반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
기술이야기
검색
기술이야기
클라우드 전환과 하이브리드 클라우드가 성공하려면?
기술이야기
클라우드 전환과 하이브리드 클라우드가 성공하려면?
정부와 공공기관, 그리고 금융권과 대기업 등 모든 분야에서 클라우드 전환이 가속화되고 있습니다. 이에 따라서 가트너(Gartner)는 2018년 약 2.1조 원이었던 국내 클라우드 시장 규모가 2024년에는 약 '6조 원'에 이를 것으로 내다봤습니다. 。。。。。。。。。。。。 1. 클라우드 전환 단계 ▪초창기: 소규모 Workload가 시범적으로 전환되는 시기 ▪과도기: 인프라, 네이티브 앱 등 주요 Workload가 전환되는 시기 ▪정착기: 모든 Workload가 클라우드에서 개발/구축되는 시기 클라우드 전환은 크게 세 단계로 나누어서 진행됩니다. 대부분의 기업과 기관이 현재 '클라우드 전환 과도기'에 접어든 가운데, 몇 가지 작지 않은 이슈로 인한 어려움을 겪고 있습니다. 2. 클라우드 송환? 클라우드에서 On-Premise로 복귀?! IDC는 최근, "향후 2년 내 프라이빗 클라우드(Private Cloud) 또는 비 클라우드 환경으로의 이전을 계획하고 있는 기업의 비중이 70%가 넘는 것으로 나타났으며, 이러한 현상은 더욱 심화될 전망이다"라고 발표했습니다. '클라우드 송환(Cloud Repatriation)'이라고도 부를 수 있는 이 같은 현상은, 주로 클라우드의 높은 비용·성능 문제·보안 및 규제·공급자 Lock-in 등이 주요 원인으로 지적되고 있습니다. 이와 같은 클라우드 전환 과도기에서의 어려움을 극복하고 효율성을 높이기 위해, '하이브리드 클라우드'로의 전환이 새로운 트렌드로 자리 잡았습니다. 3. 유연하게 활용한다! ‘하이브리드 클라우드’로의 전환 트렌드 하이브리드 클라우드(Hybrid Cloud)는 퍼블릭·프라이빗 클라우드와 대형 IDC 센터와 같은, 온프레미스(On-Premise) 환경을 조합하여 사용하는 것을 말합니다. ⓒ디지털 서비스 이용 지원 시스템 현재 87% 이상의 기업이 2가지 이상의 멀티 클라우드를 사용하며, 72% 이상은 하이브리드 클라우드를 사용하는 것으로 나타났습니다. 하이브리드 클라우드의 장점 ▪다양한 환경을 조합하여 유연하게 리소스를 확장하거나 축소 가능 ▪민감정보를 프라이빗 클라우드에 유지하여 보안성 강화 ▪서로 다른 클라우드 환경의 장점의 조합 및 활용 가능 하이브리드 클라우드는 위와 같은 분명한 장점이 있기에, 계속해서 많은 기업과 기관이 사용할 것으로 예상됩니다. 하지만 하이브리드 클라우드도 반드시 극복해야 할 한계와 문제점이 있습니다. 하이브리드 클라우드의 한계는 크게 세 가지로 나눠볼 수 있는데요. 4. 하이브리드 클라우드의 세 가지 한계, 그리고 극복 방안 관리의 복잡성 Complexity On-Premise, 하이브리드 클라우드, 퍼블릭 클라우드 등은 모두 서로 다른 인프라 구성과 특성을 보유하고 있습니다. 따라서 다양한 CSP와 Legacy 시스템 등을 종합적으로 관제하기 위한 모니터링 기술이 필요합니다. 정책의 분산화 Decentralization 각 CSP의 독자적인 기술과 운영환경에 따라, 기업의 IT 인프라 관리 정책이 분산화될 우려가 있습니다. 따라서 서로 다른 API 환경에 대응할 수 있는 중립적인 모니터링 접근 방식이 필요합니다. 서비스 품질 이슈 Quality 이기종 환경에서의 실시간 성능 모니터링 부재로, 서비스 품질 및 성능 문제가 발생할 수 있습니다. 따라서 실시간 상태 및 성능 지표 모니터링을 통한 최적의 프로비저닝 역량 확보가 중요합니다. 결국 하이브리드 클라우드의 세 가지 한계를 극복할 수 있는 '성공적인 모니터링 전략'이 필요합니다. 5. 하이브리드 클라우드 환경에서의 성공적인 모니터링 전략 앞서 살펴본 것처럼 하이브리드 클라우드의 효율을 높이고 한계를 극복하기 위해선, 성공적인 클라우드 & On-Premise 통합 모니터링이 필요합니다. 통합 모니터링을 통해서 다양한 관리 Point를 단일화하고, 일관된 IT 정책을 적용하며, 다양한 관점별 View를 통한 데이터 가시성을 확보할 수 있습니다. 또한 각 환경에 대한 실시간 성능 지표 모니터링과 신속한 장애 감지 및 원인 분석을 통해, 높은 서비스 품질을 유지할 수 있습니다. 주요 Point에 대해서 자세히 살펴본다면 다음과 같습니다. l 단일 Framework 기반의 통합 모니터링 환경 구성 성공적인 모니터링을 위해서는 Public/Private 클라우드와 On-Premise를 아우르는 단일 Framework 기반의 통합 모니터링 환경을 구성해야 합니다. 다양한 환경에 대한 통합 모니터링 시스템을 구축하여, 대시보드와 토폴로지 맵 등을 통해 분산된 IT 리소스와 서비스 정보를 한눈에 볼 수 있어야 하는 것이죠. l 퍼블릭 클라우드 모니터링: 통합 관리 및 운영 가시성 확보 제니우스(Zenius)의 클라우드 서비스 맵 이용 중인 클라우드 서비스 전체 및 개별 단위의 주요 지표 상세 모니터링으로, 가시성을 확보해야 합니다. 이를 통해서 다양한 서비스의 주요 지표를 관리, 이용 서비스 간의 연관관계 관리, 과금(Billing) 관리, 즉각적인 장애 관리를 할 수 있습니다. l 프라이빗 클라우드 모니터링: 개별적인 구성 환경을 고려한 모니터링 각 기업과 공공기관 개별적인 클라우드 구성 환경을 고려하여, 클라우드 인프라 자원을 관리하고 활용도를 높이기 위한 모니터링 전략도 필요합니다. 위의 설명처럼 쿠버네티스(Kubernetes), 컨테이너(Container), SDN 등 프라이빗 클라우드 환경을 구성하는 요소를 다각적으로 관리하여 IT 인프라 자원의 활용도를 향상시켜야 합니다. l MSA 기반 애플리케이션 모니터링 IDC에 따르면 2025년에 출시되는 앱의 90% 이상이 '클라우드 네이티브'로 구현될 전망이라고 합니다. 클라우드 네이티브의 핵심은 'MSA(Micro Service Architecture)' 방법론으로의 전환입니다. 애플리케이션을 효과적으로 실행·배포·활용하기 위한 핵심요소는 'Container'이죠. 따라서 MSA 환경에서의 성공적인 애플리케이션 관리를 위해서는 실시간 모니터링, 분산 시스템 관제, 서비스 수요 변화 대응 이 세 가지가 가장 중요합니다. 위 도표에 정리된 것처럼 컨테이너 기반의 마이크로 서비스 모니터링, 복잡화된 시스템 간 트랜잭션 분석 및 가시화, 오토스케일링 자동 대응을 통한 관제 연속성 확보 전략을 구축한다면 성공적으로 MSA 기반의 애플리케이션 모니터링을 할 수 있습니다. l 레거시 환경 모니터링 마지막으로 On-premise로 자체 보유하고 있는 레거시 장비와 프라이빗 클라우드 장비가 있는 전산실의 성공적인 모니터링을 위해서는, 먼저 On-premise 환경을 고려한 최적의 포인트 솔루션과 통합 플랫폼 기반 모니터링이 확보되어야 합니다. 또한 안정적인 On-Premise 환경 운영을 위해 전산실 부대설비(UPS, 항온 항습기 등), 환경감시(온/습도, 누수 등)에 대한 레거시 환경 맞춤형 관리가 가능해야 합니다. 물리/가상 자원 간의 그룹화 관리 기능, 다양한 자원 간의 이벤트 연관 설정 및 분석 기능도 성공적인 레거시 환경 모니터링을 위한 필수조건입니다. 6. 성공적인 모니터링 솔루션 선택 기준은? 클라우드 전환기, 하이브리드 클라우드 환경에서 성공적인 모니터링을 위한 루션 선택 기준은 1) 기술력이 있는지 2) 검증된 솔루션인지 3) 믿을 수 있는 기업인지 이렇게 세 가지로 정리할 수 있습니다. 하나, 기술력이 있는 솔루션인가? 클라우드와 레거시 통합을 위한 프레임워크 기반의 솔루션인지, 그리고 여러 환경에 존재하는 IT 자원을 통합적으로 가시화할 수 있는지, 변화에 쉽게 대응할 수 있는 사용자 맞춤 설계형 대시보드를 제공하는지를 꼭 살펴봐야 합니다. 브레인즈컴퍼니 제니우스(Zenius)의 퍼블릭 클라우드 서비스 관제 예시 또한 AI 기술을 통해 장애를 사전에 예방하는 제니우스(Zenius) 처럼, 서비스 장애로 인한 손실을 방지하기 위한 사전 장애 감지 및 대응도 지원하는지 꼭 살펴봐야 합니다. 업무 효율과 편의성을 높이기 위한 오토스케일링 자동 대응, 장애/이벤트 오토리커버리 등 운영 자동화 기능도 필수 요소입니다. 둘, 검증된 솔루션인가? 클라우드 서비스 보안인증(CSAP), 마켓플레이스 등록 등 클라우드 환경에서의 성능 검증 절차 등 거친 솔루션인지도 중요하게 살펴봐야 합니다. 또한 다수의 공공기관 및 다양한 산업군에서 사용되고 있는지도 중요한 판단 기준입니다. 셋, 믿을 수 있는 기업의 솔루션인가? 마지막으로 모니터링 서비스를 개발 및 운영한 업력, 재무 상태 안정성, 전문 인력 보유 등으로 지속적인 지원이 가능한 기업의 솔루션인지를 검토해 봐야 합니다. 。。。。。。。。。。。。 브레인즈컴퍼니는 전통적인 IT 인프라 모니터링 시장에서의 경험을 바탕으로, 하이브리드 환경에서의 성공적인 모니터링을 수행하고 있습니다. 이제 필수가 된 클라우드 전환, 제대로 된 솔루션 선택을 통해 성공적으로 진행하시기 바랍니다!
2024.01.18
기술이야기
클라우드(Cloud) 관리와 AWS가 뭔가요?
기술이야기
클라우드(Cloud) 관리와 AWS가 뭔가요?
