반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
기술이야기
검색
기술이야기
쿠버네티스를 통해 본 컨테이너 오케스트레이션
기술이야기
쿠버네티스를 통해 본 컨테이너 오케스트레이션
‘쿠버네티스(kubernetes)’는 2013년 구글에서 공개한 이후 컨테이터 오케스트레이션 도구의 표준으로 자리 잡았습니다. CNCF의 1호 졸업 프로젝트이기도 한 쿠버네티스는 지속적인 릴리즈를 거쳐 꽤 성숙한 제품이 됐는데요. 쿠버네티스는 컨테이너화된 어플리케이션을 자동으로 배포하고 스케일링 및 관리하기 위한 컨테이너 오케스트레이션 도구라고 간단하게 정의할 수 있습니다. 일반적으로 컨테이너를 사용할 때 ‘도커(Docker)’를 많이 사용한다는 이야기를 들으셨을 것입니다. 도커는 컨테이너를 쉽게 만들고, 내려받고, 공유할 수 있도록 사용되는 컨테이너 플랫폼입니다. 온프레미스 환경 아래의 배포에서 가상환경의 배포로 발전하고 더 나아가 컨테이너 환경 아래에서 리소스를 관리하게 되면서, 도커는 컨테이너 런타임의 표준으로 자리 잡았습니다. 이미지 출처 ⓒ https://kubernetes.io/ko 컨테이너 환경의 배포는 온프레미스 환경과 가상화 환경의 배포보다 관리는 용이하지만, 컨테이너 수가 많아지게 되면서 부하 분산과 안정적인 배포를 위해 관리해야 할 필요성이 지속적으로 증가하였습니다. 이 때 등장하는 것이 컨테이너의 오케스트레이션 도구라고 할 수 있는 쿠버네티스입니다. 이번 시간에는 컨테이너 오케스트레이션의 주요 도구인 쿠버네티스를 통해 컨테이너 오케스트레이션에 대해 알아보고자 합니다. │쿠버네티스의 주요 목적 쿠버네티스의 주요 목적을 이해하려면 컨테이너 오케스트레이션의 개념을 먼저 짚고 넘어가야 합니다. 컨테이너 오케스트레이션 위키피디아의 정의에 따르면 ‘컴퓨터 리소스 자원과 애플리케이션 및 서비스에 대한 자동화된 설정 및 관리’를 의미합니다. 이를 컨테이너에 적용하면, 여러 컨테이너에 대한 프로세스를 최적화하고 적절한 자원의 할당과 자동으로 컨테이너를 생성하고 배포할 수 있도록 해야 합니다. 소수 사용자를 위한 비교적 단순한 컨테이너 앱은 보통 별도의 오케스트레이션이 필요하지 않을 수 있습니다. 관리자가 각 컨테이너 별 리소스 자원을 할당하면 그만이겠죠. 하지만 만약 앱의 기능과 사용자 수가 사소한 수준 이상이라면, 컨테이너 오케스트레이션 시스템을 사용하지 않고 직접 해결하기 어려워집니다. 무엇보다 아키텍처의 트렌드가 모놀리식(Monolithic Architecture)에서 마이크로서비스(Microservice Architecture)로 변화하는 과정에서 컨테이너의 수는 계속 증가할 것이고 무중단 서비스, 즉 고가용성을 제공해야 하는 환경이라면 컨테이너 오케스트레이션은 원활한 서비스 구성을 위한 필수 요소라고 할 수 있습니다. 마이크로서비스 아키텍처 환경에서는 애플리케이션의 세부 기능들이 작은 서비스 단위로 분리되어 있습니다. 이 각각의 서비스를 구현하는데 컨테이너 기술이 가장 흔하게 이용되는데요, 다수의 컨테이너를 관리하는 상황이라면 위의 4가지 이슈에 대한 해답을 찾아야 합니다. │쿠버네티스의 핵심 아키텍처 앞서 살펴본 4가지 이슈를 해결하기 위해 쿠버네티스는 아래와 같은 네 가지 핵심 아키텍처로 구성되어 있습니다. ① 선언적 구성 기반의 배포 환경 쿠버네티스는 동작을 지시하는 개념보다는 원하는 상태를 선언하는 개념을 주로 사용합니다. 