업 능력을 향상시키고 원격 협업을 강화하는 전략입니다. 가상 현실, 증강 현실, 인공지능 등을 포함하는 다양한 기술을 활용하여 직원들이 더 효율적이고 효과적으로 협업하고 작업할 수 있도록 지원합니다. Microsoft의 HoloLens와 같은 증강 현실 기기나 Slack, Microsoft Teams와 같은 협업 플랫폼이 좋은 예입니다. 이러한 기술들은 직원들이 시간과 장소의 제약 없이, 효과적으로 협업하고 작업할 수 있는 환경을 만들어줍니다. [10] Machine Customers: 기계 고객 기계나 소프트웨어가 독립적으로 결정을 내리고 트랜잭션을 수행하는 시나리오를 말합니다. 예를 들어 IoT(사물 인터넷) 기기나 자동화 시스템이 소비자 역할을 수행하여 자동으로 주문하거나, 서비스를 요청하는 것입니다. Amazone Dash의 예시 소모품의 사용량을 체크하여 필요할 때 자동으로 주문하는 Amazon의 Dash Service가 대표적인 예입니다. 이러한 기술은 자동화된 공급 체인 관리와 효율적인 재고 관리 등에 기여하며, 비즈니스와 소비자 모두에게 편리함을 제공합니다. 딜로이트, 6가지 트렌드에 주목하다 딜로이트(Deloitte)는 2024 IT 트렌드를 아래와 같은 여섯 개의 주제로 정리했습니다. [1] 공간 컴퓨팅과 메타버스 메타버스는 기업의 주요 도구로 자리 잡고 있으며, 공간 컴퓨팅 기술도 점점 더 중요한 역할을 할 예정입니다. 디지털 트윈, 5G, 클라우드, 엣지, AI 기술에 대한 투자가 이 변화를 주도하고 있습니다. [2] 생성형 AI 생성형 AI는 비즈니스를 개선하고 혁신을 촉진하는 강력한 도구로, 전략적 계획과 특정 비즈니스 요구에 초점을 맞추어 구현되고 있습니다. 기업은 이 기술을 통해 각 분야에서 높은 경쟁력을 확보할 수 있습니다. 사용자의 시청 패턴과 선호도를 분석하여, 개인화된 추천 콘텐츠를 제공하는 Netflix와 Spotify가 가장 기본적이고 좋은 예입니다. [3] 새로운 컴퓨팅 방식의 도입 비즈니스는 기존 인프라를 더 효율적으로 활용하고, 최첨단 하드웨어를 추가하여 프로세스를 가속화하고 있습니다. 일부 기업은 이전 컴퓨팅을 넘어서 클라우드, 엣지, 양자 컴퓨팅 등 새로운 컴퓨팅 방식을 모색하고 있습니다. [4] 개발자 경험 강화(DevOps를 넘어 DevEx로) 기술 인재를 유치하고 유지하기 위해 회사들은 개발자 경험에 초점을 맞추고 있습니다. Github Copilot 같은 코드 자동 완성 및 분석 도구의 도입, 통합 개발 환경(IDE) 최적화, 컨테이너화 및 오케스트레이션 도구 도입 등이 이에 해당합니다. 이러한 노력은 결국 최종 사용자의 경험을 향상시켜 비지니스 성과를 높여줄 예정입니다. [5] 합성 미디어 시대의 진실 방어 AI의 부상으로 인해 악의적인 딥페이크 콘텐츠가 증가함에 따라, 각 기업과 조직들은 유해 콘텐츠를 식별하고 잠재적 공격을 예측하기 위한 방법을 도입하고 있습니다. 특히 2024년은 미국 대통령 선거 등 중요한 이벤트가 많기에 중요한 이슈로 떠오를 예정입니다. [6] 기술적 부채에서 기술적 웰니스로 각 회사와 조직은 기존 코어 시스템, 인프라, 데이터, 애플리케이션을 포함한 노후화된 시스템을 현대화해야 합니다. 이를 위해 정기적인 점검과 예방적 관리에 중점을 두는 새로운 접근 방식이 필요합니다. 포레스터 리서치, 생성형 AI와 디지털 혁신에 주목하다 포레스터 리서치에 따르면 전 세계 기술 분야에 대한 투자는 5.3% 증가할 것으로 예상됩니다. 이 중 금융 서비스와 헬스케어가 가장 빠른 성장세를 보일 것이고, 클라우드 컴퓨팅을 포함한 IT 서비스와 소프트웨어 분야는 2027년까지 가장 높은 비중을 차지할 예정입니다. 또한 기업이 위험을 줄이고 경쟁력을 확보하기 위해선 생성형 AI, 그리고 녹색 및 디지털 혁신 등에 주목해야 합니다. 생성형 AI 생성형 AI는 2024년에 중요한 역할을 할 것으로 예상됩니다. 대형 컨설팅 회사들은 생성형 AI에 큰 규모의 투자를 할 것이며, 해당 기업들은 경쟁력을 높이기 위해 AWS, Microsoft Azure, GCP 등과 파트너십을 맺을 것으로 예상됩니다. 이제 각 기업이 생성형 AI를 활용하여 실질적인 이윤을 추구하기 시작할 것이기 때문에, 2024년을 '의도적 AI 시대(era of intentional AI)의 원년'이라고도 말할 수 있습니다. 녹색 및 디지털 혁신 데이터 센터의 에너지 효율을 높이기 위한 노력이 진전을 보이고 있습니다. 2030년까지 데이터 센터를 탄소 중립으로 만들겠다는 약속이 강화되고 있습니다. 이는 지속 가능하고 환경친화적인 기술로의 전환의 시작을 뜻합니다. 기술 리더들의 도전 기술 분야의 리더들이 인재를 발굴하고 비즈니스 전략과 기술을 조화시키는데 어려움을 겪을 것으로 예상됩니다. 또한 AI와 관련된 기술의 수요가 빠르게 증가할 것이기에, 관련된 기술과 경험을 기르는 것도 매우 중요해지고 있습니다. 마지막으로 포레스터는 기업들의 경쟁력 유지와 성장 촉진을 위해 위와 같은 트렌드를 빠르게 받아들여야 한다고 강조했습니다. 매튜 구아리니 포레스터 리서치 부사장은, "전체 기술 전략을 핵심까지 현대화하고 조직과 운영을 크게 향상시켜야 성과를 얻을 수 있다"라고 말했습니다. 。。。。。。。。。。。。 가트너, 포레스터 리서치, 딜로이트가 전망한 2024 IT 트렌드를 살펴봤습니다. 트렌드를 아는 것에서 그치는 것이 아니라 발 빠르게 대응하는 것이 가장 중요합니다. 브레인즈컴퍼니는 트렌드에 빠르고 효과적으로 대응할 수 있도록, 제니우스(Zenius)를 통해 쿠버네티스(Kubernetes)를 비롯한 프라이빗/퍼블릭/하이브리드 클라우드 환경, 온-프레미스 환경 모두를 완벽하게 관리할 수 있는 서비스를 제공하고 있습니다. 또한 브레인즈컴퍼니의 자회사인 에이프리카는 AI 비즈니스를 위한 쿠버네티스 기반의 AI 개발 통합 플랫폼 솔루션과, 멀티 클라우드 통합 관리 플랫폼(CMP) 솔루션을 제공하고 있습니다(🔍에이프리카 솔루션 자세히 보기). 힘차게 시작한 2024년, 올 한 해는 또 얼마나 큰 변화가 있을까요? 이 글을 읽으시는 모두가 변화에 앞서가서 성공 스토리를 만들 수 있기를 기원합니다.
2024.01.19
기술이야기
클라우드 전환과 하이브리드 클라우드가 성공하려면?
기술이야기
클라우드 전환과 하이브리드 클라우드가 성공하려면?
정부와 공공기관, 그리고 금융권과 대기업 등 모든 분야에서 클라우드 전환이 가속화되고 있습니다. 이에 따라서 가트너(Gartner)는 2018년 약 2.1조 원이었던 국내 클라우드 시장 규모가 2024년에는 약 '6조 원'에 이를 것으로 내다봤습니다. 。。。。。。。。。。。。 1. 클라우드 전환 단계 ▪초창기: 소규모 Workload가 시범적으로 전환되는 시기 ▪과도기: 인프라, 네이티브 앱 등 주요 Workload가 전환되는 시기 ▪정착기: 모든 Workload가 클라우드에서 개발/구축되는 시기 클라우드 전환은 크게 세 단계로 나누어서 진행됩니다. 대부분의 기업과 기관이 현재 '클라우드 전환 과도기'에 접어든 가운데, 몇 가지 작지 않은 이슈로 인한 어려움을 겪고 있습니다. 2. 클라우드 송환? 클라우드에서 On-Premise로 복귀?! IDC는 최근, "향후 2년 내 프라이빗 클라우드(Private Cloud) 또는 비 클라우드 환경으로의 이전을 계획하고 있는 기업의 비중이 70%가 넘는 것으로 나타났으며, 이러한 현상은 더욱 심화될 전망이다"라고 발표했습니다. '클라우드 송환(Cloud Repatriation)'이라고도 부를 수 있는 이 같은 현상은, 주로 클라우드의 높은 비용·성능 문제·보안 및 규제·공급자 Lock-in 등이 주요 원인으로 지적되고 있습니다. 이와 같은 클라우드 전환 과도기에서의 어려움을 극복하고 효율성을 높이기 위해, '하이브리드 클라우드'로의 전환이 새로운 트렌드로 자리 잡았습니다. 3. 유연하게 활용한다! ‘하이브리드 클라우드’로의 전환 트렌드 하이브리드 클라우드(Hybrid Cloud)는 퍼블릭·프라이빗 클라우드와 대형 IDC 센터와 같은, 온프레미스(On-Premise) 환경을 조합하여 사용하는 것을 말합니다. ⓒ디지털 서비스 이용 지원 시스템 현재 87% 이상의 기업이 2가지 이상의 멀티 클라우드를 사용하며, 72% 이상은 하이브리드 클라우드를 사용하는 것으로 나타났습니다. 하이브리드 클라우드의 장점 ▪다양한 환경을 조합하여 유연하게 리소스를 확장하거나 축소 가능 ▪민감정보를 프라이빗 클라우드에 유지하여 보안성 강화 ▪서로 다른 클라우드 환경의 장점의 조합 및 활용 가능 하이브리드 클라우드는 위와 같은 분명한 장점이 있기에, 계속해서 많은 기업과 기관이 사용할 것으로 예상됩니다. 하지만 하이브리드 클라우드도 반드시 극복해야 할 한계와 문제점이 있습니다. 하이브리드 클라우드의 한계는 크게 세 가지로 나눠볼 수 있는데요. 4. 하이브리드 클라우드의 세 가지 한계, 그리고 극복 방안 관리의 복잡성 Complexity On-Premise, 하이브리드 클라우드, 퍼블릭 클라우드 등은 모두 서로 다른 인프라 구성과 특성을 보유하고 있습니다. 따라서 다양한 CSP와 Legacy 시스템 등을 종합적으로 관제하기 위한 모니터링 기술이 필요합니다. 정책의 분산화 Decentralization 각 CSP의 독자적인 기술과 운영환경에 따라, 기업의 IT 인프라 관리 정책이 분산화될 우려가 있습니다. 따라서 서로 다른 API 환경에 대응할 수 있는 중립적인 모니터링 접근 방식이 필요합니다. 서비스 품질 이슈 Quality 이기종 환경에서의 실시간 성능 모니터링 부재로, 서비스 품질 및 성능 문제가 발생할 수 있습니다. 따라서 실시간 상태 및 성능 지표 모니터링을 통한 최적의 프로비저닝 역량 확보가 중요합니다. 결국 하이브리드 클라우드의 세 가지 한계를 극복할 수 있는 '성공적인 모니터링 전략'이 필요합니다. 5. 