반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
기술이야기
검색
기술이야기
쿠버네티스 모니터링 솔루션, Zenius K8s의 주요기능과 특장점
기술이야기
쿠버네티스 모니터링 솔루션, Zenius K8s의 주요기능과 특장점
많은 기업이 Kubernetes(K8s)를 통해 애플리케이션을 대규모로 배포하고 관리하면서, 이에 맞는 모니터링 솔루션의 중요성이 더욱 커지고 있습니다. 멀티 클러스터 환경이 확산되고 애플리케이션과 인프라 요소가 긴밀히 연결된 IT 인프라에서는, 리소스 상태를 실시간으로 파악하고 신속하게 대응할 수 있는 모니터링이 필요하기 때문입니다. 이러한 상황에서 Zenius K8s는 멀티 클러스터 통합 관리, 애플리케이션 성능 분석, 연관 장비 모니터링 등 다양한 기능을 제공합니다. Kubernetes 환경을 더욱 효과적으로 관리하게 해주는 Zenius K8s의 주요기능과 특장점을 알아보겠습니다. Zenius K8s의 주요기능 [1] 멀티 클러스터 통합 모니터링 쿠버네티스 환경에서는 여러 클러스터를 동시에 관리해야 할 상황이 빈번하게 발생합니다. Zenius K8s는 멀티 클러스터 환경을 단일 화면에서 통합해서 관리할 수 있는 기능을 제공하여, 운영자가 각 클러스터의 상태를 손쉽게 모니터링할 수 있도록 지원합니다. 특히, 자동 생성되는 Topology Map은 클러스터 내부 구성 요소(Node, Pod, Container) 간의 관계를 직관적으로 시각화합니다. 이를 통해 운영자는 각 구성 요소의 연관성과 의존성을 명확히 이해할 수 있으며, 잠재적인 문제를 빠르게 식별할 수 있습니다. 이러한 시각적 도구는 운영자가 복잡한 구조를 보다 체계적으로 관리하는 데 중요한 역할을 합니다. [전체 클러스터 운영 요약 화면 예시] Zenius K8s는 또한, 클러스터별 주요 성능 지표를 요약한 화면과 세부 데이터를 확인할 수 있는 상세 데이터 화면을 제공합니다. 요약 화면에서는 클러스터 간의 성능 차이를 비교 분석할 수 있으며, 세부 데이터 화면에서는 개별 클러스터 내 특정 구성 요소의 성능 문제를 심층적으로 분석할 수 있습니다. 예를 들어, 특정 클러스터에서 리소스 사용량이 급증하는 현상을 요약 화면에서 확인한 후, 상세 데이터 화면으로 전환해 어떤 Pod나 노드가 문제의 원인인지 정확히 파악할 수 있습니다. 이러한 데이터 기반의 접근 방식은 운영자가 적절한 대응 조치를 빠르게 취할 수 있도록 합니다. [2] 지능형 장애 탐지 및 신속한 대응 지원 Zenius K8s는 쿠버네티스의 기본 이벤트 관리 기능을 확장하여, Kubernetes 자체 이벤트와 Zenius 전용 이벤트를 구분해 보다 세부적으로 체계화된 장애 관리 기능을 제공합니다. 각 이벤트에 대해 임계값과 심각도를 운영자 정의할 수 있어, 운영자는 환경에 적합한 기준으로 장애를 감지하고 우선순위를 설정할 수 있습니다. Zenius K8s의 다채널 알림 시스템은 푸시 앱, 이메일, 문자 등 다양한 방식으로 장애 정보를 즉시 전달하여 운영자가 신속하게 대응할 수 있도록 합니다. 단순히 알림을 보내는 것에 그치지 않고, 장애 발생 시점부터 종료 시점까지의 전체 상황을 기록하고 분석할 수 있어, 운영자는 문제 해결뿐만 아니라 유사 상황에 대한 재발 방지 대책을 수립할 수 있습니다. 또한, Zenius K8s는 발생한 장애 이벤트에 대한 상세 로그와 이력 데이터를 제공하여, 운영자가 근본 원인을 신속히 파악할 수 있도록 지원합니다. 이를 기반으로 장애 발생 원인과 영향을 체계적으로 분석하고, 동일한 문제가 재발하지 않도록 최적의 운영 환경을 설계할 수 있습니다. [이벤트 현황관리 화면 예시] [3] 실시간 로그 모니터링 및 분석 운영 환경에서 발생하는 로그는 문제의 원인을 파악하고 성능을 최적화하는 데 중요한 데이터를 제공합니다. Zenius K8s는 컨테이너 기반 애플리케이션의 동작, 오류, 디버깅 로그는 물론, Kubernetes 이벤트 로그(Kubelet, API Server 등)까지 실시간으로 수집하고 분석할 수 있는 기능을 제공합니다. 이 기능은 운영자가 시스템의 전반적인 상태를 심층적으로 모니터링하고, 잠재적 문제를 사전에 발견할 수 있도록 지원합니다. Zenius K8s의 실시간 로그 모니터링은 시점별 데이터 분석 기능을 통해 특정 기간 동안 발생한 로그 데이터를 확인하고, 문제 발생 시점과 원인을 빠르게 추적할 수 있도록 돕습니다. 운영자는 실시간으로 발생하는 로그를 모니터링하며, 필요할 경우 보고서 형태로 데이터를 내보내어 팀 내 공유나 추가 분석에 활용할 수 있습니다. 이 기능은 장애 대응 시간을 단축시키는 동시에, 문제 해결을 위한 협업을 효율적으로 지원합니다. 또한, Zenius K8s의 실시간 로그 분석 기능을 통해 운영자는 현재 발생하고 있는 로그를 실시간으로 확인하여 상황에 따라 빠르게 조치를 취할 수 있습니다. 이 기능은 운영 환경에서 투명성을 강화하고, 예기치 않은 장애로 인한 서비스 중단을 최소화하는 데 중요한 역할을 합니다. [4] 효율적인 리소스 활용 지원 Zenius K8s는 클러스터와 주요 구성 요소(Node, Pod, Container)의 CPU, 메모리, 네트워크 사용량을 실시간으로 추적하여, 자원이 비효율적으로 사용되거나 과부하가 발생할 가능성을 사전에 감지할 수 있는 모니터링 기능을 제공합니다. 운영자는 이를 통해 특정 구성 요소가 리소스를 과도하게 소모하고 있는지 빠르게 확인할 수 있으며, 이를 기반으로 적절한 조치를 취할 수 있습니다. 예를 들어, 특정 Pod가 비정상적인 메모리 사용량을 보일 경우, Zenius K8s는 이를 즉각 감지하여 경고를 제공하고, 운영자가 문제를 해결할 수 있도록 도와줍니다. 이러한 기능은 리소스의 낭비를 줄이고, 시스템의 안정성을 높이는 데 중요한 역할을 합니다. 또한, 쿠버네티스의 자동 확장 기능에 따라 생성되는 파드(Pod)에 대해 Zenius K8s는 자동으로 모니터링을 수행합니다. 이를 통해 새로 생성된 파드의 상태와 리소스 사용량을 실시간으로 추적하여 운영자는 추가적인 설정 없이도 전체 시스템의 상태를 효율적으로 관리할 수 있습니다. Zenius K8s의 특장점 Zenius는 K8s는 위에 살펴본 주요기능에 더해서, 복잡한 쿠버네티스 환경을 더욱 효과적으로 운영하고 관리할 수 있도록 지원할 수 있는 세 가지 특장점을 가지고 있습니다. [1] 확장성 있는 구조를 바탕으로 한 연관 장비 통합 모니터링 Zenius는 K8s 모니터링을 포함하여 SMS, NMS, APM, DBMS등 총 23개의 포인트 솔루션을 연계할 수 있는 Framework으로 구성되어 있습니다. 따라서 운영자는 Kubernetes 클러스터는 물론 컨테이너 오케스트레이션, 서비스 모니터링, 네트워크 관리, 애플리케이션 성능 분석까지 한 시스템에서 일괄적으로 모니터링하고 관리할 수 있습니다. 이러한 확장성은 운영자가 새로운 모니터링 대상을 손쉽게 추가하고, 기존 인프라와 새로운 인프라를 유기적으로 통합하여 대규모 환경에서도 일관된 관리 체계를 유지할 수 있도록 합니다. 예를 들어, Kubernetes 클러스터와 네트워크 장비를 연결해 네트워크 병목 현상이 클러스터 및 애플리케이션 성능에 미치는 영향을 파악할 수 있습니다. 이러한 통합 모니터링은 대규모 환경에서도 일관성을 유지하며, 복잡한 IT 환경에서 발생하는 문제의 근본 원인을 효율적으로 분석할 수 있도록 지원합니다. Zenius K8s는 또한, 서버, 네트워크 장비, 애플리케이션 등 IT 인프라 전반에 대한 성능 데이터를 통합적으로 제공합니다. 이를 통해 특정 장비나 네트워크에서 발생한 성능 저하가 클러스터 및 애플리케이션 운영에 미치는 영향을 직관적으로 파악할 수 있습니다. 이처럼 전체 IT 인프라를 아우르는 통합 모니터링 기능은 운영자에게 단순히 데이터를 제공하는 것을 넘어, 서비스 안정성과 문제 해결의 정확성을 높이는데 기여합니다. [2] APM 연계를 통한 애플리케이션 심층 분석 쿠버네티스는 애플리케이션을 컨테이너화하여 자동화된 배포, 확장, 관리를 가능하게 함으로써 서비스의 안정성과 효율성을 높이는 데 주로 활용됩니다. 따라서 쿠버네티스 모니터링 솔루션은 APM(Application Performance Management)과의 연계가 중요합니다. Zenius K8s는 APM과의 강력한 연계를 통해 Kubernetes 환경 내에서 운영 중인 애플리케이션의 성능을 세밀하게 분석할 수 있도록 지원합니다. 이를 통해 애플리케이션이 처리하는 트랜잭션 속도와 같은 주요 성능 지표는 물론, 지연 발생 구간, 병목 현상 등을 실시간으로 모니터링하고 분석하여 문제의 근본 원인을 신속히 진단할 수 있도록 합니다. 특히, APM 연계를 통해 애플리케이션의 전체 트랜잭션 흐름을 시각화함으로써 개별 트랜잭션에서 발생하는 성능 저하나 지연이 클러스터 성능에 미치는 영향을 파악할 수 있습니다. 예를 들어, 특정 트랜잭션에서 비정상적인 지연이 발생할 경우, APM 솔루션은 이를 실시간으로 탐지하여 해당 구간에 대한 세부적인 성능 데이터를 제공합니다. 이를 통해 트랜잭션 지연의 원인을 파악하고, 최적화 작업을 통해 성능을 개선할 수 있습니다. 또한, Zenius K8s는 트랜잭션 병목 현상의 위치와 원인을 명확히 규명할 수 있는 분석 도구를 포함하고 있어, 특히 마이크로서비스 구조의 복잡한 애플리케이션에서 병목 구간을 체계적으로 최적화할 수 있습니다. 이와 같은 심층적인 성능 분석 기능은 단순히 자원 사용 모니터링을 넘어, 애플리케이션 내부에서 발생하는 성능 이슈를 구체적으로 진단하는 데 중점을 둡니다. [3] 메타정보와 변경 이력 관리의 편의성 Zenius K8s는 Kubernetes 오브젝트에 대한 상세한 메타정보를 명령어 입력 없이 직관적으로 조회할 수 있는 고급 메타정보 뷰어를 제공합니다. 운영자는 각 오브젝트의 이름, 라벨(Label), 주석(Annotation) 등 주요 메타정보를 빠르게 확인할 수 있어 오브젝트 상태를 명확히 이해할 수 있습니다. 이 기능은 클러스터의 모든 오브젝트에 대해 체계적인 정보를 제공하며, 특히 동적이고 복잡한 Kubernetes 환경에서 유용하게 활용됩니다. [K8s 구성 요소 별 메타 정보 조회 화면 예시] 또한, Zenius K8s는 구성 변경 이력 관리 기능을 포함하여 이전에 수행된 구성 변경 사항을 시각적으로 한눈에 확인할 수 있도록 지원합니다. 예를 들어, 운영자는 특정 시점에서 이루어진 설정 변경이 클러스터 성능에 미친 영향을 파악하거나, 문제 발생 시 원인을 추적하여 신속히 복구할 수 있습니다. 이를 통해 변경 이력 내역을 단계별로 조회할 수 있습니다. Zenius K8s의 메타정보 및 변경 이력 관리 기능은 구성 변경이 빈번하게 발생하는 대규모 Kubernetes 환경에서 특히 중요한 역할을 합니다. 구성 요소가 많고 자주 변경되는 환경에서는 변화에 따른 혼선이 발생하기 쉬운데, 이 기능은 구성 내역의 투명성을 제공하고, 불필요한 문제를 예방하며, 신속한 문제 해결을 가능하게 합니다. 운영자는 변경 이력을 기반으로 각 오브젝트의 최신 상태와 과거 설정 내역을 체계적으로 관리하여 안정적인 운영을 유지할 수 있습니다. [메타 정보 이력 추적 및 변경 사항 조회 화면 예시] Zenius K8s는 멀티 클러스터 관리, 실시간 모니터링, 장애 탐지 및 대응, 자원 활용 최적화 등 Kubernetes 운영에서 필수적인 기능을 제공합니다. 특히, Framework 기반 구조를 통해 SMS, NMS, APM, DBMS와 같은 다양한 포인트 솔루션과 연계가 가능하여, 컨테이너 오케스트레이션부터 네트워크 관리, 애플리케이션 성능 분석까지 포괄적인 모니터링과 관리를 지원합니다. 특히, APM 연계 기능은 애플리케이션의 트랜잭션 속도, 병목 현상, 지연 발생 구간 등 주요 성능 지표를 실시간으로 모니터링하고 분석할 수 있도록 하여, 문제의 근본 원인을 빠르게 진단하고 최적화할 수 있도록 돕습니다. 연관 장비 모니터링 기능은 서버, 네트워크 장비 등 IT 인프라 전반의 상태를 통합적으로 분석하여, 각 요소가 Kubernetes 클러스터와 애플리케이션 성능에 미치는 영향을 정확히 파악할 수 있도록 지원합니다. Zenius K8s는 이러한 기능들을 통해 운영자가 복잡한 IT 환경에서도 안정적이고 효율적인 관리 체계를 구축할 수 있도록 도와주는 유용한 솔루션입니다.