즉 사용자가 설정한 원하는 상태(Desired State)와 현재의 상태(Current State)가 일치하는지를 지속적으로 체크하면서 업데이트합니다. 결과적으로 ‘이렇게 되어야 해!’ 라는 선언적 방식으로 명령을 주면 쿠버네티스는 이를 해석하여 컨테이너들을 자동으로 관리하게 됩니다. ② 기능 단위의 분산 쿠버네티스에서는 각각의 기능들이 모두 독립적인 컴포넌트로 분산되어 있습니다. 앞으로 후술할 쿠버네티스 ‘APIserver’를 통해 내부 컴포넌트들을 컨트롤 하고 있습니다. ③ 클라스터 단위의 중앙 제어 쿠버네티스는 가용할 수 있는 리소스를 클러스터 > 노드 > 파드 단위로 추상화 하여 관리합니다. 각각의 클러스터를 통해 노드를 관리하고 노드 안의 컨테이너를 효율적으로 관리할 수 있습니다. ④ API 기반의 네트워킹 쿠버네티스의 구성 요소들은 오직 ‘APIserver’를 통해서만 상호 접근이 가능한 구조를 가지고 있습니다. 마스터 노드의 ‘Kubectl’라는 컴포넌트를 거쳐 실행되는 모든 명령은 이 API 서버를 거쳐 수행되며, 워커 노드에 포함된 ‘Kubelet’, ‘Kube-proxy’ 역시 API 서버를 통해 상호작용하게 되어 있습니다. │쿠버네티스의 오케스트레이션 기능 컨테이너 오케스트레이션의 핵심은 컨테이너의 프로비저닝, 배포, 네트워킹, 확장 가용성, 라이프사이클 관리, 상태 모니터링 일체를 자동화하는 데 있습니다. 쿠버네티스가 제공하는 오케스트레이션 기능은 위의 컨테이너 관리 이슈에 대한 적절한 해결책을 제공합니다. 이미지 출처 ⓒ https://kubernetes.io/ko ① 오토스케일링 (Auto-Scaling) 쿠버네티스에서 생성하고 관리할 수 있는 가장 작은 컴퓨팅 단위를 파드(Pod)라고 부르는데요. 쿠버네티스는 각 클러스터 안에 있는 노드의 CPU와 메모리 자원에 대한 할당을 Pod를 통해 자동으로 조정합니다. 만약 부하가 증가하여 리소스를 과하게 점유하고 있다면 자동으로 파드 복제본이 실행되어 가용성을 확보할 수 있습니다. ② 스케줄링 (Scheduling) 컨테이너를 일정한 알고리즘에 기초하여 구체적으로 어떤 노드에서 움직이게 할지 배치하는 것을 스케줄링이라고 합니다. ‘Kube Scheduler’라는 컴포넌트를 통해 클러스터 내에 실행할 파드를 노드에 스케줄링 할 수 있습니다. ③ 오토 힐링 (Auto-Healing) 쿠버네티스는 사용자가 지정한 컨테이너의 상태를 지속적으로 관찰하여 비정상적인 상태를 감지하면 컨테이너를 재시작하고 스케줄링을 빠르게 재시작 할 수 있습니다. 사용자의 선언적 상태에 따라 응답하지 않은 컨테이너를 새롭게 구동 시킬 수 있습니다. ④ 분산 부하 (Load-Balancing) 하나의 서비스에 여러 개의 컨테이너가 구동 시, 서비스에 들어오는 요청을 컨테이너들 사이에 균등하게 분배하여 부하를 분산시킵니다. 이를 통해 급증하는 서비스 요청에 대해 효율적인 대응이 가능합니다. │쿠버네티스의 구성요소 쿠버네티스는 총 네 가지의 구성요소로 이루어져 있습니다. 이미지 출처 ⓒ https://kubernetes.io/ko ① 클러스터 (Cluster) CNCF 재단에 따르면 클러스터는 공통의 목표를 위해 작동하는 애플리케이션의 그룹이라고 정의하고 있습니다. 쉽게 표현하면, 클러스터는 컨테이너를 통해 실행되는 여러 서비스들의 집합이라고 할 수 있겠는데요. 클러스터의 구성 목적은 애플리케이션의 효율적인 관리에 그 목적이 있습니다. 