하이브리드 클라우드 환경에서의 성공적인 모니터링 전략 앞서 살펴본 것처럼 하이브리드 클라우드의 효율을 높이고 한계를 극복하기 위해선, 성공적인 클라우드 & On-Premise 통합 모니터링이 필요합니다. 통합 모니터링을 통해서 다양한 관리 Point를 단일화하고, 일관된 IT 정책을 적용하며, 다양한 관점별 View를 통한 데이터 가시성을 확보할 수 있습니다. 또한 각 환경에 대한 실시간 성능 지표 모니터링과 신속한 장애 감지 및 원인 분석을 통해, 높은 서비스 품질을 유지할 수 있습니다. 주요 Point에 대해서 자세히 살펴본다면 다음과 같습니다. l 단일 Framework 기반의 통합 모니터링 환경 구성 성공적인 모니터링을 위해서는 Public/Private 클라우드와 On-Premise를 아우르는 단일 Framework 기반의 통합 모니터링 환경을 구성해야 합니다. 다양한 환경에 대한 통합 모니터링 시스템을 구축하여, 대시보드와 토폴로지 맵 등을 통해 분산된 IT 리소스와 서비스 정보를 한눈에 볼 수 있어야 하는 것이죠. l 퍼블릭 클라우드 모니터링: 통합 관리 및 운영 가시성 확보 제니우스(Zenius)의 클라우드 서비스 맵 이용 중인 클라우드 서비스 전체 및 개별 단위의 주요 지표 상세 모니터링으로, 가시성을 확보해야 합니다. 이를 통해서 다양한 서비스의 주요 지표를 관리, 이용 서비스 간의 연관관계 관리, 과금(Billing) 관리, 즉각적인 장애 관리를 할 수 있습니다. l 프라이빗 클라우드 모니터링: 개별적인 구성 환경을 고려한 모니터링 각 기업과 공공기관 개별적인 클라우드 구성 환경을 고려하여, 클라우드 인프라 자원을 관리하고 활용도를 높이기 위한 모니터링 전략도 필요합니다. 위의 설명처럼 쿠버네티스(Kubernetes), 컨테이너(Container), SDN 등 프라이빗 클라우드 환경을 구성하는 요소를 다각적으로 관리하여 IT 인프라 자원의 활용도를 향상시켜야 합니다. l MSA 기반 애플리케이션 모니터링 IDC에 따르면 2025년에 출시되는 앱의 90% 이상이 '클라우드 네이티브'로 구현될 전망이라고 합니다. 클라우드 네이티브의 핵심은 'MSA(Micro Service Architecture)' 방법론으로의 전환입니다. 애플리케이션을 효과적으로 실행·배포·활용하기 위한 핵심요소는 'Container'이죠. 따라서 MSA 환경에서의 성공적인 애플리케이션 관리를 위해서는 실시간 모니터링, 분산 시스템 관제, 서비스 수요 변화 대응 이 세 가지가 가장 중요합니다. 위 도표에 정리된 것처럼 컨테이너 기반의 마이크로 서비스 모니터링, 복잡화된 시스템 간 트랜잭션 분석 및 가시화, 오토스케일링 자동 대응을 통한 관제 연속성 확보 전략을 구축한다면 성공적으로 MSA 기반의 애플리케이션 모니터링을 할 수 있습니다. l 레거시 환경 모니터링 마지막으로 On-premise로 자체 보유하고 있는 레거시 장비와 프라이빗 클라우드 장비가 있는 전산실의 성공적인 모니터링을 위해서는, 먼저 On-premise 환경을 고려한 최적의 포인트 솔루션과 통합 플랫폼 기반 모니터링이 확보되어야 합니다. 또한 안정적인 On-Premise 환경 운영을 위해 전산실 부대설비(UPS, 항온 항습기 등), 환경감시(온/습도, 누수 등)에 대한 레거시 환경 맞춤형 관리가 가능해야 합니다. 물리/가상 자원 간의 그룹화 관리 기능, 다양한 자원 간의 이벤트 연관 설정 및 분석 기능도 성공적인 레거시 환경 모니터링을 위한 필수조건입니다. 6. 성공적인 모니터링 솔루션 선택 기준은? 클라우드 전환기, 하이브리드 클라우드 환경에서 성공적인 모니터링을 위한 루션 선택 기준은 1) 기술력이 있는지 2) 검증된 솔루션인지 3) 믿을 수 있는 기업인지 이렇게 세 가지로 정리할 수 있습니다. 하나, 기술력이 있는 솔루션인가? 클라우드와 레거시 통합을 위한 프레임워크 기반의 솔루션인지, 그리고 여러 환경에 존재하는 IT 자원을 통합적으로 가시화할 수 있는지, 변화에 쉽게 대응할 수 있는 사용자 맞춤 설계형 대시보드를 제공하는지를 꼭 살펴봐야 합니다. 브레인즈컴퍼니 제니우스(Zenius)의 퍼블릭 클라우드 서비스 관제 예시 또한 AI 기술을 통해 장애를 사전에 예방하는 제니우스(Zenius) 처럼, 서비스 장애로 인한 손실을 방지하기 위한 사전 장애 감지 및 대응도 지원하는지 꼭 살펴봐야 합니다. 업무 효율과 편의성을 높이기 위한 오토스케일링 자동 대응, 장애/이벤트 오토리커버리 등 운영 자동화 기능도 필수 요소입니다. 둘, 검증된 솔루션인가? 클라우드 서비스 보안인증(CSAP), 마켓플레이스 등록 등 클라우드 환경에서의 성능 검증 절차 등 거친 솔루션인지도 중요하게 살펴봐야 합니다. 또한 다수의 공공기관 및 다양한 산업군에서 사용되고 있는지도 중요한 판단 기준입니다. 셋, 믿을 수 있는 기업의 솔루션인가? 마지막으로 모니터링 서비스를 개발 및 운영한 업력, 재무 상태 안정성, 전문 인력 보유 등으로 지속적인 지원이 가능한 기업의 솔루션인지를 검토해 봐야 합니다. 。。。。。。。。。。。。 브레인즈컴퍼니는 전통적인 IT 인프라 모니터링 시장에서의 경험을 바탕으로, 하이브리드 환경에서의 성공적인 모니터링을 수행하고 있습니다. 이제 필수가 된 클라우드 전환, 제대로 된 솔루션 선택을 통해 성공적으로 진행하시기 바랍니다!
2024.01.18
기술이야기
테라폼(Terraform)의 모든 것, 그리고 AWS EC2 생성하기
기술이야기
테라폼(Terraform)의 모든 것, 그리고 AWS EC2 생성하기
클라우드 환경이 도래하면서 CSP(Cloud Service Provider)에서는 콘솔을 통해 클라우드 자원에 쉽게 접근할 수 있게 되었습니다. 하지만 서비스를 운영하며 발생하는 다양한 이슈를 콘솔에서 전부 관리하기에는 무리가 있습니다. 반복적인 작업과 휴먼에러가 발생하기 때문이죠. 이러한 문제를 한 번에 해결할 수 있는 방법이 바로 IaC(Infrastructure as Code)입니다. 인프라를 코드로 관리하는 컨셉으로, 효율적인 데브옵스와 클라우드 자동화 구축을 위해 ‘꼭’ 필요한 기술로 각광받고 있죠. 그중에서도 ‘테라폼(Terraform)’은 가장 강력한 IaC 도구로 꼽힙니다. “테라폼(Terraform)이란?” 테라폼은 하시코프(Hashicorp) 사에서 Go 언어로 개발한 오픈소스 IaC 도구입니다. 테라폼에서는 HCL(Hashicorp Configuration Language, 하시코프 설정 언어)을 사용해 클라우드 리소스를 선언합니다. *쉽게 설명한다면 코드로서 클라우드 인프라 서버를 더 효율적으로 구축하고, 운영할 수 있는 오픈소스 소프트웨어죠. 따라서 이번 시간에는 테라폼의 기본동작방식, 특장점, 명령어의 종류, 구체적인 활용 예시에 대해서 살펴보겠습니다. 。。。。。。。。。。。。 테라폼의 기본동작방식 테라폼은 Write, Plan, Apply 기본동작방식으로 이루어져 있는데요. Write 단계에서는 HCL 언어로 필요한 리소스를 선언하고, Plan 단계에서는 앞에서 선언된 리소스들이 생성 가능한지 테스트 및 예측 실행을 수행하며, Apply 단계에서는 선언된 리소스들을 CSP에 적용하는 과정을 거칩니다. *쉽게 설명한다면 Write 단계는 코드 기반으로 선언하고, Plan 단계는 코드 기반으로 검토하며, Apply 단계는 코드 기반으로 리소스를 생성하는 것이죠. 테라폼의 기본개념 테라폼의 주요 기본개념이자 구성요소입니다. 전부 필수적인 내용이지만 특히 Resource, Provider, State는 많이 쓰이는 중요 개념이며 하단 예시에도 나오니 꼭 기억해 두세요! 테라폼의 장점 테라폼은 다양한 장점들이 있는데요. 그중 가장 큰 장점은 자동화를 통해 코드 기반으로 서버 운영 및 관리가 가능한 점입니다. 초보자도 쉬운 코드 재사용을 통해, 효율적인 협업이 가능하고 생산성도 향상시킬 수 있죠. 또한 테라폼은 AWS, GCP(구글), Azure(MS), Naver Cloud(네이버클라우드) 등 다양한 환경에서 지원이 가능한데요. 즉 테라폼만으로도 멀티 클라우드 리소스들을 선언하고 코드로 관리할 수 있습니다. 테라폼의 명령어 테라폼에서 자주 쓰이는 명령어입니다. 그중에서도 코드를 통해 실행될 내용을 미리 확인하는 Plan, 코드 기반으로 리소스를 생성하는 Apply, 그리고 상태를 확인하는 State가 핵심 명령어로 많이 사용되고 있습니다. 테라폼의 활용예시 테라폼을 통해 많은 것을 할 수 있지만, 이번 시간에는 테라폼을 이용하여 AWS에 가장 중심이 되는 서비스인 EC2(AWS에서 제공하는 서버)를 생성해 보겠습니다. 또한 제니우스(Zenius) 모니터링까지 살펴봅시다! 우선 앞서 [테라폼의 기본동작방식]에서 설명했던 것처럼 테라폼은 Write, Plan, Apply 단계를 거치게 되는데요. 테라폼 명령어가 어떤 방식으로 쓰이고 반응하는지, 예시를 통해 확인해 볼까요? > Write 단계: Provider 및 Resource 선언하기 Writer 단계에서는 [테라폼의 기본개념]으로 언급된 *Provider, Resource를 코드 기반으로 선언한 부분을 확인할 수 있습니다. > Plan 단계: Terraform plan Plan 단계에서는 *Terraform plan을 통해 검증을 하게 되는데요. 위 사진 하단에 나와있듯 1개가 추가되고, 0개가 변하고 0개가 없어진다는 의미입니다. 이처럼 +을 통해 추가되는 인프라의 상세정보를 확인할 수 있습니다. > Apply 단계: Terraform apply Apply 단계에서는 앞서 구축 계획에 문제가 없다면 *Terraform apply를 통해 검증된 결과를 바탕으로 실제 인프라에 적용하는 단계입니다. apply 명령을 이용하여 리소스를 생성·수정·삭제하는 것이죠. > State로 확인해 보기 State list 명령어를 통해서도 확인해 보니, 1개의 인스턴스(instance, 클래스의 현재 생성된 오브젝트)가 확인 되네요. 