반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
기술이야기
검색
기술이야기
쿠버네티스 모니터링 솔루션, Zenius K8s의 주요기능과 특장점
기술이야기
쿠버네티스 모니터링 솔루션, Zenius K8s의 주요기능과 특장점
많은 기업이 Kubernetes(K8s)를 통해 애플리케이션을 대규모로 배포하고 관리하면서, 이에 맞는 모니터링 솔루션의 중요성이 더욱 커지고 있습니다. 멀티 클러스터 환경이 확산되고 애플리케이션과 인프라 요소가 긴밀히 연결된 IT 인프라에서는, 리소스 상태를 실시간으로 파악하고 신속하게 대응할 수 있는 모니터링이 필요하기 때문입니다. 이러한 상황에서 Zenius K8s는 멀티 클러스터 통합 관리, 애플리케이션 성능 분석, 연관 장비 모니터링 등 다양한 기능을 제공합니다. Kubernetes 환경을 더욱 효과적으로 관리하게 해주는 Zenius K8s의 주요기능과 특장점을 알아보겠습니다. Zenius K8s의 주요기능 [1] 멀티 클러스터 통합 모니터링 쿠버네티스 환경에서는 여러 클러스터를 동시에 관리해야 할 상황이 빈번하게 발생합니다. Zenius K8s는 멀티 클러스터 환경을 단일 화면에서 통합해서 관리할 수 있는 기능을 제공하여, 운영자가 각 클러스터의 상태를 손쉽게 모니터링할 수 있도록 지원합니다. 특히, 자동 생성되는 Topology Map은 클러스터 내부 구성 요소(Node, Pod, Container) 간의 관계를 직관적으로 시각화합니다. 이를 통해 운영자는 각 구성 요소의 연관성과 의존성을 명확히 이해할 수 있으며, 잠재적인 문제를 빠르게 식별할 수 있습니다. 이러한 시각적 도구는 운영자가 복잡한 구조를 보다 체계적으로 관리하는 데 중요한 역할을 합니다. [전체 클러스터 운영 요약 화면 예시] Zenius K8s는 또한, 클러스터별 주요 성능 지표를 요약한 화면과 세부 데이터를 확인할 수 있는 상세 데이터 화면을 제공합니다. 요약 화면에서는 클러스터 간의 성능 차이를 비교 분석할 수 있으며, 세부 데이터 화면에서는 개별 클러스터 내 특정 구성 요소의 성능 문제를 심층적으로 분석할 수 있습니다. 예를 들어, 특정 클러스터에서 리소스 사용량이 급증하는 현상을 요약 화면에서 확인한 후, 상세 데이터 화면으로 전환해 어떤 Pod나 노드가 문제의 원인인지 정확히 파악할 수 있습니다. 이러한 데이터 기반의 접근 방식은 운영자가 적절한 대응 조치를 빠르게 취할 수 있도록 합니다. [2] 지능형 장애 탐지 및 신속한 대응 지원 Zenius K8s는 쿠버네티스의 기본 이벤트 관리 기능을 확장하여, Kubernetes 자체 이벤트와 Zenius 전용 이벤트를 구분해 보다 세부적으로 체계화된 장애 관리 기능을 제공합니다. 각 이벤트에 대해 임계값과 심각도를 운영자 정의할 수 있어, 운영자는 환경에 적합한 기준으로 장애를 감지하고 우선순위를 설정할 수 있습니다. Zenius K8s의 다채널 알림 시스템은 푸시 앱, 이메일, 문자 등 다양한 방식으로 장애 정보를 즉시 전달하여 운영자가 신속하게 대응할 수 있도록 합니다. 단순히 알림을 보내는 것에 그치지 않고, 장애 발생 시점부터 종료 시점까지의 전체 상황을 기록하고 분석할 수 있어, 운영자는 문제 해결뿐만 아니라 유사 상황에 대한 재발 방지 대책을 수립할 수 있습니다. 또한, Zenius K8s는 발생한 장애 이벤트에 대한 상세 로그와 이력 데이터를 제공하여, 운영자가 근본 원인을 신속히 파악할 수 있도록 지원합니다. 이를 기반으로 장애 발생 원인과 영향을 체계적으로 분석하고, 동일한 문제가 재발하지 않도록 최적의 운영 환경을 설계할 수 있습니다. [이벤트 현황관리 화면 예시] [3] 실시간 로그 모니터링 및 분석 운영 환경에서 발생하는 로그는 문제의 원인을 파악하고 성능을 최적화하는 데 중요한 데이터를 제공합니다. Zenius K8s는 컨테이너 기반 애플리케이션의 동작, 오류, 디버깅 로그는 물론, Kubernetes 이벤트 로그(Kubelet, API Server 등)까지 실시간으로 수집하고 분석할 수 있는 기능을 제공합니다. 이 기능은 운영자가 시스템의 전반적인 상태를 심층적으로 모니터링하고, 잠재적 문제를 사전에 발견할 수 있도록 지원합니다. Zenius K8s의 실시간 로그 모니터링은 시점별 데이터 분석 기능을 통해 특정 기간 동안 발생한 로그 데이터를 확인하고, 문제 발생 시점과 원인을 빠르게 추적할 수 있도록 돕습니다. 