2024.11.21
기술이야기
하이브리드 클라우드의 5가지 도전과제
기술이야기
하이브리드 클라우드의 5가지 도전과제
클라우드를 활용하는 기업들은 일반적으로 하이브리드 클라우드 환경을 구성합니다. 단일 클라우드 환경에 비해서 여러 가지 장점이 있기 때문입니다. 하이브리드 클라우드는 멀티 클라우드의 일종입니다. 멀티 클라우드(Multi Cloud)는 하나 이상의 클라우드 환경을 병행하여 활용하는 것을 의미합니다. 클라우드 환경이 퍼블릭이든 프라이빗이든 상관없습니다. 멀티 클라우드는 특히 퍼블릭 클라우드 서비스를 활용할 때 하나의 서비스 제공업체에 종속되지 않고, 각 서비스의 특화된 기능을 조합하여 성능과 비용 효율성을 극대화하기 위해서 주로 활용됩니다. 하이브리드 클라우드(Hybrid Cloud)는 반드시 하나 이상의 퍼블릭 클라우드와 프라이빗 클라우드(또는 온프레미스 인프라)를 함께 사용하는 방식을 일컫습니다. 이 방식은 프라이빗 클라우드의 높은 보안성과 퍼블릭 클라우드의 유연한 확장성을 동시에 활용할 수 있다는 장점이 있습니다. 예를 들어 보안 유지와 규제 준수가 요구되는 민감한 데이터는 프라이빗 클라우드에 안전하게 저장하고, 트래픽의 변동성이 커서 유연성과 확장성이 필요한 서비스는 퍼블릭 클라우드에서 처리하는 방식입니다. 이를 통해 기업은 데이터 보안과 확장성 간의 균형을 유지하며, 비용을 절감할 수 있습니다. 레거시 환경에서부터 출발하여 클라우드 전환을 실행한 대부분의 조직들은 이와 같은 하이브리드 클라우드 환경을 갖추고 있다고 볼 수 있습니다. 두 개 이상의 퍼블릭 클라우드 서비스와 기업 내부의 프라이빗 클라우드 시스템 또는 온프레미스 시스템을 동시에 활용하기 때문입니다. 그러나 이러한 하이브리드 클라우드 장점을 최대한 활용하려면 몇 가지 도전 과제가 있습니다. 이 과제들을 어떻게 해결하느냐에 따라 하이브리드 클라우드의 성공적인 도입과 운영이 좌우됩니다. 이러한 도전 과제들에 대해 자세히 살펴보겠습니다. 통합 운영 및 자동화 체계 구축 각 클라우드 환경은 서로 다른 가상화 기술을 기반으로 운영되기 때문에, 이를 하나의 통합된 인터페이스에서 관리하려면 고유한 관리 도구와 API를 통합하고 상호 호환성을 확보하는 작업이 필수입니다. 또한, 클라우드 간에 워크로드를 자유롭게 이동하거나 자원을 효율적으로 관리하려면 일관된 오케스트레이션 체계를 구축해야 하지만, 각 클라우드가 고유의 관리 프로토콜을 사용하기 때문에 이를 통합하는 과정에서 기술적인 어려움이 발생할 수 있습니다. 이와 같은 통합 문제는 자동화 시스템 구축에서도 큰 난제로 작용합니다. 퍼블릭 클라우드의 오토스케일링(Auto Scaling)이나 리소스 프로비저닝(Resource Provisioning)과 같은 기능은 퍼블릭 클라우드에 특화된 기술로, 이를 프라이빗 클라우드에 동일하게 구현하는 것에도 어려움이 따릅니다. 이러한 기술적 차이를 해결하기 위해서는 양쪽 클라우드 환경을 통합하는 자동화 시스템을 설계해야 하며, 이 과정에서 복잡한 기술적 이슈가 제기될 수 있습니다. 예를 들어 퍼블릭 클라우드의 확장성과 유연성을 프라이빗 클라우드에서도 동일하게 적용하려면, 각 환경에 적합한 자동화 규칙과 관리 프로세스를 개발해야 합니다. 하지만 이 과정에서 많은 리소스와 시간이 요구되며, 결국 운영 효율성을 저하시키고, 자동화 시스템의 불완전함으로 인해 운영자의 수동 개입이 필요하게 되는 상황을 초래할 수 있습니다. 데이터 관리 하이브리드 클라우드 환경에서의 데이터 관리는 이동성, 일관성, 보존, 거버넌스 등 다양하고 복잡한 과제가 따릅니다. 특히 데이터가 여러 물리적 위치에 분산되어 저장하고 처리되기 때문에 모든 위치에서 일관된 상태를 유지하는 것이 어렵습니다. 예를 들어 프라이빗 클라우드에서 수정된 데이터가 퍼블릭 클라우드와 즉시 동기화되지 않을 경우, 데이터 불일치가 발생할 수 있으며 비즈니스 프로세스에 중대한 영향을 줄 수 있습니다. 또한 클라우드 간의 데이터 이동은 네트워크 성능에 크게 의존합니다. 대용량 데이터를 전송할 때 네트워크 지연이 발생하면 시스템 성능이 저하될 수 있으며, 특히 실시간 데이터 처리가 중요한 애플리케이션에는 이러한 지연이 심각한 성능 문제로 이어질 수 있습니다. 따라서 실시간 데이터 처리 환경에서는 네트워크 대역폭을 최적화하고 지연 시간을 최소화하는 것이 핵심 과제이며, 이를 제대로 해결하지 못하면 비즈니스의 신속한 의사 결정과 대응 능력이 저하될 수 있습니다. 추가적으로 데이터를 여러 클라우드 환경에 복제하여 관리할 경우, 불필요한 데이터 중복이 발생할 수 있어 스토리지 비용이 크게 증가할 수 있습니다. 이러한 비용 증가를 방지하려면 철저한 데이터 복제 정책과 함께 효율적인 스토리지 관리 전략을 반드시 수립해야 합니다. 비용 관리 하이브리드 클라우드는 유연한 비용 구조를 제공하지만, 이를 효과적으로 관리하지 못할 경우 비용이 급격히 증가할 수 있습니다. 프라이빗 클라우드와 퍼블릭 클라우드는 서로 다른 방식으로 비용을 책정하기 때문에, 이를 통합 관리하는 것은 쉽지 않은 일입니다. 특히 퍼블릭 클라우드는 사용한 만큼 요금을 부과하는 구조라서, 예상치 못한 리소스 사용이나 자원의 과도한 할당이 발생하면 비용이 급격히 증가할 위험이 있습니다. 반면, 프라이빗 클라우드는 고정된 인프라 유지 비용이 지속적으로 발생하기 때문에 두 환경의 비용을 동시에 효율적으로 통제하지 않으면 예기치 못한 지출로 이어질 수 있습니다. 따라서 이러한 이질적인 비용 모델을 결합해 장기적으로 비용을 예측하고 최적화하는 것이 매우 까다롭습니다. 워크로드의 특성에 따라 어느 환경이 더 비용 효율적인지를 판단하는 리소스 최적화 역시 복잡성을 더하는 요소입니다. 모든 워크로드가 퍼블릭 클라우드에서 비용 효율적인 것은 아니며, 프라이빗 클라우드에서 더 적합한 워크로드도 존재하기 때문에 이러한 선택이 적절히 이루어지지 않으면 불필요한 비용이 발생할 수 있습니다. 네트워크 관리 하이브리드 클라우드 환경에서 네트워크 성능은 시스템 전반의 안정성과 효율성이 직결되는 핵심 요소입니다. 프라이빗 클라우드와 퍼블릭 클라우드 간에 데이터 전송 시, 물리적 거리에 따른 네트워크 지연(latency)이 발생할 수밖에 없습니다. 이러한 지연은 대규모 데이터 처리 애플리케이션이나 실시간 트랜잭션을 요구하는 워크로드에서 치명적인 성능 저하를 초래할 수 있습니다. 이러한 문제를 완화하기 위해 네트워크 경로 최적화, 지능형 트래픽 관리 및 QoS(Quality of Service) 설정과 같은 고급 네트워크 성능 튜닝이 필요합니다. 또한 하이브리드 클라우드 환경에서 빈번하게 발생하는 대규모 데이터 전송은 대역폭 제한을 초래할 수 있습니다. 적절한 네트워크 프로비저닝과 데이터 압축, 캐싱 기법을 적용하지 않으면 네트워크 병목현상이 발생하여 시스템 성능에 부정적인 영향을 미칠 수도 있습니다. 더불어 네트워크 장애는 클라우드 서비스 전체에 심각한 중단을 일으킬 수 있기 때문에, 이를 예방하고 빠르게 복구할 수 있는 사전 준비가 필요합니다. 장애에 대비하려면 고가용성(HA) 네트워크 설계, 자동으로 장애를 감시하는 시스템, 그리고 멀티패스(multipath) 라우팅 같은 복구 방법을 적용해야 합니다. 하지만 이러한 작업은 여러 네트워크 계층이 얽혀 있고, 클라우드 시스템 간 상호작용이 복잡하기 때문에, 높은 기술력과 체계적인 관리를 필요로 합니다. 보안 및 규제 준수 프라이빗 클라우드와 퍼블릭 클라우드라는 이질적인 환경에서 데이터를 동시에 관리하고 보호해야 하기 때문에, 다양한 보안 위협과 복잡한 규제 요구사항을 충족시키는 것이 기술적으로 까다롭습니다. 특히 프라이빗 클라우드에서는 기업이 자체적으로 설정한 보안 정책과 방화벽, 액세스 제어 등을 사용할 수 있습니다. 반면 퍼블릭 클라우드에서는 클라우드 서비스 제공자가 제공하는 보안 프로토콜과 방어 체계가 의존해야 하므로, 이 두 환경을 일관되게 통합해 운영하는 것이 매우 복잡합니다. 데이터 보호 측면에서 암호화와 키 관리가 중요한 역할을 하지만, 각 클라우드 플랫폼이 사용하는 암호화 표준 및 키 관리 프로토콜이 상이할 수 있어 이를 일관되게 적용하는 것도 중요한 이슈입니다. 또한 하이브리드 클라우드 환경에서 규제를 준수하는 것은 매우 중요한 문제입니다. 그러나 데이터가 저장된 국가나 지역마다 규제 요구사항이 다르기 때문에, 모든 규정을 충족하는 것이 어려울 수 있습니다. 예를 들어 유럽연합의 GDPR, 미국의 HIPAA 같은 규제를 준수해야 하는 경우 퍼블릭 클라우드 제공자가 데이터가 저장하는 위치나 처리 방식을 명확하게 제공하지 않으면 규제 위반 가능성이 높아질 수 있습니다. 따라서 데이터 주권을 유지하기 위한 데이터 로컬리티 정책을 엄격하게 설정하고, 이를 지속적으로 모니터링하여 규제 준수 여부를 확인하는 추가적인 노력이 필요합니다. 하이브리드 클라우드의 성공적인 운영은 앞서 설명한 다섯 가지 핵심 과제들을 '얼마나 효과적으로 해결하느냐'에 달려 있습니다. 클라우드 간의 통합 관리, 비용 효율적인 운영, 그리고 보안 및 규제 준수의 문제는 단순히 기술적 과제일 뿐만 아니라 기업의 전략적 의사결정과도 깊이 연관되어 있습니다. 따라서 이러한 문제에 대한 종합적인 접근과 체계적인 해결책이 필요합니다.
2024.10.08
기술이야기
네트워크 모니터링의 4가지 최신 트렌드
기술이야기
네트워크 모니터링의 4가지 최신 트렌드
클라우드와 엣지 컴퓨팅의 확산, 동영상/음악/게임 분야의 스트리밍 서비스의 성장 등으로 인해 네트워크 인프라는 점점 더 복잡해지고 있으며, 데이터 트래픽 또한 폭발적으로 증가하고 있습니다. 또한 DDoS(Distributed Denial of Service)나 스니핑(Sniffing) 공격과 같은 보안 위협도 확산되고 있습니다. 따라서 네트워크 성능을 안정적으로 유지하고 잠재적인 위협에 빠르게 대응하기 위한 네트워크 모니터링의 중요성이 더욱 커지고 있습니다. 한 조사에 따르면 네트워크 모니터링 시장 규모가 올해 29억 1천만 달러에 이른 후, 4년간 연평균 성장률(CARG) 9.7%를 기록하며 2028년에는 42억 1천만 달러까지 확대될 전망입니다. IT 기술과 서비스의 발전에 따라서 네트워크 모니터링은 구체적으로 어떻게 변화하고 있는지 네 가지로 나눠서 살펴보겠습니다. [1] 멀티 클라우드 환경에서의 네트워크 모니터링 벤더 종속성을 피하고 비용을 줄이며, 서비스의 성능을 높이기 위해 멀티 클라우드 전략이 많이 채택되고 있습니다. 하지만 멀티 클라우드를 구성하는 각 클라우드 서비스마다 네트워크 아키텍처와 성능이 다르기 때문에 안정적으로 네트워크를 관리하는 데에는 많은 어려움이 따르는 것도 사실입니다. 이러한 어려움을 극복하고, 멀티 클라우드의 운영 효율을 최대한 높이기 위한 네트워크 모니터링의 최근의 추세를 살펴보겠습니다. 가시성 높은 통합 대시보드를 통한 관리 복잡한 멀티 클라우드 환경에서 네트워크를 효율적으로 관리하기 위한 가시성 높은 통합 대시보드의 활용이 증가하고 있습니다. 통합 대시보드는 여러 클라우드에 걸쳐 발생하는 트래픽 흐름, 대역폭 사용량, 그리고 네트워크 성능 지표를 한 눈에 보기 쉽게 제공합니다. 이를 통해 관리자가 각 클라우드 서비스 간의 네트워크 상태를 실시간으로 쉽게 파악하고 문제에 빠르게 대응할 수 있게 돕고 있습니다. 특히, 통합 대시보드는 네트워크 토폴로지 맵과 성능 히트맵과 같은 세부적인 기능을 통해, 복잡하게 얽힌 클라우드 간의 트래픽 흐름을 직관적으로 분석할 수 있도록 지원하고 있습니다. 이를 통해 멀티 클라우드의 각 경로에서 발생할 수 있는 트래픽 불균형이나 병목 현상을 신속하게 감지하고 조정할 수 있습니다. 이와 더불어서 관리자가 자신이 중점적으로 모니터링해야 하는 지표들을 쉽게 확인할 수 있도록, 통합 대시보드의 관리자별 맞춤 설정 기능도 강화되고 있습니다. 이를 통해 관리자는 복잡한 멀티 클라우드 환경에서도 하나의 화면에서 리전별 트래픽, 네트워크 지연시간, 패킷 손실율 등 본인이 원하는 부분에 초점을 맞춰서 효율적으로 네트워크를 모니터링 할 수 있습니다. AI와 머신러닝을 통한 자동화된 분석 및 대응 AI와 머신러닝 기술이 적용된 네트워크 모니터링 시스템도 멀티 클라우드 운영 효율을 높이는데 크게 기여하고 있습니다. 우선 멀티 클라우드 환경의 네트워크는 멀티 클라우드 환경은 다양한 변수로 인해 네트워크 문제가 예측 불가능한 경우가 많습니다. 따라서 AI와 머신러닝 기술은 클라우드 간의 네트워크 상관관계, 트래픽 패턴, 대역폭 사용량, 성능 지표를 등을 학습하여 성능 저하나 장애의 잠재적 원인을 탐지하고 빠르게 알리고 있습니다. 또한 AI를 통해 실시간 트래픽 경로 분석하여 병목 현상이 발생하거나 리소스가 과도하게 사용될 경우 동적으로 VLAN 설정을 변경하거나, 트래픽을 다른 클라우드 인스턴스로 우회시키는 등의 자동화된 대응도 강화되고 있습니다. 이와 함께 네트워크 트래픽의 실시간 변화에 맞춰 QoS(서비스 품질) 정책을 자동으로 조정하여 중요한 애플리케이션에 우선순위를 부여하고, 비정상적인 트래픽을 즉시 차단하거나 제한하는 등의 대응도 자동으로 수행할 수 있습니다. 이 같은 자동화된 조치는 네트워크의 가용성을 높이고, 관리자의 개입 없이도 실시간으로 문제를 해결할 수 있어, 멀티 클라우드 환경에서의 네트워크 성능과 안정성을 높이고 있습니다. 시스템의 확장성 및 유연성 강화 멀티 클라우드 환경에서는 클라우드 리소스가 추가되거나 기존 리소스가 제거되면서, 네트워크의 구성과 요구사항이 빠르게 변동됩니다. 따라서 높은 유연성을 바탕으로 빠르게 변화하는 네트워크 환경에 신속하게 대응하는 것이 네트워크 모니터링 시스템의 중요한 요소로 자리잡았습니다. 구체적으로, 네트워크 모니터링 시스템을 통해 멀티 클라우드 인프라 내에서 새롭게 배포되는 서버나 애플리케이션을 자동으로 감지하고 이를 실시간으로 모니터링할 수 있는 것이 중요해지고 있습니다. 또한, 동적인 멀티 클라우드 환경에서 관리자가 특정 클라우드 서비스나 리소스에 맞춤형 모니터링 설정을 유연하게 적용할 수 있는 기능이 중요해지고 있습니다. 예를 들어, 새로운 클라우드 환경의 네트워크를 모니터링할 때, 해당 환경에 맞춘 모니터링 템플릿을 유연하게 구성하고 배포할 수 있는 기능이 점점 더 중요해지고 있습니다. 이러한 유연한 모니터링 시스템은 멀티 클라우드 인프라의 복잡성을 효과적으로 관리하고 운영 효율성을 높이는 데 중요한 역할을 하고 있습니다. 