오늘날 IT 인프라 운영환경은 매우 복잡해졌어요. 갑작스러운 환경 변화에 따라 신속한 대응도 필요한 시점이죠. 이러한 현상으로 많은 기업들이 온프레미스(On-premise) 환경에서 클라우드(Cloud) 환경으로 전환하는 추세이기도 해요. 클라우드 컴퓨팅 서비스 중에는 여러 벤더가 있는데요. 대표적으론 Amazon Web Services(AWS), Microsoft Azure, Google Cloud Platform(GCP)가 있어요. 그중 ‘AWS’는 국내 클라우드 시장에서 3년 간 70% 내외의 시장점유율로, 1위를 차지했는데요(*클라우드 서비스 분야 실태조사(2022), 공정거래위원회) 이처럼 높은 점유율을 가진 1) AWS의 주요 서비스를 살펴보고 2) 하이브리드 클라우드 모니터링이 필요한 이유는 무엇인지 3) AWS의 각종 서비스를 모니터링할 수 있는 제니우스(Zenius)도 함께 소개해 드릴게요! AWS(Amazon Web Services)란? AWS는 ‘Amazon Web Services’의 약어로, 아마존 닷컴이 제공하는 클라우드 컴퓨팅 플랫폼 및 서비스의 집합이에요. AWS에서 제공하는 여러 가지 서비스를 이용하면, 기업 및 개인이 필요한 컴퓨팅 리소스를 유연하게 확장하고 관리할 수 있죠. AWS 주요 서비스는 다음과 같아요! AWS 주요 서비스 ▪Amazon VPC(Amazon Virtual Private Cloud) 격리된 네트워크 환경을 구성하게 해주는 서비스예요. AWS의 동일 계정이나, 서로 다른 계정 간에 격리된 네트워크를 연결할 수 있도록 다양한 옵션들을 제공해 줘요. ▪Amazon EC2(Amazon Elastic Compute Cloud) AWS에서 가장 많이 사용되는 컴퓨팅 서비스예요. 가상 서버를 호스팅 할 때 사용하죠. 리눅스나 윈도우 환경 등 다양한 인스턴스 유형을 지원하고, 필요에 따라 성능을 조정할 수 있어요. 생성 가능한 인스턴스 타입은 리전 별 차이가 있으나, 100개~300개에 이를 정도로 방대하답니다. ▪AWS Lambda AWS에서 제공하는 서버리스 컴퓨팅 플랫폼이에요. 여기서 ‘서버리스’란 개발자가 서버의 존재를 신경 쓸 필요가 없다는 뜻이에요. AWS에서는 서버 인프라에 대한 프로비저닝, 유지관리 등을 대신 처리해 주죠. 이처럼 개발자가 비즈니스 로직에 집중하여 코드를 실행하게 해줘요. ▪Amazon S3 AWS에서 제공하는 스토리지 서비스예요. S3는 파일시스템이 아닌 오브젝트 스토리지 서비스로, 모든 파일에 API를 통해 접근 가능해요. 무제한적인 확장성, 높은 가용성과 내구성을 제공하며 단일 파일을 최대 5TB까지 업로드할 수 있어요. ▪Amazon EBS(Amazon Elastic Block Store) EC2 인스턴스에 장착하여 사용할 수 있는 가상 저장 장치에요. EBS를 연결하여 파일을 저장하면, EC2 인스턴스와 관계없이 데이터를 영구적으로 보관 가능해요. 이 밖에도 AWS에서 제공하는 서비스는 매우 방대한대요. 아래 URL로 접속 시, 필요한 서비스 목록 확인이 가능하답니다! 🔍 더 많은 AWS 서비스가 궁금하다면? 온프레미스와 AWS의 차이 온프레미스 방식은, 클라우드 컴퓨팅 서비스가 나오기 전까지 기업에서 전통적으로 사용한 ‘일반적인 인프라 구축 방식’이에요. 온프레미스 환경에서 서버를 운영하면, 호스팅 서비스를 이용하거나 서버를 직접 구매 또는 임대하죠. 그다음 데이터 센터(IDC, Internet Data Center) 또는 기업 전산실에 설치하여 운영해요. 하지만 물리적인 서버를 직접 설치할 경우, 많은 시간과 비용이 소모되어 이를 위한 운영 공간과 인력이 필요할 수 있어요. 예시를 들어 볼게요. 대형 콘서트 예매, 대학교 수강신청, 입시 원서 접수 등 단기간에 트래픽이 급증했다가 감소되는 경우를 생각해 볼까요? 이때 ‘온프레미스 방식’으로 시스템을 구축한다면, 매우 많은 비용 낭비가 발생하게 될 거예요. 반면 AWS의 경우는 어떨까요? 인터넷이 연결된 어디에서든 쉽게 인프라를 구축하고, 사용한 만큼 비용을 지불할 수 있어요. 큰 이벤트를 처리한 후 생성된 리소스를 간편하게 삭제할 수 있죠. 이처럼 온프레미스 방식과 대비한다면, 남는 자원에 대한 비용 고민이 없어지겠죠? 하이브리드 클라우드 모니터링이 필요한 이유 이처럼 AWS는 매우 유연하고 확장성 있는 클라우드 서비스예요. 하지만 모든 서비스를 AWS를 이용해서 서비스하는 것은 한계가 있는데요. 이유는 다음과 같아요. ▪보안 및 규정 준수 민감한 데이터나 규정 준수가 필요한 업무의 경우, 사설 클라우드나 온프레미스 환경의 자체 데이터 센터를 통해 운영하려는 경향이 있어요. ▪비용 효율 AWS는 사용한 만큼 비용을 지불하기 때문에, 예측할 수 없는 트래픽 증가 등에 대응하기에 좋아요. 하지만 서비스에 따라 온프레미스 환경에서 운영하는 것이 비용 측면에서 더 효율적인 경우가 있죠. 이처럼 많은 기업이 AWS를 이용한 클라우드 서비스로 전환하는 추세지만, 당분간 온프레미스 방식과 결합한 하이브리드 클라우드 운영환경이 많은 편이에요. 그렇다면 이러한 하이브리드 클라우드 운영 환경을 모니터링할 수 있는 방법이 없을까요? 바로 ‘제니우스’를 활용한다면 가능해요! 제니우스를 이용한 하이브리드 클라우드 모니터링 구성도 제니우스 하이브리드 클라우드 모니터링 프로세스를 간략히 소개할게요! 우선 클라우드 환경 단계에서는 AWS 서비스를 이용하여 구축된 클라우드 환경 정보를 RestAPI 방식으로 수집해요. CMS Manager는 AWS 클라우드 환경에서 수집한 정보를 취합 후 스토리지에 저장해 주죠. EMS Manager는 온프레미스 환경에서 수집한 정보를 취합 후 스토리지에 저장해 줘요. Web UI에서는 스토리지에 저장된 데이터를 이용하여, 사용자에게 모니터링 정보를 제공한답니다! 제니우스에서 AWS 모니터링하기 제니우스를 이용한 ‘하이브리드 클라우드 모니터링 구성’을 좀 더 자세히 살펴볼까요? ▪CMS > 모니터링 > 요약 : 위 그림은 AWS 통합 요약 페이지인데요. EC2, RDS, VPC 등 과금 현황까지 통합 모니터링할 수 있어요. ▪EMS > 토폴로지 > 클라우드 맵 : 리전 별 자동 구성형 클라우드 맵 페이지에서는, AWS 리전 별 이용하는 서비스와 연관관계를 클라우드 맵이 자동으로 구성해 줘요. ▪CMS > 클라우드서비스 > EC2 > 주요 성능 지표 : 주요 성능지표 모니터링 페이지에서는 AWS 콘솔에 접속하지 않고, AWS 주요 성능 지표에 대한 모니터링 추이를 확인할 수 있어요. ▪EMS > 오버뷰 : 오버뷰를 통한 온프레미스 + AWS 통합 모니터링 페이지에서는, AWS 모니터링 항목과 온프레미스 환경 모니터링 항목의 통합 현황판을 확인할 수 있어요. 이처럼 AWS와 온프레미스 환경은 물론, 더 다양한 환경의 인프라 모니터링을 위해 제니우스를 사용을 해보는 건 어떨까요?
2023.11.16
기술이야기
서버 모니터링의 두 가지 방식
기술이야기
서버 모니터링의 두 가지 방식
이번 블로그에서는 일반적으로 서버 모니터링 소프트웨어들이 널리 쓰고 있는 서버 모니터링의 두 가지 방식에 대해서 논의하고 그 차이점을 알아보겠습니다. 지난 블로그에서 언급했듯이, 서버 모니터링은 컴퓨터 서버의 성능을 관찰하고 분석해 최적의 상태로 실행되고 있는지 확인하는 작업입니다. 이 프로세스에는 일반적으로 CPU 사용률, 메모리 사용량, 디스크 I/O, 네트워크 트래픽 및 응용 프로그램 성능과 같은 다양한 메트릭에 대한 데이터를 수집하는 소프트웨어 도구의 사용이 포함됩니다. 서버 모니터링 소프트웨어는 데이터 수집 후 추세, 패턴 및 이상 현상을 식별하기 위해 데이터를 분석합니다. 분석을 통해 잠재적인 문제가 심각해지기 전에 식별하고 서버 관리자가 시정 조치를 취할 수 있도록 합니다. 예를 들어, CPU 사용률이 지속적으로 높은 경우 서버의 성능이 부족해 더 많은 리소스를 할당해야 할 수 있음을 나타낼 수 있습니다. 또는 디스크 I/O가 느린 경우 서버의 저장소가 과부하됐거나 최적화가 필요함을 나타낼 수 있습니다. 서버 모니터링 소프트웨어에는 관리자가 서버 성능을 파악하는데 도움이 되는 대시보드, 경고 및 보고 기능이 포함되는 경우가 많습니다. 대시보드는 핵심 성과 지표의 실시간 보기를 제공하는 동시에 특정 임계값을 초과하거나 문제가 감지되면 관리자에게 알림을 보냅니다. 서버 관리자는 보고 기능을 통해 시간 경과에 따른 성능 추세 및 문제에 대한 보고서를 생성할 수 있으며, 이를 통해 용량 계획 및 리소스 할당 결정을 알리는데 사용할 수 있습니다. 서버 모니터링은 일반적으로 에이전트 없는 서버 모니터링과 에이전트 기반 서버 모니터링, 이 두 가지 주요 접근 방식이 있습니다. 두 가지 모두 장단점이 있으며 어떤 것을 선택하느냐는 특정 요구 사항과 선호도에 따라 달라집니다. 에이전트 기반 서버 모니터링 에이전트 기반 서버 모니터링에는 모니터링하려는 각 서버에 ‘에이전트’라고 하는 별도의 서버용 모니터링 소프트웨어를 설치해 데이터를 수집하는 방식을 말합니다. 에이전트는 서버에서 다양한 성능 메트릭에 대한 데이터를 수집해 모니터링 시스템으로 다시 보냅니다. 이 접근 방식은 에이전트 없는 모니터링보다 더 상세하고 세분화된 데이터와 기능을 제공합니다. 또, 데이터를 암호화하고 보안 채널을 사용해 데이터를 전송하므로 일반적으로 에이전트 없는 모니터링보다 더 안전합니다. 에이전트 기반 서버 모니터링의 주요 기능은 다음과 같습니다. ∙ 성능 모니터링: 에이전트는 CPU, 메모리, 디스크 사용률, 네트워크 트래픽 등의 정보를 수집할 수 있습니다. 이를 이용해 서버의 성능을 모니터링하고, 부하가 높아지면 적시에 대처할 수 있습니다. ∙ 로그 모니터링: 에이전트는 서버에서 발생하는 로그를 수집할 수 있습니다. 이를 이용해 서버에서 발생한 이벤트의 원인 파악에 도움을 줄 수 있습니다. ∙ 보안 모니터링: 에이전트는 서버 내부의 보안 상태를 모니터링할 수 있습니다. 예를 들어, 악성 코드 감지, 사용자 로그인 상태, 파일 권한 등을 체크해 보안 위협을 조기에 감지할 수 있습니다. ∙ 애플리케이션 모니터링: 에이전트는 서버에 설치된 애플리케이션의 상태를 모니터링할 수 있습니다. 예를 들어, 웹 서버에서는 HTTP 요청, 응답 코드, 응답 속도 등을 모니터링해 애플리케이션의 상태를 파악할 수 있습니다. ∙ 자동화된 조치: 에이전트는 모니터링 데이터를 기반으로 자동화된 조치를 수행할 수 있습니다. 예를 들면, CPU 부하가 높아지면 자동으로 스케일 업 또는 스케일 아웃을 수행할 수 있습니다. 에이전트 리스 서버 모니터링 에이전트가 없는 서버 모니터링은 서버 자체에 소프트웨어를 설치할 필요가 없습니다. 대신 모니터링 소프트웨어가 별도의 서버나 워크스테이션에 설치되고, SNMP 또는 WMI와 같은 네트워크 프로토콜을 사용해 대상 서버에서 데이터를 원격으로 수집합니다. 이 접근 방식은 각 서버에 소프트웨어 에이전트를 설치하고 관리할 필요가 없어 일반적으로 설정 및 유지 관리가 더 쉽고 빠릅니다. 또, 에이전트 기반보다 같은 자원을 이용해서 더 많은 수의 서버를 모니터링할 수 있어 경제적입니다. 대신 기능이 제한적이고 프로토콜이 의존해 데이터를 수집하기 때문에 보안 문제가 발생할 수 있습니다. 에이전트 리스 서버 모니터링의 주요 기능은 다음과 같습니다. ∙ 원격 모니터링: 에이전트 없는 모니터링 도구는 원격 데이터 센터, 지사 또는 클라우드 환경에 있는 서버를 포함해 모든 곳에 있는 서버를 원격으로 모니터링할 수 있습니다. 이러한 유연성을 통해 조직의 전체 서버 인프라를 중앙집중식으로 모니터링하고 관리할 수 있습니다. ∙ 확장성: 에이전트 없는 모니터링은 서버 인프라 또는 워크로드 요구사항의 변화를 수용하기 위해 쉽게 확장 또는 축소할 수 있습니다. 추가 에이전트 소프트웨어 설치 또는 구성 없이 모니터링 시스템에 추가 서버를 추가할 수 있습니다. ∙ 포괄적인 모니터링: 에이전트 없는 모니터링은 서버 성능 메트릭을 추적하고 문제를 식별하며, 실시간 경고를 제공함으로써 관리자가 서버 인프라의 상태를 유지하고 중요한 애플리케이션과 서비스가 원활하게 실행되도록 합니다. ∙ 손쉬운 유지 관리 및 업데이트: 에이전트 없는 모니터링을 사용하면 모니터링 되는 각 시스템에서 에이전트 소프트웨어를 관리하고 업데이트할 필요가 없습니다. 이는 유지보수를 단순화하고 모니터링 시스템을 항상 최신 상태로 유지합니다. Zenius(제니우스)의 서버 모니터링 브레인즈컴퍼니의 지능형 IT 인프라 통합관리 소프트웨어 ‘Zenius(제니우스)’는 고객의 시스템 상황에 따라 에이전트 기반 및 리스 방식 모두 가능합니다. 에이전트 기반의 통합 모니터링 소프트웨어 ‘Zenius SMS’는 HTML5 기반 Web UI와 토폴로지 맵을 통해 서버 성능과 상태 및 서버 간 연관관계를 직관적으로 파악합니다. 특히, Zenius SMS는 애플리케이션 단위에 성능이나 로그를 세밀하게 모니터링 및 분석이 가능합니다. Zenius SMS의 주요 기능은 아래와 같습니다. Zenius SMS의 주요 서버 모니터링 기능 1. 프로세스: 프로세스 상태(Up/Down) 및 성능 모니터링(CPU/MEM) 2. 로그: 프로세스나 시스템 로그와 같은 각종 로그 모니터링 3. GPU: GPU의 상태 및 성능 모니터링 4. 보안: 서버의 보안 취약점 점검 5. 자동화: 모니터링 데이터를 기반으로 자동화된 조치 수행 6. 기타: 코어별 온도 모니터링, 서비스 포트별 네트워크 상태, S/W 목록, 환경변수, 계정, 그룹, 스케쥴링, 공유폴더 현황 등 ‘Zenius SMS’ 도입을 통해 체계화된 서버 통합관리를 할 수 있습니다. 반복적이고 수동적인 업무는 자동화돼 업무 효율성을 향상시키며, 객관적인 데이터를 기반으로 정확한 성능 현황 및 비교분석이 가능합니다. 이는 곧 서비스 연속성 확보로 이어지며, 향후 고객 만족도 향상을 기대할 수 있습니다. 반면, 고객 서버에 에이전트 탑재가 불가능한 경우에는 에이전트 리스 방식으로도 사용 가능합니다. 브레인즈컴퍼니의 에이전트 리스 제품으로는 ‘Zenius VMS’가 있습니다. ‘Zenius VMS’는 VMware, Citrix Xen Server, Hyper-V와 같은 서버 가상화 환경에서 호스트 서버와 게스트 서버의 리소스 할당 및 사용 현황, 관계 등을 통합적으로 관제합니다. ‘Zenius VMS’는 프라이빗 클라우드 환경을 모니터링하는데 효과적입니다. Open API로 프라이빗 클라우드 인프라와 통신해, 가상머신의 상태 및 성능, 스토리지 활용도 및 네트워크 트래픽과 같은 환경의 다양한 측면에 대한 데이터를 수집합니다. 수집된 데이터를 분석해 잠재적 문제를 나타낼 수 있는 경향, 패턴 및 이상 현상을 식별하고, 크게 CPU, 메모리, 디스크, MIB 이 4가지 정보를 기본적으로 제공합니다. ‘Zenius VMS’는 VM 상세 관리를 위해 SMS 추가 확장이 용이한 제품입니다. VMS를 통해 호스트-게스트 간 연관관계 기반의 모니터링을 시행하고, 별도로 가상화 서버에 SMS 모듈을 추가해 보다 다양한 모니터링 항목으로 정밀하게 관리함으로써 효과적인 통합관리 환경을 조성할 수 있습니다.