운영자는 실시간으로 발생하는 로그를 모니터링하며, 필요할 경우 보고서 형태로 데이터를 내보내어 팀 내 공유나 추가 분석에 활용할 수 있습니다. 이 기능은 장애 대응 시간을 단축시키는 동시에, 문제 해결을 위한 협업을 효율적으로 지원합니다. 또한, Zenius K8s의 실시간 로그 분석 기능을 통해 운영자는 현재 발생하고 있는 로그를 실시간으로 확인하여 상황에 따라 빠르게 조치를 취할 수 있습니다. 이 기능은 운영 환경에서 투명성을 강화하고, 예기치 않은 장애로 인한 서비스 중단을 최소화하는 데 중요한 역할을 합니다. [4] 효율적인 리소스 활용 지원 Zenius K8s는 클러스터와 주요 구성 요소(Node, Pod, Container)의 CPU, 메모리, 네트워크 사용량을 실시간으로 추적하여, 자원이 비효율적으로 사용되거나 과부하가 발생할 가능성을 사전에 감지할 수 있는 모니터링 기능을 제공합니다. 운영자는 이를 통해 특정 구성 요소가 리소스를 과도하게 소모하고 있는지 빠르게 확인할 수 있으며, 이를 기반으로 적절한 조치를 취할 수 있습니다. 예를 들어, 특정 Pod가 비정상적인 메모리 사용량을 보일 경우, Zenius K8s는 이를 즉각 감지하여 경고를 제공하고, 운영자가 문제를 해결할 수 있도록 도와줍니다. 이러한 기능은 리소스의 낭비를 줄이고, 시스템의 안정성을 높이는 데 중요한 역할을 합니다. 또한, 쿠버네티스의 자동 확장 기능에 따라 생성되는 파드(Pod)에 대해 Zenius K8s는 자동으로 모니터링을 수행합니다. 이를 통해 새로 생성된 파드의 상태와 리소스 사용량을 실시간으로 추적하여 운영자는 추가적인 설정 없이도 전체 시스템의 상태를 효율적으로 관리할 수 있습니다. Zenius K8s의 특장점 Zenius는 K8s는 위에 살펴본 주요기능에 더해서, 복잡한 쿠버네티스 환경을 더욱 효과적으로 운영하고 관리할 수 있도록 지원할 수 있는 세 가지 특장점을 가지고 있습니다. [1] 확장성 있는 구조를 바탕으로 한 연관 장비 통합 모니터링 Zenius는 K8s 모니터링을 포함하여 SMS, NMS, APM, DBMS등 총 23개의 포인트 솔루션을 연계할 수 있는 Framework으로 구성되어 있습니다. 따라서 운영자는 Kubernetes 클러스터는 물론 컨테이너 오케스트레이션, 서비스 모니터링, 네트워크 관리, 애플리케이션 성능 분석까지 한 시스템에서 일괄적으로 모니터링하고 관리할 수 있습니다. 이러한 확장성은 운영자가 새로운 모니터링 대상을 손쉽게 추가하고, 기존 인프라와 새로운 인프라를 유기적으로 통합하여 대규모 환경에서도 일관된 관리 체계를 유지할 수 있도록 합니다. 예를 들어, Kubernetes 클러스터와 네트워크 장비를 연결해 네트워크 병목 현상이 클러스터 및 애플리케이션 성능에 미치는 영향을 파악할 수 있습니다. 이러한 통합 모니터링은 대규모 환경에서도 일관성을 유지하며, 복잡한 IT 환경에서 발생하는 문제의 근본 원인을 효율적으로 분석할 수 있도록 지원합니다. Zenius K8s는 또한, 서버, 네트워크 장비, 애플리케이션 등 IT 인프라 전반에 대한 성능 데이터를 통합적으로 제공합니다. 이를 통해 특정 장비나 네트워크에서 발생한 성능 저하가 클러스터 및 애플리케이션 운영에 미치는 영향을 직관적으로 파악할 수 있습니다. 이처럼 전체 IT 인프라를 아우르는 통합 모니터링 기능은 운영자에게 단순히 데이터를 제공하는 것을 넘어, 서비스 안정성과 문제 해결의 정확성을 높이는데 기여합니다. [2] APM 연계를 통한 애플리케이션 심층 분석 쿠버네티스는 애플리케이션을 컨테이너화하여 자동화된 배포, 확장, 관리를 가능하게 함으로써 서비스의 안정성과 효율성을 높이는 데 주로 활용됩니다. 따라서 쿠버네티스 모니터링 솔루션은 APM(Application Performance Management)과의 연계가 중요합니다. Zenius K8s는 APM과의 강력한 연계를 통해 Kubernetes 환경 내에서 운영 중인 애플리케이션의 성능을 세밀하게 분석할 수 있도록 지원합니다. 이를 통해 애플리케이션이 처리하는 트랜잭션 속도와 같은 주요 성능 지표는 물론, 지연 발생 구간, 병목 현상 등을 실시간으로 모니터링하고 분석하여 문제의 근본 원인을 신속히 진단할 수 있도록 합니다. 특히, APM 연계를 통해 애플리케이션의 전체 트랜잭션 흐름을 시각화함으로써 개별 트랜잭션에서 발생하는 성능 저하나 지연이 클러스터 성능에 미치는 영향을 파악할 수 있습니다. 