일반적으로 컨트롤 타워 역할을 하는 마스터 노드와 컨테이너가 실행되는 워커 노드로 구성되어 있습니다. ② 마스터 노드 (Master Nodes) 마스터 노드는 클러스터 전체를 관리하는 컨트롤 타워의 역할을 합니다. 대규모의 컨테이너 관리를 위해 각 워커 노드들의 리소스 사용률을 고려하여 컨테이너 배치와 모니터링이 필요한데요. 클러스터 내에서 이 역할을 수행하는 노드를 마스터 노드라고 부릅니다. ③ 워커 노드 (Worker Nodes) 워커 노드는 마스터 노드의 컨트롤을 받아 실제 컨테이너를 실행하고 쿠버네티스 실행 환경을 관리합니다. ‘Kubelet’이라는 노드 컴포넌트를 통해 파드의 실행을 직접 관리하며 APIserver와 통신하게 됩니다. 하나의 노드는 일반적으로 여러 개의 파드로 구성됩니다. 마스터 노드를 통해 파드에 대한 스케줄링을 자동으로 처리할 수 있습니다. ④ 파드 (Pod) 쿠버네티스에서 생성하고 관리할 수 있는 가장 작은 컴퓨팅 단위입니다. 위의 그림과 같이 하나의 파드 안에 다수의 컨테이너 혹은 단일 컨테이너로 구성될 수 있는데요. 쿠버네티스는 파드를 통해 컨테이너가 동일한 리소스 및 로컬 네트워크를 공유하게 합니다. 위와 같은 방식으로 컨테이너를 그룹화하면 분산된 환경에서도 동일한 하드웨어를 공유하는 것처럼 컨테이너를 서로 통신할 수 있도록 만듭니다. 파드의 사용 목적은 단순합니다. 일반적으로 서로 다른 컨테이너들이 각기 다른 기능들을 수행하며 하나의 완전한 애플리케이션으로 이루어 지게 되는데요. 이 때, 파드를 통해 각 컨테이너들의 내부 통신이 가능하게 하고 모든 컨테이너에 동일한 환경을 제공해 줄 수 있습니다. 요약하면 파드는 컨테이너가 제공하는 모든 기능을 활용하는 동시에 프로세스가 함께 실행되는 것처럼 보이게 하는 역할을 합니다. │쿠버네티스의 주요 컴포넌트 쿠버네티스의 주요 컴포턴트를 컨트롤 플레인 컴포넌트와 노드 컴포넌트로 나눠서 살펴보겠습니다. ① 컨트롤 플레인 컴포넌트 (Control Plane Components) 마스터 노드의 컨테이너, 워커 노드의 관리는 컨트롤 플레인 컴포넌트를 통해 이루어집니다. 컨트롤 플레인 컴포넌트는 클러스터 전체의 워크로드 리소스 등 주요 구성 요소들을 배포하고 제어하는 역할을 합니다. * Kube-APIserver API서버 라는 이름에서 말해주듯이 쿠버네티스의 컴포넌트와 사용자와의 접점 역할을 맡고 있습니다. 쿠버네티스에서 클러스터의 모든 구성 요소들은 오직 API서버를 통해서만 상호 접근이 가능하도록 설계되어 있습니다. 쿠버네티스의 중앙관리자라는 표현이 어울릴지 모르겠지만, 파드의 생성부터 스케줄링, etcd와의 통신까지 쿠버네티스의 모든 동작 과정에 API서버는 쿠버네티스의 중심에 있습니다. * etcd etcd는 클러스터 안의 각 구성요소에 대한 정보가 키-값 형태로 저장된 자체적인 데이터베이스입니다. 현재 클러스터에 있는 컴포넌트가 몇 개인지, 각각의 파드들이 어떤 노드에 붙어 있는지, 어떤 컨테이너를 들고 있는지에 대한 모든 정보가 etcd에 저장됩니다. 중요한 점은 etcd가 다운된다면 클러스터는 제대로 동작하지 못하게 되므로 자체적인 백업 스케줄링은 쿠버네티스 관리에 필수 요소라고 할 수 있습니다. * kube-controller-manager 컨트롤러 매니저는 클러스터 내에 작업 중인 다양한 리소스들을 모니터링하며 사용자가 설정한 원하는 상태(Desired State)와 현재의 상태(Current State)가 일치하도록 관리하는 작업을 합니다. 