2023.05.09
기술이야기
서버 모니터링, 서버 관리, 서버 관리자
기술이야기
서버 모니터링, 서버 관리, 서버 관리자
서버는 기업의 IT 인프라를 구성하는 필수 요소입니다. 서버는 클라이언트에게 네트워크를 통해 정보나 서비스를 제공하는 컴퓨터 시스템으로, ▲파일 저장 및 공유 ▲웹사이트 및 애플리케이션 호스팅 ▲프린터 및 스캐너와 같은 네트워크 리소스 관리 ▲이메일 서비스 제공 등 다양한 기능을 수행합니다. 일반적으로 Microsoft Windows Server, Linux 또는 Unix와 같은 다양한 운영 체제를 실행하며, 가동 중지 시간을 최소화하면서 지속적으로 실행되도록 설계됐습니다. 오늘날과 같이 급변하는 비즈니스 환경에서의 서버 중단은 상당한 수익 손실과 평판 손상으로 이어질 수 있습니다. 이에 따라 기업은 서버 모니터링 및 관리를 위해 문제를 신속하게 식별하고 해결할 수 있는 강력한 서버 모니터링 시스템을 필수적으로 갖춰야합니다. 서버 모니터링과 서버 관리는 서버의 성능을 최적화하고 가용성을 보장하는데 중요한 관련이 있습니다. 이 블로그에서는 서버 모니터링과 서버 관리에 대해서 알아보고, 마지막으로 서버관리자가 어떤 일을 하는지 논의해 보고자 합니다. 먼저, 서버 모니터링과 서버 관리의 차이점은 다음과 같습니다. ------------------------------------------ 서버 모니터링이란? 서버 모니터링에는 도구와 소프트웨어를 사용해 서버의 성능, 상태 및 가용성을 추적하는 작업이 포함됩니다. 여기에는 CPU 사용량, 메모리 사용량, 디스크 공간, 네트워크 트래픽 및 애플리케이션 성능과 같은 모니터링 지표가 포함됩니다. 서버 모니터링의 목표는 문제가 발생하기 전에 잠재적인 문제를 감지하고, 문제가 발생할 때 문제 해결을 위한 데이터를 제공하는 것입니다. 서버 모니터링은 일반적으로 특수 도구를 사용해 자동화되는 프로세스입니다. 서버 관리란? 서버 관리는 서버가 최적으로 작동하도록 서버를 능동적으로 유지∙관리하고 구성하는 프로세스입니다. 여기에는 운영 체제, 소프트웨어 및 응용 프로그램의 설치 및 구성, 사용자 계정 및 사용 권한 관리, 백업 및 복원 수행, 서버 환경의 보안 및 규정 준수 보장 등의 작업이 포함됩니다. 서버 관리의 목표는 서버가 최고의 효율성으로 실행되고 안전하며, 사용자에게 필요한 서비스를 제공할 수 있도록 하는 것입니다. 요약하면, 서버 모니터링은 관찰 및 경고에 중점을 두는 반면, 서버 관리는 성능을 최적화하고 가용성을 보장하기 위해 서버를 능동적으로 구성하고 유지∙관리하는데 중점을 둡니다. 서버 모니터링은기업의 서버 관리자가 담당합니다. 서버 관리자는 기업의 비전과 전략을 달성하기 위해 서버를 비롯한 IT 시스템의 방향을 수립하는 IT 전문가입니다. 서버 관리자는 높은 수준의 가동 시간과 가용성을 보장하고 서버, 시스템 및 애플리케이션의 소프트웨어 및 하드웨어 기능과 같은 구성 요소를 평가합니다. 서버 관리자의 주요 업무는 조직의 규모와 특정 요구 사항에 따라 다를 수 있지만, 일반적으로 아래와 같습니다. 서버 관리자의 주요 업무 1. 서버 설치 및 구성 서버 설치 및 구성은 서버 관리자의 필수 업무로, 서버 하드웨어, 소프트웨어 및 네트워크 인프라에 대한 기술적 전문 지식, 세부 사항에 대한 주의 및 철저한 이해가 필요한 복잡한 작업입니다. 서버 관리자는 최적의 성능, 보안 및 안정성을 제공하는 동시에 서버가 조직의 요구사항을 충족하도록 올바르게 설치 및 구성됐는지 확인해야 합니다. 2. 서버 모니터링 및 유지보수 서버의 안정성과 성능을 유지하기 위한 핵심 업무입니다. 서버 관리자는 서버 하드웨어 및 소프트웨어를 유지∙관리해, 서버가 효율적이고 안전하게 실행되도록 하고 시스템 성능을 모니터링해 잠재적인 문제를 식별합니다. 3. 서버 보안 서버 보안 관리는 서버에 저장된 데이터의 기밀성, 무결성 및 가용성을 손상시킬 수 있는 잠재적인 보안 위협으로부터 서버를 보호하는 것과 관련된 업무입니다. 서버 관리자는 서버가 잠재적인 보안 위협으로부터 보호되고 서버가 관련 규정 및 표준을 준수하는지 확인하기 위해 적극적으로 노력합니다. 4. 서비스 제공 및 지원 서비스 제공 및 지원은 서버 서비스 및 응용 프로그램의 배포, 유지 및 지원 관리와 관련 있습니다. 이 업무는 서버 가용성을 유지하고 사용자 요구 사항을 충족하는데 중요하며, 서버 관리자는 사용자가 필요할 때 시기 적절하고 효과적인 지원을 받을 수 있도록 합니다. ------------------------------------------ 이처럼 서버 관리자는 서버가 원활하고 안전하며 효율적으로 실행되도록 하는데 중요한 역할을 합니다. 서버 관리자는 복잡한 기술적 지식을 보유해야 하고 빠른 대처 능력을 요구받으며, 보안 대응 및 최적화 작업 등에서 많은 어려움을 겪습니다. 더욱이 서버가 기능에 따라 세분화돼 일반 서버, 웹 어플리케이션 서버, 데이터베이스 서버 등으로 나뉘게 되면 각 기능별로 웹 애플리케이션 서버관리자나 데이터베이스 서버관리자 등으로 관리자의 역할이 세분화되기도 합니다. 서버의 수나 종류가 많아지고 구성이 복잡해지면 모니터링과 관리가 어려워집니다. 이를 돕기 위해 브레인즈컴퍼니의 Zenius(제니우스)와 같은 통합 서버 모니터링 및 관리 소프트웨어가 필요하게 됩니다.
2023.05.09
기술이야기
옵저버빌리티 향상을 위한 제니우스 대표 기능들
기술이야기
옵저버빌리티 향상을 위한 제니우스 대표 기능들
이번 블로그에서는 지난 블로그에서 다루었던 옵저버빌리티를 구현하기 위한 오픈 소스들은 어떤 것들이 있는지 간략히 알아보고, 제니우스(Zenius-EMS)에서는 옵저버빌리티 향상을 위해서 어떤 제품들을 제공하고 있는 지 살펴보겠습니다. 옵저버빌리티 구현을 위해 널리 활용되는 대표적인 오픈소스로는 아래 네 가지 정도를 들 수 있습니다. l Prometheus: 메트릭 수집 및 저장을 전문으로 하는 도구입니다. Prometheus는 강력한 쿼리 기능을 가지고 있으며, 다양한 기본 메트릭을 제공하며 데이터 시각화를 위해 Grafana와 같은 도구와 통합될 수 있습니다. 또한 이메일, Slack 및 PagerDuty와 같은 다양한 채널을 통해 알림을 보낼 수 있습니다. l OpenTelemetry: 에이전트 추가 없이 원격으로 클라우드 기반의 애플리케이션이나 인프라에서 측정한 데이터, 트레이스와 로그를 백엔드에 전달하는 기술을 제공합니다. Java, Go, Python 및 .NET을 포함한 다양한 언어를 지원하며 추적 및 로그에 대한 통합 API를 제공합니다. l Jaeger: 분산 서비스 환경에서는 한번의 요청으로 서로 다른 마이크로서비스가 실행될 수 있습니다. Jaeger는 서비스 간 트랜잭션을 추적하는 기능을 가지고 있는 오픈 소스 소프트웨어입니다. 이 기능을 통해 애플리케이션 속도를 저해하는 병목지점을 찾을 수 있으며 동작에 문제가 있는 애플리케이션에서 문제의 시작점을 찾는데 유용합니다. l Grafana: 시계열 메트릭 데이터를 시각화 하는데 필요한 도구를 제공하는 툴킷입니다. 다양한 DB를 연결하여 데이터를 가져와 시각화 할 수 있으며, 그래프를 그릴 수도 있습니다. 시각화한 그래프에서 특정 수치 이상일 때 알람 기능을 제공하며 다양한 플러그인으로 기능확장이 가능합니다. ------------------------------------------------- 오픈 기술을 이용해 Do It Yourself 방식으로 옵저버빌리티를 구현한다면 어떨까요? 직접 옵저버빌리티를 구현하기 위해서는 먼저 필요한 데이터를 수집해야 합니다. 필요한 데이터가 무엇인지, 어떤 방식으로 수집할지 결정하고 Prometheus, OpenTelemetry 같은 도구들을 이용해 설치 및 설정합니다. 이 단계는 시간이 가장 오래 걸리고, 나중에 잘못된 구성이나 누락이 발견되기도 합니다. 다음 단계는 데이터 저장입니다. 이 단계에서 주의할 점은 예전처럼 여러 소스에서 수집한 데이터를 단순하게 저장하는 것이 아니라, 전체적인 관점에서 어떤 이벤트가 일어나는지를 추적이 가능하도록 데이터 간의 연결과 선후 관계를 설정하는 것입니다. 어려운 점은 새로운 클라우드 기술을 도입하거나 기존의 인프라나 애플리케이션에서 변경이 발생할 때마다 데이터를 계속해서 정리를 해야 하는데, 이를 위해 플랫폼을 지속적으로 수정하고 구성을 추가해야 한다는 것입니다. 마지막으로 부정확한 경고들은 제거해야 합니다. 비즈니스 상황과 데이터는 계속해서 변화하기 때문에 이에 맞게 베이스 라인을 지속적으로 확인하고, 임계치를 조정해서 불필요한 알람이나 노이즈 데이터가 생기는 것을 방지해야 합니다. 결론적으로 직접 옵저버빌리티를 구현하는 것은 처음에는 쉬워 보여도 고급 인력과 많은 시간을 확보해야 하며, 별개로 시간이 지남에 따라서 효율성과 확장성이 떨어진다는 점을 감안하면 대부분의 기업은 감당하기 어렵다고 할 수 있습니다. 그렇다면, Zenius(제니우스) EMS는 옵저버빌리티를 어떻게 확보하고 있을까요? 옵저버빌리티 향상을 위한 가장 기본적인 기능은 토폴로지맵 또는 대시보드입니다. 다양한 인프라의 물리적 논리적 연결구조들을 한 눈에 시각적으로 파악할 수 있도록 해야 합니다. Zenius는 각 인프라별 상황을 한 눈에 볼 수 있는 오버뷰와 시스템 전체를 조망할 수 있는 토폴로지맵, 그리고 서비스 별 상황들을 감시할 수 있는 대시보드 등 크게 세가지의 뷰어(Viewer)를 제공합니다. 인프라의 구성 상황에 따라 다층적으로 구성되어 고객들이 인프라에서 일어나는 상황을 즉각 알 수 있도록 해 줍니다. 이러한 뷰어들은 기존 ‘모니터링’의 개념에서 ‘옵저버빌리티’ 개념으로 진화화면서 좀 더 다층적, 다양화되는 형태로 진화하고 있습니다. 또한, Zenius는 기존의 각 인프라별로 단순히 감시를 설정하는 방식이 아닌 다양한 인프라로부터의 로그와 메트릭 정보를 이용해 어떤 상관관계가 있는지 분석하는 ‘복합감시’라는 서비스가 기본적으로 탑재돼 있습니다. 복합감시를 대표 기능에는 ERMS(Event Relation Management System), 스냅샷 그리고 조치 자동화 등을 들 수 있습니다. l ERMS 기능은 로깅, 메트릭 정보와 장비의 상태를 이용해 새로운 감시 기준을 만들어, 의미있는 이벤트를 생성해 사용자에게 개별 장비 수준이 아닌 서비스 관점에서 정확한 상황 정 보를 제공합니다. l 스냅샷은 서비스 동작에서 이벤트가 발생했을 때, 당시 상황을 Rawdata 기반으로 그대로 재현하는 기능으로 SMS, DBMS, APM, NMS 등 모든 인프라를 동시에 볼 수 있습니다. l 조치 자동화는 ERMS를 자동운영시스템과 연동해, 특정 상황에서 자동으로 스크립트를 실행해 제어하는 기능입니다. 트레이싱 기능은 APM에서 제공하는 기능으로, WAS(Web Application Server)에 인입되고 처리되는 모든 트랜잭션들을 실시간으로 모니터링하고 지연되고 있는 상황을 토폴로지 뷰를 통해 가시적으로 분석할 수 있습니다. 사용자는 토폴로지 뷰를 통해 수행 중인 액티브 트랜잭션의 상세정보와 WAS와 연결된 DB, 네트워크 등 여러 노드들 간의 응답속도 및 시간들을 직관적으로 파악할 수 있습니다. 제니우스의 또 다른 옵저버빌리티는 인공지능 기반의 미래 예측 기능으로 미래 상황을 시각적으로 보여줍니다. 인프라 종류에 상관없이 인공신경망 등 다양한 알고리즘을 통해 미래 데이터를 생성하고, 장애발생 가능성을 빠르게 파악해 서비스 다운타임이 없도록 도와줍니다. 또한 이상 탐지 기능은 보안 침해 또는 기타 비정상적인 활동을 나타낼 수 있는 시스템 로그, 메트릭 및 네트워크 트래픽의 비정상적인 패턴을 식별할 수 있습니다. 이상탐지 알고리즘은 시간이 지남에 따라 시스템 동작의 변화에 적응하고 새로운 유형의 위협을 식별하는 방법을 학습할 수 있습니다. 이상과 같이 Zenius(제니우스) EMS는 최고의 옵저버빌리티를 제공하기 위해서 연구개발에 매진하고 있습니다. 옵저버빌리티 향상을 위한 다양한 기능/제품들은 고객의 시스템과 조직 상황에 맞게 선별적으로 사용될 수 있습니다.