예를 들어, 특정 트랜잭션에서 비정상적인 지연이 발생할 경우, APM 솔루션은 이를 실시간으로 탐지하여 해당 구간에 대한 세부적인 성능 데이터를 제공합니다. 이를 통해 트랜잭션 지연의 원인을 파악하고, 최적화 작업을 통해 성능을 개선할 수 있습니다. 또한, Zenius K8s는 트랜잭션 병목 현상의 위치와 원인을 명확히 규명할 수 있는 분석 도구를 포함하고 있어, 특히 마이크로서비스 구조의 복잡한 애플리케이션에서 병목 구간을 체계적으로 최적화할 수 있습니다. 이와 같은 심층적인 성능 분석 기능은 단순히 자원 사용 모니터링을 넘어, 애플리케이션 내부에서 발생하는 성능 이슈를 구체적으로 진단하는 데 중점을 둡니다. [3] 메타정보와 변경 이력 관리의 편의성 Zenius K8s는 Kubernetes 오브젝트에 대한 상세한 메타정보를 명령어 입력 없이 직관적으로 조회할 수 있는 고급 메타정보 뷰어를 제공합니다. 운영자는 각 오브젝트의 이름, 라벨(Label), 주석(Annotation) 등 주요 메타정보를 빠르게 확인할 수 있어 오브젝트 상태를 명확히 이해할 수 있습니다. 이 기능은 클러스터의 모든 오브젝트에 대해 체계적인 정보를 제공하며, 특히 동적이고 복잡한 Kubernetes 환경에서 유용하게 활용됩니다. [K8s 구성 요소 별 메타 정보 조회 화면 예시] 또한, Zenius K8s는 구성 변경 이력 관리 기능을 포함하여 이전에 수행된 구성 변경 사항을 시각적으로 한눈에 확인할 수 있도록 지원합니다. 예를 들어, 운영자는 특정 시점에서 이루어진 설정 변경이 클러스터 성능에 미친 영향을 파악하거나, 문제 발생 시 원인을 추적하여 신속히 복구할 수 있습니다. 이를 통해 변경 이력 내역을 단계별로 조회할 수 있습니다. Zenius K8s의 메타정보 및 변경 이력 관리 기능은 구성 변경이 빈번하게 발생하는 대규모 Kubernetes 환경에서 특히 중요한 역할을 합니다. 구성 요소가 많고 자주 변경되는 환경에서는 변화에 따른 혼선이 발생하기 쉬운데, 이 기능은 구성 내역의 투명성을 제공하고, 불필요한 문제를 예방하며, 신속한 문제 해결을 가능하게 합니다. 운영자는 변경 이력을 기반으로 각 오브젝트의 최신 상태와 과거 설정 내역을 체계적으로 관리하여 안정적인 운영을 유지할 수 있습니다. [메타 정보 이력 추적 및 변경 사항 조회 화면 예시] Zenius K8s는 멀티 클러스터 관리, 실시간 모니터링, 장애 탐지 및 대응, 자원 활용 최적화 등 Kubernetes 운영에서 필수적인 기능을 제공합니다. 특히, Framework 기반 구조를 통해 SMS, NMS, APM, DBMS와 같은 다양한 포인트 솔루션과 연계가 가능하여, 컨테이너 오케스트레이션부터 네트워크 관리, 애플리케이션 성능 분석까지 포괄적인 모니터링과 관리를 지원합니다. 특히, APM 연계 기능은 애플리케이션의 트랜잭션 속도, 병목 현상, 지연 발생 구간 등 주요 성능 지표를 실시간으로 모니터링하고 분석할 수 있도록 하여, 문제의 근본 원인을 빠르게 진단하고 최적화할 수 있도록 돕습니다. 연관 장비 모니터링 기능은 서버, 네트워크 장비 등 IT 인프라 전반의 상태를 통합적으로 분석하여, 각 요소가 Kubernetes 클러스터와 애플리케이션 성능에 미치는 영향을 정확히 파악할 수 있도록 지원합니다. Zenius K8s는 이러한 기능들을 통해 운영자가 복잡한 IT 환경에서도 안정적이고 효율적인 관리 체계를 구축할 수 있도록 도와주는 유용한 솔루션입니다.
2024.11.21
기술이야기
서버 모니터링 솔루션의 필수조건과 최신 트렌드
기술이야기
서버 모니터링 솔루션의 필수조건과 최신 트렌드
안정적인 IT 서비스 운영을 위해서 서버 모니터링 솔루션을 도입, 운영하는 경우가 많습니다. 디지털 전환과 클라우드 컴퓨팅의 확산, IoT와 AI 기술의 발전으로 인해서 더욱 다양한 IT 서비스가 운용되고 그를 뒷받침할 서버 시스템의 수도 점증하면서 서버 모니터링 솔루션의 중요성은 더욱 높아질 것으로 예상됩니다. │서버 모니터링 솔루션이 갖춰야 할 필수조건은? 서버 모니터링 솔루션 활용의 가장 큰 목적은 서버의 성능, 안정성을 실시간으로 파악해서 이상 상황이나 장애를 사전에 예방하거나 빠르게 대응하는 것입니다. 그리고 이 목적을 이루기 위해서는 아래와 같은 조건을 반드시 갖추고 있어야 합니다. · 실시간 모니터링 서버의 성능, 가용성, 보안 상태를 실시간으로 모니터링할 수 있는 기능은 서버 모니터링 솔루션의 핵심 요소입니다. 