앞서 State list 명령어를 통해 생성된 ‘부분’만 확인했다면, 이번에는 State show 명령어를 통해 어떻게 생성이 됐는지 ‘상세’하게 확인해 봅시다. State 명령어뿐만 아니라 State는 terraform.tfstate 파일로도 확인 가능해 인스턴스 Name 또한 비교해 보았습니다. 테라폼을 이용해 최종 목표였던 AWS에 EC2 인스턴스가 잘 생성이 되었는지 확인해 봐야겠죠? *빨간색 네모 박스에 표기되어 있는 것처럼 잘 생성 되었습니다. 여기서 다시 주목할 점은 AWS의 인스턴스를 생성하기 위해선, 여러 가지 절차를 거쳐야 하는데요. 테라폼을 이용하면 ‘코드’ 하나로 바로 생성이 가능하다는 점입니다. 코드 기반으로 서버운영 및 관리의 자동화라는 특장점 또한 다시 한번 상기해 볼 수 있겠죠? 이처럼 인프라 서버를 효율적으로 구축하는 테라폼을 이용하여, AWS에 EC2를 생성해 보았습니다. 하지만 ‘생성’만 중요한 게 아닌, 효율적인 클라우드 인프라 관리를 극대화하기 위해 ‘모니터링’하는 점도 매우 중요한데요. 테라폼처럼 매우 쉽고 효율적인 방법을 소개하겠습니다. 바로 AWS EC2 모니터링이 가능한 클라우드 서비스 모니터링 시스템인 제니우스-CMS(Zenius-CMS) 예시를 통해, 다양한 환경에서 인프라 모니터링을 어떻게 하고 있는지 살펴보겠습니다! Zenius에서 AWS 모니터링하기 Zenius-CMS는 API를 통해 AWS 계정 기반으로 자동 모니터링을 제공하고 있는데요. 테라폼을 통해 AWS에서 EC2가 코드 기반으로 쉽게 생성했던 것처럼, CMS도 간편한 AWS 모니터링 실행이 가능합니다. 위 사진처럼 EC2 클라우드 서버에 대한 성능도 모니터링이 가능하죠. 여기서 새로운 인스턴스를 추가하면, 이 또한 자동으로 모니터링이 됩니다. Zenius-CMS는 EC2뿐만 아니라 RDS, VPC 등 과금 현황까지 통합 모니터링할 수 있는데요. AWS 콘솔에 접속하지 않고도, AWS 주요 성능 지표에 대한 모니터링 추이도 확인할 수 있습니다. 。。。。。。。。。。。。 이번 시간에는 인프라 서버를 효율적으로 구축하는 테라폼에 대해 학습하고, AWS에 EC2를 생성해 보며 활용 예시까지 살펴보았습니다. 또한 제니우스-CMS(Zenius-CMS) 예시를 통해, AWS EC2 모니터링뿐만 아니라 다양한 환경에서 인프라 모니터링 방법을 알 수 있었는데요. 앞으로도 클라우드 환경에서의 인프라 관리뿐만 아니라, 다양한 환경에서의 모니터링이 가능한 제니우스 제품에 많은 관심 부탁드릴게요! 📚참고 자료 모두의 Terraform(테라폼) PART1 - 개념(230313) Terraform(테라폼)이란? 간단 사용기(220711) 테라폼(Terraform) 기초 튜토리얼(200314)
2024.01.11
기술이야기
쿠버네티스와 Helm 등 CNCF의 주요 프로젝트
기술이야기
쿠버네티스와 Helm 등 CNCF의 주요 프로젝트
지난 포스팅을 통해 정리한 것처럼 CNCF는 클라우드 네이티브 생태계의 활성화를 위해, 다양한 오픈소스 프로젝트를 개발하고 공급하고 있습니다. 또한 프로젝트 채택 단계부터 사용 빈도까지의 성숙도를 관리하기 위한, 프로세스 체계를 보유하고 있는데요. 이번 시간에는 CNCF의 주요 프로세스인 쿠버네티스(K8s), Helm 등과 CNCF 프로세스에 대해서 알아보고자 합니다. 。。。。。。。。。。。。 CNCF 프로젝트 프로세스 2023년 10월 기준으로 약 170여 개의 CNCF 프로젝트가 진행 중인데요. 이들 프로젝트는 성숙도에 따라서 샌드박스(Sandbox), 인큐베이팅(Incubating), 졸업(Graduated)으로 나뉩니다. 성숙도 수준에 대한 평가는 CNCF 위원회 멤버들에 의해서 결정되며, 졸업(Graduated) 단계의 프로젝트로 인정받기 위해서는 3분의 2 이상의 찬성 표가 필요합니다. ▲프로젝트 성숙도 단계 Step1. 샌드박스(Sandbox) CNCF의 새로운 프로젝트가 채택되면 Sandbox 단계에서 시작합니다. 이 단계에서는 프로젝트가 CNCF의 가이드라인과 정책에 부합되는지를 확인하는 절차를 주로 거칩니다. Step2. 인큐베이팅(Incubating) Sandbox를 통과한 프로젝트는 Incubating 단계로 집입하며, 이 단계에서는 프로젝트의 커뮤니티와 기술적 성숙도를 더욱 강화하도록 합니다. 해당 프로젝트의 커뮤니티의 규모와 다양성을 평가하고 기능들의 안정성을 검증합니다. Step3. 졸업(Graduated) Incubating 단계를 성공적으로 통과한 프로젝트는 Graduated 단계로 올라갑니다. 높은 수준의 품질과 안정성이 보장되어야 이 단계에 올라갈 수 있는 거죠. 커뮤니티가 활발하게 유지되고 관련자의 참여가 적극적으로 이루어져야 하며, 실제 사용 사례에서 성공한 경험들이 존재해야 합니다. Step4. 사용 사례 검증 Graduated 프로젝트 중 실제로 다양한 산업에서 사용되고, 기업과 조직이 해당 프로젝트를 많이 채택하는지를 평가하여, 지속적인 성장 가능성과 성숙도를 평가합니다. CNCF에서 관리하는 프로젝트 영역은 꽤 넓고 다양한데요. 애플리케이션 개발을 위한 도구부터 컨테이너 오케스트레이션, 서비스 프로비저닝, 모니터링 도구 등 소프트웨어 개발부터 운영까지를 위한 도구들이 존재합니다. 이제부터는 가장 성공적인 프로젝트인 쿠버네티스를 포함하여, Incubating 단계 이상의 프로젝트를 알아보고자 합니다. CNCF의 주요 프로젝트 쿠버네티스(kubernetes) 쿠버네티스는 CNCF에서 최초로 Graduated 단계에 진입한 프로젝트입니다. 컨테이너 오케스트레이션 기능을 통해, 애플리케이션 컨테이너 기반으로 자동화하고 확장할 수 있는 플랫폼을 제공합니다. A. 컨테이너 오케스트레이션 기능 컨테이너화된 애플리케이션을 자동으로 배포·확장하고 관리하는 기능을 제공합니다. 애플리케이션의 변경이 필요할 경우, 개발자가 애플리케이션을 빠르게 수정 및 배포하고 운영할 수 있게 합니다. B. 스케일링 기능 리소스 사용량이나 사용자 트래픽 증가에 따라 자동으로 애플리케이션을 확장·축소하는 오토 스케일링 기능을 제공합니다. C. 롤백 기능 문제가 발생된 애플리케이션의 경우, 롤백 기능을 제공하여 서비스 장애에 신속히 대응합니다. Helm Helm은 쿠버네티스 환경에서 애플리케이션을 관리하기 위한 도구로 사용됩니다. Helm은 차트라고 불리는 패키지로 애플리케이션을 패키징 하는데요. 이 차트에는 애플리케이션의 설치부터 관리에 필요한 모든 것을 포함합니다. 쉽게 말하면 이 차트라는 기능을 통해 애플리케이션을 탬플릿화하고, 배포하며, 롤백 및 공유하는 역할을 하는 프로젝트입니다. Envoy ▲Envoy를 사용하는 주요 업체 리스트 ⓒenvoyproxy.io Envoy는 클라우드 네이티브 환경에서 애플리케이션의 네트워크 트래픽을 관리하고, 제어하기 위한 프로젝트입니다. 프록시 기능을 수행하고, 클라이언트 서버 간의 통신을 관리하며, 애플리케이션 간의 통신의 보안 향상시킵니다. 여러 애플리케이션 사이에서 부하 분산을 자동화하여 가용성과 성능을 향상시킬 수 있도록 합니다. 부하 분산을 함에도 불구하고 특정 시스템에 부하가 생겨 장애 발생이 생길 경우, 트래픽을 가중치에 따라 다른 시스템으로 분산시키는 역할을 합니다. Containerd Containerd는 쿠버네티스 환경에서 컨테이너를 만들고 실행하는 데 도움을 주는 프로젝트입니다. 개발자가 컨테이너를 만들고 실행시키는 역할을 하며, 필요할 때는 중지하거나 삭제하는 작업을 지원합니다. 컨테이너 실행에 필요한 파일과 설정을 모아 놓은 이미지를 다운로드하고, 저장하며, 불러오는 역할과 같은 이미지 관리 기능도 제공하고 있습니다. Prometheus Prometheus는 시스템이나 애플리케이션의 동작을 실시간으로 모니터링하고, 이상 상황이 발생할 경우 알림을 줄 수 있는 도구입니다. 다양한 데이터를 수집하고 기록하여 차후 분석 용도로 활용할 수 있습니다. 또한 핵심 지표들을 유형 및 종류별로 제공하여, 다각적인 관점에서의 관찰을 지원합니다. 시스템의 리소스부터 애플리케이션의 동작 및 응답 상태를 적시에 확인하게 해줍니다. Fluentd ▲Fluentd 개념 설명 ⓒfluentd.org Fluentd는 다양한 시스템에서 발생되는 로그 데이터를 수집·처리·전송하는 데이터 수집 도구로서, 스플렁크(SPLUNK)와 유사한 역할을 수행하는 프로젝트입니다. 다양한 소스에서 발생되는 로그를 수집할 수 있을 뿐만 아니라, 원하는 목적지의 저장소까지 전송하는 역할을 수행합니다. 예를 들어 Syslog 등을 실시간 수집하고, 이를 Elasticsearch나 Amazon S3 등의 원하는 저장소로 목적지를 설정할 수 있게 합니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼, CNCF에서 클라우드 네이티브 생태계 활성화를 위해 다양한 프로젝트를 진행하고 있는데요. 브레인즈컴퍼니 역시 클라우드 네이티브 모니터링을 위한 다양한 제품과 기능 등을 속속 출시하고 있습니다. 대표 제품인 제니우스(Zenius)를 통해 클라우드 네이티브의 핵심요소인 컨테이너(Docker)의 상태와 리소를 실시간으로 모니터링할 수 있습니다. MSA 환경을 만들기 위한 필수 도구인 쿠버네티스(K8s)의 Cluster·Node·Pod 등의 구성과 변화를 관찰하며, 이상 상황 알림을 통해 선제적 장애 대응 또한 가능합니다. Zenius에 대해 더 자세히 알고 싶으시다면, 바로 아래 링크를 클릭해 주세요! 🔍더보기 Zenius로 클라우드 네이티브 모니터링하기 CNCF 세 가지 핵심가치(1탄)도 있어요
2024.01.03
기술이야기
디자인 시스템이 필요한 이유와 핵심요소는?
기술이야기
디자인 시스템이 필요한 이유와 핵심요소는?