규정 준수 및 거버넌스 모니터링 멀티 클라우드 환경에서는 다양한 국가와 지역의 규제를 준수해야 합니다. 따라서 네트워크 모니터링 시스템은 네트워크 트래픽, 접근 로그, 보안 이벤트 등을 실시간으로 모니터링하여 잠재적인 규정 위반을 탐지하고 사전에 인지할 수 있도록 지원하고 있습니다. 특히 규정 준수(Compliance) 모니터링은 멀티 클라우드 환경에서 필수적입니다. 예를 들어, 한 클라우드가 유럽에 위치하고 있어 GDPR(유럽 일반 데이터 보호 규정)을 준수해야 하고, 다른 클라우드는 미국의 규제에 따라야 할 때, 네트워크 모니터링 시스템을 통해 각 클라우드에서 발생하는 네트워크 트래픽, 보안 이벤트와 접근 로그를 추적하고, 잠재적인 규정 위반을 사전에 탐지할 수 있도록 지원하고 있습니다. 또한, 거버넌스 모니터링 측면에서는 클라우드 간의 데이터 관리와 접근 통제 정책이 일관되게 적용되도록 지원합니다. 멀티 클라우드 환경에서는 다양한 클라우드 제공자 간에 민감한 데이터가 이동할 수 있기 때문에, 데이터 접근 권한을 관리하고 비인가된 접근 시도를 실시간으로 감시하는 기능이 필수적입니다. 이를 통해 기업은 데이터 유출 위험을 줄이고, 여러 규제와 거버넌스 요구 사항을 준수할 수 있습니다. [2] SDN(소프트웨어 정의 네트워킹) 모니터링 SDN(Software-Defined Networking)은 네트워크를 더 쉽게 관리할 수 있도록 설계된 기술입니다. 전통적인 네트워크는 스위치나 라우터 같은 네트워크 하드웨어 장치가 데이터의 전달 경로와 방식을 스스로 결정했습니다. 하지만 각 장비가 독립적으로 작동하다 보니 네트워크 설정을 변경하는 데 시간이 많이 걸렸고, 특히 대규모 네트워크를 통합적으로 관리하는 데 어려움이 있었습니다. 반면, SDN에서는 소프트웨어 기반의 중앙 컨트롤러(제어 평면, Control Plane)가 데이터의 전달 경로와 방식을 통합하여 결정하고 하드웨어 장치들은 이 결정에 따라 데이터를 전송하는 역할만 수행합니다. 따라서 네트워크 구성을 변경하거나 최적화하기가 쉽고, 대규모 네트워크도 효율적으로 관리할 수 있는 장점이 있습니다. 하지만 동시에 중앙 컨트롤러에 장애가 발생하거나 해킹을 당할 경우 네트워크 전체가 마비될 수 있는 위험이 있으며, 실시간으로 네트워크 상태를 모니터링하고 분석하는 것이 어려운 단점도 존재합니다. 따라서 네트워크 모니터링 시스템은 SDN의 단점을 보완하고 장점을 강화하는 방향으로 발전하고 있습니다. 실시간 데이터 수집 및 분석 실시간 데이터 분석은 네트워크 환경이 계속해서 변화하는 SDN의 특성상 매우 중요합니다. 특히 SDN에서는 스위치, 라우터, 케이블 등 네트워크 하드웨어 장치들이 정상적으로 작동하고 연결된 상태를 나타내는 '물리적 상태'와, 중앙 컨트롤러가 설정한 네트워크 경로와 적용된 정책을 의미하는 '논리적 상태'를 모두 실시간으로 정확하게 모니터링해야 합니다. 네트워크 모니터링 시스템은 이러한 물리적 상태와 논리적 상태를 추적하기 위해, 네트워크 지연 시간, 트래픽 흐름, 패킷 손실, 대역폭 사용량, 링크 상태와 같은 다양한 성능 지표를 실시간으로 수집하고 분석하는 기능을 강화하고 있습니다. 이러한 분석을 통해 네트워크 관리자가 잠재적인 문제나 성능 저하를 조기에 감지하여, 심각한 문제가 발생하기 전에 조치할 수 있도록 돕고 있습니다. 빠르고 자동화된 대응 지원 네트워크 모니터링 시스템은 네트워크 주요 데이터에 대한 수집과 분석에서 그치지 않고, SDN의 컨트롤러와 연계하여 빠르고 자동화된 대응을 지원하고 있습니다. 예를 들어, 특정 시간대에 트래픽이 과도하게 증가하면, 모니터링 시스템이 이를 실시간으로 탐지하고 SDN 컨트롤러를 통해 특정 트래픽을 다른 경로로 자동 분산시킵니다. 링크 장애가 발생하면 모니터링 시스템은 즉시 대체 경로를 설정하여 트래픽이 끊기지 않도록 조치하며, 문제가 해결되면 다시 원래의 경로로 트래픽을 재배치하는 자동 복구 기능을 수행합니다. 이처럼 네트워크 모니터링 시스템과 SDN 컨트롤러와의 연계를 통해 네트워크 운영자의 개입 없이도 스스로 문제를 해결하는 능력이 더욱 진화할 것으로 기대되고 있습니다. 보안이 강화된 모니터링 앞서 살펴본대로 SDN은 네트워크 제어를 중앙집중식으로 처리하는 구조적 특성을 가지고 있기 때문에, 중앙 컨트롤러의 보안이 매우 중요합니다. 따라서 SDN 환경에서 네트워크 모니터링 시스템은 다양한 잠재적인 보안 위협을 사전에 감지하고, 신속하게 대응할 수 있는 강화된 보안 기능을 필수적으로 갖춰가고 있습니다. 예를 들어 네트워크 상에서 발생하는 다양한 이벤트를 실시간으로 감시하고 분석하여, 비정상적인 트래픽 흐름, 의심스러운 로그인 시도, 네트워크 장치 간의 비정상적인 통신 행위 등에 대한 탐지가 가능합니다. 또한 보안을 강화하기 위해서 네트워크 모니터링 시스템과 SIEM(보안 정보 및 이벤트 관리 시스템), IPS(침입 방지 시스템), IDS(침입 탐지 시스템)의 통합이나 연계도 활발하게 이루어지고 있습니다. 분산형 SDN 컨트롤러 모니터링 SDN 환경에서 중앙 컨트롤러 하나에 의존하는 방식의 리스크를 줄이기 위해, 많은 네트워크 운영자들이 분산형 SDN 컨트롤러 아키텍처를 채택하고 있습니다. 분산형 컨트롤러는 각기 독립적으로 운영되면서도 상호 간에 정보와 상태를 동기화하여 안정적인 네트워크 운영이 가능합니다. 따라서 최근 네트워크 모니터링 시스템은 각 컨트롤러의 상태와 성능을 실시간으로 추적하고, 컨트롤러 간 협력 상태를 감시하여 과부하나 장애 발생 시 즉시 다른 컨트롤러로 트래픽을 자동 분산하거나 대체 컨트롤러를 할당하는 기능을 지원하고 있습니다. 또한, 분산된 컨트롤러 간의 상태 동기화 여부를 실시간으로 확인하여, 동기화 문제로 인한 비효율적인 경로 설정이나 보안 취약점을 방지하고, 문제 발생 시 즉각적인 경고 및 자동 수정 기능을 제공합니다. 장애 복구와 복원 기능 또한 필수적으로 강화되어, 장애 발생 시 대체 컨트롤러가 즉각적으로 운영을 이어받고, 문제가 해결된 후에는 트래픽을 원래 컨트롤러로 복원하는 기능도 제공하고 있습니다. [3] 엣지컴퓨팅 환경의 네트워크 모니터링 엣지 컴퓨팅(Edge Computing)은 데이터를 중앙의 대형 데이터센터나 클라우드 서버에서 처리하는 기존 방식과 달리, 데이터를 생성하는 디바이스나 그와 가까운 위치에서 처리하는 기술입니다. 예를 들어 스마트폰, IoT 기기, 자율주행차, 또는 공장 내의 다양한 장비들이 데이터를 스스로 처리하고, 필요한 경우에만 중앙 서버나 클라우드로 데이터를 전송하는 방식입니다. 네트워크 대역폭을 절약할 수 있고, 빠른 서비스 제공이 가능해서 다양한 분야에서 활용이 증가하고 있습니다. 엣지 디바이스들이 데이터를 처리하는 위치가 분산되어 있고, 시스템이 유연하게 확장될 수 있기 때문에, 이러한 환경에 맞춰 각 디바이스와 네트워크의 상태를 실시간으로 모니터링할 수 있는 엣지컴퓨팅 맞춤형 네트워크 모니터링이 필요합니다. 엣지 노드별 모니터링 엣지 컴퓨팅 환경에서는 엣지 노드에서 발생하는 데이터를 실시간으로 정확하게 감지하고 관리해야 합니다. 따라서 네트워크 모니터링 시스템은 각 엣지 노드에 경량화된 에이전트를 배치하거나 에이전트리스 모니터링 방식 등을 활용하여 모니터링을 진행합니다. 이를 통해 엣지 노드의 주요 상태(네트워크 대역폭 소비, 지연 시간 등)를 정확히 분석하고, 비정상적인 상태를 감지하면 중앙 서버에 즉시 알림을 보내고 있습니다. 이때 엣지 노드에서 생성되는 모든 데이터를 중앙 서버로 전송하는 것은 네트워크 대역폭에 큰 부담을 줄 수 있습니다. 따라서 네트워크 모니터링 시스템은 데이터 샘플링을 통해 필수적인 데이터를 효율적으로 선택하고, 데이터 필터링을 통해 불필요한 데이터를 제거하고 전체 네트워크의 부하를 줄이면서 성능을 최적화할 수 있도록 돕고 있습니다. AI/ML 기반의 자동화된 대응 엣지 컴퓨팅의 특성상 문제 발생 시 네트워크 운영자가 모든 노드에 직접 접근해 수동으로 대응하는 것이 현실적으로 어렵습니다. 따라서 운영자의 개입 없이도 엣지 디바이스가 문제를 자율적으로 감지하고 해결할 수 있는 자동화된 대응 시스템이 중요합니다. 네트워크 모니터링 시스템에도 자동화된 대응 기능이 강화되고 있습니다. 자동화된 대응 시스템은 네트워크 모니터링과 관리의 자동화를 통해 분산된 엣지 노드에서 발생하는 문제를 실시간으로 감지하고, 즉각적인 대응을 가능하게 합니다. 특히 AI 및 ML 기술이 이러한 자동화된 대응 시스템의 핵심 기술로 작용하고 있습니다. 예를 들어 정상적인 트래픽 흐름과 비정상적인 트래픽 흐름을 구분하기 위해 각 노드의 트래픽 데이터를 분석하여, 평상시 패턴과 다른 변화를 신속히 감지하고, 이때 이상 징후가 발견되면 트래픽 차단, 리소스 재분배, 또는 네트워크 경로 변경 등의 대응 조치를 자동으로 실행함으로써 네트워크 전체의 안정성을 높이고 있습니다. 확장에 대한 원활한 지원 5G 네트워크의 확산과 IoT 디바이스의 확산등으로 엣지 노드의 수가 폭발적으로 증가하면서 각 노드에서 생성되는 데이터의 양도 기하급수적으로 늘어나고 있습니다. 이러한 환경에서 네트워크 모니터링 시스템은 더 많은 노드를 빠르고 효율적으로 처리할 수 있는 능력을 가져야 하며, 노드 간 상호 연결성을 포함해 분산된 네트워크 전반에 걸쳐 일관된 성능을 유지해야 합니다. 이를 위해 네트워크 모니터링 시스템은 새로운 엣지 노드가 네트워크에 추가될 때마다 별도의 수작업 설정 없이 자동으로 노드를 인식하고, 모니터링을 즉시 시작할 수 있도록 기능이 강화되고 있습니다. 또한 자동 스케일링 기능을 통해 엣지 노드가 증가하면 모니터링 시스템의 리소스를 동적으로 확장하여, 성능 저하 없이 모든 노드를 관리하고 모니터링할 수 있도록 지원하고 있습니다. [4] 네트워크 보안 강화 네트워크 모니터링 분야에서 '보안'은 항상 중요한 주제였지만, 최근 IT 기술의 발전과 빈번한 보안사고 등으로 인해 그 중요성이 더 커지고 있습니다. 네트워크 보안 강화와 관련한 주요 이슈들을 살펴보겠습니다. 제로 트러스트(Zero Trust) 보안 모델의 확산 "절대 신뢰하지 말고, 항상 검증하라"는 원칙에 기반한 제로 트러스트 보안 모델은 내부와 외부를 구분하지 않고, 모든 사용자와 장치의 접근을 철저히 검증하는 접근법입니다. 클라우드 서비스의 확산으로 인해 기업 네트워크의 경계가 모호해지면서 더욱 중요해지고 있습니다. 제로 트러스트 모델을 올바르게 구현하기 위해서는 네트워크의 모든 트래픽을 실시간으로 모니터링하고 비정상적인 활동을 자동으로 탐지하고 즉각적으로 대응할 수 있는 시스템이 필요합니다. 이는 기존 보안 시스템이 단순히 알려진 위협을 차단하는 것에 그쳤다면, 제로 트러스트 모델에서는 잠재적인 위협까지도 감지하고 대응할 수 있어야 한다는 것을 의미합니다. 이를 위해, 최근 네트워크 모니터링 시스템은 AI 기술을 활용하여 자동으로 이상 징후를 탐지하고, 보안 위협에 신속하게 대응하는 능력을 강화하고 있습니다. 예를 들어, AI 기반 모니터링 시스템은 평소와 다른 사용자 행동 패턴을 감지하고, 이를 바탕으로 잠재적인 보안 위협을 조기에 차단하고 있습니다. SASE(Secure Access Service Edge)의 부상 SASE는 네트워크와 보안 기능을 통합하여 클라우드 환경에서 제공하는 혁신적인 보안 모델입니다. VPN, 방화벽, 침입 탐지 시스템, 데이터 손실 방지 등을 하나의 통합 솔루션으로 제공하며, 특히 외부에서 중앙 데이터센터로의 안전한 접근을 보장하는 데 최적화되어 있습니다. SASE는 전통적인 네트워크 보안 솔루션이 클라우드 환경에서 가지는 한계를 극복하고, 어디서든 동일한 보안 수준을 유지할 수 있게 하는 장점이 있습니다. SASE의 핵심은 네트워킹과 보안 기능을 통합하여, 기업이 네트워크와 보안을 하나의 솔루션으로 관리할 수 있도록 하는 것입니다. SASE를 도입하면 방화벽, 클라우드 접근 보안 브로커(CASB), 보안 웹 게이트웨이(SWG) 등 다양한 보안 기능을 단일 플랫폼에서 통합 관리할 수 있어, IT 팀이 더 효율적이고 일관된 보안 정책을 실행할 수 있습니다. 또한, SASE는 네트워크 모니터링 시스템을 진화시켜, 다양한 보안 기능(예: 방화벽, CASB, 보안 웹 게이트웨이 등)을 실시간으로 모니터링하고 관리할 수 있게 합니다. 이를 통해 네트워크 가시성을 높이고, 비정상적인 활동에 대한 즉각적인 대응이 가능해지며, 궁극적으로 조직의 보안을 강화하고 있습니다. XDR(Extended Detection and Response) 도입 XDR은 전통적인 EDR(Endpoint Detection and Response)을 확장하여, 네트워크, 엔드포인트, 서버, 클라우드 환경 등에서 발생하는 보안 위협을 통합적으로 탐지하고 대응하는 기술입니다. XDR은 다양한 보안 도구와 데이터를 통합하여 상관관계를 분석함으로써, 보안 운영 팀이 위협을 보다 쉽게 이해하고 신속하게 대응할 수 있도록 지원하기 때문에 많은 주목을 받고 있습니다. XDR을 활용하려면 상당한 초기 비용이 들고 관리에 어려움이 있기 때문에 많은 기업들이 XDR 전문 관리 솔루션을 도입하고 있습니다. 이에 따라 네트워크 모니터링 시스템도 단순히 네트워크 트래픽을 모니터링하는 것에서 나아가, XDR 전문 관리 솔루션과의 긴밀한 협력을 통해 통합된 보안 운영과 모니터링을 서비스로 제공하는 방향으로 발전하고 있습니다. 예를 들어, 기업은 네트워크 모니터링 시스템을 통해 다양한 보안 데이터를 실시간으로 수집하고 분석하며, 이를 XDR 솔루션과 통합하여 종합적인 보안 상태를 한눈에 파악할 수 있습니다. 이로 인해 보안 위협에 대한 대응 속도를 높이고, 더욱 정교한 보안 전략을 구현할 수 있게 됩니다. 멀티 클라우드와 SDN, 엣지 컴퓨팅 환경에서 네트워크 모니터링은 가시성, 유연성, 그리고 자동화된 대응 능력을 갖춘 시스템으로 진화하고 있습니다. 특히 AI와 머신러닝 기술을 활용한 자동화된 분석은 네트워크 성능 저하나 장애를 사전에 예측하고 대응하는 데 중요한 역할을 합니다. 기술의 발전에 맞추어 발전하는 네트워크 모니터링 시스템의 사용을 통해 기업은 더욱 복잡해지는 네트워크 환경에서 잠재적 위협을 신속히 탐지하고 대응할 수 있습니다.
2024.09.23
기술이야기
하이브리드 클라우드 모니터링, 왜 필요한가?
기술이야기
하이브리드 클라우드 모니터링, 왜 필요한가?