실시간 모니터링을 통해 관리자는 서버의 현재 상태를 즉시 파악하고, 시스템에서 발생하는 문제를 조기에 발견할 수 있습니다. 예를 들어, CPU 사용률이 급격히 증가하거나 네트워크 트래픽이 비정상적으로 많아지는 경우, 실시간 모니터링을 통해 문제를 즉시 감지하고 대응할 수 있습니다. 이를 통해 다운타임을 최소화하고, 서비스를 중단없이 제공할 수 있습니다. · 광범위한 성능 데이터 수집 서버 모니터링 솔루션은 다양한 성능 지표를 수집할 수 있어야 합니다. 여기에는 CPU 사용률, 메모리 사용량, 디스크 I/O, 네트워크 트래픽 등의 하드웨어관련 데이터뿐만 아니라 애플리케이션과 관련한 데이터도 포함됩니다. 예를 들어, 데이터베이스 쿼리 응답 시간, 웹 서버의 요청 처리 시간 등 애플리케이션의 성능을 상세히 분석할 수 있는 데이터가 여기에 포함됩니다. 이러한 데이터를 통해 시스템의 전반적인 상태를 정확히 파악하고, 서버의 병목 현상을 식별하며 성능을 최적화할 수 있습니다. · 경고 및 알림 기능 서버 모니터링 솔루션은 설정된 임계 값을 초과하거나 이상 징후가 발견되었을 때 즉시 관리자에게 알림을 보내는 기능을 갖춰야 합니다. 이메일, SMS, 푸시 알림 등 다양한 경고 수단을 지원하여, 문제가 발생했을 때 신속하게 대응할 수 있도록 해야 합니다. 예를 들어, 서버의 디스크 사용량이 90%를 초과하거나 네트워크 지연 시간이 급격히 증가할 때, 서버 모니터링 시스템의 경고 알림을 통해 관리자는 즉시 문제를 인지하고 조치를 취할 수 있습니다. 이를 통해 심각한 장애로 발전하기 전에 문제를 해결할 수 있습니다. · 확장성과 유연성 기업의 성장에 따라 추가되는 서버와 애플리케이션을 신속히 모니터링할 수 있도록 확장성이 있어야 합니다. 이는 특히 클라우드 환경에서 중요합니다. 클라우드 인프라를 사용 중인 기업이 수시로 서버를 추가하거나 제거하는 상황이 빈번하게 발생하기 때문입니다. 또한, 대규모 환경에서도 안정적으로 작동하며, 여러 데이터 센터와 클라우드 리전에서 발생하는 데이터도 효율적으로 처리할 수 있어야 합니다. · 대시보드 및 시각화 도구 서버의 상태를 직관적으로 이해할 수 있도록 다양한 대시보드와 시각화 도구를 제공해야 합니다. 이는 관리자가 시스템 상태를 한눈에 파악하고, 문제의 원인과 영향을 빠르게 분석할 수 있게 합니다. 예를 들어, 실시간 대시보드를 통해 서버의 현재 상태를 모니터링하고, 트렌드 분석을 통해 장기적인 성능 변화를 파악할 수 있습니다. 세부적이고 다양한 차트와 그래프는 데이터를 시각적으로 표현하여, 복잡한 데이터를 쉽게 이해하고 분석할 수 있도록 도와줍니다. 대시보드 및 시각화도구 예시(Zenius SMS) · 로그 관리 및 분석 서버와 애플리케이션 로그를 수집하고 분석할 수 있는 기능은 문제의 근본 원인을 파악하고 보안 위협을 탐지하는 데 필수적입니다. 로그 데이터는 실시간 모니터링과 보완되어, 시스템 이벤트의 연속성과 이슈 발생의 맥락을 이해하는 데 도움을 줍니다. 예를 들어, 서버의 로그를 통해 특정 시간에 발생한 오류를 분석하고, 이를 통해 시스템의 취약점을 식별하고 개선할 수 있습니다. 또한, 로그 데이터를 기반으로 보안 위협을 탐지하고 대응할 수 있습니다. · 자동화된 대응 서버 모니터링 솔루션은 문제가 발생했을 때 자동으로 대응하는 기능을 제공해야 합니다. 예를 들어, 서버 재부팅, 서비스 재시작, 자원 확장 등의 자동화된 조치를 지원하여, 인적 오류를 줄이고 문제 해결 시간을 단축할 수 있습니다. 이러한 자동화된 대응은 설정된 조건에 따라 다양한 조치를 자동으로 수행하여, 관리자의 개입 없이도 문제를 해결할 수 있도록 합니다. 이는 시스템의 안정성과 신뢰성을 높이는 데 기여합니다. · 유연한 통합 서버 모니터링 솔루션은 다른 IT 관리 도구와 쉽게 통합할 수 있어야 합니다. 예를 들어, CI(지속적 통합)/CD(지속적 배포) 프로세스, ITSM(Information Technology Service Management), 클라우드나 마이크로 서비스 아키텍처 관리 솔루션 등과의 연동이 필요합니다. 이는 모니터링 데이터의 활용 범위를 넓히고, 전체 IT 환경의 효율성을 높이는 데 도움을 줍니다. 또한 서버 뿐 아니라 네트워크, DB, 애플리케이션 모니터링 툴과의 통합도 가능해야 합니다. · 보안 서버 모니터링 솔루션을 통해 비정상적인 활동을 실시간으로 감지하여 보안위협을 예방할 수 있어야 합니다. 