주요 컨트롤러로는 파드 복제를 유지해 주는 레플리카셋(ReplicaSet), 앱 배포를 세밀하게 관리할 수 있는 디플로이먼트(Deployment) 등으로 구성되어 있으며, 하나의 패키징 된 형태를 가지고 있습니다. * Kube-Scheduler 스케줄러는 각 파드들이 어떤 노드에서 작업을 수행할지 결정해 주는 역할을 맡고 있습니다. 비유하자면 작업 장소를 선택해 주는 의사 결정만 담당하고 있으며 실질적인 배치 작업은 아래 설명할 Kubelet이 담당하고 있습니다. ② 노드 컴포넌트 (Node Components) 노드 컴포넌트는 노드에서 작동하는 파드들을 관리하기 컴포넌트입니다. 워커 노드뿐 아니라 마스터 노드에서도 존재합니다. * Kubelet Kebelet은 클러스터의 모든 노드에서 실행되는 에이전트입니다. 파드의 실행을 직접적으로 관리한다고 볼 수 있는데요. 컨테이너디(Containerd), 크라이오(CRI-O) 같은 컨테이너 런타임과도 통신이 가능하며 노드 내에 구동 중인 컨테이너에 대한 라이프사이클을 관리합니다. 본래 쿠버네티스에서는 컨테이너 생성과 실행을 위한 런타임 엔진으로 도커(Docker)를 지원해왔으나, 2022년 2월 기준으로 완전히 중단되었습니다. 물론 런타임 엔진에서 도커가 제외된다는 것이 클러스터에서 도커 자체를 사용하지 못하게 된다는 뜻은 아닙니다. * Kube-proxy Kube-proxy는 노드에서 구동되는 쿠버네티스 네트워크 프록시입니다. 쿠버네티스에서 서비스라고 불리는 내부/외부 트래픽을 어느 파드로 전달할 것인지에 대한 규칙을 생성하고 관리하는 역할을 합니다. 。。。。。。。。。。。。 쿠버네티스의 주요 오케스트레이션 기능과 쿠버네티스의 주요 구성 요소 및 컴포넌트들을 살펴보았는데요. 쿠버네티스만이 컨테이너의 관리 복잡성을 해결할 수 있는 유일한 오픈소스는 아닙니다. 아파치 소프트웨어 재단에서 개발한 ‘아파치 메소스(Apache Mesos)’, 도커에서 개발한 ‘도커 스웜(Docker Swarm)’ 등의 컨테이너 관리 오픈소스도 있지만 2024년 현재 쿠버네티스는 독점적인 위치를 차지하고 있습니다. 무엇보다 3대 퍼블릭 클라우드사인 AWS, Azure, GCP 모두 매니지드 쿠버네티스 플랫폼을 제공하고 있습니다. 국내 퍼블릭 클라우드인 kt cloud, 네이버클라우드, NHN클라우드, 가비아, 카카오클라우드, 삼성클라우드플랫폼 등 모두 각 클라우드 환경에 최적화된 쿠버네티스 서비스를 제공하고 있죠. 또한, RedHat은 쿠버네티스 기반의 오픈시프트(OpenShift)를 통해 CaaS(Container as a Service) 시장의 선점을 노리고 있습니다. 스타트업과 대기업을 가리지 않고 기업에서 운영하는 컨테이너 기반의 애플리케이션이 복잡화됨에 따라 컨테이너 오케스트레이션 관리 도구인 쿠버네티스는 이제 기업 IT 운영전략의 핵심 요소가 되었습니다. 제니우스 쿠버네티스 모니터링 화면 예시 브레인즈컴퍼니의 제니우스(Zenius) 역시 컨테이너 모니터링뿐 아니라 쿠버네티스에 대한 모니터링을 환경을 제공하고 있습니다. 멀티 클러스터 환경에서의 모든 클러스터에 대한 모니터링뿐 아니라 Object Meta 정보를 제공하며 다양한 임계치 기반의 이벤트 감시 설정으로 선제적 장애 대응이 가능합니다. 📚참고 자료 쿠버네티스 공식 문서: Kubernetes Components 쿠버네티스 공식 문서: Options for Highly Available Topology 쿠버네티스 공식 문서: Container runtimes
2024.02.05
1