최근 하이브리드 클라우드가 점점 더 중요한 역할을 하고 있습니다. 하이브리드 클라우드(Hybrid Cloud)는 온프레미스 환경과 프라이빗 클라우드, 퍼블릭 클라우드를 결합한 클라우드 환경을 의미하는데요. 쉽게 말해 필요에 따라 자체 인프라와 외부 클라우드 서비스를 동시에 사용할 수 있는 클라우드 환경입니다. 2024년까지 하이브리드 클라우드 시장은 연평균 22% 성장하여 약 3조 원 규모에 이를 것으로 예상될 정도로 각광받고 있습니다. 그렇다면 하이브리드 클라우드가 점점 더 주목을 받는 이유는 무엇일까요? │하이브리드 클라우드가 각광받는 이유 하이브리드 클라우드가 점점 더 주목을 받는 이유는 유연함 때문입니다. 기업들은 중요한 데이터를 프라이빗 클라우드에 저장하고, 일시적으로 많은 자원이 필요한 작업은 퍼블릭 클라우드를 사용하여 두 가지 클라우드의 장점을 모두 누릴 수 있습니다. 보안과 성능을 유지하면서도 필요한 만큼 자원을 사용할 수 있는 것이죠. 즉 프라이빗 클라우드의 퍼블릭 클라우드를 잘 조화하면 기업은 최적의 IT 환경을 구축할 수 있습니다. 하이브리드 클라우드의 이러한 장점은, 기업들이 경쟁력을 유지하고 빠르게 변화하는 시장 환경에 대응하는 데 큰 도움이 됩니다. 특히 클라우드 서비스 제공업체(CSP)의 다양한 서비스와 솔루션을 활용하면, 하이브리드 클라우드를 더욱 효과적으로 운영할 수 있는데요. 다음 내용을 통해 주요 클라우드 서비스 제공업체에 대해 좀 더 자세히 알아보겠습니다. │주요 클라우드 서비스 제공업체(CSP) 특징 클라우드 서비스 제공업체(CSP)으로 대표적으로 AWS(Amazon Web Services)와 마이크로소프트(Microsoft Azure)가 있습니다. 다음 내용을 통해 각각의 주요 특징을 살펴보겠습니다. Amazon Web Services (AWS) AWS는 서버, 스토리지, 데이터베이스, 네트워크 등 다양한 IT 인프라 서비스를 제공하는 아마존의 클라우드 플랫폼입니다. "AWS의 서버가 먹통이 되면, 시장에 혼돈이 온다."는 말이 있을 정도로 많은 기업이 AWS를 사용하고 있죠. AWS의 주요 특징은 아래와 같이 정리해 볼 수 있는데요. AWS의 주요 특징 1. AWS의 글로벌 인프라 AWS는 CSP 중 전 세계에서 가장 많은 리전을 보유하고 있습니다. 31개의 리전과 99개의 가용 영역을 운영하여, 사용자가 원하는 리전을 선택해 지연 시간을 단축할 수 있습니다. 다양한 지역에서 리전을 운영하는 만큼, 서비스 제공 범위가 넓고 안정성도 높습니다. 또한 엣지 로케이션을 통해 콘텐츠를 빠르게 전달하여 사용자 경험을 개선합니다. AWS는 CSP의 선두주자로서 AWS는 IaaS(인프라 서비스) 영역에서 시장 점유율이 가장 높고 안정적인 서비스를 제공합니다. 2. API 기반 서비스 AWS의 모든 서비스는 API를 통해 제어할 수 있으며, 다양한 프로그래밍 언어에서 사용 가능한 코드를 제공하여 다른 서비스를 연동할 수 있습니다. API Gateway라는 서비스를 통해 외부 애플리케이션과의 통신을 안전하게 관리할 수도 있죠. 3. 다채로운 서비스 AWS는 단순히 서버와 저장소를 제공하는 것을 넘어 S3(객체 스토리지), EC2(가상 서버), Lambda(서버리스 컴퓨팅), RDS(관계형 데이터베이스) 등 다양한 주요 서비스를 지원합니다. 최근에는 머신러닝과 AI 서비스까지 제공하고 있습니다. Microsoft Azure Microsoft Azure는 마이크로소프트가 제공하는 클라우드 컴퓨팅 플랫폼으로, AWS 다음으로 많은 기업들이 사용하고 있습니다. 애저라고도 많이 불리죠. 특히 PaaS(Platform as a Service)와 SaaS(Software as a Service) 분야에서 1위를 달리는 퍼블릭 클라우드라고 할 수 있습니다. Azure의 주요 특징은 다음과 같은데요. Microsoft Azure 주요 특징 1. Microsoft 제품과의 통합성 Azure의 가장 큰 장점은 Microsoft 제품과 쉽게 연동된다는 점입니다. 예를 들어 Office 365와 통합되며, 최근에는 생성형 AI 서비스인 Copilot 과의 통합으로 주목받고 있습니다. Microsoft 제품을 많이 사용하는 기업들에게 매우 유용하죠. 2. 웹 서비스에 집중 Azure는 특히 웹 서비스에 강점을 가지고 있습니다. 인프라(IaaS)에서는 다양한 유형을 수용하면서도, 애플리케이션 플랫폼(PaaS) 측면에서는 웹 서비스에 집중하고 있는데요. PC 웹, 모바일, API 등 모든 접속 유형을 하나의 앱 서비스에서 지원하며 가상 머신, 컨테이너, 서버리스 등 다양한 구성 방식을 제공합니다. 이처럼 AWS와 Microsoft Azure는 각각 고유한 강점을 가지고 있으며, 기업의 필요에 따라 적절한 서비스를 선택하여 사용할 수 있는데요. 하지만 이러한 다양한 클라우드 서비스의 특징과 이점을 제대로 활용하기 위해서는 클라우드 서비스 모니터링이 필수적입니다. 클라우드 인프라는 자원 사용량과 트래픽이 시시각각 변동되므로, 실시간 모니터링 없이는 문제를 사전에 발견하고 대응하기 어렵기 때문인데요. 다음 내용을 통해 어떤 솔루션이 필요한지 살펴보도록 하겠습니다. │하이브리드 클라우드 모니터링이 필요한 이유 앞서 언급한 내용처럼 AWS, Azure, GCP 등 다양한 퍼블릭 클라우드의 서비스 상태와 성능 지표를 확인하기 위해서는, 클라우드 서비스 모니터링 솔루션이 필요합니다. 물론 AWS의 *CloudWatch1처럼 자체적인 퍼블릭 클라우드 모니터링 도구들도 있는데요. * CloudWatch1 : AWS 클라우드 리소스를 모니터링하고 관리하는 서비스 통합적인 IT 환경에서 발생할 수 있는 다양한 문제를 예방하고 효율적으로 관리하기 위해서는, 퍼블릭 클라우드나 프라이빗 클라우드뿐만 아니라 온프레미스 인프라까지 함께 모니터링할 수 있는지 살펴보아야 합니다. 대표적인 사례로 Zenius CMS 솔루션을 통해, 어떤 방식으로 클라우드 서비스를 모니터링할 수 있는지 살펴보겠습니다. 하이브리드 클라우드의 통합 모니터링 Zenius CMS는 물리적인 서버, 네트워크 장비, DB와 같은 온프레미스 인프라와 퍼블릭 클라우드를 통합적으로 모니터링합니다. 사용자는 한 플랫폼 안에서 전체 인프라의 상태를 종합적으로 신속하게 장애를 파악할 수 있기 때문에, 다양한 환경에서 발생하는 성능 저하와 장애를 빠르게 식별하고 그 원인을 정확히 분석할 수 있죠. CloudWatch와 Alert History를 사용한 데이터 수집 Zenius CMS는 AWS의 CloudWatch나 Azure의 Alert History 같은 API를 사용해서 다양한 모니터링 데이터를 제공합니다. 예를 들어 CloudWatch가 기본적으로 제공하는 성능 지표뿐만 아니라 특정 서비스에 관심이 있다면, 그 서비스만 타겟으로 설정해서 모니터링할 수 있습니다. 이렇게 하면 사용하는 지역의 주요 서비스들만 선택해서 볼 수 있어, 필요한 정보를 더욱 쉽게 확인할 수 있는 장점이 있습니다. Billing(과금) 서비스 정보 제공 Zenius CMS를 통해 클라우드 자원의 사용량을 실시간으로 확인하여 예산을 더 잘 관리하고, 예상치 못한 과금이 발생하는 것을 막을 수 있습니다. 또한 비용이 어떻게 발생하는지 투명하게 파악할 수 있어 필요할 때 적절히 조정할 수 있죠. 자동 경고 기능을 통해 특정 비용 한도를 초과할 때 즉시 알림을 받아 효율적으로 관리할 수 있습니다. 이번 시간에는 하이브리드 클라우드 모니터링이 왜 중요해지고 있는지 중점적으로 알아보았습니다. 특히 클라우드 인프라는 자원 사용량이 수시로 변하기 때문에 실시간 모니터링이 중요합니다. 더불어 다양한 인프라를 통합 관리할 수 있는 온프레미스 환경도 함께 구축되어 있어야, 클라우드 인프라에 문제가 발생했을 때 빠르고 정확하게 대응할 수 있죠. 이제 하이브리드 클라우드 통합 관리와 온프레미스 환경 관제가 모두 가능한 Zenius CMS로, 클라우드 서비스를 더욱 효율적으로 관리해 보세요!
2024.07.29
기술이야기
SIEM을 도입해야 하는 5가지 이유
기술이야기
SIEM을 도입해야 하는 5가지 이유
IT 산업의 발전에 따라 다양한 장비와 시스템에서 매일 엄청난 양의 로그가 만들어지고 있습니다. 보안 장비, 서버, 미들웨어 등에서 생성되는 로그들이 대표적입니다. 이러한 로그들을 모두 취합하여 관리하게 되면, 1년 동안 저장되는 데이터는 테라바이트(TB) 단위의 디스크 용량이 필요한데요. 이는 인프라 관리에 있어 큰 부담이 될 수 있겠죠. 이때 통합 로그 관리 시스템인 SIEM(Security Information and Event Management)이 해결책이 될 수 있습니다. 그렇다면 SIEM은 무엇일까요? SIEM은 보안 정보 관리(SIM, Security Information Management)와 보안 이벤트 관리(SEM, Security Event Management)의 이점을 결합한 로그 관리 도구입니다. 즉 수집한 로그를 통해 정보를 분석하여 보안상 위협이 되는 이벤트를 실시간으로 감지하는 솔루션이라고 할 수 있죠. 그래서 이번 시간에는 SIEM이 왜 필요한지, 그리고 어떤 특장점이 있는지 알아보도록 하겠습니다. │SIEM, 왜 필요할까? SIEM이 필요한 가장 큰 이유는 빅데이터 처리와 보안적 측면에서 설명할 수 있습니다. 빅데이터 로그는 보안 사고가 발생한 근거를 찾아내는 중요한 증거 자료로 활용됩니다. 예를 들어 대형 온라인 쇼핑몰에서는 수많은 거래가 이루어지며 해커의 침입 시도가 발생할 수 있는데요. 이러한 기록이나 비정상적인 접근을 실시간으로 감지하여 문제가 생기기 전에 미리 대응할 수 있습니다. 이처럼 보안 위협에 효과적으로 대응하려면, 수집한 로그 데이터에 대한 체계적인 분석이 필요합니다. 관리되지 않은 로그는 IT 시스템의 장애나 문제 발생 시 원인을 찾아내기 어렵기 때문이죠. 따라서 로그 분석을 위해 로그를 정규화하여 저장하고, 효율적으로 관리하기 위한 로그 압축 보관 툴이 필요합니다. 또한 시스템 로그와 애플리케이션 로그 등 각 IT 인프라에서 발생하는 수많은 로그들은 빅데이터의 영역에 속합니다. 따라서 이를 중앙집중적으로 처리하여 효과적으로 분석하고 관리하는 도구가 필요하죠. │SIEM의 주요구성 SIEM은 네트워크 범위의 로그를 수집하고, 저장하며, 분석하는 기능을 갖고 있는데요. SIEM의 구성도 그림을 통해 좀 더 자세히 살펴보겠습니다. 로그 수집 SIEM은 서버, 네트워크, 보안장비, 클라우드 등 다양한 IT 인프라에서 발생하는 로그 데이터를 Syslog나 SNMP 등을 이용해 로그와 이벤트를 모아 Collector에 수집합니다. 이를 위해 직접 대상 장비에 Agent/Agentless 방식을 활용하거나, 클라우드의 경우 API 연동을 통해 다양한 방식으로 로그를 수집하죠. 실시간으로 발생되는 로그 수집은 물론, 방화벽/IDS/IPS 등 다양한 보안 장비에 대한 로그 데이터 수집이 필요합니다. 로그 저장 로그 수집뿐만 아니라 로그 저장 역시 중요합니다. 주로 ELK Stack을 활용하거나 수집 로그에 대한 분산 처리/저장 엔진을 활용하여, 로그를 저장하게 되는데요. 주로 관계형 데이터베이스에 자제적으로 저장하는 경우가 많습니다. 인덱싱 속도와 효율을 높이기 위해 ELK Stack을 활용하여, 로그를 저장하는 것 역시 좋은 대안이 될 수 있죠. 로그 분석 로그를 수집하고 저장한 다음 단계는 로그를 분석하는 것입니다. 이때 중요한 과정이 '파싱(Parsing)'입니다. 파싱은 비정형 로그 데이터를 쿼리가 가능한 구조화된 형태로 변환하는 과정입니다. 쉽게 말해, 파싱은 비정형 로그 데이터를 자르고 인덱스를 추가하여(key-value 형식으로) 보다 쉽게 식별할 수 있습니다. 이처럼 파싱을 통해 로그를 유형별로 분류하고, 정규화 및 표준화 작업을 거쳐, 분석에 필요한 정제된 로그를 추출합니다. 이렇나 정제된 로그는 분석 과정에서 매우 유용하게 사용됩니다. 시각화 및 리포팅 수집된 로그의 핵심 지표와 요약 이벤트를 설정하여, 시각화해서 볼 수 있습니다. 또한 사용자 정의 기반의 대시보드를 통해, 다양한 컴포넌트를 활용한 로그 데이터의 시각화와 리포팅 기능 역시 제공해야 합니다. │SIEM 도입 시 얻을 수 있는 5가지 앞에서도 SIEM에 대한 이점을 잠깐 언급했지만, 사실 이밖에도 여러 특장점이 있는데요. 그 중 대표적으로 5가지를 소개해 드릴게요. 첫째, 보안 수준의 강화 기존의 ESM(Enterprise Security Management)과는 다르게 SIEM은, 많은 양의 로그 데이터를 상관 분석하여 보안 위협을 찾아낼 수 있습니다. 기업 내 정보시스템의 보안 이벤트를 관리해서, 내부와 외부를 가리지 않고 기업 전반의 통합 보안 관리가 가능해지죠. 둘째, 통합 로그 관리 [그림] Zenius SIEM : 요약뷰 다양한 레거시 인프라와 클라우드에서 발생하는 로그를 하나의 플랫폼으로 일원화하여, 로그 관리가 훨씬 쉬워집니다. 장기간 데이터를 저장하고 모든 인프라에서 발생하는 로그를 파싱하여 관리하면, 관리 포인트를 한 곳으로 모을 수 있어 기업에서는 비용과 시간을 크게 절약할 수 있습니다. 셋째, 인덱싱을 통한 로그 검색 [그림] Zenius SIEM : 호스트 및 로그유형 트리 검색 기능 호스트 및 로그 유형 별로 검색어와 조건을 설정해서 로그를 검색할 수 있습니다. 특정 시간대나 특정 검색어를 통해, 대용량의 로그 중 일부만을 추출하여 분석할 수 있어 로그 분석이 훨씬 용이해집니다. 넷째, 보안 감시 설정 및 상관 분석 [그림] Zenius SIEM : 상관분석 감시설정 수집된 다양한 로그들의 상관관계를 분석하면 더 가치 있고 유의미한 이벤트를 확인할 수 있습니다. 예를 들어 방화벽 접속 로그에서 유해 IP나 등록되지 않은 IP로의 접근을 이벤트로 설정하면, 유해 IP를 실시간으로 확인할 수 있습니다. 또한 보안 위협 상황과 거래 이상 탐지 등 시나리오 기반으로 이벤트를 정의하고 자동으로 탐지할 수 있는 상관 분석 기능도 사용할 수 있습니다. 다섯째, 컴플라이언스 준수를 위한 측면 최근 몇 년간 기업들이 고객의 개인정보를 더 잘 보호하도록 법이 강화되었습니다. 특히 해킹과 개인정보 침해 사건이 늘어나면서 기업들이 보안을 철저히 해야 할 필요성이 커졌는데요. SIEM을 이용하면 이러한 보안 요구사항을 충족하는 데 큰 도움이 됩니다. KISA에서 권고하는 정보보호 및 개인정보보호 관리체계(ISMS-P)에서는 서버, 보안 시스템 등에 대한 사용자 접속 기록과 시스템 로그를 6개월 이상 저장하고, 이를 안전하게 관리해야 한다고 명시하고 있습니다. 또한 개인정보보호법과 정보통신망법에 따르면 로그는 1년 이상 보관해야 하고, 위조나 변조를 막기 위해 물리적인 서버에 저장하고 정기적으로 백업을 해야 하죠. 하지만 SIEM 시스템을 도입하면 이러한 법적 요구사항을 쉽게 준수할 수 있습니다. 따라서, 기업은 고객의 개인정보를 안전하게 보호하고, 침해사고 발생 시 빠르게 대응할 수 있습니다. 이번 시간에는 SIEM이 왜 중요하고, 어떤 특장점이 있는지 자세히 알아보았습니다. 요즘 기업에서는 보안 관련 요소들을 각각 관리하는 것이 쉽지 않습니다. 특히 규모가 큰 기업이나 보안이 중요한 공공기관의 경우에는 통합 관리 시스템이 꼭 필요하죠. 따라서, Zenius SIEM과 같은 솔루션을 통해 로그 관리를 안정적이고 효율적으로 해보는 건 어떨까요? 🔍더보기 Zenius SIEM으로 로그 관리하기
2024.07.29
기술이야기
CMS로 클라우드 서비스 효율적으로 관리하는 3가지 방법
기술이야기
CMS로 클라우드 서비스 효율적으로 관리하는 3가지 방법