“우리나라 금융 유니콘 기업이 개발과정에서 1,000시간을 아낀 비결” “애플과 구글이 제품을 기획하고 개발할 때 가장 중요하게 생각하는 것” 디자인 시스템은 무엇일까? 위에 있는 두 문장의 답은 바로 ‘디자인 시스템’이에요. 고객이 하나의 브랜드를 접하는 순간부터 끝까지 지속적으로 동일한 경험을 하게 해주는 디자인 시스템의 중요도는, 점점 더 커지고 있죠. 디자인 시스템은 시맨틱 컬러, 컴포넌트 디자인, 디자인 토큰 등을 구축하여 제품 전반에서 사용자가 일괄적인 시각적 경험을 할 수 있도록 도와주고 있어요. 제품을 더 빠르고 효율적으로 만들어주기도 해요. 그리하여 이번 시간에는 1) 디자인 시스템은 구체적으로 무엇이고 2) 브레인즈컴퍼니는 어떤 노력을 하고 있는지 살펴볼게요! 디자인 시스템의 요소1 : 시맨틱 컬러 ▲Zenius ITSM 버튼에 적용된 컬러 시스템 디자인 시스템의 중요 요소 중 하나인 '시맨틱 컬러'는, 사용 방법에 따라 색상 이름을 지정하는 방법이에요. 브레인즈컴퍼니의 제니우스(Zenius)도 시맨틱 컬러를 사용하고 있는데요. Primary, Secondary, Tertiary, Ghost, Gray, Severity Color 등으로 구성되어 있어요. 여기서 Primary 컬러는 UI 전체의 주요 구성 요소에 대한 역할을 해줘요. 가장 중요한 액션에 사용하며, 화면에서 가장 강력한 클릭 유도 문안인 CTA(call to action)을 강조하기 위해 사용하기도 하죠. ▲Zenius ITSM Primary 컬러의 변천사 Zenius ITSM은 BI 컬러를 보완한 Primary 색상을 사용 중이며, Secondary와 Tertiary는 이와 어울리는 색상을 지정해 사용하고 있어요. 브레인즈컴퍼니의 컬러는 선명한 파란색이지만, 제품 화면에 사용하기에는 채도가 너무 높아 두 번의 GUI 테스트를 거쳐 위와 같이 보완한 색상이 나왔어요. Secondary와 Tertiaty 사용 시 화면 구성의 위계질서에 따라 색상을 설정하여 중요도(중요, 보조, 부가)를 표현하기도 해요. [잠깐의 TMI🤭] 브레인즈컴퍼니 브랜드 색상인 Blue는 한국에서 가장 선호도가 높은 색상이며, 신뢰·젊음·성실·책임감 등의 이미지를 지닌 색상이에요. ▲컬러 팔레트 디자인 시스템의 요소2 : 심각도 컬러 ▲심각도 컬러 팔레트 '심각도 컬러'는 Zenius에서 사용하는 시맨틱 컬러의 일종이에요. Zenius에서 발생한 이벤트를 알려주는 색상으로 총 6단계의 색상을 구축하여서 사용하고 있답니다. 정상, 무해, 주의, 위험, 긴급, 치명의 6단계이며 위와 같은 컬러를 사용하고 있어요. 디자인 시스템의 요소3 : 디자인 토큰 '디자인 토큰'은 디자인 시스템의 시각적 디자인 요소이며, 디자인 관련 변수를 저장하는 데 사용하는 기본 요소에요. 기존에는 피그마(Figma)에서 컬러나 폰트 등을 Style로만 지정할 수 있었어요. 같은 색상을 여러 개의 항목에 적용할 경우, 토큰 별로 사용할 수 없는 점이 굉장히 불편했죠. 하지만 Figma의 Variable 기능이 업데이트된 후, 토큰을 만들 수 있게 되었어요! 브레인즈컴퍼니의 메인 제품 Zenius는 총 세 개의 테마를 사용 중이라, 디자인 토큰 시스템을 테스트하고 있답니다. ▲컬러 토큰 시스템 위와 같이 속성이 다른 두 개의 디자인에 동일하게 Neutral-500 컬러를 사용했는데요, 토큰별로 색상을 적용할 수 있는 시스템이라, 같은 색상을 지닌 다른 속성이어도 개별로 컬러 관리가 가능한 장점이 있어요. 개발자와의 협업에도 굉장히 좋은 시스템이랍니다! 。。。。。。。。。。。。 제니우스(Zenius) 제품이 태어난 지 오래된 만큼, 제품 디자이너가 여러 번 바뀌었어요. 컬러 시스템에 대한 가이드도 중간중간 변경되었죠. 브레인즈컴퍼니 디자인팀은 컬러 시스템을 다시 재정비하기 위해, 여러 가지 테스트 과정을 거치고 있어요. 아직은 구축 단계에 있어 디자인 팀 내의 규칙이나, 개발자들과 네이밍 규칙 등 협의해야 할 일이 적진 않아요. 그래도 구축이 완료된다면 정말 소통하기 편해질 거 같아요! 이제 곧 완성될 '디자인 시스템'을 통해 한층 더 성숙해질 Zenius! 많은 기대 부탁드려요😊
2023.12.12
기술이야기
클라우드(Cloud) 관리와 AWS가 뭔가요?
기술이야기
클라우드(Cloud) 관리와 AWS가 뭔가요?
오늘날 IT 인프라 운영환경은 매우 복잡해졌어요. 갑작스러운 환경 변화에 따라 신속한 대응도 필요한 시점이죠. 이러한 현상으로 많은 기업들이 온프레미스(On-premise) 환경에서 클라우드(Cloud) 환경으로 전환하는 추세이기도 해요. 클라우드 컴퓨팅 서비스 중에는 여러 벤더가 있는데요. 대표적으론 Amazon Web Services(AWS), Microsoft Azure, Google Cloud Platform(GCP)가 있어요. 그중 ‘AWS’는 국내 클라우드 시장에서 3년 간 70% 내외의 시장점유율로, 1위를 차지했는데요(*클라우드 서비스 분야 실태조사(2022), 공정거래위원회) 이처럼 높은 점유율을 가진 1) AWS의 주요 서비스를 살펴보고 2) 하이브리드 클라우드 모니터링이 필요한 이유는 무엇인지 3) AWS의 각종 서비스를 모니터링할 수 있는 제니우스(Zenius)도 함께 소개해 드릴게요! AWS(Amazon Web Services)란? AWS는 ‘Amazon Web Services’의 약어로, 아마존 닷컴이 제공하는 클라우드 컴퓨팅 플랫폼 및 서비스의 집합이에요. AWS에서 제공하는 여러 가지 서비스를 이용하면, 기업 및 개인이 필요한 컴퓨팅 리소스를 유연하게 확장하고 관리할 수 있죠. AWS 주요 서비스는 다음과 같아요! AWS 주요 서비스 ▪Amazon VPC(Amazon Virtual Private Cloud) 격리된 네트워크 환경을 구성하게 해주는 서비스예요. AWS의 동일 계정이나, 서로 다른 계정 간에 격리된 네트워크를 연결할 수 있도록 다양한 옵션들을 제공해 줘요. ▪Amazon EC2(Amazon Elastic Compute Cloud) AWS에서 가장 많이 사용되는 컴퓨팅 서비스예요. 가상 서버를 호스팅 할 때 사용하죠. 리눅스나 윈도우 환경 등 다양한 인스턴스 유형을 지원하고, 필요에 따라 성능을 조정할 수 있어요. 생성 가능한 인스턴스 타입은 리전 별 차이가 있으나, 100개~300개에 이를 정도로 방대하답니다. ▪AWS Lambda AWS에서 제공하는 서버리스 컴퓨팅 플랫폼이에요. 여기서 ‘서버리스’란 개발자가 서버의 존재를 신경 쓸 필요가 없다는 뜻이에요. AWS에서는 서버 인프라에 대한 프로비저닝, 유지관리 등을 대신 처리해 주죠. 이처럼 개발자가 비즈니스 로직에 집중하여 코드를 실행하게 해줘요. ▪Amazon S3 AWS에서 제공하는 스토리지 서비스예요. S3는 파일시스템이 아닌 오브젝트 스토리지 서비스로, 모든 파일에 API를 통해 접근 가능해요. 무제한적인 확장성, 높은 가용성과 내구성을 제공하며 단일 파일을 최대 5TB까지 업로드할 수 있어요. ▪Amazon EBS(Amazon Elastic Block Store) EC2 인스턴스에 장착하여 사용할 수 있는 가상 저장 장치에요. EBS를 연결하여 파일을 저장하면, EC2 인스턴스와 관계없이 데이터를 영구적으로 보관 가능해요. 이 밖에도 AWS에서 제공하는 서비스는 매우 방대한대요. 아래 URL로 접속 시, 필요한 서비스 목록 확인이 가능하답니다! 🔍 더 많은 AWS 서비스가 궁금하다면? 온프레미스와 AWS의 차이 온프레미스 방식은, 클라우드 컴퓨팅 서비스가 나오기 전까지 기업에서 전통적으로 사용한 ‘일반적인 인프라 구축 방식’이에요. 온프레미스 환경에서 서버를 운영하면, 호스팅 서비스를 이용하거나 서버를 직접 구매 또는 임대하죠. 그다음 데이터 센터(IDC, Internet Data Center) 또는 기업 전산실에 설치하여 운영해요. 하지만 물리적인 서버를 직접 설치할 경우, 많은 시간과 비용이 소모되어 이를 위한 운영 공간과 인력이 필요할 수 있어요. 예시를 들어 볼게요. 대형 콘서트 예매, 대학교 수강신청, 입시 원서 접수 등 단기간에 트래픽이 급증했다가 감소되는 경우를 생각해 볼까요? 이때 ‘온프레미스 방식’으로 시스템을 구축한다면, 매우 많은 비용 낭비가 발생하게 될 거예요. 반면 AWS의 경우는 어떨까요? 인터넷이 연결된 어디에서든 쉽게 인프라를 구축하고, 사용한 만큼 비용을 지불할 수 있어요. 큰 이벤트를 처리한 후 생성된 리소스를 간편하게 삭제할 수 있죠. 이처럼 온프레미스 방식과 대비한다면, 남는 자원에 대한 비용 고민이 없어지겠죠? 하이브리드 클라우드 모니터링이 필요한 이유 이처럼 AWS는 매우 유연하고 확장성 있는 클라우드 서비스예요. 하지만 모든 서비스를 AWS를 이용해서 서비스하는 것은 한계가 있는데요. 이유는 다음과 같아요. ▪보안 및 규정 준수 민감한 데이터나 규정 준수가 필요한 업무의 경우, 사설 클라우드나 온프레미스 환경의 자체 데이터 센터를 통해 운영하려는 경향이 있어요. ▪비용 효율 AWS는 사용한 만큼 비용을 지불하기 때문에, 예측할 수 없는 트래픽 증가 등에 대응하기에 좋아요. 하지만 서비스에 따라 온프레미스 환경에서 운영하는 것이 비용 측면에서 더 효율적인 경우가 있죠. 이처럼 많은 기업이 AWS를 이용한 클라우드 서비스로 전환하는 추세지만, 당분간 온프레미스 방식과 결합한 하이브리드 클라우드 운영환경이 많은 편이에요. 그렇다면 이러한 하이브리드 클라우드 운영 환경을 모니터링할 수 있는 방법이 없을까요? 바로 ‘제니우스’를 활용한다면 가능해요! 제니우스를 이용한 하이브리드 클라우드 모니터링 구성도 제니우스 하이브리드 클라우드 모니터링 프로세스를 간략히 소개할게요! 우선 클라우드 환경 단계에서는 AWS 서비스를 이용하여 구축된 클라우드 환경 정보를 RestAPI 방식으로 수집해요. CMS Manager는 AWS 클라우드 환경에서 수집한 정보를 취합 후 스토리지에 저장해 주죠. EMS Manager는 온프레미스 환경에서 수집한 정보를 취합 후 스토리지에 저장해 줘요. Web UI에서는 스토리지에 저장된 데이터를 이용하여, 사용자에게 모니터링 정보를 제공한답니다! 제니우스에서 AWS 모니터링하기 제니우스를 이용한 ‘하이브리드 클라우드 모니터링 구성’을 좀 더 자세히 살펴볼까요? ▪CMS > 모니터링 > 요약 : 위 그림은 AWS 통합 요약 페이지인데요. EC2, RDS, VPC 등 과금 현황까지 통합 모니터링할 수 있어요. ▪EMS > 토폴로지 > 클라우드 맵 : 리전 별 자동 구성형 클라우드 맵 페이지에서는, AWS 리전 별 이용하는 서비스와 연관관계를 클라우드 맵이 자동으로 구성해 줘요. ▪CMS > 클라우드서비스 > EC2 > 주요 성능 지표 : 주요 성능지표 모니터링 페이지에서는 AWS 콘솔에 접속하지 않고, AWS 주요 성능 지표에 대한 모니터링 추이를 확인할 수 있어요. ▪EMS > 오버뷰 : 오버뷰를 통한 온프레미스 + AWS 통합 모니터링 페이지에서는, AWS 모니터링 항목과 온프레미스 환경 모니터링 항목의 통합 현황판을 확인할 수 있어요. 이처럼 AWS와 온프레미스 환경은 물론, 더 다양한 환경의 인프라 모니터링을 위해 제니우스를 사용을 해보는 건 어떨까요?