2023.04.19
기술이야기
옵저버빌리티 확보를 위한 대표 정보 소스 3가지
기술이야기
옵저버빌리티 확보를 위한 대표 정보 소스 3가지
지난 블로그에서는 옵저버빌리티가 기존 모니터링과 어떻게 다른지 비교해봤습니다. 간략히 되짚어보면, 옵저버빌리티란 IT 환경이 다양해지고 기업의 서비스가 점점 복잡해짐에 따라 빠르게 문제를 찾아 해결하기 위해 서비스의 내부 상태와 동작을 이해하는 능력입니다. 옵저버빌리티는 IT 인프라별로 어떤 것이 문제라는 기준을 중심으로 모니터링하는 기존 방식에서 벗어나 모든 데이터를 실시간으로 수집하고 분석하여 IT시스템의 근본 원인에 접근하고, IT 운영 전문가의 노하우를 바탕으로 각 메트릭별 상관관계를 분석해 미래의 장애를 예측하는 인사이트를 강조합니다. 이번 블로그에서는 옵저버빌리티 확보에 가장 기본이자 중요한 정보 소스인 로깅, 메트릭, 트레이싱을 중심으로 알아보겠습니다. 이 세가지 소스는 시스템의 정확한 모니터링을 보장하고, 문제가 발생할 때 무엇이 잘못됐는지 근본원인을 추적하고, 전체 기능을 개선하는 데 도움이 되는 방법들입니다. 물론 이 세가지 방법만으로 옵저버빌리티가 확보됐다고 할 수는 없습니다. 옵저버빌리티 확보를 위해서는 로깅, 메트릭, 트레이싱을 통합해 이벤트의 상관관계를 분석하고, 데이터 시각화로 사용자에게 인사이트를 제공하는 능력이 추가돼야 합니다. l Logging : 시스템 내에서 발생하는 이벤트를 인지하고 향후 분석을 위해 저장하는 프로세스 l Metric : 응답 시간 또는 오류율과 같은 시스템 성능을 설명하는 숫자 값 l Tracing: 개발자가 병목 현상과 성능 문제를 식별할 수 있도록 서비스 호출 경로와 시간을 추적하는 프로세스 Logging 로깅은 로그를 남기는 것으로 로그를 수집하고, 저장하는 프로세스입니다. 로깅은 시스템 동작을 이해하고 문제를 진단하는 데 필요한 것으로, 향후 분석을 위해 저장하는 데이터인 만큼 올바른 세부 기준에 따라 의미가 있는 로그를 추출하는 것이 필요합니다. 그리고 예를 들어 웹 애플리케이션에 문제가 발생한 경우 로그를 남기는데, 메트릭을 통해서는 이 문제를 발견할 수 없으므로 그래서 로그는 중요합니다. 로그의 수집은 간단한 텍스트 파일에서 ELK(Elasticsearch, Logstash, Kibana)처럼 정교한 프레임워크에 이르기까지 다양한 형태를 취할 수 있습니다. 그래서 로그는 정형화하기 어렵고 그 양이 방대함으로 로그를 수집, 저장하고 분석할 때 다음과 같은 사항을 유의해야 합니다. l 과도한 로깅은 스토리지 비용을 증가시키고 로그의 검색 효율을 떨어뜨릴 수 있습니다. 따라서 어떤 데이터를 기록하고, 어떤 데이터를 기록하지 않을지 필터링하는 것이 중요합니다. l 장기간 보관할 필요가 없는 로그 효율적인 로깅 시스템을 위한 로그 보관 정책이 필요합니다. l 로그에는 인사이트를 제공할 수 있는 모든 컨텍스트 정보가 포함돼야 합니다. l 로깅은 다른 프로세스에 영향을 미치지 않도록 비동기 방식이어야 합니다. l 민감한 데이터가 로그에 남겨지지 않도록 마스킹을 해야 합니다. 그럼 로그 분석을 통해 알 수 있는 정보는 무엇이 있을까요? l 시스템의 상태: 로그에는 어떤 액션을 수행했는지, 어떤 데이터가 처리됐는지, 또 어떤 오류가 발생했는지 등의 정보가 담겨 있으므로 이러한 정보를 분석해 시스템의 상태를 파악할 수 있습니다. l 이슈 파악: 로그에는 어떤 오류가 발생했고, 어떤 요청이 실패했는지, 어떤 리소스가 부족한지 등의 정보가 담겨 있으므로 이러한 정보를 분석해 이슈를 파악하고, 빠르게 대응할 수 있습니다. l 보안성 강화: 로그에는 로그인 시도, 권한 부여, 보안 이벤트 발생 등의 정보가 담겨 있으므로 이러한 정보를 분석해 보안 이슈를 파악하고, 보안성을 강화할 수 있습니다. Metric 로그가 텍스트라면 메트릭은 단순한 수치입니다. 메트릭은 시스템의 상태를 측정하고, 모니터링하는데 사용되는 숫자 측정값입니다. 조금 더 자세히 설명하면, 메트릭은 측정 항목을 정의하고 해당 항목을 수치로 측정해, 그 결과를 보고하고 시스템이 정상적으로 동작하는지 확인하거나 장애를 빠르게 감지하기 위한 소스입니다. 메트릭의 측정 대상은 CPU 사용률, 메모리 사용률, 네트워크 트래픽 등 인프라의 성능이나 초당 수신하는 요청수, 응답에 걸린 시간, 사용자에게 오류를 다시 보낸 응답 수 등 애플리케이션의 상태와 관련돼 있습니다. 메트릭을 통한 수집 가능한 범위는 모니터링 도구 사용 여부에 따라 달라집니다. 일반적인 방식은 에이전트를 이용해 모니터링 대상으로부터 데이터를 수집하는 것으로, 수집할 메트릭을 정의하기가 유연하고 성능이나 안정성 등의 이슈에 대한 정보도 수집할 수 있는 장점이 있습니다. 에이전트를 사용하지 않고 운영 체제나 애플리케이션에서 제공하는 메트릭 수집 API를 사용하는 방식도 있는데, 수집하는 메트릭이 비교적 제한적입니다. 단순히 메트릭을 수집하는 것만으로 시스템을 모니터링하기에 충분하지 않습니다. 메트릭 데이터를 잘 활용하기 위해서는 분석 방법이 중요한데, 분석을 위해서는 몇가지 단계를 거쳐야 합니다. l 먼저, 데이터를 시각화하여 쉽게 이해할 수 있는 형태로 변환해야 합니다. 차트나 그래프, 대시보드 등을 통해 데이터의 패턴과 추세를 파악할 수 있으며, 시스템의 상태를 실시간으로 모니터링할 수 있습니다. l 다음으로, 데이터를 분석하여 시스템의 문제를 식별합니다. 예를 들어, 응답 시간이 지연되는 경우, 이를 발생시키는 주요 요인을 파악하여 시스템을 개선해야 합니다. 이를 위해 데이터를 세분화하여 요소를 파악하고, 문제를 식별하는 데 도움이 되는 경향성을 찾아야 합니다. l 마지막으로 이전 데이터와 비교하고 평가에 활용합니다. Metric 데이터를 분석할 때는 이전 데이터와 비교하여 시스템의 개선 정도를 파악하는 것이 중요하고, 이를 통해 시스템의 성능 개선 여부를 판단하고, 추가적인 개선 방안을 모색할 수 있습니다. Tracing 트레이싱은 분산 시스템에서의 서비스 호출 경로와 시간을 추적하는 기술입니다. 즉, 서비스 간의 호출 관계와 시간 정보를 추적해 각 서비스의 응답 시간을 파악하고, 이를 시각화해 병목 현상을 파악할 수 있습니다. 트레이싱은 크게 세 가지 구성 요소로 이뤄져 있습니다. l Trace: Trace는 서비스 간의 호출 경로와 시간 정보를 담고 있는 데이터 레코드입니다. Trace는 Span과 Trace ID, Parent Span ID 등의 정보를 가지며, 각 Span은 서비스 내부에서의 호출 관계와 시간 정보를 담고 있습니다. l Span: 분산 추적에서 가장 기본이 되는 논리 단위로 여러 개의 span 이 모여 trace를 완성한다는 개념입니다. 각각의 Span은 작업이름, 시작 시간과 종료 시간, key value 형태의 tags 와 Logs, span contexts를 가지고 있습니다. Span contexts는 분산추적을 하기위해 Trace 구간에서 종속된 Span을 구별할 수 있는 Span id와 Trace id를 말합니다. l Collector: Collector는 Trace 정보를 수집하고 저장하는 역할로, Trace 정보를 수집하기 위한 에이전트와 수집된 Trace 정보를 저장하고 분석하기 위한 Backend로 이뤄져 있습니다. (출처: [MSA] OpenTracing, 분산추적(Distributed Tracing) 과 Span context, KSR의 저장소) 이렇게 옵저버빌리티를 구현하기 위한 로깅, 매트릭, 트레이싱 등 세 가지의 중요한 정보 소스들을 다루기 위해서는 여러가지 기술들이 조합되어야 합니다. 다음 블로그에서는 그와 같은 정보 소스들을 다루어 옵저버빌리티를 구현하기 위해서 널리 사용되는 대표적인 오픈 소스들을 알아보고 Zenius-EMS에서는 옵저버빌리티 향상을 위해서 어떤 기능들을 제공하고 있는지 살펴보겠습니다.