오늘날 많은 기업들이 AWS, 구글, 마이크로소프트 등의 클라우드 서비스를 적극 활용하고 있습니다. 클라우드 서비스는 데이터의 안정성과 가용성을 보장하고, 비용을 절감하며, 자원을 최적화하는 등 다양한 이점을 제공하기 때문인데요. 2024년 클라우드 서비스 시장 전망도 매우 밝습니다. 시장조사기관에 따르면 2024년 클라우드 시장 규모는 약 727.9억 달러에 이를 것으로 예상됩니다. 2023년과 대비하면 16.2% 증가한 수치이죠. 하지만 클라우드 서비스의 이용률이 증가하고 클라우드 인프라가 복잡해짐에 따라, 체계적이고 효율적인 클라우드 관리가 필요한데요. 클라우드 환경에서는 사용한 만큼 비용을 지불하기 때문에 자원을 효율적으로 관리할 수 있어야 하며, 실시간으로 이상 징후를 감지하여 보안을 강화할 수 있는 시스템이 필요합니다. 이러한 관리를 가능하게 해주는 시스템이 바로 CMS(Cloud Service Management System)입니다. 그래서 이번 시간에는 대표적인 CMS 솔루션인 Zenius CMS 사례를 통해, 클라우드 서비스를 관리하는 방법을 자세히 살펴보겠습니다. │CMS를 이용해 클라우드 서비스 관리하는 법 실시간 성능 모니터링 우선 클라우드 서비스 관리를 할 때 꼭 확인해야 할 첫 번째는, 클라우드 서비스의 세부 성능을 실시간으로 모니터링할 수 있어야 합니다. 클라우드 환경에서는 작은 문제가 큰 장애로 이어질 수 있기 때문에, 실시간 모니터링을 통해 이상 징후를 빠르게 감지하고 대응할 수 있어야 하죠. [그림] (왼)AWS EC2 (오)AWS EBS 좀 더 이해하기 쉽게 Zenius CMS를 통해 살펴볼게요. Zenius CMS는 각 서비스에 맞는 주요 지표를 상세히 모니터링할 수 있도록 해줍니다. 예를 들어 AWS EC2와 EBS에서 제공하는 서비스에 맞춰 각각의 구성과 성능 정보를 수집하여, 실시간 모니터링이 가능하죠. [그림] (왼)Amazon Billing, (오)Amazon VPC 특히 과금 정보를 실시간으로 모니터링할 수 있는 AWS Billing을 통해, 지출 현황을 직관적으로 파악하고 관리할 수 있도록 도와줍니다. 클라우드에서 네트워크를 분리하고 안정하게 관리할 수 있는 VPC(Virtual Private Cloud) 서비스에 대한 상세한 정보도 제공해 주죠. 서비스마다 다른 차트와 그래프를 시각화해서 보여주기 때문에, 직관적으로 확인할 수 있습니다. [그림] (왼) 관심 서비스 그룹 모니터링 (오) 서비스 그룹 별 대상/항목 설정 또한 Zenius-CMS는 클라우드와 연관된 서비스와 특성에 맞게 그룹핑하여, 한 화면에서 성능 비교를 분석할 수 있습니다. 서비스 그룹 별 대상이나 항목 설정을 할 때도 유용하죠. 클라우드 인프라 구성 시각화 클라우드 서비스 관리를 할 때 꼭 확인해야 할 두 번째는, 복잡한 클라우드 환경을 한눈에 파악할 수 있어야 합니다. 다양한 클라우드 인프라의 복잡한 구성과 서비스 간의 연결 구조를 시각적으로 보여줘야 하죠. 이는 문제 발생 시 신속하게 원인을 파악할 수 있고 해결할 수 있기 때문이죠. [그림] 클라우드 서비스 맵 Zenius CMS를 통해 다시 한번 살펴볼게요. Zenius CMS는 구성도를 자동으로 생성하여, 클라우드 서비스 맵을 쉽게 확인할 수 있습니다. 현재 사용하고 있는 각 계정에 연결된 클라우드의 구성 현황을 한눈에 파악할 수 있습니다. 또한 이러한 Map 구성을 직접 편집할 수도 있는데요. 손쉬운 Map 구성 편집을 위한 아이콘, 이미지, 폰트 등 다양한 기능을 제공하고 있습니다. 이를 통해 클라우드 환경의 복잡한 구성을 쉽게 이해하고 관리할 수 있습니다. 중앙 통합 관리 시스템 CMS로 클라우드 서비스 관리를 할 때 꼭 확인해야 할 세 번째는, 다양한 클라우드 서비스를 중앙에서 통합 관리할 수 있어야 합니다. 각 서비스의 상태의 성능을 한곳에서 모니터링하고 관리할 수 있어, 관리의 편의성과 효율성이 크게 향상되기 때문인데요. [그림] 하이브리드 토폴로지 맵 Zenius CMS는 클라우드와 온프레미스 환경(On-Premise)을 통합하여 모니터링이 가능합니다. 이 시스템은 AWS, Azure, GCP 등 멀티 클라우드 서비스의 구성/성능/장애 정보를 직관적으로 모니터링할 수 있죠. 이를 통해 전체 인프라의 연관 관계와 상태를 직관적으로 파악할 수 있습니다. [그림] 오버뷰 또한 Zenius CMS는 사용자의 관점에 맞게 클라우드 서비스를 한 화면에 구성하여 관리할 수 있습니다. 사용자의 운영 목적이나 환경에 맞춰, 클라우드 서비스 현황/관련 지표/이벤트/토폴로지 등 선택적으로 구성할 수 있습니다. 이를 통해 클라우드 환경을 보다 효율적으로 운영할 수 있죠. 이번 시간에는 CMS 도구를 활용해, 클라우드 서비스 관리 방법을 알아보았습니다. 앞으로 클라우드 서비스는 기업에서 더욱 필수적이며, 그 수요는 지속적으로 증가할 것입니다. 이제는 클라우드 자원을 효율적으로 운영하고 다양한 클라우드 환경에서도 통합 관리할 수 있는 Zenius CMS를 통해 효과적으로 관리해 보세요! 🔍더보기 Zenius CMS로 효율적으로 클라우드 관리하기
2024.07.28
기술이야기
좋은 대시보드(Dashboard) 설계를 위한 4가지 핵심 가이드
기술이야기
좋은 대시보드(Dashboard) 설계를 위한 4가지 핵심 가이드
급변하는 IT 환경에서 우리는 많은 데이터를 접하고 있습니다. 이러한 방대한 데이터를 효율적으로 관리하고 시각화하기 위해 '대시보드'가 등장한 후 널리 활용되고 있습니다. 대시보드(Dashboard)는 필요한 데이터를 통합하여 시각화하는 화면으로, 사용자에게 중요한 정보를 한눈에 보여주는 도구입니다. 2023년 가트너(Gartner) 연구에 따르면, 전 세계 기업 72%가 데이터 시각화 도구를 사용하고 있기도 합니다. 데이터 시각화 도구를 활용한 기업이 비활용 기업에 비해 의사 결정 속도가 5배 빠르다는 연구 결과도 나왔죠. 그렇다면 기업운영에 있어 대시보드가 왜 중요한지, 좀 더 자세히 살펴보겠습니다. │대시보드(Dashboard), 왜 중요할까요? 대시보드가 중요한 이유는 여러 가지 있지만, 그중에서도 가장 핵심적인 이유는 다음과 같습니다. 첫째, 대시보드는 빠르고 정확한 의사 결정을 가능하게 합니다. 대시보드는 실시간으로 데이터를 시각화하고 중요한 정보를 즉각적으로 제공하여, 빠르고 정확한 의사 결정을 가능하게 합니다. 예를 들어 서버의 성능 문제나 네트워크 장애를 실시간으로 감지하고 즉각적으로 대응할 수 있습니다. 이는 기업이 비즈니스 연속성을 유지하고, 예기치 않은 문제로 인한 손실을 최소화할 수 있게 도와주죠. 둘째, 대시보드는 전체적인 상황을 한눈에 파악할 수 있게 합니다. 여러 출처에서 수집된 데이터를 하나의 화면에 통합하여 보여주기 때문에, 전체적인 상황을 한눈에 파악할 수 있습니다. 이를 통해 데이터 간의 관계를 쉽게 분석하고, 복잡한 문제를 효율적으로 해결할 수 있죠. 이는 전략적 계획 수립과 운영 효율성을 높이는 데 매우 중요한 역할을 합니다. 위에서 살펴본 두 가지 핵심 이유로 인해서 대시보드는, 기업의 비즈니스 경쟁력 확보를 위한 핵심 도구로 자리 잡고 있습니다. │어떤 종류의 대시보드가 있을까요? 대시보드 종류는 매우 다양한데요. IT 인프라 통합 관리 대시보드 기준에서, 대표적으로 세 가지 대시보드 유형을 살펴보겠습니다. 서비스형 대시보드 [그림] Zenius 서비스형 대시보드 일반적으로 많이 사용하는 서비스형 대시보드는 IT 서비스 성능 상태를 실시간으로 모니터링할 수 있게 도와줍니다. CPU, 메모리 사용량, 디스크 I/O, 네트워크 트래픽 등을 한눈에 확인할 수 있죠. 이를 통해 성능 저하나 장애가 발생하면 즉각 알림을 받아 빠르게 대응할 수 있습니다. 또한 클라우드와 온 프레미스 환경 모두 사용 가능해 유연성이 뛰어납니다. 지도형 대시보드 [그림] Zenius 지도형 대시보드 지도형 대시보드는 여러 지역에 분산된 IT 인프라를 한 지도에서 통합적으로 보여줍니다. 서버, 데이터 센터, 네트워크 장비 위치와 상태를 지도 위에 표시해 한눈에 파악할 수 있죠. 이때 특정 지역에서 문제가 발생하면 즉시 감지하고 대응할 수 있습니다. 또한 지리적 데이터를 바탕으로 장애 패턴을 분석하여 효율적인 관리가 가능하며, 실제 지리 정보 시스템(GIS)와 연동해 정교한 위치 기반 관리도 가능합니다. 이러한 기능 덕분에 이 대시보드는, 특히 글로벌 기업이나 여러 지사와 데이터 센터를 운영하는 조직에서 유용하게 사용됩니다. 구성도형 대시보드 [그림] Zenius 구성형 대시보드 구성도형 대시보드는 네트워크 자원의 상태와 관계를 시각적으로 표현해 줍니다. 이를 통해 네트워크 장비 간의 트래픽 흐름을 실시간으로 모니터링하고, 병목 지점이나 장애 발생 지점을 쉽게 찾아낼 수 있습니다. 또한 각 장비의 상태, 성능 지표, 로그 데이터를 시각적으로 제공해 문제를 조기에 발견하고 해결할 수 있도록 도와줍니다. 더 나아가 네트워크 트래픽을 분석해 최적화 방안을 도출할 수 있으며, 다양한 네트워크 인프라를 지원해 유연한 관리가 가능합니다. 하지만 이러한 대시보드는 '어떻게 구현하고 설계했느냐'에 따라서 좋은 대시보드가 될 수도, 그렇지 못할 수도 있는데요. 그렇다면 좋은 대시보드를 만들기 위해 어떤 점을 고려해야 할까요? 다음 내용을 통해 자세히 살펴보겠습니다. │좋은 대시보드를 만들기 위한 고려사항 핵심 데이터 우선 제공 우선 좋은 대시보드를 만들기 위해 가장 먼저 고려해야 할 점은, 시각화할 대상과 데이터를 명확히 파악해야 한다는 것입니다. 어떤 데이터가 가장 중요한지, 결정하는 것이 우선이죠. 반대로 너무 많은 데이터를 시각화하지 않도록 주의해야 합니다. 과도한 데이터 시각화는 사용자가 중요한 정보를 파악하는 데 어려울 수 있습니다. 따라서 핵심 데이터를 선별하여 우선적으로 표시해야 합니다. 좀 더 구체적인 사례를 통해 살펴볼게요. 대시보드는 서버, 네트워크, DB 등 기본 인프라 데이터를 수집하고 시각화해야 하는데요. 이 데이터는 CPU, 메모리, bps, 스토리지, 데이터 파일 등과 같이 시스템 성능과 운영 상태를 파악하는 필수적인 핵심 지표들입니다. 이러한 핵심 데이터를 명확하게 정의하고 제공하는 것은 대시보드 설계의 첫 번째 단계에서 중요한 요소이죠. [그림] Zenius 서비스형 대시보드 Zenius 대시보드는 이러한 기본 인프라 데이터를 우선적으로 수집하고 시각화하여, 사용자가 가장 중요한 정보를 빠르게 파악할 수 있도록 합니다. 사용자가 어떤 데이터를 가장 먼저 확인해야 하는지, 즉 우선순위를 명확히 하여 중요한 정보를 놓치지 않도록 도와주죠. 효율적이고 직관적인 정보 전달 좋은 대시보드를 만들기 위해 두 번째로 고려해야 할 점은, 사용자가 필요한 정보를 쉽고 빠르게 확인할 수 있도록 설계되어야 합니다. 데이터의 가독성을 높이는 색상과 그래픽 요소를 적절히 사용하여, 사용자 인터페이스가 직관적이고 사용하기 쉬워야 합니다. 여기서 유의할 점은 시각적 요소에 너무 몰두하지 않도록 주의해야 합니다. 디자인에만 집중하면 필요한 정보가 제대로 전달되지 않을 위험이 있기 때문이죠. 따라서 실용성과 사용성을 중시하여 사용자 중심의 인터페이스를 설계해야 합니다. 이번에도 대시보드 사례를 통해 구체적으로 살펴볼게요. Zenius는 '사용자 맞춤형 대시보드'를 제공하고 있는데요. 사용자의 모니터링 환경에 맞게 자유롭게 편집할 수 있습니다. 관리 대상이 많아지거나, 관리 목표를 변경해도 컴포넌트와 디스플레이 항목을 손쉽게 편집할 수 있습니다. 또한 Zenius의 직관적이고 유연한 편집 기능을 통해, 사용자에게 필요에 따라 색상이나 차트 유형을 쉽게 변경할 수 있도록 설계했습니다. 데이터를 가독성 있게 시각화하여 사용자가 인터페이스 직관적이고 사용하기 쉽도록 구성했죠. 외부 데이터 통합 좋은 대시보드를 만들기 위해 세 번째로 고려해야 할 점은, 기업 내 여러 솔루션의 핵심 지표를 한 화면에서 확인할 수 있도록 구성해야 합니다. 외부 데이터와의 연동으로 여러 시스템의 데이터를 통합하면, 전체 상황을 한눈에 파악할 수 있는데요. 이를 통해 분석과 의사결정을 용이하게 해줍니다. Zenius 사례를 통해 다시 한번 살펴보겠습니다. Zenius 대시보드는 3rd Party 시스템 연동을 통해, 외부 데이터를 통합하여 한 화면에서 핵심 지표를 확인할 수 있도록 설계했습니다. 이를 통해 사용자가 기업 내 다양한 솔루션 지표를 한눈에 파악할 수 있죠. 비즈니스 전반의 통합 관제 좋은 대시보드를 만들기 위해 네 번째로 고려해야 할 점은, 비즈니스 관점에서 모니터링과 이상 상황을 감지할 수 있도록 설계되어야 합니다. 조직의 전반적인 운영 상태를 실시간으로 파악하고, 문제 발생 시 신속하게 대응해야 하기 때문이죠. 또한 서비스 단위로 인프라를 구성하여, 비즈니스 문제 여부를 즉각적으로 파악할 수 있도록 해야 합니다. 다시 Zenius 사례를 통해 살펴볼게요. Zenius 대시보드는 수집된 다양한 정보를 바탕으로, 최상위 레벨에서 비즈니스 관점 모니터링과 이상 상황을 감지할 수 있는 화면을 제공합니다. 다양한 컴포넌트와 차트, 다이나믹한 요소들을 적용하여 시각적인 효과를 극대화할 수 있죠. 이번 시간에는 대시보드가 왜 필요한지, 좋은 대시보드를 구현하기 위해서는 어떠한 점들을 고려해야 하는지 알아보았습니다. 하지만 이러한 좋은 대시보드를 성공적으로 구현하기 위해서는, 전문가의 도움이 필요합니다. 데이터를 시각화하여 구성하는 것은 보는 이에 따라 관점이 다르고 다양하여, 하나부터 열까지 구성하는 것이 어려울 수 있기 때문이죠. 또한 조직 상황이나 사용자 관점마다 중요한 데이터가 다르고 시각화해야 하는 방식도 다를 수 있습니다. 따라서 제니우스(Zenius)와 같이 수많은 구축 노하우를 보유하고 있고, 고객의 상황에 따라 최적화된 대시보드 구현이 가능한 솔루션 활용을 통해 비즈니스 경쟁력을 확보하시기 바랍니다. 🔍더보기 Zenius Dashboard 더 자세히 보기
2024.07.26
기술이야기
GPU 모니터링의 중요성과 솔루션 선택 기준은?!
기술이야기
GPU 모니터링의 중요성과 솔루션 선택 기준은?!
인공지능(AI), 클라우드 컴퓨팅, 가상 현실(VR) 및 증강 현실(AR), 빅데이터 분석 등 정말 다양한 분야의 기술이 고도화 됨에 따라서 GPU(Graphic Processing Unit, 그래픽 처리 장치) 시장도 빠르게 커지고 있습니다. GPU 시장은 2024년부터 2029년까지 32.9%의 CAGR(연평균 성장률)을 기록하며, 2029년에 280조 원을 돌파할 것으로 예측됩니다. GPU의 활용도가 커지면서 그와 동시에 GPU를 효율적으로 관리하는 'GPU 모니터링'의 중요성도 점점 더 부각되고 있는데요, 자세한 이유부터 살펴보겠습니다. │GPU 모니터링이 필요한 이유는?! GPU 모니터링이 필요한 가장 큰 이유는 효율적인 자원 관리와 성능 최적화입니다. GPU는 고성능을 제공하기 때문에 리소스를 많이 소모합니다. 따라서 실시간 모니터링을 통해 GPU의 사용량, 소모 전력, 온도, 메모리 사용량 등을 파악하고 대응해야 합니다. 이는 곧 시스템이 과열되거나 과부하 되는 것을 막아주고 GPU 성능을 최적의 상태로 유지시켜주기 때문이죠. 이와 더불어서 빠른 문제 진단과 해결을 위해서도 모니터링이 필요합니다. GPU 관련 문제나 오류는 단순한 시스템 성능 저하를 넘어서 서비스/비즈니스 전반의 문제로 확대될 수 있습니다. 따라서 GPU 모니터링 솔루션을 사용하여 메모리 누수 등의 이상 징후를 빠르게 발견하고 조치할 수 있어야 합니다. 또한 실시간 GPU 모니터링을 통해서 에너지 사용량 최적화하면 전체 시스템의 에너지 효율도 향상시킬 수 있습니다. 그렇다면 구체적으로 어떤 GPU 모니터링 솔루션을 선택해야 할까요?! │GPU 모니터링 솔루션 선택 방법?! GPU 솔루션 선택 시 가장 중요하게 확인해야 할 부분은, 'GPU의 특성을 고려한 모니터링이 가능한가?'입니다. GPU는 한 개 서버라 하더라도 각각의 GPU 별로 모니터링이 되어야 하고, 온도 상승에 따른 성능 저하와 'Out of memory'와 같은 문제를 신속하게 파악해야 하는 특성이 있습니다. [그림] 제니우스의 GPU 모니터링 화면 예시 예를 들어 브레인즈컴퍼니의 제니우스(Zenius) EMS는 GPU의 특성을 고려하여 GPU 별 모니터링을 제공하고 있습니다. 또한 GPU 온도의 추이 분석 및 감시 기능도 제공하여 일정치 이상으로 온도가 상승하거나 메모리가 증가하면 즉각적인 알림을 제공합니다. 이와 더불어서 프로세스 별 GPU 사용량과 OS 관점의 네트워크 트래픽, CPU 등 전반적인 상태에 대한 모니터링 기능도 함께 제공합니다. 제니우스 EMS와 같이 GPU 특성에 맞춘 모니터링 솔루션을 활용하면, GPU 성능을 최적화하고 효율도 최대한 높일 수 있습니다. GPU가 점점 더 중요한 역할을 맡고 있고, 그에 따른 비용도 크게 들어가는 만큼 모니터링 솔루션을 활용한 실시간 관리는 더 중요해지고 있습니다. 또한 GPU뿐 아니라 다른 IT 인프라도 통합 관리할 수 있는 솔루션을 사용하는 것도 경쟁력을 높일 수 있는 좋은 방법입니다. 애플리케이션, GPU, 네트워크 서버, 트래픽, 클라우드, 무선 AP 등 모든 IT 인프라 환경을 통합 관리할 수 있는 제니우스 같은 솔루션 도입을 통해 한 발 더 앞서 나가시기 바랍니다.