2023.11.16
기술이야기
메모리 누수 위험있는 FinalReference 참조 분석하기
기술이야기
메모리 누수 위험있는 FinalReference 참조 분석하기
Java에서 가장 많이 접하는 문제는 무엇이라 생각하시나요? 바로 리소스 부족 특히 ‘JVM(Java Virtual Machine) 메모리 부족 오류’가 아닐까 생각해요. 메모리 부족 원인에는 우리가 일반적으로 자주 접하는 누수, 긴 생명주기, 다량의 데이터 처리 등 몇 가지 패턴들이 있는데요. 오늘은 좀 일반적이지 않은(?) 유형에 대해 이야기해 볼게요! Java 객체 참조 시스템은 강력한 참조 외에도 4가지 참조를 구현해요. 바로 성능과 확장성 기타 고려사항에 대한 SoftReference, WeakReference, PhantomReference, FinalReference이죠. 이번 포스팅은 FinalReference를 대표적인 사례로 다루어 볼게요. PART1. 분석툴을 활용해 메모리 누수 발생 원인 파악하기 메모리 분석 도구를 통해 힙 덤프(Heap Dump)를 분석할 때, java.lang.ref.Finalizer 객체가 많은 메모리를 점유하는 경우가 있어요. 이 클래스는 FinalReference와 불가분의 관계에요. 나눌 수 없는 관계라는 의미죠. 아래 그림 사례는 힙 메모리(Heap Memory)의 지속적인 증가 후 최대 Heap에 근접 도달 시, 서비스 무응답 현상에 빠지는 분석 사례인데요. 이를 통해 FinalReference 참조가 메모리 누수를 발생시킬 수 있는 조건을 살펴볼게요! Heap Analyzer 분석툴을 활용하여, 힙 덤프 전체 메모리 요약 현황을 볼게요. java.lang.ref.Finalizer의 점유율이 메모리의 대부분을 점유하고 있죠. 여기서 Finalizer는, 앞에서 언급된 FinalReference를 확장하여 구현한 클래스에요. JVM은 GC(Garbage Collection) 실행 시 해제 대상 객체(Object)를 수집하기 전, Finalize를 처리해야 해요. Java Object 클래스에는 아래 그림과 같이 Finalize 메서드(Method)가 존재하는데요. 모든 객체가 Finalize 대상은 아니에요. JVM은 클래스 로드 시, Finalize 메서드가 재정의(Override)된 객체를 식별해요. 객체 생성 시에는 Finalizer.register() 메서드를 통해, 해당 객체를 참조하는 Finalizer 객체를 생성하죠. 그다음은 Unfinalized 체인(Chain)에 등록해요. 이러한 객체는 GC 발생 시 즉시 Heap에서 수집되진 않아요. Finalizer의 대기 큐(Queue)에 들어가 객체에 재정의된 Finalize 처리를 위해 대기(Pending) 상태에 놓여있죠. 위 그림과 같이 참조 트리(Tree)를 확인해 보면, 많은 Finalizer 객체가 체인처럼 연결되어 있어요. 그럼 Finalizer 객체가 실제 참조하고 있는 객체는 무엇인지 바로 살펴볼까요? 그림에 나온 바와 같이 PostgreSql JDBC Driver의 org.postgresql.jdbc3g.Jdbc3gPreparedStatement인 점을 확인할 수 있어요. 해당 시스템은 PostgreSql DB를 사용하고 있었네요. 이처럼 Finalizer 참조 객체 대부분은 Jdbc3gPreparedStatement 객체임을 알 수 있어요. 여기서 Statement 객체는, DB에 SQL Query를 실행하기 위한 객체에요. 그렇다면, 아직 Finalize 처리되지 않은 Statement 객체가 증가하는 이유는 무엇일까요? 먼저 해당 Statement 객체는 실제로 어디서 참조하는지 살펴볼게요. 해당 객체는 TimerThread가 참조하는 TaskQueue에 들어가 있어요. 해당 Timer는 Postgresql Driver의 CancelTimer이죠. 해당 Timer의 작업 큐를 확인해 보면 PostgreSql Statement 객체와 관련된 Task 객체도 알 수도 있어요. 그럼 org.postgresql.jdbc3g.Jdbc3gPreparedStatement 클래스가 어떻게 동작하는지 자세히 알아볼까요? org.postgresql.jdbc3g.Jdbc3gPreparedStatement는 org.postgresql.jdbc2.AbstractJdbc2Statement의 상속 클래스이며 finalize() 메서드를 재정의한 클래스에요. Finalize 처리를 위해 객체 생성 시, JVM에 의해 Finalizer 체인으로 등록되죠. 위와 같은 코드로 보아 CancelTimer는, Query 실행 후 일정 시간이 지나면 자동으로 TimeOut 취소 처리를 위한 Timer에요. 정해진 시간 내에 정상적으로 Query가 수행되고 객체를 종료(Close) 시, Timer를 취소하도록 되어 있어요. 이때 취소된 Task는 상태 값만 변경되고, 실제로는 Timer의 큐에서 아직 사라지진 않아요. Timer에 등록된 작업은, TimerThread에 의해 순차적으로 처리돼요. Task는 TimerThread에서 처리를 해야 비로소 큐에서 제거되거든요. 이때 가져온 Task는 취소 상태가 아니며, 처리 시간에 아직 도달하지 않은 경우 해당 Task의 실행 예정 시간까지 대기해야 돼요. 여기서 문제점이 발생해요. 이 대기 시간이 길어지면 TimerThread의 처리가 지연되기 때문이죠. 이후 대기 Task들은 상태 여부에 상관없이, 큐에 지속적으로 남아있게 돼요. 만약 오랜 시간 동안 처리가 진행되지 않는다면, 여러 번의 Minor GC 발생 후 참조 객체들은 영구 영역(Old Gen)으로 이동될 수 있어요. 영구 영역으로 이동된 객체는, 메모리에 즉시 제거되지 못하고 오랜 기간 남게 되죠. 이는 Old(Full) GC를 발생시켜 시스템 부하를 유발하게 해요. 실제로 시스템에 설정된 TimeOut 값은 3,000초(50분)에요. Finalizer 참조 객체는 GC 발생 시, 즉시 메모리에서 수집되지 않고 Finalize 처리를 위한 대기 큐에 들어가요. 그다음 FinalizerThread에 의해 Finalize 처리 후 GC 발생 시 비로소 제거되죠. 때문에 리소스의 수집 처리가 지연될 수 있어요. 또한 FinalizerThread 스레드는 우선순위가 낮아요. Finalize 처리 객체가 많은 경우, CPU 리소스가 상대적으로 부족해지면 개체의 Finalize 메서드 실행을 지연하게 만들어요. 처리되지 못한 객체는 누적되게 만들죠. 요약한다면 FinalReference 참조 객체의 잘못된 관리는 1) 객체의 재 참조를 유발 2) 불필요한 객체의 누적을 유발 3) Finalize 처리 지연으로 인한 리소스 누적을 유발하게 해요. PART2. 제니우스 APM을 통해 Finalize 객체를 모니터링하는 방법 Zenius APM에서는 JVM 메모리를 모니터링하고 분석하기 위한, 다양한 데이터를 수집하고 있어요. 상단에서 보았던 FinalReference 참조 객체의 현황에 대한 항목도 확인할 수 있죠. APM 모니터링을 통해 Finalize 처리에 대한 문제 발생 가능성도 ‘사전’에 확인 할 수 있답니다! 위에 있는 그림은 Finalize 처리 대기(Pending)중인 객체의 개수를 확인 가능한 컴포넌트에요. 이외에도 영역별 메모리 현황 정보와 GC 처리 현황에 대해서도 다양한 정보를 확인 할 수 있어요! 이상으로 Finalize 처리 객체에 의한 리소스 문제 발생 가능성을, 사례를 통해 살펴봤어요. 서비스에 리소스 문제가 발생하고 있다면, 꼭 도움이 되었길 바라요! ------------------------------------------------------------ ©참고 자료 ◾ uxys, http://www.uxys.com/html/JavaKfjs/20200117/101590.html ◾ Peter Lawrey, 「is memory leak? why java.lang.ref.Finalizer eat so much memory」, stackoverflow, https://stackoverflow.com/questions/8355064/is-memory-leak-why-java-lang-ref-finalizer-eat-so-much-memory ◾ Florian Weimer, 「Performance issues with Java finalizersenyo」, enyo, https://www.enyo.de/fw/notes/java-gc-finalizers.html ------------------------------------------------------------
2023.10.12
기술이야기
카프카를 통한 로그 관리 방법
기술이야기
카프카를 통한 로그 관리 방법
안녕하세요! 저는 개발4그룹에서 제니우스(Zenius) SIEM의 로그 관리 기능 개발을 담당하고 있는 김채욱 입니다. 제가 하고 있는 일은 실시간으로 대용량 로그 데이터를 수집하여 분석 후, 사용자에게 가치 있는 정보를 시각화하여 보여주는 일입니다. 이번 글에서 다룰 내용은 1) 그동안 로그(Log)에 대해 조사한 것과 2) 최근에 CCDAK 카프카 자격증을 딴 기념으로, 카프카(Kafka)를 이용하여 어떻게 로그 관리를 하는지에 대해 이야기해 보겠습니다. PART1. 로그 1. 로그의 표면적 형태 로그(Log)는 기본적으로 시스템의 일련된 동작이나 사건의 기록입니다. 시스템의 일기장과도 같죠. 로그를 통해 특정 시간에 시스템에서 ‘어떤 일’이 일어났는지 파악할 수도 있습니다. 이렇게 로그는 시간에 따른 시스템의 동작을 기록하고, 정보는 순차적으로 저장됩니다. 이처럼 로그의 핵심 개념은 ‘시간’입니다. 순차적으로 발생된 로그를 통해 시스템의 동작을 이해하며, 일종의 생활기록부 역할을 하죠. 시스템 내에서 어떤 행동이 발생하였고, 어떤 문제가 일어났으며, 유저와의 어떤 교류가 일어났는지 모두 알 수 있습니다. 만약 시간의 개념이 없다면 어떻게 될까요? 발생한 모든 일들이 뒤섞이며, 로그 해석을 하는데 어려움이 생기겠죠. 이처럼 로그를 통해 시스템은 과거의 변화를 추적합니다. 똑같은 상황이 주어지면 항상 같은 결과를 내놓는 ‘결정론적’인 동작을 보장할 수 있죠. 로그의 중요성, 이제 조금 이해가 되실까요? 2. 로그와 카프카의 관계 자, 그렇다면! 로그(Log)와 카프카(Kafka)는 어떤 관계일까요? 우선 카프카는 분산 스트리밍 플랫폼으로서, 실시간으로 대용량의 데이터를 처리하고 전송하는데 탁월한 성능을 자랑합니다. 그 중심에는 바로 ‘로그’라는 개념이 있는데요. 좀 더 자세히 짚고 넘어가 보겠습니다. 3. 카프카에서의 로그 시스템 카프카에서의 로그 시스템은, 단순히 시스템의 에러나 이벤트를 기록하는 것만이 아닙니다. 연속된 데이터 레코드들의 스트림을 의미하며, 이를 ‘토픽(Topic)’이라는 카테고리로 구분하죠. 각 토픽은 다시 *파티션(Partition)으로 나누어, 단일 혹은 여러 서버에 분산 저장됩니다. 이렇게 분산 저장되는 로그 데이터는, 높은 내구성과 가용성을 보장합니다. *파티션(Partition): 하드디스크를 논리적으로 나눈 구역 4. 카프카가 로그를 사용하는 이유 로그의 순차적인 특성은 카프카의 ‘핵심 아키텍처’와 깊게 연결되어 있습니다. 로그를 사용하면, 데이터의 순서를 보장할 수 있어 대용량의 데이터 스트림을 효율적으로 처리할 수 있기 때문이죠. 데이터를 ‘영구적’으로 저장할 수 있어, 데이터 손실 위험 또한 크게 줄어듭니다. 로그를 사용하는 또 다른 이유는 ‘장애 복구’입니다. 서버가 장애로 인해 중단되었다가 다시 시작되면, 저장된 로그를 이용하여 이전 상태로 복구할 수 있게 되죠. 이는 ‘카프카가 높은 가용성’을 보장하는 데 중요한 요소입니다. ∴ 로그 요약 로그는 단순한 시스템 메시지를 넘어 ‘데이터 스트림’의 핵심 요소로 활용됩니다. 