이와 동시에 서버 모니터링 솔루션 자체의 보안도 중요합니다. 데이터 암호화, 접근 제어, 감사 로그 등의 보안 기능을 갖추고 있어야 합니다. 이를 통해 모니터링 시스템이 외부 위협으로 부터 안전하게 운영될 수 있습니다. 이와 더불어 각 사용자의 필요에 맞추어 세부적인 기능을 조정할 수 있는 기능과 지속적인 원활한 업그레이드와 기술 지원도 서버 모니터링 솔루션이 갖춰야할 중요한 조건입니다. │서버 모니터링 솔루션의 최신 트렌드는? 서버 모니터링 솔루션은 기술의 발전과 변화하는 비즈니스 요구에 발맞추어 빠르게 진화하고 있습니다. 대표적인 최근의 변화와 트렌드를 알아보겠습니다. · 클라우드 네이티브 기반 모니터링 클라우드 네이티브 기반의 서버 모니터링 솔루션은 클라우드 인프라의 복잡성과 변화하는 특성을 효과적으로 관리할 수 있습니다. 클라우드 서비스 제공업체의 API와 통합되어 인프라 상태를 실시간으로 파악하고 자동으로 조정할 수 있어, 서비스 중단을 최소화하고 사용자 경험을 높여주기 때문에, 많은 기업이 클라우드 네이티브 기반의 서버 모니터링 솔루션을 채택하고 있습니다. · 인공지능 및 머신러닝 기반 모니터링 인공지능과 머신러닝 기술이 서버 모니터링 솔루션에 적용되고 있습니다. 이를 통해 대용량 로그 데이터를 빠르게 분석하여 문제의 근본 원인을 빠르게 파악하고 자동으로 대응할 수 있습니다. 서버 모니터링 솔루션은 AI와 ML을 기반으로 정확하고 자동화된 예측과 분석, 대응이 가능한 효과적이고 신뢰도 높은 IT 인프라 관리 솔루션으로 발전하고 있습니다. · 마이크로서비스 아키텍처(MSA) 환경 모니터링 MSA 환경에서의 서버 모니터링 솔루션은 분산 시스템 내 각 마이크로서비스를 개별적으로 모니터링하고, 실시간 데이터 수집 및 분석을 통해 문제를 즉시 발견 및 대응하며, 자동화된 경고 시스템으로 빠른 문제 해결을 지원하고 있습니다. 또한 Docker와 Kubernetes 같은 컨테이너 및 오케스트레이션 도구와의 통합도 중요한 트렌드로 자리잡고 있습니다. · 자동화된 대응 및 자가 치유 문제가 발생했을 때 자동으로 대응하는 시스템이 도입되고 있습니다. 예를 들어, 서버가 과부하 상태일 때 자동으로 서버를 확장하거나, 특정 오류가 발생했을 때 자동으로 재부팅하는 등의 기능이 포함됩니다. 이러한 자동화된 대응은 시스템의 가용성과 안정성을 높이는 데 기여합니다. 또한 자가 치유 기능은 시스템이 자동으로 문제를 감지하고 수정하는 능력을 갖추게 하여, 관리자의 개입 없이도 안정적인 운영을 가능하게 합니다. · 통합 모니터링 다양한 모니터링 툴과 시스템을 통합하여 중앙 집중형 대시보드에서 모든 인프라와 애플리케이션을 모니터링하는 것이 중요해지고 있습니다. 따라서 통합된 뷰를 통한 모니터링의 효율성이 높아지고 있습니다. 예를 들어 관리자는 다양한 모니터링 솔루션에서 수집된 데이터를 통합된 대시보드에서 한눈에 확인할 수 있습니다. 이러한 대시보드는 문제 발생 시 원인을 신속히 파악하고, 적합한 조치를 취할 수 있도록 도와줍니다. · 비용 및 자원 최적화 비용 및 자원 최적화는 지속해서 서버 모니터링 솔루션의 핵심 요소로 꼽히고 있습니다. 따라서 서버 모니터링 솔루션은 서버 자원의 사용 패턴을 분석하고, 불필요한 자원 낭비를 줄이며, 자원을 효율적으로 배분할 수 있는 기능에 중점을 맞춰서 발전하고 있습니다. · 보안 중심 모니터링 보안 위협이 증가함에 따라 보안 중심의 모니터링이 중요해지고 있습니다. 따라서 서버 모니터링 솔루션 자체의 기능을 강화하거나, SIEM(Security Information and Event Management)과 같은 보안전문 솔루션과의 연동을 통해 보안 로그와 이벤트 데이터를 분석하여 잠재적인 보안 위협에 빠르게 대처하는 사례가 늘고 있습니다. 이와 같이 서버 모니터링 솔루션은 클라우드나 마이크로 시스템 아키텍처와 같은 시스템의 환경의 변화에 따라, 인공지능과 같은 기술적 진화에 따라, 또한 보안이나 비용절감과 같은 사용자들의 니즈의 변화에 따라 다양한 방향으로 진화, 발전하고 있습니다. 고객 서버 시스템 환경이나 서비스의 특성이나 고객의 특정 니즈에 따라 최신 트랜드를 잘 반영한 솔루션을 선택하여 서버 시스템의 운용 효율과, IT 서비스의 안정성을 제고하는 것이 IT 운용 부서의 주요 과제 중의 하나가 되고 있습니다.
2024.08.05
기술이야기
하이브리드 클라우드 모니터링, 왜 필요한가?
기술이야기
하이브리드 클라우드 모니터링, 왜 필요한가?