2024.07.15
기술이야기
SDN(소프트웨어 정의 네트워크)의 주요 특징과 성공사례는?!
기술이야기
SDN(소프트웨어 정의 네트워크)의 주요 특징과 성공사례는?!
지메일, 유튜브, 구글맵스, 구글 클라우드까지.. 구글은 자사의 다양한 서비스들이 어디에서나 원활하게 돌아갈 수 있도록, 전 세계 곳곳의 수많은 데이터 센터를 운영하고 있습니다. 구글의 한 데이터 센터 전경(출처ⓒ google.com) 그리고 이 데이터 센터간의 효율적이고 안정적인 '네트워크' 구축을 위해, 다양한 노력을 펼치고 있습니다. 사용자에게 빠른 서비스를 제공하기 위해선 데이터 센터간의 높은 연결성과 효율성이 필수조건이기 때문이죠. 구글의 네트워크 운영은 2012년에 큰 전환점을 맞이합니다. 이 변화의 중심에는 SDN(Software Defined Network, 소프트웨어 정의 네트워크)이란 기술이 있는데요. 구글의 네트워크 운영 효율과 안정성을 극적으로 개선시킨 SDN은 과연 무엇일까요? 우선 SDN의 주요 특징부터 살펴보겠습니다. ㅣSDN의 두 가지 핵심특징 SDN은 네트워크 관리를 간소화하고 네트워크 구성의 유연성을 높이기 위해 고안된 기술입니다. SDN에는 두 가지 핵심적인 특징이 있는데요. 첫 번째 특징, 컨트롤 플레인과 데이터 플레인의 분리 SDN을 대표하는 첫 번째 특징은, 네트워크 장비의 전반적인 데이터를 중앙 집중적으로 관리할 수 있는 컨트롤 플레인(Control Plane)과, 트래픽 전송 역할을 하는 데이터 플레인(Data Plane)이 분리된 것입니다. 이러한 분리에 따른 두 가지 효과를 살펴보겠습니다. (1) 최적의 로드밸런싱이 가능해짐 기존에는 라우터와 스위치 등의 네트워크 장비가 경로를 결정했었습니다. 이 장비들은 주로 최단 경로 알고리즘을 통해 패킷을 전달하기 때문에, 네트워크 관리자가 특정 경로를 원하는대로 설정하기엔 어려움이 있었습니다. 즉 '로드밸런싱'이 어려웠었죠. 하지만 SDN은 이러한 상황의 변화를 가져왔습니다. [그림] SDN 로드밸런싱 예를 들어 보겠습니다. 기존에는 경로 정보가 있을 때 U에서 나가는 트래픽을 V와 X에 각각 분산시키고 싶을 경우, 기존의 최단 알고리즘을 통하면 항상 최단의 경로로만 라우팅할 수 있었습니다. 하지만 위 [그림]처럼 SDN을 사용하면 네트워크 관리자는 전체 네트워크의 상태를 실시간으로 파악하고, 트래픽을 V와 X로 균등하게 분산시키는 등 세밀한 조정을 할 수 있습니다. 이를 통해 네트워크의 효율성을 극대화하고, 트래픽 과부하나 장애 발생 시 빠르게 대응할 수 있게 되었죠. (2) 비용 절감과 효율성 증대 SDN을 통해 기업들은 고가의 전용 네트워크 장비를 사용하지 않고도, 필요한 네트워크 기능을 구현할 수 있게 되었습니다. 이에 따라서 초기 장비 투자 비용(CapEx)과 네트워크의 운영 비용(OpEx)을 모두 줄일 수 있습니다. 또한 네트워크 관리의 자동화와 최적화로 운영의 효율성을 높여주며, 장기적으로는 인적 자원에 대한 비용 절감으로도 이어집니다. 두 번째 특징, 중앙 집중식 관리 시스템 SDN을 대표하는 또다른 특징은 소프트웨어(SDN 컨트롤러)가 중앙에서 제어한다는 것입니다. 이 소프트웨어가 네트워크의 '두뇌' 역할을 하며, 네트워크의 각 기능이 어떻게 동작할지 지시합니다. 이러한 특징으로 인한 대표적인 효과를 살펴보겠습니다. (1) 유연성과 신속한 대응 기존 네트워크 시스템은 하드웨어 중심으로 돌아가기 때문에, 이 변화에 적응하기 위해선 실제 장비를 교체하거나 수동으로 설정을 변경해야 했습니다. 하지만 SDN에서는 모든 제어 기능이 '중앙'에서 소프트웨어로 이루어지기 때문에, 변경 사항이나 새로운 요구 사항이 발생했을 경우 관리자는 물리적 장비에 접근하거나 개별 설정을 조정할 필요없이 소프트웨어를 통해 네트워크를 즉시 업데이트할 수 있게 되었습니다. 이 덕분에 기존에 며칠이나 몇 주가 걸리던 네트워크 변경 작업을 몇 분 안에 할 수 있게 됐습니다. (2) 보안과 성능 최적화 기존의 전통적인 네트워크 관리 방식에서는, 네트워크의 각 부분에 대해서 심층적으로 들여다 보는 것이 어려웠습니다. 네트워크 장비와 시스템이 서로 다른 플랫폼과 프로토콜을 사용했기 때문에, 전체적인 네트워크 상태의 모니터링이 사실상 불가능했었죠. 하지만 SDN은 소프트웨어를 통한 중앙집중식 관리 시스템으로 이루어져 있기에, 네트워크의 모든 부분에 대한 실시간 통합 관리가 가능합니다. 이를 통해서 보안 위협을 빠르게 식별하고 대응할 수 있게 되었죠. 또한 트래픽 패턴을 정밀하게 분석하여 재분배하고, 트래픽 병목 현상을 예방하여 전반적인 네트워크 성능도 개선할 수 있게 됐습니다. SDN의 두 가지 특징과 그로 인한 효과를 알아봤는데요. 이제 SDN의 아키텍처와 구현 방식에 대해서도 한번 살펴보겠습니다. ㅣSDN의 아키텍처와 구현 방식 SDN 아키텍처: 세 가지 주요 계층 SDN은 네트워크 관리를 더 유연하고 효율적으로 만들기 위해, '세 가지' 주요 계층으로 구성되어 있습니다. 세 가지 계층은 앞서 언급했던 Control Plane(컨트롤 플레인)과 Data Plane(데이터 플레인), 그리고 Application Plane(응용 프로그램 계층)입니다. 각 계층은 네트워크를 관리하고 운영하는데 있어 중요한 역할을 하는데요. 각 계층별 역할과 연관성에 대해서 알아보겠습니다. 우선 아래 [그림]에 가장 하단에 위치한 Data Plane(데이터 플레인)은 Control Plane(컨트롤 플레인)이 내린 결정에 따라 실제 데이터 패킷(Data packet)을 전송하는 역할을 합니다. 데이터 플레인은 스위치, 라우터 같은 물리적 장비를 통해 구현되며, 이들 장비는 데이터 패킷을 처리하고 전달하죠. [그림] SDN 아키텍처 중간에 위치한 Control Plane(컨트롤 플레인)은 네트워크에서 어떤 데이터가 어디로 가야 하는지 결정하는 역할을 합니다. 즉 Control Plane(컨트롤 플레인)은 네트워크 트래픽을 어디로 보낼지 결정하는 역할을 합니다. 가장 위에 위치한 Application Plane(응용 프로그램 계층)은 사용자에게 서비스를 제공하는 소프트웨어 애플리케이션을 말합니다. 이 계층은 SDN의 나머지 두 계층 위에 있으며, 네트워크의 다양한 리소스를 활용해 실제 사용자에게 서비스를 제공합니다. 클라우드 스토리지 서비스나 스트리밍 서비스 같은 것이 여기에 해당됩니다. 이 서비스들은 Control Plane(컨트롤 플레인)과 Data Plane(데이터 플레인)을 통해 데이터를 주고 받으며, 사용자에게 콘텐츠를 제공하죠. 이처럼 세 계층은 서로 밀접하게 연결되어 있습니다. 다시 말해 Control Plane(컨트롤 플레인)이 네트워크의 전반적인 관리와 결정을 담당하면, Data Plane(데이터 플레인)은 그 결정을 바탕으로 실제 데이터를 전송하죠. 그리고 Application Plane(응용 프로그램 계층)은 이 모든 네트워크 인프라 위에서 동작하며, 최종 사용자에게 서비스를 제공합니다. SDN의 구현 방식 위에서 살펴본 것 처럼 SDN은 세 개의 층으로 이루어져 있는데요. 이 각각의 층이 '제대로' 역할을 수행하기 위해서 꼭 필요한 것이 SDN Controller, OpenFlow 프로토콜입니다. OpenFlow 프로토콜은 SDN 컨트롤러와 네트워크 장비 사이에서 동작하는 프로토콜입니다. 컨트롤 플레인과 데이터 플레인 사이의 소통을 담당하고 있죠. OpenFlow 프로토콜은 컨트롤 플레인이 네트워크 장비에 구체적인 지시를 내리고, 그 지시에 따라 트래픽을 어디로 보낼지 결정할 수 있게 해줍니다. [그림] SDN 컨트롤러, OpenFlow 프로토콜 SDN 컨트롤러는 이 모든 과정을 조율하는 '중앙 집중식 지휘소'라 할 수 있는데요. 컨트롤러는 네트워크의 전반적인 상황을 파악하고, 데이터 플로우를 최적화하기 위한 결정을 내리며, OpenFlow를 통해 그 결정을 네트워크 장비에 전달합니다. 컨트롤러가 없다면 마치 중앙 교통 관리 시스템이 없이 각자의 판단에 따라 움직이는 차량들처럼 혼란스러워 지겠죠. 이처럼 SDN 컨트롤러와 OpenFlow 프로토콜을 통해 구현된 중앙 집중식 네트워크 관리는 효율적이고 유연한 트래픽 조정을 가능하게 합니다. 이제 마지막으로 맨 앞에서 잠시 살펴 본 구글(Google)의 사례를 자세히 들여다보겠습니다. ㅣ사례를 통해 보는 SDN: 구글의 G-Scale 구글의 'G-Scale SDN 프로젝트(2012)'는 SDN을 가장 효과적으로 활용한 대표적인 사례입니다. 이 프로젝트는 구글이 2010년부터 진행한 OpenFlow 프로젝트의 일환으로, 구글 데이터센터 백본(BackBone)1 구간을 SDN 기반으로 전환하는 대담한 시도였죠. 구글 이 프로젝트를 통해 성취한 결과는 인상적인 수준을 넘어, 네트워크 관리 방식에 혁신을 일으켰다고 평가받고 있습니다. 구글은 얻은 대표적인 세 가지 이득을 살펴보겠습니다. *1: 백본: 전산망 속에서 근간이 되는 네트워크를 연결시켜주는 대규모 전송회선 [그림] 구글 G-Scale 프로젝트를 통해 구축된 데이터 센터(2012) 1. 인프라 리소스의 최적 활용 구글은 OpenFlow를 기반으로 한 SDN을 적용해 기존에 40~50% 수준에 머물렀던 네트워크 인프라의 활용도를 거의 100% 가까이 끌어올렸습니다. 기존 네트워크 시스템에서는 다양한 벤더의 장비들이 서로 완벽하게 호환되지 않은 문제로 인해, 전체 네트워크 장비의 효율성이 제한되곤 했었죠. 하지만 구글의 SDN 구현은 이러한 한계를 넘어서, 네트워크 자원을 훨씬 유연하게 관리할 수 있는 방법을 제시할 수 있게 했습니다. 2. WAN 대역의 경로 최적화 WAN(Wide Area Network)에서의 데이터 전송 속도와 효율성은, 전 세계 사용자들에게 고품질의 서비스를 제공하는 데 핵심적인 요소인데요. 구글은 SDN을 통해 이러한 WAN 대역의 데이터 전송 경로를 최적화하여, 사용자 경험을 크게 향상시킬 수 있었습니다. 이는 전 세계 서비스를 제공하는 구글에게 있어 대단히 중요한 성과였죠. 3. 네트워크 구축 비용의 절감 구글은 SDN 컨트롤러와 화이트박스 스위치의 조합을 통해, 데이터센터 내 네트워크 구축 비용을 대폭 낮출 수 있었습니다. 화이트박스 스위치는 사용자가 네트워크 장비의 동작방식을 직접 결정할 수 있게 하는 개방형 장비로, 구글은 이를 통해 더 효율적이고 경제적인 네트워크 인프라를 구축할 수 있게 됐습니다. 또한 구축 비용의 절감 뿐 아니라 전반적인 서비스 품질의 향상 효과도 거둘 수 있었습니다. [그림] 구글의 다양한 SDN 기술 이처럼 구글의 'G-Scale SDN 프로젝트'는 단순히 기술적 성공을 넘어서, 전 세계 통신사와 네트워크 장비 제조사들이 SDN을 도입하고 네트워크 가상화에 뛰어들게 만든 결정적 계기가 되었습니다. 구글은 여기서 한 발자국 더 나아가 BGP, Espresso, B4, Andromeda, Jupiter 등 다양한 SDN 기술을 적극적으로 활용하고 있습니다. 이러한 노력은 네트워크의 효율성을 극대화하고, 비용을 최적화하여, 데이터 중심의 세계에서 경쟁력을 유지하고, 사용자에게 더 나은 서비스를 제공하는 성과를 만들어내고 있습니다. 구글의 G-Scale 프로젝트라는 큰 성공을 만들어낸 SDN도 '어떻게 하면 안정적으로 네트워크를 관리하고 운영할 수 있을까?'라는 고민에서 시작됐습니다. 네트워크 관리의 중요성은 더욱 더 커지고 있습니다. SDN이라는 혁신적인 기술을 바로 도입하는 것도 물론 좋지만, 그 전에 현재의 네트워크를 제대로 모니터링 하고 있는지 부터 점검해봐야 합니다. 여러분의 네트워크는 제대로 관리되고 있나요?
2024.05.09
기술이야기
SMS를 통한 서버관리는 꼭 이렇게 해야만 한다?!
기술이야기
SMS를 통한 서버관리는 꼭 이렇게 해야만 한다?!