카프카와 같은 현대의 데이터 처리 시스템은 로그의 이러한 특성을 극대화하여, 대용량의 실시간 데이터 스트림을 효율적으로 처리할 수 있는 거죠. 로그의 중요성을 다시 한번 깨닫게 되는 순간이네요! PART2. 카프카 로그에 이어 에 대해 설명하겠습니다. 들어가기에 앞서 가볍게 ‘구조’부터 알아가 볼까요? 1. 카프카 구조 · 브로커(Broker) 브로커는 *클러스터(Cluster) 안에 구성된 여러 서버 중 각 서버를 의미합니다. 이러한 브로커들은, 레코드 형태인 메시지 데이터의 저장과 검색 및 컨슈머에게 전달하고 관리합니다. *클러스터(Cluster): 여러 대의 컴퓨터들이 연결되어 하나의 시스템처럼 동작하는 컴퓨터들의 집합 데이터 분배와 중복성도 촉진합니다. 브로커에 문제가 발생하면, 데이터가 여러 브로커에 데이터가 복제되어 데이터 손실이 되지 않죠. · 프로듀서(Producer) 프로듀서는 토픽에 레코드를 전송 또는 생성하는 *엔터티(Entity)입니다. 카프카 생태계에서 ‘데이터의 진입점’ 역할도 함께 하고 있죠. 레코드가 전송될 토픽 및 파티션도 결정할 수 있습니다. *엔터티(Entity): 업무에 필요한 정보를 저장하고 관리하는 집합적인 것 · 컨슈머(Consumer) 컨슈머는 토픽에서 레코드를 읽습니다. 하나 이상의 토픽을 구독하고, 브로커로부터 레코드를 소비합니다. 데이터의 출구점을 나타내기도 하며, 프로듀서에 의해 전송된 메시지를 최종적으로 읽히고 처리되도록 합니다. · 토픽(Topic) 토픽은 프로듀서로부터 전송된 레코드 카테고리입니다. 각 토픽은 파티션으로 나뉘며, 이 파티션은 브로커 간에 복제됩니다. 카프카로 들어오는 데이터를 조직화하고, 분류하는 방법을 제공하기도 합니다. 파티션으로 나눔으로써 카프카는 ‘수평 확장성과 장애 허용성’을 보장합니다. · 주키퍼(ZooKeeper) 주키퍼는 브로커를 관리하고 조정하는 데 도움을 주는 ‘중앙 관리소’입니다. 클러스터 노드의 상태, 토픽 *메타데이터(Metadata) 등의 상태를 추적합니다. *메타데이터(Metadata): 데이터에 관한 구조화된 데이터로, 다른 데이터를 설명해 주는 데이터 카프카는 분산 조정을 위해 주키퍼에 의존합니다. 주키퍼는 브로커에 문제가 발생하면, 다른 브로커에 알리고 클러스터 전체에 일관된 데이터를 보장하죠. ∴ 카프카 구조 요약 요약한다면 카프카는 1) 복잡하지만 견고한 아키텍처 2) 대규모 스트림 데이터를 실시간으로 처리하는 데 있어 안정적이고 장애 허용성이 있음 3) 고도로 확장 가능한 플랫폼을 제공으로 정리할 수 있습니다. 이처럼 카프카가 큰 데이터 환경에서 ‘어떻게’ 정보 흐름을 관리하고 최적화하는지 5가지의 구조를 통해 살펴보았습니다. 이제 카프카에 대해 조금 더 명확한 그림이 그려지지 않나요? 2. 컨슈머 그룹과 성능을 위한 탐색 카프카의 가장 주목할 만한 특징 중 하나는 ‘컨슈머 그룹의 구현’입니다. 이는 카프카의 확장성과 성능 잠재력을 이해하는 데 중심적인 개념이죠. 컨슈머 그룹 이해하기 카프카의 핵심은 ‘메시지를 생산하고 소비’ 하는 것입니다. 그런데 수백만, 심지어 수십억의 메시지가 흐르고 있을 때 어떻게 효율적으로 소비될까요? 여기서 컨슈머 그룹(Consumer Group)이 등장합니다. 컨슈머 그룹은, 하나 또는 그 이상의 컨슈머로 구성되어 하나 또는 여러 토픽에서 메시지를 소비하는데 협력합니다. 그렇다면 왜 효율적인지 알아보겠습니다. · 로드 밸런싱: 하나의 컨슈머가 모든 메시지를 처리하는 대신, 그룹이 부하를 분산할 수 있습니다. 토픽의 각 파티션은 그룹 내에서 정확히 하나의 컨슈머에 의해 소비됩니다. 이는 메시지가 더 빠르고 효율적으로 처리된다는 것을 보장합니다. · 장애 허용성: 컨슈머에 문제가 발생하면, 그룹 내의 다른 컨슈머가 그 파티션을 인수하여 메시지 처리에 차질이 없도록 합니다. · 유연성: 데이터 흐름이 변함에 따라 그룹에서 컨슈머를 쉽게 추가하거나 제거합니다. 이에 따라 증가하거나 감소하는 부하를 처리할 수 있습니다. 여기까지는 최적의 성능을 위한 ‘카프카 튜닝 컨슈머 그룹의 기본 사항’을 다루었으니, 이와 관련된 ‘성능 튜닝 전략’에 대해 알아볼까요? 성능 튜닝 전략 · 파티션 전략: 토픽의 파티션 수는, 얼마나 많은 컨슈머가 활성화되어 메시지를 소비할 수 있는지 영향을 줍니다. 더 많은 파티션은 더 많은 컨슈머가 병렬로 작동할 수 있음을 의미하는 거죠. 그러나 너무 많은 파티션은 *오버헤드를 야기할 수 있습니다. *오버헤드: 어떤 처리를 하기 위해 간접적인 처리 시간 · 컨슈머 구성: *fetch.min.bytes 및 *fetch.max.wait.ms와 같은 매개변수를 조정합니다. 그다음 한 번에 얼마나 많은 데이터를 컨슈머가 가져오는지 제어합니다. 이러한 최적화를 통해 브로커에게 요청하는 횟수를 줄이고, 처리량을 높입니다. *fetch.min.bytes: 한 번에 가져올 수 있는 최소 데이터 사이즈 *fetch.max.wait.ms: 데이터가 최소 크기가 될 때까지 기다릴 시간 · 메시지 배치: 프로듀서는 메시지를 함께 배치하여 처리량을 높일 수 있게 구성됩니다. *batch.size 및 *linger.ms와 같은 매개변수를 조정하여, 대기 시간과 처리량 사이의 균형을 찾을 수 있게 되죠. *batch.size: 한 번에 모델이 학습하는 데이터 샘플의 개수 *linger.ms: 전송 대기 시간 · 압축: 카프카는 메시지 압축을 지원하여 전송 및 저장되는 데이터의 양을 줄입니다. 이로 인해 전송 속도가 빨라지고 전체 성능이 향상될 수 있습니다. · 로그 정리 정책: 카프카 토픽은, 설정된 기간 또는 크기 동안 메시지를 유지할 수 있습니다. 보존 정책을 조정하면, 브로커가 저장 공간이 부족해지는 점과 성능이 저하되는 점을 방지할 수 있습니다. 3. 컨슈머 그룹과 성능을 위한 실제 코드 예시 다음 그림과 같은 코드를 보며 조금 더 자세히 살펴보겠습니다. NodeJS 코드 중 일부를 발췌했습니다. 카프카 설치 시에 사용되는 설정 파일 *server.properties에서 파티션의 개수를 CPU 코어 수와 같게 설정하는 코드입니다. 이에 대한 장점들을 쭉 살펴볼까요? *server.properties: 마인크래프트 서버 옵션을 설정할 수 있는 파일 CPU 코어 수에 파티션 수를 맞추었을 때의 장점 · 최적화된 리소스 활용: 카프카에서는 각 파티션이 읽기와 쓰기를 위한 자체 *I/O(입출력) 스레드를 종종 운영합니다. 사용 가능한 CPU 코어 수와 파티션 수를 일치시키면, 각 코어가 특정 파티션의 I/O 작업을 처리합니다. 이 동시성은 리소스에서 최대의 성능을 추출하는 데 도움 됩니다. · 최대 병렬 처리: 카프카의 설계 철학은 ‘병렬 데이터 처리’를 중심으로 합니다. 코어 수와 파티션 수 사이의 일치는, 동시에 처리되어 처리량을 높일 수 있습니다. · 간소화된 용량 계획: 이 접근 방식은, 리소스 계획에 대한 명확한 기준을 제공합니다. 성능 병목이 발생하면 CPU에 *바인딩(Binding)되어 있는지 명확하게 알 수 있습니다. 인프라를 정확하게 조정할 수도 있게 되죠. *바인딩(Binding): 두 프로그래밍 언어를 이어주는 래퍼 라이브러리 · 오버헤드 감소: 병렬 처리와 오버헤드 사이의 균형은 미묘합니다. 파티션 증가는 병렬 처리를 촉진할 수 있습니다. 하지만 더 많은 주키퍼 부하, 브로커 시작 시간 연장, 리더 선거 빈도 증가와 같은 오버헤드도 가져올 수도 있습니다. 파티션을 CPU 코어에 맞추는 것은 균형을 이룰 수 있게 합니다. 다음은 프로세스 수를 CPU 코어 수만큼 생성하여, 토픽의 파티션 개수와 일치시킨 코드에 대한 장점입니다. 파티션 수와 컨슈머 프로세스 수 일치의 장점 · 최적의 병렬 처리: 카프카 파티션의 각각은 동시에 처리될 수 있습니다. 컨슈머 수가 파티션 수와 일치하면, 각 컨슈머는 특정 파티션에서 메시지를 독립적으로 소비할 수 있게 되죠. 따라서 병렬 처리가 향상됩니다. · 리소스 효율성: 파티션 수와 컨슈머 수가 일치하면, 각 컨슈머가 처리하는 데이터의 양이 균등하게 분배됩니다. 이로 인해 전체 시스템의 리소스 사용이 균형을 이루게 되죠. · 탄력성과 확장성: 트래픽이 증가하면, 추가적인 컨슈머를 컨슈머 그룹에 추가하여 처리 능력을 증가시킵니다. 동일한 방식으로 트래픽이 감소하면 컨슈머를 줄여 리소스를 절약할 수 있습니다. · 고가용성과 오류 회복: 컨슈머 중 하나가 실패하면, 해당 컨슈머가 처리하던 파티션은 다른 컨슈머에게 자동 재분배됩니다. 이를 통해 시스템 내의 다른 컨슈머가 실패한 컨슈머의 작업을 빠르게 인수하여, 메시지 처리가 중단되지 않습니다. 마지막으로 각 프로세스별 컨슈머를 생성해서 토픽에 구독 후, 소비하는 과정을 나타낸 소스코드입니다. ∴ 컨슈머 그룹 요약 컨슈머 그룹은 높은 처리량과 장애 허용성 있는 메시지 소비를 제공하는 능력이 핵심입니다. 카프카가 어떤 식으로 운영되는지에 대한 상세한 부분을 이해하고 다양한 매개변수를 신중하게 조정한다면, 어떠한 상황에서도 카프카의 최대 성능을 이끌어낼 수 있습니다! ------------------------------------------------------------ ©참고 자료 · Jay Kreps, “I Hearts Logs”, Confluent · 위키피디아, “Logging(computing)” · Confluent, “https://docs.confluent.io/kafka/overview.html” · Neha Narkhede, Gwen Shapira, Todd Palino, “Kafka: The Definitive Guide” ------------------------------------------------------------
2023.09.19
기술이야기
시련이 많았던 경험자의 CI/CD 간략 소개
기술이야기
시련이 많았던 경험자의 CI/CD 간략 소개
과거에는 근로자 1명이 기획/설계/구현 테스트까지 진행이 가능했다고 합니다. 하지만 최근에는 근로자 1명이 기획부터 테스트까지 진행하는 일은 거의 드물다고 볼 수 있습니다. OLD SCHOOL 지금 이 시간에도 많은 회사 내의 개발자들은 자신에게 주어진 기능 구현을 훌륭하게 완수하기 위해서 모니터를 째려보고 있습니다. 모니터를 째려보다가 자신이 작성한 내용을 다른 팀원에게 공유하고자 혹은 반대로 다른 팀원이 작성한 내용을 공유받고자 '형상 관리 시스템'을 사용하고 있습니다. CVS와 SVN으로 대표되는 이 시스템은 최근들어 Git을 많이 사용하는 추세라고 합니다. 필자 역시 여러 프로젝트에서 해당 시스템을 사용도 해보았고, 연동하여 다른 시스템을 구현한 경험이 있습니다. 하지만 프로젝트 마다 해당 시스템 사용에 있어서 몇몇 시련이 있었습니다. "차주에 전체 기능 리뷰가 있습니다. 각 파트 별로 코드 커밋해주세요." 라고 PM(Project Manager) 또는 PL(Project Leader)이 요청을 하면, 각 하위 PL(Part Leader)은 파트(Part)에 돌아가 파트원들에게 이 내용을 공유하고, 개별 개발자들은 자신이 작성한 코드를 관리 시스템에 커밋하게 됩니다. 잠시 후 형상 관리 시스템에서 작성 코드를 내려 받은 PL(Part Leader)은 아래와 같은 상황에 직면하게 됩니다. - 동료의 작성 코드에는 관심 없이, 본인의 작성물만 커밋하는 경우 - 별도의 공지 없이 이미 작성된 파일 등을 삭제하여 커밋하는 경우 - 약속되지 않은 환경이나 lib으로 작성한 코드를 커밋하는 경우 프로젝트에 따라 기간이 길어지거나 다른 여러 상황이 발생하면 위의 문제보다 더 많은 문제를 경험하게 됩니다. 각 파트 단위로 위와 같은 문제가 해결되고 정상적으로 컴파일, 빌드까지 완료되면, PL(Part Leader)들은 파트별로 단위테스트를 완료하고 결과가 정상적이면 결과를 품질관리자에게 통보합니다. 각 파트별로 완료 통보를 받은 품질관리자는 다시 관리 시스템에서 전체 작성물을 수동으로 내려받아 통합테스트를 진행합니다. 