2023.04.19
기술이야기
클라우드 송환(Cloud Repatriation): 클라우드에서 다시 온프레미스로
기술이야기
클라우드 송환(Cloud Repatriation): 클라우드에서 다시 온프레미스로
다시 온프레미스로 복귀하려는 움직임 2022년 발표된 IDC 조사 결과에 의하면, 미국 기업의 71%가 향후 2년내에 ‘클라우드 송환’ 계획이 있다고 합니다. 실제 일부 애플리케이션을 클라우드에서 빼내 자체 데이터센터로 다시 가지고 오는 기업이 늘고 있습니다. 우리나라의 경우 ‘클라우드 전환’이 업계의 화두가 되고 있지만, 클라우드 전환을 10년 넘게 경험하고 있는 미국의 경우에는 이제 ‘클라우드 송환’이 또 다른 화두가 되고 있습니다. 클라우드 송환(Cloud repatriation)은 기업이 클라우드 환경에서 운영하던 애플리케이션, 데이터, 서비스 등을 온프레미스 환경으로 되돌리는 것을 말합니다. 이는 퍼블릭 클라우드가 비즈니스 민첩성을 향상시킬 수 있지만, 특정한 상황에서 온프레미스보다 퍼블릭 클라우드의 지출 비용이 더 크다는 사실을 기업이 깨달으면서 해당 애플리케이션 등을 온프레미스로 복귀시키려는 IT 전략입니다. 클라우드 송환 현상은 IT 비용과 성능을 비롯한 여러 측면에서 클라우드가 항상 최선의 해결책은 아니라는 인식을 바탕으로 확대되는 추세이며 이제 기업이 비용, 성능, 보안의 극대화를 위해 기존 환경과 새로운 환경 사이에서 자연스러운 워크로드 분산을 시작했다는 의미이기도 합니다. 미처 몰랐던 클라우드 서비스의 문제점 클라우드를 채택한 기업이 클라우드 송환을 선택하는 이유는 다음과 같은 문제가 있기 때문입니다. 첫째, 클라우드 비용 문제입니다. 2022년 클라우드 현황(Flexera 2022 State of the Cloud Report) 보고서에 따르면, 클라우드 비용의 30% 정도가 낭비되고 있습니다. 클라우드 서비스가 표면적으로 내세우는 클라우드의 가장 큰 장점이 비용 절감임에도 불구하고, 클라우드 전환 OPEX(operational expenses)가 기존 CAPEX(capital expenses) 대비 더 낫다고 단정하기 어렵습니다. 초기에는 클라우드의 비용이 저렴하게 느껴지지만, 가상머신(VM)과 컨테이너 인스턴스에서 처리하는 작업이 늘어날수록 비용도 더해지기 때문입니다. 워크로드가 증가하는 스타트업은 클라우드를 통해 유연성을 확보하는 것이 비용면에서 유리하겠지만, 예측 가능한 수준의 워크플로우를 갖고 있는 기업이라면 얘기가 달라집니다. 특히, 클라우드에서는 인터넷 대역폭 및 스토리지 요금 등 추가적인 비용이 발생할 수 있습니다. 둘째, 보안 문제입니다. 기업은 클라우드 제공자가 제공하는 기본적인 보안 기능 외에도 보안 문제에 대한 책임을 직접 지게 됩니다. 또, 기업은 자체 보안 정책을 준수해야 하며, 이를 클라우드 환경에 적용하는 것이 쉽지 않습니다. 특히 복잡한 멀티클라우드 환경에서는 견고하게 클라우드 보안 아키텍처를 구축하기 어렵고 외주 처리에 따라 많은 비용이 듭니다. 셋째, 성능 문제입니다. 클라우드에서는 다른 기업과 리소스를 공유하기 때문에 성능 문제가 발생할 수 있습니다. 또, 클라우드 환경에서 애플리케이션 및 데이터를 조작하는 데 필요한 대역폭이 충분하지 않을 경우 성능 문제가 발생할 수 있습니다. 따라서 기업은 성능 문제로 인해 클라우드 송환을 선택할 수 있습니다. 넷째, 제어 문제입니다. 클라우드에서는 기본적으로 클라우드 제공자가 인프라 관리와 보안을 담당합니다. 이는 기업이 클라우드 환경에서는 많은 경우 애플리케이션, 데이터, 서비스 등을 직접 제어할 수 없다는 것을 의미합니다. 따라서, 기업이 직접 컨트롤하지 못해서 문제가 발생한다고 느낄 때에는 클라우드 송환을 선택할 수 있습니다. 클라우드 송환의 이점 클라우드 송환(Cloud repatriation)은 기업에게 여러 가지 이점을 제공합니다. 첫째, 기업은 애플리케이션, 데이터, 서비스 등을 직접 관리할 수 있습니다. 이는 기업이 보안 및 규정 준수와 같은 중요한 문제를 직접 다룰 수 있도록 해주며, 제어력을 높임으로써 IT 부서가 잠재적 문제에 대비해 인사이트와 더 나은 계획을 수립할 수 있게 해줍니다. 클라우드에서는 기본적으로 클라우드 제공 업체가 인프라 관리와 보안을 담당하기 때문에, 이를 직접 제어할 수 없습니다. 클라우드 송환에 적합한 케이스는 정적인 기능을 제공하며 사용량이 많은 애플리케이션입니다. 비용이 고정되고 예측 가능한 애플리케이션은 온프레미스 환경에서 관리하는 편이 더 효과적입니다. 둘째, 기업은 클라우드 비용을 절감할 수 있습니다. 한때 퍼블릭 클라우드가 모든 문제의 해답이라고 생각했다가 퍼블릭 클라우드의 비용 특성과 이점이 기업의 상황과는 맞지 않는다는 사실을 깨닫게 됩니다. 2~3년에 걸쳐 추가되는 비용을 감안하면 퍼블릭 클라우드를 계속 사용할 만한 매력은 시간이 갈수록 희석됩니다. 기업은 반복적으로 발생하는 클라우드 운영 비용을 줄이거나 없애는 방법으로 많은 비용을 절감할 수 있습니다. 예를 들어, 어떤 기업의 데이터가 여러 사이트에서 발생하고 그 양이 많다면 클라우드 환경에서 데이터를 보관하고 이동시키는 데 많은 비용이 발생할 수 있습니다. 또 다른 예로 영상을 불러오고 저장하는 작업이 빈번한 영상 제작 기업의 경우, 클라우드 서버에서 병목현상이 발생할 수 있고 내부 LAN처럼 10Gbps 속도로 데이터를 옮기려면 그 비용이 저렴하지 않을 수 있습니다. 비용 외에도 데이터 이동에 많은 시간이 소모되며 이로 인해 데이터를 필터링해 최소한의 데이터만 저장해야 하는 불편함이 있습니다. 한편, 메모리와 디스크 리소스 비용이 계속 하락하면서 기업의 온프레미스 투자가 유리해지고 있습니다. 더불어 클래스 메모리 및 SDN(소프트웨어 정의 네트워크)과 같은 비용에 도움을 주는 솔루션을 활용하면, 한때 퍼블릭 클라우드의 큰 매력이었던 유연성, 확장성, 중복성의 간극이 상당부분 사라집니다. 셋째, 기업은 데이터 보호와 백업을 더욱 쉽게 할 수 있습니다. 클라우드 업체도 데이터 프라이버시에 대해 엄격하지만 온프레미스 환경에서 데이터를 저장하고 백업 받고 복구하는 것보다 더 안전할 수 없습니다. 물론 민감한 정보를 로컬 환경에 저장하는 것 역시 문제 제기가 있겠지만 최소한 고객 데이터가 사라졌을 때 무엇을 어떻게 해야 하는지 알 수 있습니다. 규정 준수 측면에서도 각 국마다 개인정보보호 규정이 달라 우발적인 규정 위반 가능성이 있습니다. 이러한 우려를 줄이는 방법은 애플리케이션을 특정 위치의 온프레미스 환경에서 실행하는 것입니다. 넷째, 대역폭 문제에서 자유로운 장점이 있습니다. 클라우드 환경에서 빅데이터 시스템을 활용하는 기업은 빅데이터 시스템에서 생성되는 데이터가 높은 대역폭을 요구하면서 자사 데이터 센터보다 훨씬 더 많은 운용 비용을 지불합니다. 컴퓨팅은 온디맨드이므로 탄력적인 클라우드가 유리할 수 있지만 스토리지는 매일 매초 비용이 계속 증가하고 있는 사실을 알아야 합니다. 클라우드냐 온프레미스냐 고려할 점 클라우드 송환은 비용면에서 매력적이지만 매우 도전적인 과제입니다. 클라우드 서비스 공급자는 일반적으로 클라우드에서 빠져나오기 상당히 어렵게 계약하고, 해체됐거나 아예 존재하지 않던 온프레미스 환경을 준비하기 위해 기업의 재무와 조직 운영에 큰 영향을 미치기 때문입니다. 게다가 애플리케이션을 온프레미스 데이터센터로 마이그레이션하는 경우 기업은 클라우드의 확장성, 유연성, 가용성, 탄력성을 유지하기 힘들고 자체 데이터센터가 클라우드에 비해 더 안전하다는 보장을 하기도 어렵습니다. 따라서 이런 경우에는 애플리케이션에서 실행 중인 환경에 대한 종속성이 있는 부분과 단순히 데이터를 관리하는 부분을 분리하면 혼란을 최소화할 수 있습니다. 처음부터 클라우드 환경을 고려해 서비스를 설계했다면, 워크로드를 다시 데이터센터로 되돌리기 위해서는 어느 정도의 재설계가 필요하며 빅데이터에 의존하는 기업은 상당한 마이그레이션 작업을 각오해야 합니다. 이처럼 클라우드 송환은 매우 어려운 과제입니다. 따라서 처음부터 워크로드를 퍼블릭 클라우드로 이전하는데 매우 신중한 입장을 취하는 것이 가장 중요합니다. 그래서 최근에는 기업들이 클라우드 환경을 고수하는 것보다는 필요한 경우 클라우드와 온프레미스 환경을 융합하는 하이브리드 클라우드 전략을 선택하는 경향이 있습니다. 모든 서비스를 클라우드로 전환하는 것이 아니라, 단기간에 트래픽이나 사용자가 급속히 늘어날 가능성이 있거나, 클라우드 서비스를 활용해 서비스를 빠르게 런칭해야 하는 경우로 한정하는 것이 필요합니다. 우리나라에서도 많은 기업들이 이미 클라우드가 갖고 있는 단점들을 경험하고 온프레미스로 전환하고 있습니다만, ‘클라우드 전환’이라는 큰 물결 아래 ‘클라우드 송환(Cloud Repatriation)’에 대한 논의는 제한적입니다. 우리나라의 클라우드 전환율이 세계시장과 비교해 볼 때 현저히 낮지만, 오히려 클라우드 환경의 문제를 이미 경험한 나라들의 교훈을 미리 받아들인다면 학습비용을 줄일 수 있을 것으로 기대합니다. Zenius-EMS는 고객들이 레거시 시스템에서부터 클라우드 네이티브 시스템에 이르기까지 다양한 관점의 서버모니터링을 할 수 있도록 지원합니다. 대규모 인프라가 존재하는 데이터센터 및 클라우드 환경에서 대용량 데이터 처리에 대한 높은 성능을 확인할 수 있습니다. 고유의 특허 기술을 통해 수천대의 장비에서 발생되는 데이터들을 안정적으로 수집하고 빠르게 처리할 수 있습니다. [출처] John Edwards, "클라우드의 온프레미스 송환이 타당한 5가지 경우", IT WORLD, 2019.04.16 Steven J. Vaughan-Nichols, "모두가 '클라우드' 외칠 때 '로컬 서버' 선택해야 하는 이유, IT WORLD, 2022.07.27 Andy Patrizio, "기업 71%, 2년 이내 클라우드에서 온프레미스로 복귀할 것", IT WORLD, 2022.06.29 Clint Boulton, "'전진 위한 후퇴'··· 클라우드서 온프레미스로 송환하는 기업들", CIO Korea, 2020.03.30 Brian Adler, "Cloud Computing Trends: Flexera 2022 State of the Cloud Report", flexera, 2022.03.21
2023.04.07
기술이야기
서버 모니터링 트렌드 살펴보기
기술이야기
서버 모니터링 트렌드 살펴보기
기업이나 조직의 IT 인프라 모니터링은 서버 모니터링에서 출발합니다. 통상적으로 서버 모니터링부터 네트워크, 데이터베이스, 웹애플리케이션, 전산설비 등으로 모니터링의 범위를 확장해 나가는 것이 일반적입니다. 서버는 초창기 메인 프레임부터 유닉스 서버, 리눅스 서버를 거쳐 최근의 가상화 서버에 이르기까지 물리적 및 논리적으로 그 성격이 변화해 왔습니다. 그에 따라 서버 모니터링의 관점도 많이 변모해 왔습니다. 기껏해야 1~2대 규모로 운영하던 메인 프레임의 시대와 수천, 수만대의 서버팜을 관리해야 하는 시대의 모니터링 개념은 달라야 합니다. 또, 가상화 시대를 맞아 물리적 서버 개념보다는 논리적 서버 개념이 중요해지고, 서버 1~2대의 장애 상황보다는 서버팜이 이루고 있는 서비스의 영속성이 중요해졌습니다. 이처럼 서버라는 인프라가 기술 발전에 따라 변모하고 있고, 그에 대응해 모니터링 콘셉트나 방법도 변화하고 있습니다. 이번 블로그에서는 서버 관련 새로운 인프라 개념 및 기술들이 대두되면서 변화하는 서버 모니터링의 새로운 트렌드에 관해 논의해 보고자 합니다. 1. 클라우드 네이티브 모니터링 더 많은 기업이나 조직이 전통적인 레거시 시스템에서 클라우드로 이동함에 따라 클라우드 모니터링의 필요성이 급격히 증가했습니다. 클라우드 네이티브 모니터링 도구는 Amazon Web Services(AWS), Microsoft Azure, Google Cloud Platform(GCP)과 같은 클라우드 환경에서 애플리케이션과 클라우드 인프라를 모니터링하도록 설계됐습니다. 또, 클라우드 인프라의 성능, 가용성 및 보안에 대한 실시간 인사이트를 제공해, IT운영부서가 문제를 신속하게 발견하고 해결할 수 있도록 지원합니다. 일반적인 클라우드 모니터링은 메트릭과 로그를 사용해 클라우드 인프라 및 애플리케이션 성능을 하나의 통합된 화면에 제공합니다. 