Gartner에서 진행한 연구에 따르면 기업에서 서버의 다운타임이 발생할 경우, 시간당 약 748억 ~ 1,202억의 손실 비용이 발생한다고 합니다. 또한 서버 다운타임등 서버를 제대로 관리하지 못했을 경우에는, 금전적인 손실뿐 아니라 고객이탈이나 브랜드이미지 하락 등의 치명적인 손실도 입게 되죠. 따라서 올바른 서버 관리를 통해 문제를 미리 예방하고, 혹여나 문제가 발생할 경우에는 빠르게 대응할 수 있어야 합니다. 그렇다면 '올바른 서버 관리'란 정확히 무엇을 의미하는 걸까요? ㅣ올바른 서버 관리를 위한 첫 걸음 ⓒoutsource2india 올바른 서버 관리를 위한 첫걸음은 바로 '통합 서버 관리' 도구의 도입입니다. 가장 많이 활용하는 도구가 바로 SMS(Server Management System)죠. SMS는 복잡한 IT 인프라를 효과적으로 관리하고, 모니터링할 수 있는 해결책을 제공하여, 서버 사태를 쉽게 파악하고, 필요한 조치를 신속하게 처리할 수 있도록 도와줍니다. SMS는 기업의 서비스 안정성과 비즈니스 연속성을 보장하는 데 필수적인 도구인 셈이죠. 최근에는 관리하는 서버의 규모와 상관없이 대부분 SMS을 사용하고 있습니다. 하지만 SMS를 도입하고 구축만 한다고 해서, 모든 과제를 해결할 수 있을까요? ㅣSMS를 제대로 활용하는 방법 SMS를 '제대로' 활용하기 위해서는 단순한 모니터링을 넘어, 문제 발생 시 알림을 받고 이를 통해 신속하게 문제를 해결할 수 있는 적극적인 조치가 필요합니다. 적극적인 조치 중의 대표적인 예이자 서버 관리의 핵심은 바로 '감시 설정'입니다. 그렇다면 구체적으로 '감시 설정'을 통해 어떻게 서버를 관리해야 하는지, 이를 위한 SMS의 조건은 무엇인지 살펴보겠습니다. 최적화된 감시 설정 값을 간편하게 설정할 수 있어야 한다 SMS의 감시항목설정은 사용자가 기본적인 모니터링 환경을 빠르게 구축할 수 있도록 간편하게 설정할 수 있어야 합니다. 통합 서버 관리에 대한 경험이 부족한 사용자더라도, 제품을 쉽게 설정하고 사용할 수 있도록 최적화된 감시 설정 값을 제공해야 하죠. 예를 들면 CPU 사용률이 몇% 였을 때 심각하고 위험한지를 각 항목별로 제공해야 합니다. Zenius SMS의 경우 사용자의 OS에 따라 감시 설정 항목(CPU 사용률, MEM 사용률 등)의 심각도와 임계치 조건은 어떻게 해야 하는지 기본적인 디폴트 값을 제공합니다. 더불어서 제니우스만의 최적의 감시 설정 가이드라인을 제공하여, 복잡한 설정 과정을 거치지 않더라도 모니터링할 수 있도록 도와주죠. 물론 기업과 조직의 환경에 맞춰 감시 설정을 조정할 수 있습니다. 필수적인 감시 설정 기능을 갖추고 있어야 한다 또한 SMS의 감시 항목을 설정할 때는 필요한 주요 기능으로 구성되어야 합니다. 사용자는 복잡한 설정 절차 없이 필요한 감시 항목을 설정해야 하고, 서버 관리에 소요되는 시간을 줄일 수 있어야 하기 때문이죠. 예를 들어 시스템의 중요한 지표(예: CPU 사용량, 메모리 사용량, 디스크 I/O 사용률)를 확인할 수 있는 감시 항목 설정이 있는지, 각 감시 항목에 대해 심각도 수준과 임계치를 설정할 수 있는지, 다양한 방식의 알림 방식 기능을 제공하는지 등을 직관적으로 확인할 수 있어야 합니다. Zenius SMS의 경우 사용자에게 꼭 필요한 기능(감시 항목, 서버, 심각도, 임계치, 알림 설정, 복구 스크립트 등)만 집중할 수 있도록 구성되어 있습니다. 감시 항목에서는 사용 중인 OS를 설정하고, 원하는 감시 항목을 선택하여, 원하는 서버를 감시 설정 할 수도 있죠. 또한 심각도와 임계치 설정에서는 무해-주의-위험-긴급-치명 각 값에 맞게 임계치 값을 설정할 수 있습니다. 예를 들어 '긴급'이라는 항목에 80%라고 설정했는데 임계치 값이 80%를 넘어설 경우, 사용자에게 즉각적으로 알려줍니다. 또한 지속시간을 1분 발생 횟수를 1이라고 설정할 경우, 1분을 넘길 때 사용자에게 알림을 통보해 주죠. 알림 통보 서비스가 잘 갖춰져 있어야 한다 감시 항목 설정 중 알림 통보는 서버를 관리하는 데 있어 매우 중요한 기능입니다. 서버에 문제점이 발생할 경우, 사용자에게 즉각적으로 알려줄 수 있는 장치이기 때문이죠. 또한 문제가 더 심각해지기 전에 신속하게 조치를 취할 수 있게 해주며, 시스템의 다운타임을 최소화하는 데 결정적인 역할을 합니다. 이 밖에도 알림 통보 기능에서는 사용자의 업무 환경과 선호도에 따라, 알림의 유형이나 수신자를 유연하게 선택할 수 있어야 합니다. Zenius SMS를 예를 들어 살펴보면 감시 설정에 임계값을 초과하거나, 예상치 못한 이벤트가 발생했을 때 다양한 형태로 알림 서비스를 제공하고 있습니다. 이메일, 문자 Push App은 물론 외부 연동을 통해 슬랙이나, 카카오톡으로도 편리하게 알람을 받아볼 수 있죠. 이 밖에도 알림의 임계값과 조건, 적용 시간이나 요일, 알림을 받을 사용자도 별도로 지정할 수 있습니다. 자동화 복구스크립트 기능을 제공해야 한다 서버에 문제가 감지되었을 때는 알림 통보 기능뿐만 아니라, 사전에 정의된 스크립트를 자동으로 실행하여 문제를 신속하게 해결할 수 있어야 합니다. 예를 들어 데이터베이스 서버의 응답 지연이 감지될 때 '캐시를 클리어하고 서비스를 재시작해 줘!'라는 스크립트 실행을 통해 즉각적으로 문제를 해결할 수 있어야 하죠. 이러한 자동화 복구스크립트 기능은 사용자가 알림을 받고 대응하기까지의 시간을 대폭 줄여줄 수 있고, 이에 따라 시스템 다운타임을 최소화할 수 있습니다. 또한 반복적이거나 단순한 문제 해결 과정을 자동화함으로써, 더 중요한 작업에 집중할 수 있겠죠. 위에 언급한 내용을 Zenius SMS를 통해 살펴보면, 장비에 장애가 발생할 경우 즉시 복구스크립트가 구동되어 문제를 자동적으로 해결할 수 있게 합니다. 예를 들어 A 서버에 임계치를 80%로 설정한 후, 복구스크립트를 통해 'C라는 방법으로 조치를 취해줘!'라고 미리 설정할 경우 자동적으로 문제를 해결할 수 있죠. 이러한 자동화 복구스크립트 기능은 수백 혹은 수천 대의 서버와 장비를 효율적으로 관리할 수 있어, 관리 부담을 줄이는 데 매우 효과적입니다. 또한 '정상 복구 시 통보' 옵션을 설정하면, 복구 스크립트가 완료됨에 따라 알림 통보를 사용자에게 재차 알려줍니다. 이 과정을 통해 사용자는 만족도와 제품에 대한 신뢰도를 높일 수 있겠죠. 감시 항목들을 한눈에 관리할 수 있어야 한다 이젠 앞에서 감시 설정하고 등록했던 감시 항목들을 모니터링할 수 있어야 하겠죠? 이때 중요한 점은 필수적인 감시 항목은 보여주되, UI는 단순화해야 한다는 점입니다. 이는 주요 감시 항목의 상태를 신속하게 파악하고, 문제가 발생했을 때 즉각적으로 대응하기 위해서죠. 또한 감시 항목 상태를 색상 코드(예: 녹색은 정상, 노란색은 경고, 빨간색은 심각)와 아이콘으로 구분하여, 사용자가 감시 항목의 상황을 즉각적으로 인식할 수 있도록 해야 합니다. Zenius SMS의 경우 주요 감시 항목들의 현황을 통합적으로 모니터링할 수 있습니다. 불필요한 항목들을 줄이고 핵심적인 항목들만 선별하여, 서버의 감시 항목을 신속하게 모니터링할 수 있죠. 감시 현황은 직관적인 UI가 중요한 만큼, 심각도 현황(정상-무해-주의-위험-긴급-치명)을 색상으로 구분하여 문제가 생겼을 때 신속하게 대응할 수 있도록 구성하였습니다. 또한 사용자의 환경에 맞춰 필수적인 감시 항목을 쉽게 선택하여 모니터링할 수 있습니다. 이 밖에도 많은 서버의 감시 항목을 관리하다 보면, 중요한 감시 항목을 추가하지 못한 상황이 발생할 수 있는데요. 최악의 경우에는 막대한 손실 비용 발생 등의 심각한 결과를 초래할 수 있겠죠. 이에 따라 감시 현황은 더더욱 직관적으로 모니터링할 수 있어야 합니다. 주요한 감시 항목을 실수로 설정하지 않더라도, 신속하게 파악하고 등록하여 대처할 수 있기 때문이죠. Zenius SMS는 감시 설정해 둔 항목 수가 예상과 다를 경우(예: 만약 관리하는 서버에 감시 항목이 2건이어야 하는데 → 1건으로 표기된 경우) 미등록 건 감시 항목을 조회하여 등록할 수 있습니다. 주요 감시 항목을 설정하고 동작여부에 '미등록' 항목으로 검색하면, 감시 설정하지 않은 항목을 조회할 수 있죠. 이처럼 Zenius SMS은 자칫 놓칠 수 있는 주요 감시 항목도 신속하게 찾아 등록할 수 있습니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼 Zenius와 같은 SMS를 통해서 서버를 한눈에 모니터링하고, 감시 설정 기능을 통해 체계적으로 관리하며, 문제 발생 시 다양한 알림과 자동화된 복구스크립트로 문제점을 신속히 해결해야 합니다. Zenius SMS 대규모 서버자원을 관리하고 있는 한 고객사 관계자의 말씀으로 이 글을 마무리하려고 합니다. "이 많은 서버의 감시 항목들을 휴일 없이 24시간 동안 지켜볼 수는 없잖아요. 그래서 서버를 통합 관리할 수 있는 Zenius SMS을 도입했죠. 이용하면서 좋았던 점은 감시 현황 페이지를 통해 한눈에 감시 항목을 관리할 수 있어 편리하다는 점이에요. 감시 설정을 걸어둔 항목들이 많아 종종 등록을 못한 경우가 발생해도, 직관적으로 확인하고 감시 항목을 추가할 수 있어요. 특히 복구 스크립트 기능을 애용하는 편인데요. 서버에 장애가 발생했을 때 복구 스크립트를 미리 걸어두면, 장비에 장애가 발생해도 신속하게 문제 해결을 할 수 있어 매우 만족스럽습니다!"
2024.02.22
기술이야기
NMS(네트워크 관리 시스템)에 대해서 꼭 알아야 할 네 가지
기술이야기
NMS(네트워크 관리 시스템)에 대해서 꼭 알아야 할 네 가지
산업 분야를 통틀어서 최근 모든 기업과 공공기관들의 ‘네트워크’ 활용도와 의존도가 빠르게 증가하고 있습니다. 따라서 이제 ‘안정적인 네트워크 관리 = 성공적인 비즈니스 운영’이라고도 할 수 있는데요. 오늘은 네트워크를 안정적으로 유지해서 성공적인 비즈니스 운영을 도와주는, NMS(Network Management System, 네트워크 관리 시스템)에 대해서 자세히 알아보겠습니다. NMS의 등장 배경, 시대별 변화, 그리고 핵심 개념과 실제 사례까지 NMS에 대해서 꼭 알아야 할 네 가지는 무엇일까요? 。。。。。。。。。。。。 │NMS(네트워크 관리 시스템)의 기본 개념과 등장 배경 NMS란 다양한 이기종 네트워크 장치(Network device)를 중앙에서 관리하고 감시할 수 있는 시스템입니다. 즉 전체 네트워크를 중앙 시스템을 통해 모니터링, 진단, 분석, 가용성을 유지하기 위해 만들어진 시스템을 말합니다. NMS의 필요성과 등장 배경은 OSI의 SMFAs(Specific Management Functional Areas)의 다섯 가지 영역(FCAPS)로 정리할 수 있습니다. 장애관리(Fault Management): 경보 감시, 고장 위치의 측정 시험 등 NMS의 첫 번째 관심사는 네트워크의 가용성을 보장하는 것입니다. 네트워크에서 발생하는 장애를 감지·격리·복구하는 과정으로, 네트워크 가동 시간을 최대화하고 서비스 중단을 최소화하는 것이 목적입니다. 구성 관리(Configuration Management): 설비제공, 상태 제어, 설치 지원 등 네트워크의 구성 요소(하드웨어, 소프트웨어, 네트워크 설정 등)를 관리하는 과정으로, 네트워크의 변경 사항을 추적하고 일관된 네트워크 성능과 안정성을 유지하는 데 중요합니다. 계정관리(Accounting Management): 계정(과금) 정보의 수집/저장/제어 등 네트워크 자원의 사용량을 추적하고 기록하는 과정이며, 자원의 할당과 과금에 사용됩니다. 사용량, 사용시간, 서비스 품질, 장비 사용률 등 네트워크 관리 및 운영에 관한 비용 할당 시 필요합니다. 성능 관리(Performance Management): 성능감시/트래픽 관리/품질관리/통계관리 네트워크의 트래픽이 특정 시간에 급증하는 것을 성능 관리 시스템이 감지했을 때, 이 정보를 사용하여 네트워크 용량을 적절히 조정하거나 트래픽을 분산시킬 수 있습니다. 보안 관리(Security Management): 보안/안전/기밀 관리 등 보안 관리 시스템은 사용자의 무단 엑세스 시도를 감지하며 즉시 차단할 수 있는 접근 제어, 인증, 암호화, 키관리 등을 관리하는 것과 관련이 있습니다. 네트워크 인프라의 로그 모니터링을 통해 잠재적인 보안 문제를 사전에 예방할 수 있습니다. 위와 같은 등장 배경과 필요성을 가진 NMS, 시대별로는 어떻게 변해왔는지 살펴보겠습니다. │NMS(네트워크 관리 시스템)의 시대별 변화 1980년대 초부터 현재에 이르기까지 NMS의 시대별 변화를 간략히 살펴보면 다음과 같습니다. 1980년대 ~ 2010년대 초 1980년대에 등장한 초기 NMS는 단순한 모니터링과 제어에 둔 간단한 형태였고, 특정 벤더의 하드웨어에 종속되고 표준화가 제대로 이루어지지 않았었습니다. 1990년대에 들어서 네트워크의 복잡성이 커지면서 NMS의 필요성도 증가했습니다. 이때 보안 기능이 향상된 SNMPv2와 같은 표준 프로토콜이 도입되면서, 다양한 제조사의 장비를 하나의 시스템으로 통합 관리할 수 있게 되었습니다. 또한 네트워크뿐만 아니라 서버까지 같이 관리하기 위한 SNMS(Server and network Management System)와, 더 나아가 EMS(ITIM)도 나오게 되었습니다. 이후 2000년대 초반에 웹 기반 NMS 솔루션이 등장하면서, 사용자 친화적인 인터페이스와 원격 접근 기능 등을 통해 효율적인 네트워크 관리가 가능해졌습니다. 2010년대 중반 ~ 2010년대 후반 NMS는 2010년대 중반부터 등장한 클라우드 컴퓨팅, 빅데이터, 인공지능(AI) 등의 기술과 함께 더욱 고도화되었습니다. 점점 더 다양한 네트워크와 서비스를 통합 관리하며, 자동화된 분석과 의사결정을 지원하게 되었습니다. 최신 동향 최근에는 AI와 머신러닝을 활용하여 예측 분석, 네트워크의 자동 최적화, 사이버 보안 통합 등이 NMS의 중요한 요소로 강조되고 있습니다. 또한 새로운 네트워크 기술인 5G의 도입으로 NMS는 더욱 복잡해지고 다양한 네트워크 환경을 관리하게 되었습니다. 이처럼 NMS는 네트워크 기술의 발전과 산업의 변화에 발맞추어, 지속적이고 빠르게 발전하고 있습니다. 이제 NMS의 구조에 대해서 자세히 알아보겠습니다. │NMS(네트워크 관리 시스템)의 3-Tier 아키텍처 NMS는 3-Tier 아키텍처(수집-저장-표출)로 구성되어 있습니다. 각각 독립된 계층으로 구분되어 있는데요. 특정 부분의 업그레이드가 필요할 때 해당 계층만 영향을 주기 때문에 시스템을 보다 쉽게 관리할 수 있습니다. 다시 정리한다면 NMS Manager에서 SNMP · ICMP · RMON 등 다양한 네트워크 프로토콜을 활용하여, 네트워크 자원의 성능 데이터를 수집합니다. 만약 Managed Device 장비들이 한계치에 도달하거나 장애가 발생했을 경우, 즉각적으로 User Interface를 통해 사용자에게 알립니다. 그렇다면 NMS의 핵심 기능은 무엇일까요? │NMS(네트워크 관리 시스템)의 핵심 기능 네트워크 장애에 대한 신속한 파악과 대응이 반드시 필요한 NMS의 핵심 기능에는 어떤 것들이 있는지 자세히 살펴보겠습니다. 장애 관리 네트워크 인프라의 결함이나 오류를 탐지하고 경고 및 알림을 생성하여, 관리자가 신속하게 대응할 수 있도록 지원합니다. 이를 통해 다운타임을 최소화하고 서비스 지속성을 보장합니다. 예를 들어 네트워크의 라우터가 다운될 경우, NMS는 즉시 관리자에게 경고를 보내 신속한 문제 해결을 도와줍니다. 성능 관리 네트워크 구성 자원인 트래픽 가용성, 응답시간, 사용량, 오류량, 처리 속도 등을 추적하고 최적화합니다. 또한 부하가 발생하지 않도록 문제점을 미리 검출해 안정적인 네트워크 운영이 될 수 있도록 합니다. 예를 들어 특정 애플리케이션이 과도한 대역폭을 소비할 경우, NMS가 문제를 정확히 찾아내서 관리자가 네트워크를 최적화할 수 있도록 돕습니다. ▲ 제니우스(Zenius)를 활용한 성능 모니터링 화면 예시 구성 관리 관리자는 NMS를 통해 분산된 네트워크 장치 구성 프로세스를 자동화하여, 네트워크 전반에 걸쳐 일관성과 정확성을 보장할 수 있습니다. 이러한 핵심 기능을 하는 NMS의 구체적인 활용 사례를 살펴보겠습니다. │NMS(네트워크 관리 시스템)의 활용 사례 IT 분야뿐 아니라 제조업, 금융, 여행, 유통 및 물류 등 전 분야에 걸쳐서 NMS가 사용되고 있습니다. 특히 처리 속도, 가용성, 보안 등이 중요한 금융산업의 경우에 NMS를 통한 안정적인 관리가 중요한데요. 브레인즈컴퍼니의 제니우스(Zenius) EMS를 사용하고 있는 S금융사의 사례를 자세히 살펴보겠습니다. S금융사, Zenius NMS를 통해 완벽하게 네트워크를 관리하게 되다 S금융사는 서버만 800ea, NW 14,000ea 이상의 대규모 인프라를 보유하고 있었습니다. 하지만 Zenius NMS 도입 전까지는 서비스 장애에 영향을 준 네트워크 장애 원인 파악을 위한 장기간 투자하고 있는 상황이었고, 네트워크 운영 현황 데이터 수집과 분석에 많은 시간이 소요되고 있었습니다. 무엇보다 신속한 장애 인지와 처리가 어려워서 큰 고민이 있었는데요. 위 도표에서도 살펴본 것처럼 Zenius NMS 도입을 통해, 이전에 고민과 단점을 극복하고 안정적으로 네트워크 관리를 할 수 있게 되었습니다. 특히 Zenius NMS는 고성능의 Manager를 제공하고 있어 대규모 환경에서도 장애를 신속하게 판단하여, 타사 대비 많은 자원을 효율적으로 관리할 수 있습니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼 NMS는 네트워크 인프라를 효율적으로 관리하는데 가장 중요한 역할을 합니다. 제니우스(Zenius) NMS처럼 고성능의 Manager를 기반으로 네트워크 상태를 신속하게 판단하며, 유저 중심의 통합 UI를 제공하는 NMS 솔루션을 꼭 선택하시기 바랍니다!