통합테스트까지 완료되었다면 해당 내용을 릴리즈관리자에게 통보합니다. 릴리즈관리자는 바뀐 부분만 찾아서 변경하면 시간적으로 적용이 빠르겠지만 '바뀐 부분만 변경하면 될까?'라는 의심으로 전체 작성물을 수작업으로 전처리(컴파일 & 빌드)하고 다시 수작업으로 릴리즈하게 됩니다. 만약 진행상의 이슈가 없다면 이제 기능 리뷰 준비가 완료됩니다. 단계별로 문제 없이 진행되고 모든 기능을 확인하였다고 하지만 기능 리뷰 혹은 데모만하면 꼭! 오류가 발생하여 난처한 상황이 종종 발생하곤 합니다. 필자 역시 이런 경우가 많았으며 그때마다 문제 부분을 찾기 위해 많이 고생했습니다. 아래의 개념은 아마도 저 같은 경험을 하고 있는 많은 사람들을 위한 것이 아닌가 싶습니다. CI (Continuous Integration, 지속적인 통합) '지속적인 통합'이란 개발 과정에서 생산되는 코드의 관리와 코드의 문법적인 오류 확인 및 기능 점검(=테스트)을 특정한 일정에 진행하는 것이 아니라 날마다 혹은 특정 시간마다 진행하여 코드 및 기능에 대한 품질을 유지하는 개념이라고 말할 수 있을 것입니다. 앞에서 언급했던 과거 모습을 개선하는 노력은 CI 라는 개념이 나오기 이전부터 많은 개발사 혹은 팀에서 그들만의 문화나 관습으로 처리하는 경우가 있었을 것입니다. 하지만 문제는 새로운 구성원이 생겼을 때 입니다. 조직 문화를 새로이 접하는 이들에게는 이를 설명하고 이해시키는 일은 시간과 노력이 드는 일이니까요. 하지만 이젠 일반적인 Java 개발팀에서는 SVN(or GitHub)+Jenkins+Maven+JUnit으로 구성하는 개발 환경을 사용하고 있습니다. 다만, 프로젝트 목표나 목적되는 환경에 따라 약간씩 다른 환경을 구성하기도 합니다. 그러나 대부분의 경우 Open Source 기반으로 CI 개념을 구성하는 경우가 많습니다. 이는 일단 무료라는 큰 장점과 많은 레퍼런스가 있어 구성하기 편리하고 "우린 Open Source인 SVN과 Jenkins를 사용합니다. 일단 자세한 개념과 동작 원리는 너트뷰 선생님께..." 라고 하며 짧은 노력으로 교육을 끝낼 수 있어 그런 것이 아닌가 합니다. CI 개념을 활용하는 개발 프로젝트에서는 UI 메뉴 혹은 구현 단위 기준으로 구분하여 개발파트나 개발자를 할당하고는 합니다. 각각의 개발자는 할당받은 구현 범위에 대한 문제를 개별적으로 개발 도구를 활용하여 구현하고 구현 내용을 형상 관리 시스템에 커밋합니다. 이런 과정을 다른 개발자들도 같이 수행한 후에 빌드 자동화 환경에서 컴파일 및 빌드 스크립트에 맞춰서 문법적으로 확인된 결과물을 만들고 이를 다시 기능이 확인이 가능한 테스트 스크립트에 맞춰서 테스까지 진행합니다. 만약 테스트 과정에서 비정상적인 결과가 발생할 경우, 해당 내용 수정 후 위의 작업을 다시 진행하게 됩니다. 이런 일련의 절차는 일정 시간 준위 단위로 수행되어 구현하고 있는 기능을 주기적으로 확인하는 과정을 수행합니다. 올바른 진행을 위하여 개발자 개개인에게 분장되는 업무의 크기가 비슷해야 한다고 생각됩니다. 개발자별로 업무의 크기가 서로 다른 겨우, 결과물이 정상적이라고 볼 수 없게 될 것이고 그렇게 된다면 테스트 결과 역시 믿을 수 없는 경우가 발생할 것입니다. CD (Continuous Delivery/Deploy, 지속적 제공/배포) 지속적인 통합(CI)을 사용하던, 기존의 개발 환경을 사용하던, 결국 작성된 결과물은 최종적으로 운영환경에 적용되어 사용작 혹은 타 시스템과 연결되어야 합니다. 그래야 제품 개발 또는 프로젝트가 완료됩니다. CD는 결과물을 운영환경에 적용하는 방식을 나타내는 환경으로써 결과물 적용 여부를 판단하는 행위를 담당하는 주체가 누구냐에 따라, Continuous Delivery와 Continuous Deploy로 구분됩니다. Continuous Delivery는 CI 환경을 통하여 자동으로 컴파일 및 빌드가 되고, 테스트된 결과물에 대해서 릴리즈 관리자가 적용 시점마다 테스트 결과 및 서비스 영향도를 판단하여 수동으로 적용하는 방식이며, Continuous Deploy는 결과물은 항상 옳고 서비스 영향도는 없다고 미리 판단하여 자동으로 적용하는 방식입니다. 아마도 대부분의 개발 환경에서는 Continuous Delivery로 적용하고 있기에 CD라고 표기되는 경우 Continuous Delivery를 의미하는 경우가 많을 것입니다. 소프트웨어 솔루션을 제작하는 개발팀에서는 아마도 Continuous Delivery로 또한 MSA 기반의 서비스를 제공하는 개발팀에서는 Continuous Deploy를 사용하는 편이 여러 관계를 보았을 때 유리하다고 판단합니다. 하지만, 개발팀의 업무 성격과 제품 혹은 서비스의 출시 시기 등이 CD 방식을 결정하는 가장 중요한 요소가 될 것입니다. 지금까지 CI/CD 도입 배경과 내용을 필자의 경험을 바탕으로 간략하게 정리하였습니다. 개발자들이 자기가 맡은 기능 혹은 프로세스에만 전념할 수 있는 훌륭하고 편리한 개발 환경 및 적용 환경이 언제 어떻게 나타나게 될지 궁금합니다. 가능하다면, 많이 바꿔서 따라가기 귀찮은 시니어들과 새롭게 따라가야하는 주니어 개발자 모두에게 즐거운 환경이 등장했으면 합니다. 감사합니다.
2023.08.22
기술이야기
[Zenius Case#2] 서버관리, 서버가 왜 이렇게 느리지?
기술이야기
[Zenius Case#2] 서버관리, 서버가 왜 이렇게 느리지?
평온한 오후 퇴근 준비가 한창인데 불길한 전화가 걸려 옵니다. “서비스가 먹통이어서 확인 좀 해야 하는데 서버가 엄청 버벅거리고 반응이 느려요!! 이거 왜 이러죠??” 왜!! 도대체 왜!! 한 번쯤은 겪어보았을 급작스러운 Linux 서버의 상태 이슈! 불행하게도 무척이나 다양한 원인으로 인해 발생하게 됩니다. 우리의 목표는 이 다양한 원인 중 실제 발생 원인을 빠르게 특정하는 것! 기본적인 항목들의 체크리스트를 통해 빠르게 원인을 파악 해 봅시다. Linux 서버 상태 이슈 체크리스트 1. 서버의 CPU 부하 확인하기 2. BUFFER, CACHE, SWAP 상태 확인하기 3. 디스크 상태 확인하기 Zenius를 통한 데이터 추이 분석!! 장애의 발생은 순식간에 일어나지만, 장애 발생 시점의 데이터만을 확인해서는 원인을 파악하기가 쉽지 않은 경우가 많습니다. Zenius를 활용하여 앞서 정한 체크리스트를 빠르게 확인해 봅시다. 1. 서버의 CPU 부하 확인하기 - CPU 부하 확인의 Point는 Load Average Load Average는 CPU 사용 대기 중인 프로세스와 I/O 완료를 대기하고 있는 프로세스의 수를 의미합니다. 따라서, Load Average가 높다는 것은 CPU가 바쁘며 시스템에 걸리는 부하가 있다는 뜻입니다. 화면과 같이 1분, 5분, 15분의 로드 평균을 확인 해 보도록 합시다. 1분 로드 평균은 순간적으로 증가하는 경우가 있지만, 5분 15분 데이터상에도 이전과 비교하였을 때 높은 수치를 보인다면, CPU의 부하가 의심스러운 상황입니다. 그렇다면 CPU의 사용률과 I/O 대기율은 어떨까요? user가 사용한 CPU 사용률은 일정하지만, Iowait 수치가 올라간 것을 볼 수 있습니다. 이 경우 CPU의 리소스 부족이기보다는 I/O로 인한 부하로 판단할 수 있고, 자세히는 메모리나 프로세스의 현황 확인이 필요한 경우입니다. 반대로 user 수치가 높은 경우에는 물리적인 CPU 자체의 리소스 부족이라 볼 수 있습니다. 2. BUFFER, CACHE, SWAP 상태 확인하기 - 메모리 사용률과 Swap, Buffer, Cache 메모리 사용률이 높다 = 서버에 부하가 있다?? 답은 No !! Linux 서버의 메모리 사용률은 Buffer/Cache의 사용량이 포함되어 표현되게 됩니다. 따라서, 우리는 그 추이를 통하여 이슈를 확인하는 것이 중요합니다. 위의 검은 바탕의 그래프는 메모리 사용률이 높지만, 일정한 수치를 유지하고 있습니다. 이런 경우 서버의 메모리 사용은 안정적인 영역에서 이루어진다고 판단이 가능합니다. 그 이유는 실제 메모리 사용량과 Buffer/Cache에 할당량의 수치가 할당 가능한 수치 내에서 이루어지기 때문에 사용률이 유지된다고 볼 수 있기 때문입니다. 반면 흰 바탕의 그래프는 메모리 사용률이 점차 증가하며 결국 100%까지 도달한 것을 확인할 수 있는데요, 이경우에는 프로세스가 연산에 필요한 공간을 할당받지 못하여 프로세스 행이 발생하게 됩니다. 그렇다면 Buffer Cache Swap은 어떨까요? 먼저 Buffer Cache에 관해 확인 해 보도록 하겠습니다. *Buffer – 메타데이터를 메모리에 저장. *Cache – Page Cache, Slab을 메모리에 저장. 쉽게 말해, 둘 다 용도에 맞는 정보를 저장하여 수행 속도에 도움을 주는 영역입니다. 메모리 사용량이 늘어나면 이 Buffer, Cache 영역이 줄어들게 되고, 저장 영역이 줄어든다는 것은 속도가 떨어져 성능 저하로 이어지게 됩니다. 아래 그래프는 메모리 사용률이 올라가고 있는 상태의 서버 데이터입니다. 다음으로 이 시점의 Buffer, Cache의 영역을 확인해 보겠습니다. 추이 그래프를 통해 메모리 사용률이 올라갈수록 Buffer, Cache 영역이 줄어드는 것을 확인할 수 있습니다. 그렇다면 이 시점의 I/O는 어떨까요? 보시는 바와 같이 Iowait 수치가 급격히 올라갔음을 확인 할 수 있으므로, “메모리 사용률의 상승은 Buffer, Cache 영역을 줄어들게 하여 속도 저하를 발생시킨다.” 라는 결론을 도출할 수 있습니다. 또한, 메모리 사용률의 상승은 Swap에도 영향을 끼치게 됩니다. *Swap – 디스크 공간에 할당하여 메모리 역할로 사용하는 공간. 따라서, Swap 영역의 사용은 실제 메모리가 아닌 디스크를 사용하기 때문에 속도 저하가 발생 됩니다. 위 그래프는 Swap 사용률이 증가하고 있는 서버의 데이터입니다. 이 시점의 디스크의 상태를 보면 Read와 Write가 점차 Swap과 동일하게 상승하는 것을 볼 수 있습니다. 이렇게 메모리 대신 디스크 영역을 사용하면서 속도가 저하하게 되는 것입니다. 3. 디스크, 확인하기 - Mount Point 별 디스크 사용량, 작업량 추이 확인 디스크의 여유 공간이 없으면 시스템이 파일 생성을 못 하게 되고 결국엔 서버의 운영에 영향을 끼치게 됩니다. 각각의 마운트 지점의 사용률을 체크하여 여유 공간을 확보하는 것이 필요합니다. 디스크의 사용량이 급작스럽게 늘어난 경우는 신규 파일이 업로드되었다거나, 로그파일이 급작스럽게 많이 쌓이는 경우가 있습니다. 그렇기에 각 Mount Point의 사용률을 확인하고 해당 지점의 이슈 사항을 파악하는 것이 가장 좋습니다. 위 그래프와 같이 1시간 이내에 /data 지점의 사용률이 급등하였다면, 해당 지점에 쌓이는 데이터나 로그파일이 급격하게 증가한 것이므로 확인이 필요합니다. 다음으로는 디스크 사용 추이를 확인 해 보도록 하겠습니다. 서버에서 사용하는 물리 디스크는 각각의 성능의 한계가 있습니다. 이 한계를 직관적으로 확인할 수 있는 데이터로는 Disk Busy Rate(작업률)와 Disk Wait Rate(대기율)이 있는데요, Read 및 Write의 양이 한계치까지 치솟게 된다면 Busy Rate 값이 증가하게 되고, 이에 따른 Wait Rate 가 늘어나면서 서버의 성능 저하를 불러오게 됩니다. 어떻게 관리해야 할까? 앞서 확인한 서버의 상태 이슈들, 물론 급작스럽게 발생하는 경우는 어쩔 수 없지만 미리 대비가 가능한 것들은 Zenius-EMS를 이용하여 임계치 기반의 사전 모니터링과, 모니터링 페이지를 통한 직관적인 관리가 가능합니다. 각각의 항목들에 세부적으로 단계별 임계치를 걸어서 서버의 상태 이슈를 사전에 인지하고, 요약 페이지를 통해 빠르게 상태를 파악하여 우리의 퇴근 시간을 사수해 보는 건 어떨까요?