또한 통합 IT 환경 측면에서는 컨테이너 오케스트레이션 플랫폼 및 서버리스 컴퓨팅과 같은 다른 클라우드 환경과 통합해 모니터링할 수도 있습니다. 클라우드 기반 모니터링의 최신 추세는 하이브리드 모니터링입니다. 조직은 하이브리드 모니터링을 통해 클라우드와 온프레미스에서 각각 실행 중인 서버 및 애플리케이션 모두를 단일 플랫폼에서 모니터링할 수 있습니다. 2. 인공지능과 머신러닝 서버 모니터링의 또 다른 트렌드는 인공 지능(AI)과 머신 러닝(ML)을 사용해 모니터링 과정을 자동화하는 것입니다. AI 및 ML 알고리즘은 모니터링 과정에서 생성된 방대한 양의 데이터를 분석하고 패턴을 식별해 이상 징후를 감지할 수 있습니다. 이는 실시간으로 수행될 수 있으므로 운영관리자는 발생하는 모든 문제에 신속하게 대응할 수 있습니다. ML 알고리즘은 과거 데이터를 분석해 트래픽이 가장 많은 시기나 잠재적 장애와 같은 미래 추세를 예측할 수 있습니다. 이를 위해 서버의 성능과 관련된 대규모 데이터 세트에서 ML 알고리즘을 교육해야 합니다. 이 데이터는 서버 로그, 시스템 메트릭, 애플리케이션 로그 및 기타 관련 정보가 해당됩니다. 다음으로 알고리즘을 학습해 다양한 메트릭 간의 패턴과 상관 관계를 식별하고 이상 징후와 잠재적 문제를 감지합니다. 머신 러닝 모델이 훈련되면 서버를 실시간으로 모니터링하도록 배포할 수 있으며, 모델은 지속적으로 서버 메트릭을 분석하고 이를 학습한 패턴과 비교합니다. 편차나 이상을 감지하면 문제를 해결하기 위해 경고 또는 자동화된 작업을 트리거할 수 있습니다. 예를 들어, 트래픽이 갑자기 증가하는 경우 리소스를 자동으로 Scaling 하거나 다운 타임을 방지하기 위해 다른 조치를 취할 수 있습니다. 전반적으로 인공 지능과 머신 러닝을 사용해 서버 모니터링을 자동화하면, 문제해결에 시간을 절약하고 인적 오류의 위험을 줄일 수 있습니다. 또, 심각한 문제로 번지기 전에 잠재적 문제를 식별해 서버 인프라의 전반적인 안정성과 가용성을 향상할 수 있습니다. 3. 컨테이너 모니터링 컨테이너가 애플리케이션 배포에 점점 더 많이 사용되면서, 컨테이너 모니터링은 서버 모니터링의 중요한 측면이 됐습니다. 컨테이너란 애플리케이션을 모든 인프라에서 실행하는데 필요한 모든 파일 및 라이브러리와 함께 번들로 제공하는 소프트웨어 배포 도구입니다. 컨테이너를 사용하면 모든 유형의 디바이스 및 운영 체제에서 실행되는 단일 소프트웨어 패키지를 만들 수 있습니다. 뿐만 아니라, 단일 시스템에서 한 컨테이너는 다른 컨테이너의 작업을 방해하지 않으므로 확장성이 뛰어나고, 결함이 있는 서비스가 다른 서비스에 영향을 주지 않아 애플리케이션의 복원력과 가용성이 향상되는 장점이 있습니다. 컨테이너 모니터링은 CPU 및 메모리 사용량과 같은 컨테이너 리소스 사용률에 대한 실시간 메트릭을 제공할 수 있습니다. 또, 애플리케이션이 의도한 대로 실행되고 있는지 확인하기 위해 Kubernetes(쿠버네티스)와 같은 컨테이너 오케스트레이션 플랫폼을 모니터링하고, 컨테이너 및 기본 인프라에 대한 실시간 가시성을 제공합니다. 4. 서버리스 모니터링 서버리스 컴퓨팅은 사용량에 따라 백엔드 서비스를 제공하는 방법으로, 개발자가 서버를 관리할 필요없이 애플리케이션을 빌드하고 실행하는 것을 가능하게 합니다. 서버리스 컴퓨팅은 벤더 종속성(Vendor lock-in), 콜드 스타드와 DB백업이나 영상 인코딩 등 단시간에 많은 컴퓨팅 용량이 필요한 경우, 효율적이지 않음에도 불구하고 최근 몇 년 동안 주목을 받아오며 서버리스 모니터링이 서버 모니터링의 새로운 트렌드가 됐습니다. 서버리스 모니터링은 CPU, 메모리, 디스크 사용량 등 리소스 사용률, 애플리케이션 성능, 호출 시간 및 오류율과 같은 기능 성능에 대한 실시간 인사이트를 제공합니다. 서버리스 모니터링은 데이터베이스 쿼리 성능과 같은 서버리스 함수의 종속성에 대한 인사이트도 제공합니다. 5. 마이크로서비스 모니터링 마이크로서비스는 하나의 큰 애플리케이션을 여러 개의 작은 기능으로 쪼개어 변경과 조합이 가능하도록 만든 아키텍처로, 각 서비스를 다른 서비스와 독립적으로 개발, 배포 및 확장할 수 있는 장점이 있습니다. 하지만 마이크로서비스는 일반적으로 분산된 환경에 배포되므로 성능을 추적하고 문제를 찾아내기가 어렵고, 독립적으로 설계됐으므로 호환성에 어떤 문제가 있는지 감지할 필요가 있어 마이크로서비스 모니터링이 필요합니다. 마이크로서비스 모니터링은 개별 마이크로서비스 및 전체 애플리케이션의 성능과 상태를 추적하는 프로세스로 로그, 메트릭 및 트레이스와 같은 다양한 소스에서 데이터를 수집하고 분석해 문제를 식별하고 성능을 최적화하는 작업입니다. 마이크로서비스 모니터링은 각 마이크로서비스 별 가용성, 응답 시간, 가동 시간, 지연 시간, 오류율을 포함합니다. CPU, 메모리, 디스크 사용량과 같은 리소스 사용률을 추적해 잠재적인 성능 병목 현상이나 리소스 제약을 식별할 수 있고, 마이크로서비스 간의 데이터 흐름을 추적하고 서비스 간의 종속성 추적을 모니터링합니다. 또, 마이크로서비스 모니터링은 애플리케이션 전체의 전반적인 상태와 성능뿐만 아니라 타사 서비스 및 API의 성능과 상태도 모니터링할 수 있습니다. ----------------------------------- 브레인즈컴퍼니는 꾸준히 연구개발에 매진해 상기와 같은 새로운 트렌드를 반영한 Zenius-EMS를 개발, 출시했습니다. Zenius-EMS는 고객들이 레거시 시스템에서부터 클라우드 네이티브 시스템에 이르기까지 다양한 관점의 서버모니터링을 할 수 있도록 지원합니다. *이미지 출처: Unsplash, flaction
2023.03.29
기술이야기
Monitoring vs Observability, 모니터링과 옵저버빌리티 이해하기
기술이야기
Monitoring vs Observability, 모니터링과 옵저버빌리티 이해하기
옵저버빌리티는 "무슨 일이 일어났는가?", "왜 그런 일이 일어났는가?"와 같은 질문에 답하는 것을 목표로 합니다. 옵저버빌리티는 IT시스템 전체적인 관점에서 문제를 신속하게 식별하고 근본 원인을 분석할 수 있습니다. 최근 IT 인프라의 종류가 다양해지고, 수가 기하급수적으로 많아지고, 복잡도가 급격히 증가함에 따라 IT 인프라의 가용성을 보장하기 위해서 전통적으로 행해지던 모니터링의 범주를 넘어서는 옵저버빌리티라는 개념이 등장했습니다. 모니터링과 옵저버빌리티라는 두 용어들은 때로는 비슷한 개념으로 서로 바꿔서 사용되기도 하지만, 시스템 관리에 대한 다른 접근 방식을 나타냅니다. 이번 블로그에서는 모니터링과 옵저빌리티의 차이점을 알아보겠습니다. Monitoring이란? 모니터링은 IT 시스템에서 CPU 사용량, 메모리 사용량, 네트워크 트래픽과 같은 데이터를 수집하고 분석해 성능과 동작을 파악하는 것입니다. 모니터링의 목표는 시스템에 문제가 있는 것으로 추정되는 이상한 동작이나 조건을 감지하고 경고하는 것입니다. 모니터링은 종종 문제를 나타낼 수 있는 특정 메트릭이나 이벤트에 대한 알람 설정을 포함합니다. 이 접근 방식은 일반적으로 예측 가능한 개별 시스템에 사용합니다. 전통적인 모니터링 방법은 일정한 간격으로 수집되는 사전 정의된 메트릭이나 로그에 의존합니다. 예를 들어, 서버의 CPU 사용량을 1분마다 확인하고 사용량이 특정 임계값을 초과하면 알람을 보낼 수 있습니다. 이러한 방식은 특정 유형의 문제를 감지하는 데 효과적이지만, IT 시스템 동작을 전체적으로 파악하거나 근본 원인 분석에 대한 심층적인 인사이트는 제한적일 수 있습니다. Observability란? 옵저버빌리티는 IT 시스템 관리에 대한 새로운 접근 방식으로, 시스템의 내부 동작을 이해하는 것에 중점을 둡니다. 옵저버빌리티의 목표는 시스템의 동작을 깊이 이해하고 발생 가능한 모든 문제의 근본 원인을 파악하는 것입니다. 옵저버빌리티는 메트릭, 추적, 로그 등을 실시간으로 수집하고 분석하는 것을 포함합니다. 참고로 메트릭은 CPU 사용량, 메모리 사용량, 네트워크 트래픽과 같은 시스템 성능과 관련된 정량적 정보를, 추적은 요청의 호출 순서 및 응답 시간과 같은 시스템 동작에 대한 정보를, 로그는 사용자 작업 및 오류를 포함해 시스템 활동을 제공합니다. 옵저버빌리티가 필요한 이유 옵저버빌리티는 복잡하고 동적인 시스템에서는 문제를 빠르게 찾고 해결하기 위해 시스템의 동작과 성능을 측정하고 분석할 필요가 있습니다. 옵저버빌리티를 통해 다음과 같은 이점을 얻을 수 있습니다. 옵저버빌리티가 필요한 이유 1. 문제 해결 속도 향상: 옵저버빌리티를 사용하면 복잡한 시스템에서 발생하는 문제를 더욱 빠르게 파악할 수 있습니다. 이를 통해 시스템 장애나 성능 저하와 같은 문제를 빠르게 해결할 수 있습니다. 2. 전체 시스템 이해도 증가: 옵저버빌리티를 사용하면 전체 시스템의 내부 동작을 쉽게 이해할 수 있습니다. 이는 문제를 예방하거나 빠르게 대처할 수 있도록 도와줍니다. 3. 대규모 시스템 관리 가능: 대규모 분산 시스템에서는 옵저버빌리티가 필수적입니다. 이를 통해 수많은 서버, 네트워크, 애플리케이션 등에서 발생하는 다양한 데이터를 수집하고 분석할 수 있습니다. 4. 문제 예방 및 최적화: 옵저버빌리티를 사용하면 시스템의 성능을 지속적으로 모니터링하고 문제를 예방할 수 있습니다. 또한 시스템의 최적화를 위해 데이터를 분석하고 개선할 수 있습니다. 따라서, 옵저버빌리티는 복잡한, 여러 개의 세분화된 시스템으로 구성된 전체 시스템에서 필수적인 도구로, 시스템의 성능 개선과 장애 대응 등 다양한 측면에서 가치를 제공합니다. Monitoring vs Observability 모니터링과 달리, 옵저버빌리티는 사전에 정의된 메트릭과 알람에 의존하는 대신, 시스템 동작의 더욱 전체적인 관점을 제공합니다. 옵저버빌리티는 여러 소스에서 수집한 데이터를 같이 분석함으로써 쉽게 찾을 수 없는 어떤 패턴과 상관관계를 발견하는 데 도움을 줄 수 있습니다. 이 접근 방식은 예측할 수 없는 동작을 가진 복잡한 시스템에서 특히 유용합니다. 모니터링과 옵저버빌리티의 또 다른 중요한 차이점은 사람의 개입 수준입니다. 모니터링은 특정 이벤트 또는 조건을 감지하고 해당 이벤트 또는 조건이 발생할 때 경고를 트리거하도록 설계되므로 모니터링을 설정하고 구성하는데 사람의 개입이 필요할 수 있지만 일단 도구가 셋업되면 사람의 개입 없이 자동으로 작동하는 편입니다. 반면에, 옵저버빌리티는 데이터를 해석하고 결정을 내리고 조치를 취하는데 IT 운영자의 전문 지식을 사용해 프로세스에 관여합니다. 이러한 접근 방식은 시간이 더 많이 소요될 수 있지만, 문제의 근본 원인에 대한 더 많은 인사이트를 제공할 수도 있습니다. 올바른 어프로치 선택하기 모니터링과 옵저버빌리티는 각각 장단점이 있으며, 시스템의 특정 요구사항에 따라 어떤 접근 방식을 선택할지 달라져야 합니다. 비교적 상황 파악이 어렵지 않은 간단한 시스템의 경우, 전통적인 모니터링 도구로 충분할 수 있습니다. 그러나 복잡하고 시스템이 분산된 경우, 시스템 동작을 완전히 이해하기 위해 옵저버빌리티가 필요할 수 있습니다. 결국, 효과적인 시스템 관리의 핵심은 문제를 빠르게 감지하고 해결하기 위한 적절한 도구와 프로세스를 갖추는 것입니다. 모니터링 또는 옵저버빌리티를 선택하든, 시스템과 조직의 요구에 부합하는지 정기적으로 검토하고 개선하는 것이 중요합니다. 적절한 도구와 프로세스에 투자함으로써, 시스템의 신뢰성과 성능을 개선하고 비용이 많이 드는 다운타임과 서비스 중단을 피할 수 있습니다. Zenius EMS 브레인즈컴퍼니는 20년 이상 축적된 노하우를 바탕으로 레거시 환경은 물론 최근 더욱 복잡해지고 있는 클라우드 네이티브 시스템까지 모니터링과 옵저버빌리티 모두를 제공함으로써 고객이 원하는 방식으로 사용이 가능합니다. Zenius EMS는 SMS, NMS, APM 등 각 인프라별 모니터링을 통합해 시스템을 더욱 안정성 있게 관리하고 자동화된 장애대응 환경을 제공하며 객관적인 데이터 기반으로 리포팅이 가능한 지능형 IT 성능 모니터링입니다. 또한 쿠버네티스, 오픈 스택을 지원하는 클라우드 환경을 모니터링합니다. 국내 공공분야 관제 SW 1위, 제니우스의 상관관계 분석, 인공지능을 활용한 성능예측 등 옵저버빌리티 기술을 통해 다양한 시스템 레이어에서 성능, 장애, 구성에 대한 인사이트를 얻으시기 바랍니다.