최근 하이브리드 클라우드가 점점 더 중요한 역할을 하고 있습니다. 하이브리드 클라우드(Hybrid Cloud)는 온프레미스 환경과 프라이빗 클라우드, 퍼블릭 클라우드를 결합한 클라우드 환경을 의미하는데요. 쉽게 말해 필요에 따라 자체 인프라와 외부 클라우드 서비스를 동시에 사용할 수 있는 클라우드 환경입니다. 2024년까지 하이브리드 클라우드 시장은 연평균 22% 성장하여 약 3조 원 규모에 이를 것으로 예상될 정도로 각광받고 있습니다. 그렇다면 하이브리드 클라우드가 점점 더 주목을 받는 이유는 무엇일까요? │하이브리드 클라우드가 각광받는 이유 하이브리드 클라우드가 점점 더 주목을 받는 이유는 유연함 때문입니다. 기업들은 중요한 데이터를 프라이빗 클라우드에 저장하고, 일시적으로 많은 자원이 필요한 작업은 퍼블릭 클라우드를 사용하여 두 가지 클라우드의 장점을 모두 누릴 수 있습니다. 보안과 성능을 유지하면서도 필요한 만큼 자원을 사용할 수 있는 것이죠. 즉 프라이빗 클라우드의 퍼블릭 클라우드를 잘 조화하면 기업은 최적의 IT 환경을 구축할 수 있습니다. 하이브리드 클라우드의 이러한 장점은, 기업들이 경쟁력을 유지하고 빠르게 변화하는 시장 환경에 대응하는 데 큰 도움이 됩니다. 특히 클라우드 서비스 제공업체(CSP)의 다양한 서비스와 솔루션을 활용하면, 하이브리드 클라우드를 더욱 효과적으로 운영할 수 있는데요. 다음 내용을 통해 주요 클라우드 서비스 제공업체에 대해 좀 더 자세히 알아보겠습니다. │주요 클라우드 서비스 제공업체(CSP) 특징 클라우드 서비스 제공업체(CSP)으로 대표적으로 AWS(Amazon Web Services)와 마이크로소프트(Microsoft Azure)가 있습니다. 다음 내용을 통해 각각의 주요 특징을 살펴보겠습니다. Amazon Web Services (AWS) AWS는 서버, 스토리지, 데이터베이스, 네트워크 등 다양한 IT 인프라 서비스를 제공하는 아마존의 클라우드 플랫폼입니다. "AWS의 서버가 먹통이 되면, 시장에 혼돈이 온다."는 말이 있을 정도로 많은 기업이 AWS를 사용하고 있죠. AWS의 주요 특징은 아래와 같이 정리해 볼 수 있는데요. AWS의 주요 특징 1. AWS의 글로벌 인프라 AWS는 CSP 중 전 세계에서 가장 많은 리전을 보유하고 있습니다. 31개의 리전과 99개의 가용 영역을 운영하여, 사용자가 원하는 리전을 선택해 지연 시간을 단축할 수 있습니다. 다양한 지역에서 리전을 운영하는 만큼, 서비스 제공 범위가 넓고 안정성도 높습니다. 또한 엣지 로케이션을 통해 콘텐츠를 빠르게 전달하여 사용자 경험을 개선합니다. AWS는 CSP의 선두주자로서 AWS는 IaaS(인프라 서비스) 영역에서 시장 점유율이 가장 높고 안정적인 서비스를 제공합니다. 2. API 기반 서비스 AWS의 모든 서비스는 API를 통해 제어할 수 있으며, 다양한 프로그래밍 언어에서 사용 가능한 코드를 제공하여 다른 서비스를 연동할 수 있습니다. API Gateway라는 서비스를 통해 외부 애플리케이션과의 통신을 안전하게 관리할 수도 있죠. 3. 다채로운 서비스 AWS는 단순히 서버와 저장소를 제공하는 것을 넘어 S3(객체 스토리지), EC2(가상 서버), Lambda(서버리스 컴퓨팅), RDS(관계형 데이터베이스) 등 다양한 주요 서비스를 지원합니다. 최근에는 머신러닝과 AI 서비스까지 제공하고 있습니다. Microsoft Azure Microsoft Azure는 마이크로소프트가 제공하는 클라우드 컴퓨팅 플랫폼으로, AWS 다음으로 많은 기업들이 사용하고 있습니다. 애저라고도 많이 불리죠. 특히 PaaS(Platform as a Service)와 SaaS(Software as a Service) 분야에서 1위를 달리는 퍼블릭 클라우드라고 할 수 있습니다. Azure의 주요 특징은 다음과 같은데요. Microsoft Azure 주요 특징 1. Microsoft 제품과의 통합성 Azure의 가장 큰 장점은 Microsoft 제품과 쉽게 연동된다는 점입니다. 