2023.08.08
기술이야기
서버 모니터링의 두 가지 방식
기술이야기
서버 모니터링의 두 가지 방식
이번 블로그에서는 일반적으로 서버 모니터링 소프트웨어들이 널리 쓰고 있는 서버 모니터링의 두 가지 방식에 대해서 논의하고 그 차이점을 알아보겠습니다. 지난 블로그에서 언급했듯이, 서버 모니터링은 컴퓨터 서버의 성능을 관찰하고 분석해 최적의 상태로 실행되고 있는지 확인하는 작업입니다. 이 프로세스에는 일반적으로 CPU 사용률, 메모리 사용량, 디스크 I/O, 네트워크 트래픽 및 응용 프로그램 성능과 같은 다양한 메트릭에 대한 데이터를 수집하는 소프트웨어 도구의 사용이 포함됩니다. 서버 모니터링 소프트웨어는 데이터 수집 후 추세, 패턴 및 이상 현상을 식별하기 위해 데이터를 분석합니다. 분석을 통해 잠재적인 문제가 심각해지기 전에 식별하고 서버 관리자가 시정 조치를 취할 수 있도록 합니다. 예를 들어, CPU 사용률이 지속적으로 높은 경우 서버의 성능이 부족해 더 많은 리소스를 할당해야 할 수 있음을 나타낼 수 있습니다. 또는 디스크 I/O가 느린 경우 서버의 저장소가 과부하됐거나 최적화가 필요함을 나타낼 수 있습니다. 서버 모니터링 소프트웨어에는 관리자가 서버 성능을 파악하는데 도움이 되는 대시보드, 경고 및 보고 기능이 포함되는 경우가 많습니다. 대시보드는 핵심 성과 지표의 실시간 보기를 제공하는 동시에 특정 임계값을 초과하거나 문제가 감지되면 관리자에게 알림을 보냅니다. 서버 관리자는 보고 기능을 통해 시간 경과에 따른 성능 추세 및 문제에 대한 보고서를 생성할 수 있으며, 이를 통해 용량 계획 및 리소스 할당 결정을 알리는데 사용할 수 있습니다. 서버 모니터링은 일반적으로 에이전트 없는 서버 모니터링과 에이전트 기반 서버 모니터링, 이 두 가지 주요 접근 방식이 있습니다. 두 가지 모두 장단점이 있으며 어떤 것을 선택하느냐는 특정 요구 사항과 선호도에 따라 달라집니다. 에이전트 기반 서버 모니터링 에이전트 기반 서버 모니터링에는 모니터링하려는 각 서버에 ‘에이전트’라고 하는 별도의 서버용 모니터링 소프트웨어를 설치해 데이터를 수집하는 방식을 말합니다. 에이전트는 서버에서 다양한 성능 메트릭에 대한 데이터를 수집해 모니터링 시스템으로 다시 보냅니다. 이 접근 방식은 에이전트 없는 모니터링보다 더 상세하고 세분화된 데이터와 기능을 제공합니다. 또, 데이터를 암호화하고 보안 채널을 사용해 데이터를 전송하므로 일반적으로 에이전트 없는 모니터링보다 더 안전합니다. 에이전트 기반 서버 모니터링의 주요 기능은 다음과 같습니다. ∙ 성능 모니터링: 에이전트는 CPU, 메모리, 디스크 사용률, 네트워크 트래픽 등의 정보를 수집할 수 있습니다. 이를 이용해 서버의 성능을 모니터링하고, 부하가 높아지면 적시에 대처할 수 있습니다. ∙ 로그 모니터링: 에이전트는 서버에서 발생하는 로그를 수집할 수 있습니다. 이를 이용해 서버에서 발생한 이벤트의 원인 파악에 도움을 줄 수 있습니다. ∙ 보안 모니터링: 에이전트는 서버 내부의 보안 상태를 모니터링할 수 있습니다. 예를 들어, 악성 코드 감지, 사용자 로그인 상태, 파일 권한 등을 체크해 보안 위협을 조기에 감지할 수 있습니다. ∙ 애플리케이션 모니터링: 에이전트는 서버에 설치된 애플리케이션의 상태를 모니터링할 수 있습니다. 예를 들어, 웹 서버에서는 HTTP 요청, 응답 코드, 응답 속도 등을 모니터링해 애플리케이션의 상태를 파악할 수 있습니다. ∙ 자동화된 조치: 에이전트는 모니터링 데이터를 기반으로 자동화된 조치를 수행할 수 있습니다. 예를 들면, CPU 부하가 높아지면 자동으로 스케일 업 또는 스케일 아웃을 수행할 수 있습니다. 에이전트 리스 서버 모니터링 에이전트가 없는 서버 모니터링은 서버 자체에 소프트웨어를 설치할 필요가 없습니다. 대신 모니터링 소프트웨어가 별도의 서버나 워크스테이션에 설치되고, SNMP 또는 WMI와 같은 네트워크 프로토콜을 사용해 대상 서버에서 데이터를 원격으로 수집합니다. 이 접근 방식은 각 서버에 소프트웨어 에이전트를 설치하고 관리할 필요가 없어 일반적으로 설정 및 유지 관리가 더 쉽고 빠릅니다. 또, 에이전트 기반보다 같은 자원을 이용해서 더 많은 수의 서버를 모니터링할 수 있어 경제적입니다. 대신 기능이 제한적이고 프로토콜이 의존해 데이터를 수집하기 때문에 보안 문제가 발생할 수 있습니다. 에이전트 리스 서버 모니터링의 주요 기능은 다음과 같습니다. ∙ 원격 모니터링: 에이전트 없는 모니터링 도구는 원격 데이터 센터, 지사 또는 클라우드 환경에 있는 서버를 포함해 모든 곳에 있는 서버를 원격으로 모니터링할 수 있습니다. 이러한 유연성을 통해 조직의 전체 서버 인프라를 중앙집중식으로 모니터링하고 관리할 수 있습니다. ∙ 확장성: 에이전트 없는 모니터링은 서버 인프라 또는 워크로드 요구사항의 변화를 수용하기 위해 쉽게 확장 또는 축소할 수 있습니다. 추가 에이전트 소프트웨어 설치 또는 구성 없이 모니터링 시스템에 추가 서버를 추가할 수 있습니다. ∙ 포괄적인 모니터링: 에이전트 없는 모니터링은 서버 성능 메트릭을 추적하고 문제를 식별하며, 실시간 경고를 제공함으로써 관리자가 서버 인프라의 상태를 유지하고 중요한 애플리케이션과 서비스가 원활하게 실행되도록 합니다. ∙ 손쉬운 유지 관리 및 업데이트: 에이전트 없는 모니터링을 사용하면 모니터링 되는 각 시스템에서 에이전트 소프트웨어를 관리하고 업데이트할 필요가 없습니다. 이는 유지보수를 단순화하고 모니터링 시스템을 항상 최신 상태로 유지합니다. Zenius(제니우스)의 서버 모니터링 브레인즈컴퍼니의 지능형 IT 인프라 통합관리 소프트웨어 ‘Zenius(제니우스)’는 고객의 시스템 상황에 따라 에이전트 기반 및 리스 방식 모두 가능합니다. 에이전트 기반의 통합 모니터링 소프트웨어 ‘Zenius SMS’는 HTML5 기반 Web UI와 토폴로지 맵을 통해 서버 성능과 상태 및 서버 간 연관관계를 직관적으로 파악합니다. 특히, Zenius SMS는 애플리케이션 단위에 성능이나 로그를 세밀하게 모니터링 및 분석이 가능합니다. Zenius SMS의 주요 기능은 아래와 같습니다. Zenius SMS의 주요 서버 모니터링 기능 1. 프로세스: 프로세스 상태(Up/Down) 및 성능 모니터링(CPU/MEM) 2. 로그: 프로세스나 시스템 로그와 같은 각종 로그 모니터링 3. GPU: GPU의 상태 및 성능 모니터링 4. 보안: 서버의 보안 취약점 점검 5. 자동화: 모니터링 데이터를 기반으로 자동화된 조치 수행 6. 기타: 코어별 온도 모니터링, 서비스 포트별 네트워크 상태, S/W 목록, 환경변수, 계정, 그룹, 스케쥴링, 공유폴더 현황 등 ‘Zenius SMS’ 도입을 통해 체계화된 서버 통합관리를 할 수 있습니다. 반복적이고 수동적인 업무는 자동화돼 업무 효율성을 향상시키며, 객관적인 데이터를 기반으로 정확한 성능 현황 및 비교분석이 가능합니다. 이는 곧 서비스 연속성 확보로 이어지며, 향후 고객 만족도 향상을 기대할 수 있습니다. 반면, 고객 서버에 에이전트 탑재가 불가능한 경우에는 에이전트 리스 방식으로도 사용 가능합니다. 브레인즈컴퍼니의 에이전트 리스 제품으로는 ‘Zenius VMS’가 있습니다. ‘Zenius VMS’는 VMware, Citrix Xen Server, Hyper-V와 같은 서버 가상화 환경에서 호스트 서버와 게스트 서버의 리소스 할당 및 사용 현황, 관계 등을 통합적으로 관제합니다. ‘Zenius VMS’는 프라이빗 클라우드 환경을 모니터링하는데 효과적입니다. Open API로 프라이빗 클라우드 인프라와 통신해, 가상머신의 상태 및 성능, 스토리지 활용도 및 네트워크 트래픽과 같은 환경의 다양한 측면에 대한 데이터를 수집합니다. 수집된 데이터를 분석해 잠재적 문제를 나타낼 수 있는 경향, 패턴 및 이상 현상을 식별하고, 크게 CPU, 메모리, 디스크, MIB 이 4가지 정보를 기본적으로 제공합니다. ‘Zenius VMS’는 VM 상세 관리를 위해 SMS 추가 확장이 용이한 제품입니다. VMS를 통해 호스트-게스트 간 연관관계 기반의 모니터링을 시행하고, 별도로 가상화 서버에 SMS 모듈을 추가해 보다 다양한 모니터링 항목으로 정밀하게 관리함으로써 효과적인 통합관리 환경을 조성할 수 있습니다.
2023.05.09
1
2
3
4