2023.03.28
기술이야기
통합로그관리가 필요한 3가지 이유
기술이야기
통합로그관리가 필요한 3가지 이유
로그는 IT 인프라에서 발생하는 모든 상황들을 기록한 데이터입니다. 쉽게 말해 사용자가 어떤 루트로 사이트에 접속했고, 접속한 시점부터 어떤 행동을 취했는지가 모두 기록으로 남게 되는데, 이 기록들이 로그입니다. 로그는 IT 환경에서 가장 많이 발생하지만, 데이터 처리 기술이 발달하지 않았던 시기에는 처리 비용에 비해 가치가 낮은 데이터로 여겨졌습니다. 하지만 최근들어 IT 서비스와 인프라가 다양해지고 디지털 트랜스포메이션이 가속화되면서, 로그의 양이 기하급수적으로 증가하고 사물인터넷(IoT), 빅데이터 등과 같은 신기술이 발전하면서 그 효용성 또한 날로 증가하고 있습니다. 그렇다면, 이 로그는 실제로 어떻게 활용될까요? 개발 영역에서는 버그 혹은 크래시율 수집 및 상시 트래킹, 이슈 발생 후 롤백 및 대응, 특정 기능에 대한 사용성 진단에 활용됩니다. 마케팅 분야는 채널별 ROI 진단 및 비용 최적화, 배너/프로모션/이벤트 효과 측정, 유저 세그멘테이션 및 타게팅에 사용합니다. 기획 및 디자인 영역은 기능 개선을 위한 A/B 테스트, 유저 Journey 경로 분석을 통한 UX/UI 최적화 등에서 쓰이고 있습니다. 이처럼 여러 영역에서 다양하게 쓰이는 로그를 관리하지 않고 방치해두면 어떤 일이 발생할까요? 통합로그관리가 필요한 이유에 대해 알아보겠습니다. ----------------------------------------------- I. 보안 대응체계 구축 저장만 하고 관리되지 않은 로그는 IT 시스템의 장애나 문제 발생 시 그 원인을 찾아내기가 어렵습니다. 또, 로그 데이터의 중요 정보가 외부로 유출될 위험도 커집니다. 끊임없이 발생하는 보안 사고에 대비하기 위해 통합로그관리는 반드시 필요합니다. 관리된 로그는 장애나 사고 발생 시에 그 원인을 파악하고 빠른 대처를 위한 근거 데이터로 사용할 수 있으며, 보안 체계를 마련하는 데에도 활용가능 합니다. 기업들은 로그관리 제품을 사용해 사이버 침해위협을 예방 및 감시하고, 정기적인 로그분석을 통해 강력한 보안대응체계를 구축하고 있습니다. 통합로그관리 솔루션은 보안장비(Firewall, IDC, IPS 등)의 로그와 해킹, 악성코드 등 보안/침해 관련 로그를 지속적으로 분석해 예방 체계를 구축합니다. 또, 대용량 로그의 상관분석을 통해 보안위협을 탐지하고 이상징후를 모니터링하는 등 강력한 보안 대응체계를 구축할 수 있습니다. II. 컴플라이언스 준수 로그는 보안 사고가 발생했을 때 가장 기본적인 증거 및 모니터링 자료로 활용됩니다. 이에 따라 정부에서는 데이터 관리에 대해 각종 법률을 규정하고 있어, 공공기관을 비롯한 개인정보를 다루는 온라인 사업자 및 기업 등은 해당 법규를 준수해야 합니다. 안전한 데이터 이용을 위해 2018년에 발의된 '데이터 3법' 개정안은 2020년 1월 9일 국회 본회의를 통과했습니다. 데이터 3법은 개인정보 보호법, 정보통신망 이용촉진 및 정보보호 등에 관한 법률, 신용정보의 이용 및 보호에 관한 법률 등 3가지 법률을 통칭합니다. 로그 관리 관련 규제의 주요 내용은 다음과 같습니다. i. 개인정보보호를 위해 접근 권한 부여, 변경 또는 말소 기록을 3년 이상 보관해야 합니다. ii. 개인정보 취급자는 개인정보처리시스템의 접속기록을 월 1회 이상 점검해야 하고, 그 활동의 증거를 남기기 위해 시스템에 접속했다는 기록을 1년 이상 보관해야 합니다. iii. 정보통신서비스 제공자는 접근 권한 내역을 5년간 보관하고, 접속 기록의 위·변조 방지를 위해 반드시 백업 보관해야 합니다. III. 빅데이터 처리 플랫폼 IT 인프라 확대 및 기타 비정형 로그 유입에 따라 대용량 로그에 대한 관리가 요구되고 있습니다. 특히 수집된 로그를 실시간으로 분석∙판단해 IT 서비스의 안정적 운영을 도모해야 하는 수요가 증대되고 있는데요. 오늘날의 데이터는 기존 데이터에 비해 양이 매우 방대해 기존 방법이나 도구로는 관리가 어렵습니다. 따라서 빅데이터 기술을 기반으로 하는 대용량 통합 로그관리 솔루션은 이제 IT 운영을 위한 필수 솔루션으로 자리잡았습니다. ----------------------------------------------- 이처럼 기업은 보안위협 및 이상징후 대응/컴플라이언스 준수/대용량 로그 관리를 위해 통합로그관리 솔루션을 필수로 갖춰야합니다. 브레인즈컴퍼니의 통합로그관리 솔루션 '제니우스(Zenius) Logmanager'는 이기종 장비에서 발생되는 정형∙비정형 로그 데이터의 수집/분석/관리 등을 위한 빅데이터 플랫폼입니다. 제니우스 로그매니저가 어떻게 구성돼 있는지 살펴보겠습니다. 제니우스 로그매니저는 정형/반정형 또는 비정형 로그에 대한 실시간 수집 및 신속한 분석 기능을 제공하며, 이러한 정보들을 다양한 차트와 대시보드를 통해 직관적으로 가시화합니다. 특히 로그매니저는 독보적인 인덱싱 및 검색 속도를 제공하며 확장성, 편의성, 효율성, 호환성 등의 특장점을 보유한 제품입니다. 로그 이벤트 발생 시 즉각적인 알람을 통해 빠른 문제 해결과 높은 가용성을 확보하도록 지원합니다.
2022.11.10
기술이야기
IT 인프라 모니터링 트렌드
기술이야기
IT 인프라 모니터링 트렌드
EMS란? EMS는 Enterprise Management System의 약자로, 여러 기업과 기관의 IT서비스를 이루는 다양한 IT Infrastructure를 통합적으로 모니터링하는 시스템을 의미합니다. 해외에서는 일반적으로 ITIM(IT Infra Management)이라는 용어로 많이 사용되고 있지만, 국내에서는 EMS라는 용어로 통용되고 있습니다. EMS는 IT인프라의 데이터를 실시간으로 수집 및 분석할 뿐만 아니라, 수집된 데이터를 활용해 비즈니스의 가치를 창출할 수 있습니다. 글로벌 IT분야 연구자문 기업인 “가트너(Gartner)”에서는 ITIM, 즉 EMS를 데이터센터, Edge, IaaS(Infrastructure as a Service), PaaS(Platform as a Service) 등에 존재하는 IT인프라 구성요소의 상태와 리소스 사용률을 수집하는 도구로 정의하며, 컨테이너, 가상화시스템, 서버, 스토리지, 데이터베이스, 라우터, 네트워크 스위치 등에 대한 실시간 모니터링이 가능해야 한다고 서술합니다. <사진 설명: 가트너의 ITIM 정의를 도식화한 그림> 이러한 EMS는 초기에는 기업 전산실에 물리적인 형태로 존재하는 서버, 네트워크의 리소스관리를 중심으로 모니터링해 왔습니다. 서버의 CPU, Memory 등의 리소스 정보를 수집하거나, 네트워크 장비의 트래픽 정보를 모니터링하고 임계치를 기반으로 이벤트 감지하는 역할이 대부분이었으며, 이 정도 수준에서도 충분한 IT 인프라 관리가 이뤄질 수 있었습니다. 그러나 가상화(Virtualization)라는 개념이 생겨나고 다양한 IT 인프라들이 기업 전산실에서 클라우드(Cloud) 환경으로 전환됨에 따라, EMS의 모니터링 분야도 조금씩 바뀌어 가고 있습니다. 많은 기업들이 효율적인 리소스 사용과 비용 절감을 목표로 VMware와 같은 가상화 시스템을 도입해 운영하게 됐으며, 모니터링 부문도 이에 대응하기 위해 가상화 리소스에 대한 관리 영역으로 확장됐습니다. 가상화 환경을 이루는 하이퍼바이저(Hypervisor)와 가상머신(Virtual Machine)의 연관성을 추적하고, 각 가상머신들이 사용하고 있는 리소스를 실시간으로 분석해 효율적인 자원 배분, 즉 프로비저닝(Provisioning)을 위한 근거 데이터를 제공할 수 있도록 하고 있습니다. 더 나아가 VMware, Hyper-V 등의 다양한 가상화 플랫폼에서 가상머신을 생성하고 삭제하고, 실제로 가상머신에 CPU, Memory 등과 같은 리소스를 할당해 줄 수 있는 컨트롤 영역까지 제공하는 제품을 개발하는 벤더사들이 많아지고 있습니다. 이러한 가상화 기술을 기반으로 현대에는 IT 인프라들이 대부분 클라우드 환경으로 전환하고 있는 추세입니다. 클라우드 환경으로의 전환 클라우드(Cloud)란, 언제 어디서나 필요한 컴퓨팅 자원을 필요한 시간만큼 인터넷을 통해 활용할 수 있는 컴퓨팅 방식으로, 최근 기업들은 각자의 목적과 상황에 맞게 AWS, MS Azure와 같은 Public Cloud 및 OpenStack, Nutanix 등을 활용한 Private Cloud 등의 환경으로 기업의 전산설비들을 마이그레이션 하고 있습니다. 클라우드로의 전환과 기술의 발전에 따라, EMS의 IT 인프라 모니터링은 더 이상 *On-Premise 환경에서의 접근이 아닌, Cloud 환경, 특히 MSA(Micro Service Architecture)를 기반으로 하는 클라우드 네이티브(Cloud Native) 관점에서의 IT 운영 관리라는 새로운 접근이 필요하게 됐습니다. (*On-Premise : 기업이 서버를 클라우드 환경이 아닌 자체 설비로 보유하고 운영하는 형태) 클라우드 네이티브란, 클라우드 기반 구성요소를 클라우드 환경에 최적화된 방식으로 조립하기 위한 아키텍처로서, 마이크로서비스 기반의 개발환경, 그리고 컨테이너 중심의 애플리케이션 구동환경 위주의 클라우드를 의미합니다. 클라우드 네이티브는 IT비즈니스의 신속성을 위해 도커(Docker)와 같은 컨테이너를 기반으로 애플리케이션이 운영되므로, EMS는 컨테이너의 성능, 로그, 프로세스 및 파일시스템 등 세부적인 관찰과 이상징후를 판단할 수 있는 기능들이 요구되고 있습니다. 자사 제품인 Zenius SMS에서는 이러한 변화에 따라 Docker에 대한 모니터링 기능을 기본적으로 제공하고 있습니다. Docker 컨테이너가 생성되면 자동으로 관리대상으로 등록되며, Up/Down 뿐만 아니라, CPU, Memory, Network 및 Process의 정보를 실시간으로 모니터링하고 발생되는 로그들을 통합관리 할 수 있도록 합니다. <사진 설명: Zenius-SMS에서 제공하고 있는 Docker 컨테이너 모니터링 기능> 또, 복원력과 탄력성을 위해 쿠버네티스와 같은 오케스트레이션 도구를 활용해 컨테이너를 스핀업하고, 예상되는 성능에 맞게 효율적으로 리소스를 맵핑하고 있으며, 이러한 기술에 대응하기 위해 EMS는 쿠버네티스(Kubernetes), 도커스웜(Docker Swarm) 등의 오케스트레이터들의 동작여부를 직관적으로 관찰하는 제품들이 지속적으로 출시되고 있는 상황입니다. 이와 더불어 컨테이너, 오케스트레이터의 동적 연결관계를 실시간으로 모니터링하고, 파드(POD), 클러스터, 호스트 및 애플리케이션의 관계를 표현하는 역할의 중요성이 점차 커져가고 있습니다. 통합 모니터링(Monitoring) EMS 모니터링의 또 다른 변화로는 통합(Integration)의 역할이 더더욱 강해지고 있다는 것입니다. IT 서비스가 복잡해지고 다양해짐에 따라 IT 인프라의 관리 범위도 점차 증가하면서, 다양한 IT 인프라들을 융합하고 관리하기 위한 노력들이 관찰되고 있습니다. 