예를 들어 Office 365와 통합되며, 최근에는 생성형 AI 서비스인 Copilot 과의 통합으로 주목받고 있습니다. Microsoft 제품을 많이 사용하는 기업들에게 매우 유용하죠. 2. 웹 서비스에 집중 Azure는 특히 웹 서비스에 강점을 가지고 있습니다. 인프라(IaaS)에서는 다양한 유형을 수용하면서도, 애플리케이션 플랫폼(PaaS) 측면에서는 웹 서비스에 집중하고 있는데요. PC 웹, 모바일, API 등 모든 접속 유형을 하나의 앱 서비스에서 지원하며 가상 머신, 컨테이너, 서버리스 등 다양한 구성 방식을 제공합니다. 이처럼 AWS와 Microsoft Azure는 각각 고유한 강점을 가지고 있으며, 기업의 필요에 따라 적절한 서비스를 선택하여 사용할 수 있는데요. 하지만 이러한 다양한 클라우드 서비스의 특징과 이점을 제대로 활용하기 위해서는 클라우드 서비스 모니터링이 필수적입니다. 클라우드 인프라는 자원 사용량과 트래픽이 시시각각 변동되므로, 실시간 모니터링 없이는 문제를 사전에 발견하고 대응하기 어렵기 때문인데요. 다음 내용을 통해 어떤 솔루션이 필요한지 살펴보도록 하겠습니다. │하이브리드 클라우드 모니터링이 필요한 이유 앞서 언급한 내용처럼 AWS, Azure, GCP 등 다양한 퍼블릭 클라우드의 서비스 상태와 성능 지표를 확인하기 위해서는, 클라우드 서비스 모니터링 솔루션이 필요합니다. 물론 AWS의 *CloudWatch1처럼 자체적인 퍼블릭 클라우드 모니터링 도구들도 있는데요. * CloudWatch1 : AWS 클라우드 리소스를 모니터링하고 관리하는 서비스 통합적인 IT 환경에서 발생할 수 있는 다양한 문제를 예방하고 효율적으로 관리하기 위해서는, 퍼블릭 클라우드나 프라이빗 클라우드뿐만 아니라 온프레미스 인프라까지 함께 모니터링할 수 있는지 살펴보아야 합니다. 대표적인 사례로 Zenius CMS 솔루션을 통해, 어떤 방식으로 클라우드 서비스를 모니터링할 수 있는지 살펴보겠습니다. 하이브리드 클라우드의 통합 모니터링 Zenius CMS는 물리적인 서버, 네트워크 장비, DB와 같은 온프레미스 인프라와 퍼블릭 클라우드를 통합적으로 모니터링합니다. 사용자는 한 플랫폼 안에서 전체 인프라의 상태를 종합적으로 신속하게 장애를 파악할 수 있기 때문에, 다양한 환경에서 발생하는 성능 저하와 장애를 빠르게 식별하고 그 원인을 정확히 분석할 수 있죠. CloudWatch와 Alert History를 사용한 데이터 수집 Zenius CMS는 AWS의 CloudWatch나 Azure의 Alert History 같은 API를 사용해서 다양한 모니터링 데이터를 제공합니다. 예를 들어 CloudWatch가 기본적으로 제공하는 성능 지표뿐만 아니라 특정 서비스에 관심이 있다면, 그 서비스만 타겟으로 설정해서 모니터링할 수 있습니다. 이렇게 하면 사용하는 지역의 주요 서비스들만 선택해서 볼 수 있어, 필요한 정보를 더욱 쉽게 확인할 수 있는 장점이 있습니다. Billing(과금) 서비스 정보 제공 Zenius CMS를 통해 클라우드 자원의 사용량을 실시간으로 확인하여 예산을 더 잘 관리하고, 예상치 못한 과금이 발생하는 것을 막을 수 있습니다. 또한 비용이 어떻게 발생하는지 투명하게 파악할 수 있어 필요할 때 적절히 조정할 수 있죠. 자동 경고 기능을 통해 특정 비용 한도를 초과할 때 즉시 알림을 받아 효율적으로 관리할 수 있습니다. 이번 시간에는 하이브리드 클라우드 모니터링이 왜 중요해지고 있는지 중점적으로 알아보았습니다. 특히 클라우드 인프라는 자원 사용량이 수시로 변하기 때문에 실시간 모니터링이 중요합니다. 더불어 다양한 인프라를 통합 관리할 수 있는 온프레미스 환경도 함께 구축되어 있어야, 클라우드 인프라에 문제가 발생했을 때 빠르고 정확하게 대응할 수 있죠. 이제 하이브리드 클라우드 통합 관리와 온프레미스 환경 관제가 모두 가능한 Zenius CMS로, 클라우드 서비스를 더욱 효율적으로 관리해 보세요!
2024.07.29
기술이야기
옵저버빌리티(Observability) vs APM, 우리 기업에 맞는 솔루션은?!
기술이야기
옵저버빌리티(Observability) vs APM, 우리 기업에 맞는 솔루션은?!