2024.01.31
기술이야기
가트너부터 딜로이트까지, 2024 IT트렌드 총정리
기술이야기
가트너부터 딜로이트까지, 2024 IT트렌드 총정리
지난해는 AI를 중심으로 IT 전 분야에서 혁신적인 변화가 있었고, 올 2024년에는 변화의 속도가 더 빨라질 것으로 예상됩니다. 따라서 이와 같은 빠른 변화를에 얼마나 잘 대처하는지가 점점 더 중요해지고 있는데요. 변화를 더 자세하고 빠르게 파악하기 위해서 가트너, 딜로이트, 포레스터 리서치가 발표한 2024 IT 트렌드의 핵심 내용을 모아봤습니다. 。。。。。。。。。。。。 가트너, AI가 가져올 구체적인 변화에 주목하다 가트너는 AI TRiSM부터 Machine Customers까지 총 10개의 주제로 2024년 IT 트렌드를 정리했습니다. 특히 AI와 클라우드를 통한 산업에서의 구체적인 변화에 주목했는데요. 자세한 내용을 살펴보겠습니다. [1] AI TRiSM: AI의 신뢰, 위험 및 보안 관리 AI TRiSM(AI Trust, Risk, and Security Management)은 인공지능 시스템의 신뢰성, 위험, 보안을 관리하는 프레임워크입니다. AI가 윤리적이고 공정하며 투명해야 함을 의미하며, 잠재적 위험을 식별하고 완화하는 데 중점을 둡니다. 보안 관리는 AI 시스템을 사이버 공격과 데이터 유출로부터 보호합니다. AI TRiSM은 의료·금융·자율주행 차량 등, 다양한 분야에서 AI의 안전하고 책임 있는 사용을 보장하는 데 필수적입니다. 이를 통해서 AI 기술의 지속 가능한 발전과 사회적 신뢰를 유지할 수 있습니다. [2] CTEM: 지속적인 위협 노출 관리 Continuous Threat Exposure Management(CTEM)은 사이버 보안 분야에서 조직의 지속적인 위협 노출을 관리하는 전략입니다. 이 방법론은 실시간 모니터링, 자동화된 위험 평가, 적응적 대응 전략을 포함하며 장기적으로 비즈니스의 연속성을 보장하는데 기여합니다. 예를 들어 금융 서비스 회사는 네트워크와 시스템을 지속적으로 스캔하여 취약점을 탐지하고, 감지된 위협에 대해 우선순위를 매겨 신속하게 대응해야 합니다. 또한 소프트웨어 개발 회사는 개발 중인 소프트웨어와 인프라를 모니터링하여 보안 취약점을 조기에 발견하고, 자동화된 도구를 사용해 코드의 취약점을 수정해야 합니다. [3] Sustainable Technology: 지속 가능한 기술 지속 가능한 기술은 환경 영향을 줄이고 지속 가능성을 촉진하는 혁신 및 관행을 포함합니다. IIoT(산업용 사물 인터넷) 센서와 AI를 사용하여 공급망 작업을 최적화하고, 탄소 배출을 줄이며 전반적인 장비 효율성을 향상시키는 산업이 좋은 예입니다. 또한 자급자족 LED 조명, 전기 교통, 태양 에너지, 탄소 포집 및 저장 기술 등의 지속 가능한 기술과 관행도 포함됩니다. 가트너는 또한 지속 가능한 기술이 위험 감소, 운영 효율성 향상, 경쟁 우위 획득, 인재 유치, 환경 및 사회적 책임 강화와 같은 비즈니스 이점을 제공한다고 강조합니다. [4] Platform Engineering: 플랫폼 엔지니어링 플랫폼 엔지니어링은 개발자와 사용자가 쉽게 사용할 수 있는 도구, 기능 및 프로세스 세트를 제공하는 방식입니다. 사용자의 생산성을 높이고 부담을 줄이는데 중점을 둡니다. 플랫폼 엔지니어링은 사용자의 특정 요구와 비즈니스 요구에 맞게 플랫폼을 수정합니다. 전담 제품 팀은 재사용 가능한 도구와 적절한 기능을 제공하며, 사용자 친화적인 인터페이스 솔루션을 제공합니다. 자동화된 프로세스 및 의사 결정을 위한 기초를 제공하며, 복잡한 상황에서도 디지털 개발을 가속화하게 하는 Be Informed 플랫폼이 좋은 예입니다. [5] AI-Augmented Development: AI 증강 개발 소프트웨어 개발 과정에서 AI를 활용하여 개발자의 작업을 돕고, 테스트 플랫폼과 문서 작성을 지원하는 것을 뜻합니다. GitHub Copilot, Replit GhostWriter, Amazon CodeWhisperer와 같은 AI 기반 코드 생성 서비스가 좋은 예입니다. 이러한 AI 기반 코딩 도우미를 사용하여 업무의 효율을 높일 수 있지만, AI가 오류를 발생시킬 수 있고 독창적인 코드를 생성할 수 없기에 개발자의 역할은 여전히 중요합니다. [6] Industry Cloud Platforms: 산업 클라우드 플랫폼 Industry Cloud Platforms은 특정 산업에 특화된 기능을 제공하는 클라우드 서비스입니다. SaaS(Software as a Service), PaaS(Platform as a Service), IaaS(Infrastructure as a Service)를 결합하여 업계별 맞춤형 기능을 제공합니다. 구체적으로 네 가지의 서비스를 예로 들 수 있습니다. ◾ AWS for Healthcare AWS는 의료 산업에 특화된 클라우드 서비스를 제공하여 의료 데이터 관리, 환자 관리, 의료 연구 등을 지원합니다. ◾ Microsoft Cloud for Financial Services 금융 산업에 맞춤화된 클라우드 솔루션을 제공하여 은행업, 보험 업계에서 사용되고 있습니다. ◾ GCP for Retail Google은 소매 산업에 특화된 클라우드 서비스를 통해 고객 데이터 분석, 재고 관리, 전자상거래 솔루션 등을 지원합니다. ◾ IBM Cloud for Telecommunications 통신 산업에 최적화된 클라우드 서비스를 제공하여 네트워크 운영, 고객 서비스 향상, 신기술 적용 등을 지원합니다. 이러한 산업별 클라우드 플랫폼은 기업이 보다 효율적으로 운영하고 혁신을 가속화하는 데 도움을 줍니다. [7] Intelligent Applications: 지능형 애플리케이션 Intelligent Applications은 인공지능(AI)과 머신러닝 기술을 활용하여 데이터를 분석하고, 사용자 행동을 예측하는 등의 기능을 제공합니다. 자동화된 의사결정, 사용자 맞춤형 경험 제공, 그리고 비즈니스 프로세스의 효율성 향상을 위해 설계되었습니다. 예를 들어 고객 서비스를 위한 AI 기반 챗봇, 데이터 분석을 통해 사용자에게 맞춤형 추천을 제공하는 소매 애플리케이션, 또는 실시간 의료 데이터 분석을 제공하는 헬스케어 애플리케이션 등이 있습니다. Salesforce Einstein, Google Cloud AI, IBM Watson, Microsoft Azure AI가 지능형 애플리케이션에 해당합니다. [8] Democratized Generative AI: 민주화된 생성 AI Democratized Generative AI는 인공지능의 생성 능력을 널리 사용할 수 있게 하는 개념으로, 비전문가도 쉽게 사용할 수 있는 AI 도구와 플랫폼을 의미합니다. 창작물 생성, 데이터 분석, 예측 모델링 등 다양한 분야에서 사용됩니다. 구체적인 서비스나 회사로는 OpenAI의 GPT-, Google의 DeepMind, Adobe의 Sensei와 같은 플랫폼들이 이에 해당합니다. 이러한 도구들은 사용자가 복잡한 알고리즘을 직접 다루지 않고도 AI의 혜택을 누릴 수 있게 해줍니다. [9] Augmented Connected Workforce: 증강 연결된 노동력 기술을 활용하여 직원들의 작업 능력을 향상시키고 원격 협업을 강화하는 전략입니다. 가상 현실, 증강 현실, 인공지능 등을 포함하는 다양한 기술을 활용하여 직원들이 더 효율적이고 효과적으로 협업하고 작업할 수 있도록 지원합니다. Microsoft의 HoloLens와 같은 증강 현실 기기나 Slack, Microsoft Teams와 같은 협업 플랫폼이 좋은 예입니다. 이러한 기술들은 직원들이 시간과 장소의 제약 없이, 효과적으로 협업하고 작업할 수 있는 환경을 만들어줍니다. [10] Machine Customers: 기계 고객 기계나 소프트웨어가 독립적으로 결정을 내리고 트랜잭션을 수행하는 시나리오를 말합니다. 예를 들어 IoT(사물 인터넷) 기기나 자동화 시스템이 소비자 역할을 수행하여 자동으로 주문하거나, 서비스를 요청하는 것입니다. Amazone Dash의 예시 소모품의 사용량을 체크하여 필요할 때 자동으로 주문하는 Amazon의 Dash Service가 대표적인 예입니다. 이러한 기술은 자동화된 공급 체인 관리와 효율적인 재고 관리 등에 기여하며, 비즈니스와 소비자 모두에게 편리함을 제공합니다. 딜로이트, 6가지 트렌드에 주목하다 딜로이트(Deloitte)는 2024 IT 트렌드를 아래와 같은 여섯 개의 주제로 정리했습니다. [1] 공간 컴퓨팅과 메타버스 메타버스는 기업의 주요 도구로 자리 잡고 있으며, 공간 컴퓨팅 기술도 점점 더 중요한 역할을 할 예정입니다. 디지털 트윈, 5G, 클라우드, 엣지, AI 기술에 대한 투자가 이 변화를 주도하고 있습니다. [2] 생성형 AI 생성형 AI는 비즈니스를 개선하고 혁신을 촉진하는 강력한 도구로, 전략적 계획과 특정 비즈니스 요구에 초점을 맞추어 구현되고 있습니다. 기업은 이 기술을 통해 각 분야에서 높은 경쟁력을 확보할 수 있습니다. 사용자의 시청 패턴과 선호도를 분석하여, 개인화된 추천 콘텐츠를 제공하는 Netflix와 Spotify가 가장 기본적이고 좋은 예입니다. [3] 새로운 컴퓨팅 방식의 도입 비즈니스는 기존 인프라를 더 효율적으로 활용하고, 최첨단 하드웨어를 추가하여 프로세스를 가속화하고 있습니다. 일부 기업은 이전 컴퓨팅을 넘어서 클라우드, 엣지, 양자 컴퓨팅 등 새로운 컴퓨팅 방식을 모색하고 있습니다. [4] 개발자 경험 강화(DevOps를 넘어 DevEx로) 기술 인재를 유치하고 유지하기 위해 회사들은 개발자 경험에 초점을 맞추고 있습니다. Github Copilot 같은 코드 자동 완성 및 분석 도구의 도입, 통합 개발 환경(IDE) 최적화, 컨테이너화 및 오케스트레이션 도구 도입 등이 이에 해당합니다. 이러한 노력은 결국 최종 사용자의 경험을 향상시켜 비지니스 성과를 높여줄 예정입니다. [5] 합성 미디어 시대의 진실 방어 AI의 부상으로 인해 악의적인 딥페이크 콘텐츠가 증가함에 따라, 각 기업과 조직들은 유해 콘텐츠를 식별하고 잠재적 공격을 예측하기 위한 방법을 도입하고 있습니다. 특히 2024년은 미국 대통령 선거 등 중요한 이벤트가 많기에 중요한 이슈로 떠오를 예정입니다. [6] 기술적 부채에서 기술적 웰니스로 각 회사와 조직은 기존 코어 시스템, 인프라, 데이터, 애플리케이션을 포함한 노후화된 시스템을 현대화해야 합니다. 이를 위해 정기적인 점검과 예방적 관리에 중점을 두는 새로운 접근 방식이 필요합니다. 포레스터 리서치, 생성형 AI와 디지털 혁신에 주목하다 포레스터 리서치에 따르면 전 세계 기술 분야에 대한 투자는 5.3% 증가할 것으로 예상됩니다. 이 중 금융 서비스와 헬스케어가 가장 빠른 성장세를 보일 것이고, 클라우드 컴퓨팅을 포함한 IT 서비스와 소프트웨어 분야는 2027년까지 가장 높은 비중을 차지할 예정입니다. 또한 기업이 위험을 줄이고 경쟁력을 확보하기 위해선 생성형 AI, 그리고 녹색 및 디지털 혁신 등에 주목해야 합니다. 생성형 AI 생성형 AI는 2024년에 중요한 역할을 할 것으로 예상됩니다. 대형 컨설팅 회사들은 생성형 AI에 큰 규모의 투자를 할 것이며, 해당 기업들은 경쟁력을 높이기 위해 AWS, Microsoft Azure, GCP 등과 파트너십을 맺을 것으로 예상됩니다. 이제 각 기업이 생성형 AI를 활용하여 실질적인 이윤을 추구하기 시작할 것이기 때문에, 2024년을 '의도적 AI 시대(era of intentional AI)의 원년'이라고도 말할 수 있습니다. 녹색 및 디지털 혁신 데이터 센터의 에너지 효율을 높이기 위한 노력이 진전을 보이고 있습니다. 2030년까지 데이터 센터를 탄소 중립으로 만들겠다는 약속이 강화되고 있습니다. 이는 지속 가능하고 환경친화적인 기술로의 전환의 시작을 뜻합니다. 기술 리더들의 도전 기술 분야의 리더들이 인재를 발굴하고 비즈니스 전략과 기술을 조화시키는데 어려움을 겪을 것으로 예상됩니다. 또한 AI와 관련된 기술의 수요가 빠르게 증가할 것이기에, 관련된 기술과 경험을 기르는 것도 매우 중요해지고 있습니다. 마지막으로 포레스터는 기업들의 경쟁력 유지와 성장 촉진을 위해 위와 같은 트렌드를 빠르게 받아들여야 한다고 강조했습니다. 매튜 구아리니 포레스터 리서치 부사장은, "전체 기술 전략을 핵심까지 현대화하고 조직과 운영을 크게 향상시켜야 성과를 얻을 수 있다"라고 말했습니다. 。。。。。。。。。。。。 가트너, 포레스터 리서치, 딜로이트가 전망한 2024 IT 트렌드를 살펴봤습니다. 트렌드를 아는 것에서 그치는 것이 아니라 발 빠르게 대응하는 것이 가장 중요합니다. 브레인즈컴퍼니는 트렌드에 빠르고 효과적으로 대응할 수 있도록, 제니우스(Zenius)를 통해 쿠버네티스(Kubernetes)를 비롯한 프라이빗/퍼블릭/하이브리드 클라우드 환경, 온-프레미스 환경 모두를 완벽하게 관리할 수 있는 서비스를 제공하고 있습니다. 또한 브레인즈컴퍼니의 자회사인 에이프리카는 AI 비즈니스를 위한 쿠버네티스 기반의 AI 개발 통합 플랫폼 솔루션과, 멀티 클라우드 통합 관리 플랫폼(CMP) 솔루션을 제공하고 있습니다(🔍에이프리카 솔루션 자세히 보기). 힘차게 시작한 2024년, 올 한 해는 또 얼마나 큰 변화가 있을까요? 이 글을 읽으시는 모두가 변화에 앞서가서 성공 스토리를 만들 수 있기를 기원합니다.
2024.01.19
1
2