데이터독(Datadog), 스플렁크(SPLUNK)와 같은 장비 관점의 모니터링 벤더들은 APM과 같은 애플리케이션 모니터링 시장으로, 앱다이나믹스(AppDynamics), 다이나트레이스(Dynatrace), 뉴렐릭(NewRelic)과 같은 애플리케이션 모니터링 시장의 강자들은 인프라 장비 관점의 모니터링 시장으로의 융합이 확인되고 있습니다. 자사 제품인 Zenius 역시 서버, 네트워크 중심의 관리에서 애플리케이션, 데이터베이스 등의 시장으로 관리 범위를 확장해 나가고 있는 추세입니다. IT 서비스의 영속성을 유지하기 위해서는 IT 서비스를 구성하는 다양한 요소들을 실시간으로 모니터링하고 연관관계를 추적해 문제 원인을 찾아내는 것이 중요하기 때문에 다양한 IT 요소들을 통합적으로 모니터링하는 것 뿐만 아니라, 상호 연관관계를 표현하고 추적할 수 있는 기능들이 지속적으로 요구되고 있습니다. 모니터링의 트렌드는 서버, 네트워크 등의 독립적인 개체에 대한 모니터링 아닌 IT 서비스를 중심으로 기반 요소들을 모두 통합적으로 모니터링하고, 각 상호간의 의존성과 영향도를 파악해 RCA(Root Cause Analysis) 분석을 가능하게 하고 이를 통해 IT 서비스의 연속성을 보장할 수 있는 통찰력을 확보하게끔 하는 방향으로 흘러가고 있습니다. Zenius는 서버, 네트워크, 애플리케이션, 데이터베이스 및 각종 로그들의 정보를 시각적으로 통합 모니터링할 수 있는 오버뷰(Overview) 도구와 IT 서비스 레벨에서 인프라들의 연관관계를 정의하고 다양한 조건(Rule)에 따라 서비스 이상유무와 원인분석이 가능한 서비스 맵(Service Map) 도구를 기본적으로 제공하고 있습니다. <사진 설명: Zenius 오버뷰 화면> <사진 설명: Zenius 서비스맵 화면> 앞서 언급했듯이, 클라우드 환경으로 전환함에 따라 통합적 관리 요구는 더욱 높아지고 있습니다. IT 인프라에 대한 통합 뿐만 아니라, AD(Active Directory), SAP 및 AWS, Azure, GCP 등의 다양한 서비스의 주요 지표까지 연계하고 하나의 시스템으로 통합 모니터링하기 위한 노력들이 관찰되고 있습니다. 데이터독(Datadog)의 경우, 500개 이상의 시스템, 애플리케이션 및 서비스들의 지표들을 손쉽게 통합 관리할 수 있다고 돼있습니다. <사진 설명: 데이터독 홈페이지 캡처> 이처럼 IT 서비스의 복잡성과 다양화에 따라 관리해야 될 서비스와 지표들은 점점 늘어나고 있으며, 기업의 현황에 맞게 컴포넌트 기반으로 손쉽게 지표들을 통합할 수 있는 기능과 도구들이 요구되고 있습니다. AI 기반의 예측&자동화 모니터링의 세번째 변화로는 ’AI 기반의 예측과 자동화’입니다. IT 인프라 및 서비스의 주요 지표를 모니터링하는 것도 중요하지만, 축적된 데이터를 기반으로 미래의 상황을 예측 및 이상탐지해 사전에 대비할 수 있는 체계를 갖추는 일은 모니터링 시장에서 중요한 이슈로 자리잡고 있습니다. 현재의 AIOps(AI for IT Operations)를 표방하는 모니터링 기술들은 서버, 네트워크, 애플리케이션, 데이터베이스 등의 주요 지표들을 실시간으로 수집하고, 저장된 데이터를 기반으로 AI 알고리즘 또는 통계기법을 통해 미래데이터를 예측하며 장애 발생가능성을 제공하고 있습니다. 이와 같은 기술을 통해 미래 성능 값을 예측해 IT 인프라의 증설 필요성 등을 판단하고, 장애 예측으로 크리티컬한 문제가 발생되기 전에 미리 조치를 취할 수 있도록 해 효율적인 의사결정을 할 수 있도록 합니다. Zenius도 4차 산업혁명 및 디지털 뉴딜시대가 도래함에 따라 미래예측 기능을 최신 버전에 탑재했으며, 이를 통해 IT운영자가 미래 상황에 유연하고 선제적으로 대응할 수 있도록 합니다. Zenius에서는 서버, 네트워크, 애플리케이션 등 다양한 IT 인프라의 미래 성능 값, 패턴 범위, 이상 범위 등을 예측해 IT 운영자에게 제시합니다. <사진 설명: 인공지능(AI) 기반 미래데이터 예측 화면> 다만, 인공지능 기술을 통해 장애 발생 가능성을 탐지하는 기능 외에, 어디에 문제가 발생됐는지 알려주는 기능은 모니터링 시장에 과제로 남아있고, 이를 제공하기 위한 여러 업체들의 노력이 보이고 있습니다. 이제는 EMS에서 보편적인 것이 됐지만, 모바일 기기를 통해 시∙공간적 제약 없는 모니터링이 이뤄지고 있습니다. 다양한 기종의 스마트폰, 태블릿PC 등을 이용해 운영콘솔(Console) 뿐만 아니라, 회의 등 시간을 잠시 비우더라도 IT 인프라에 대한 연속적인 모니터링이 모바일기기를 통해 가능해졌습니다. <사진 설명: 다양한 기기를 통한 모니터링>
2022.09.05
기술이야기
[ZNG 개발기] #1. ZNG와 Vue.js
기술이야기
[ZNG 개발기] #1. ZNG와 Vue.js
안녕하세요. 브레인즈컴퍼니 개발 3그룹에서 ZNG의 프론트엔드를 개발하고 있는 1년차 신입 개발자 김현수입니다. ZNG란 Zenius New Generation의 약자로, 브레인즈컴퍼니의 핵심 서비스인 제니우스의 차세대 버전을 말합니다. ZNG는 데이터베이스를 제외한 프론트엔드와 백엔드는 완전히 제로베이스에서 시작하는 장기 프로젝트이기에, 프로젝트를 진행하는 과정에서 새롭게 배운 것, 개발자로서 성장, 팀 개발 경험 등을 기록하고자 ZNG 개발기를 작성하게 됐습니다. ZNG 개발기는 달마다 개발과정에서 있었던 이슈들, 경험, 공부한 내용 등을 기술적인 내용과 함께 작성할 예정입니다. 다 함께! <사진 설명: 펭수, "렛츠고!"> 1. ZNG가 무엇인가요? ZNG는 기존 제니우스에서 발생하는 불편함을 해소하고자 탄생한 프로젝트입니다. 기존 제니우스에는 어떤 불편함이 있었고, 이를 해소하고자 ZNG는 어떤 컨셉을 목표로 개발할 것인가에 대해 알아보겠습니다. 같은 부서 선배 동료들을 쫄래쫄래 따라다니며 물어보고 배워가며 정리한 내용을 바탕으로 작성하는 글입니다. 혹시라도 틀린 부분이 있다면 알려주시면 감사하겠습니다! <사진 설명: 자환님은 아니라고 하셨다...> 제니우스는 B2B 솔루션 서비스 상품으로 사용자의 요구사항에 맞게 유연한 변경이 가능해야 합니다. 새로운 컴포넌트를 추가 한다거나, 여러 기능을 합치는 등 다양한 요구사항에 대응해야 합니다. 당연히도 현재 제니우스는 사용자의 요구사항에 맞춰 조금씩 커스텀해 서비스되고 있습니다. 그러나 효율적이지 못한 상황이 생기기도 합니다. 대체로 같은 내용의 코드를 반복해서 작성하는 상황이 그러합니다. 같은 형태를 가진 컴포넌트여도 출력하고자 하는 데이터의 종류가 다르다면 컴포넌트를 통째로 다시 만들어야 했습니다. 반복적인 작업은 개발자에게 피로감을 주게 되고 단순히 피로감을 넘어, 개발자에게 목표 의식을 저하시킬 우려가 있습니다. <사진 설명: 다양한 종류의 컴포넌트가 있다. 사용자마다 원하는 컴포넌트, 데이터가 다를 수 있다.> 이런 불편함을 해소하는 방법으로, ZNG는 코드의 재사용성을 높이기 위해 노력합니다. 각 기능끼리의 의존도는 낮추고, 독립성을 높여서 반복적인 작업을 최소화합니다. 같은 형태를 가진 컴포넌트에 대해서 데이터만 다르다면 데이터만 바꿔주면 됩니다. 사용자마다 다른 종류의 데이터를 출력하기를 원할 경우 더 빠르고 효율적인 대처가 가능합니다. 이러한 컨셉과 Vue.js의 Component를 관리하는 방법이 일치해 ZNG는 Vue.js로 개발하게 됐습니다. 2. ZNG와 Vue.js Vue.js에는 여러가지 특징이 있습니다. 그 중에서도 Vue Component에 대해서 자세히 알아보겠습니다. Vue Component Vue Component란 화면을 구성하는 하나의 블록입니다. Component는 하나의 전체 화면일수도 있고 전체 화면 중 일부분을 차지하는 또 하나의 작은 화면일수도 있습니다. 따라서 화면을 구현할 때 화면 전체를 한 번에 구현하지 않고, 부분적으로 구현해 관리하는 것이 가능합니다. Component를 활용하면 화면을 구조화해 직관적으로 개발할 수 있으며 코드의 재사용성이 올라갑니다. <사진 설명: 화면의 영역을 블록으로 쪼개 재활용 가능항 형태로 관리하는 것이 Vue Component> ZNG 기능 중 모니터링은 추출한 데이터를 그래프, 표 등을 통해 다양한 형태의 컴포넌트로 보여줍니다. 각각의 컴포넌트는 서로 다른 모양을 통해, 서로 다른 데이터를 보여줍니다. 반대로 말하면 하나의 컴포넌트에 대해서 모양, 데이터만 다르게 준다면 여러 종류의 컴포넌트를 만들 수 있습니다. 다음은 ZNG 코드 일부입니다. PCContainer는 컴포넌트를 감싸는 블록입니다. component 태그 안에 있는 ‘is’옵션에 ‘컴포넌트의 이름’을 넣어 그리고자 하는 컴포넌트를 선택할 수 있습니다. PCLineChart는 그래프를 그리는 컴포넌트입니다. highchartsOptions에 어떤 데이터를 넣느냐에 따라 원하는 그래프를 그릴 수 있습니다. <사진 설명: PCContainer> 하나의 PCContainer로 여러 모양의 컴포넌트를 그리고, 하나의 컴포넌트(PCLineChart)로 다양한 데이터를 표현할 수 있습니다. 컴포넌트를 만들기 위해 새로운 코드를 작성하지 않고, Vue Component를 통해 코드를 재사용함으로써 효율적이고 직관적인 코드를 개발할 수 있습니다. 부모와 자식 컴포넌트 관계 각 Vue Component는 데이터를 주고받을 때 부모-자식 관계를 갖는 것이 일반적입니다. <사진 설명: 부모-자식 컴포넌트> 부모는 자식에게 데이터를 전달할 수 있어야 하며, 자식은 부모에게 일어난 일을 알려야 합니다. 부모는 props를 통해 자식에게 데이터를 전달하며, 자식은 emit로 이벤트를 호출해 부모에게 데이터를 알립니다. 부모 컴포넌트와 자식 컴포넌트는 분명히 구분된 컴포넌트지만 props와 emit을 통해 의사소통이 가능합니다. ZNG는 최상단 레이아웃에서 서버로부터 데이터를 받아와 props를 통해 각 컴포넌트로 데이터를 보내줍니다. 하위 컴포넌트에서 발생한 이벤트를 통해 다시 상위 컴포넌트로 데이터를 전달해 데이터를 관리합니다. 다음은 ZNG 코드 중 일부입니다. 자식 컴포넌트는 props를 통해 부모 컴포넌트로부터 데이터를 받고, emit을 통해 부모 컴포넌트로 이벤트를 통해 알립니다. props와 emit을 통해 컴포넌트 간 의사소통을 수행하지만, 각 컴포넌트마다 코드를 분리하기 때문에 관리가 편하고 쉽게 재사용할 수 있습니다. 3. 마치며 ZNG의 개발 방향성과 이와 관련해 Vue.js의 Component 특징을 정리해봤습니다. Vue Component는 이전부터 알고 있던 개념이지만 직접 개발한 코드와 비교해보니 머릿속에 명확하게 정리되는 느낌이었습니다. 특히 코드를 다시 보면서 개념을 리마인드하는 과정이 좋았습니다. ZNG 개발기는 이제 시작입니다! 앞으로도 계속될 ZNG 개발기에 많은 관심 부탁드리며 ZNG 프로젝트를 성공적으로 수행할 때까지 응원해주세요! <사진 설명: 개발의 신이시여... 지켜봐 주세요!> [출처] https://kr.vuejs.org/ https://ko.wikipedia.org/wiki/Vue.js https://www.instagram.com/waterglasstoon/
2022.08.03
1
2