지난 글을 통해 웹 애플리케이션을 전반적으로 모니터링하고 관리하기 위한 좋은 도구인, APM의 핵심요소와 기능에 대해서 알아봤습니다(지난 글 보기). APM은 분명 좋은 도구이지만 문제 원인이 애플리케이션, 웹, WAS, DB가 아닌 특정한 시스템 오류이거나 클라우드 네이티브 환경에서의 장애일 경우 문제 발생 원인을 명확히 밝히기 어려울 수 있습니다. 따라서 이번 시간에는 APM의 한계성은 무엇이고, 이를 보완하기 위한 방법은 무엇인지 자세히 살펴보겠습니다. │APM 한계성 불과 얼마 전까지만 해도 예상치 못한 장애를 탐지하고 분석하는 것은, 기존 APM만으로 충분했었습니다. 기존에는 모놀리식 구조로 되어있어 애플리케이션이 적은 수로 구성되어 있었고, Web-WAS-DB가 모두 단일 구조로 구성되어 있었기 때문입니다. 하지만 현재 대다수 기업들은 MSA 환경에서 서비스를 구축하고, DevOps 구조로 업무를 진행하는 경우가 많습니다. 즉 클라우드 네이티브 환경에서는 기존 모놀리식 구조의 APM의 한계가 하나둘씩 보이기 시작한 것이죠. 이러한 이유로 클라우드 네이티브 방식에는 서비스 장애 원인을 분석하기 위한 새로운 모니터링 툴이 필요했습니다. 이때 등장하는 것이 바로 옵저버빌리티(Observability)입니다. │Observability란? 그렇다면 Observability란 무엇일까요? 옵저버빌리티는 IT 인프라에 대한 근본적인 장애 원인을 분석하기 위한 방법론입니다. 관찰 가능성이라고 표현되기도 하죠. Obsevability는 비교적 최근에 사용한 용어이지만, 옵저버빌리티를 위한 고민은 오래전부터 지속되어왔습니다. 시스템이 내가 의도한 대로 작동하고 있을까? 예상치 못한 장애 탐지와 장애 근본 원인은 어떻게 분석할 수 있을까? IT 인프라 운영 환경에 문제가 발생했을 때, 문제 식별을 위해 필요한 객관적인 지표는 어떻게 도출할 수 있을까? 하지만 소프트웨어 애플리케이션에서 Observability는, 위와 같은 고민이 발생하거나 겪어보지 못했던 현상이 생길 때 이를 이해하고 설명할 수 있는 지표를 분석해 줍니다. │Obsevability의 등장배경 및 필요성 앞에서 옵저버빌리티가 무엇인지 살펴봤는데요. 이어서 Observability가 등장하게 된 이유와 필요성에 대해 자세히 살펴보겠습니다. MSA 전환에 따른 복잡성 증가 옵저버빌리티가 등장하게 된 첫 번째 이유는, 모놀리식 아키텍처에서 MSA 환경으로 전환함에 따라 복잡성이 증가했기 때문입니다. 우선 그림을 통해 자세히 살펴보겠습니다. [그림(왼)]은 모놀리식 아키텍처를 나타내는데요. 애플리케이션의 모든 구성 요소가 하나의 인프라로 통합되어 있는 형태입니다. 배포가 간단하며, 확장성이 쉽고, E2E 테스트가 용이하다는 장점이 있습니다. 하지만 조그마한 수정 사항이 있으면, 다시 구성 환경을 빌드하고 배포해야 한다는 단점이 있습니다. 또한 일부 오류가 전체 아키텍처에 영향을 미친다는 치명적인 단점도 존재하죠. 반면 [그림(오)]에 해당하는 MSA(Micro Service Architecture)는 하나의 큰 애플리케이션을 여러 개의 작은 애플리케이션으로 쪼개어, 변경과 조합이 가능합니다. 작은 서비스의 독립적 배포라는 강력한 장점을 앞세워 Netflix, PAYCO와 같은 다양한 기업들이 앞다투어 MSA를 받아들였습니다. 여기서 문제는 MSA로 변화함에 따라 통합 테스트나 E2E 테스트 검증이 필요해졌는데요. 이처럼 여러 서비스의 API를 검증해야 하므로, 복잡성이 증가하고 많은 시간과 비용이 소모되었습니다. 무엇보다 각 서비스 별로 자체적인 데이터베이스가 있어, 트랜잭션에 대한 파악이 어려워지기도 했죠. 따라서 기존 APM이 담당하는 트랜잭션 모니터링의 복잡성은 더욱 증가했고, Observability의 필요성이 대두되었습니다. DevOps와 클라우드 네이티브 환경으로서의 전환 옵저버빌리티가 등장하게 된 두 번째 이유는, DevOps와 클라우드 네이티브 환경으로 전환하기 위해 필요한 도구이기 때문입니다. DevOps의 핵심은 소프트웨어의 개발(Deployment)과 운영(Operation)을 분리하는 것이 아닌, 하나로 통합된 업무 처리 방식으로 진행됩니다. 이때 관리하는 서비스 전반에 대한 가시성이 충분히 확보되지 않으면, DevOps 조직은 근본적인 원인을 찾는 데 어려움을 겪게 됩니다. 이러한 어려움을 해결하기 위해서는 서비스를 구성하는 아키텍처부터 트랜잭션까지 가시성이 확보되어야 합니다. 이를 통해 DevOps의 목표인 지속적인 개발과 운영의 통합을 만들어낼 수 있죠. 또한 Observability는 클라우드 네이티브 환경으로 전환하기 위한 필수 조건입니다. 기업에서 운영 중인 서비스/IT 인프라가 클라우드 네이티브 환경으로 전환되면서, 이전에 발생하지 않았던 모든 장애 가능성에 대한 인지를 위해 Observability가 선행되어야 합니다. │Observability와 Monitoring 차이점 그렇다면 기존의 모니터링(Monitoring)과 옵저버벌리티(Observability)의 차이점은 무엇일까요? 기존의 모니터링 역할은 IT 인프라의 '정상 작동 확인'을 위한 도구 역할에 초점이 맞춰져 있었습니다. 모니터링 구성 요소인 대시보드와 사용자 알람을 통해 가시성을 확보하고, 장애를 쉽게 감지할 수 있었죠. 즉 모니터링은 인프라 성능 지표, 구성 관리, 사용자 알람에 주 목적을 둔 IT 운영 담당자에 포커스를 맞춘 도구입니다. Observability는 기존 모니터링이 맡는 알람(Alerting), 메트릭(Metric) 외에도 로그(시스템, 애플리케이션), 트레이스, 디버깅과 같은 작업이 가능합니다. 이를 통해 앞으로 발생할 수 있는 장애를 미리 예측하고, 발생한 장애에 대한 근본적인 원인을 찾아내는 데 초점이 맞춰져 있습니다. │Observability 확보를 위한 핵심 구성 요소 옵저버빌리티는 앞서 언급했듯이 메트릭(Metric), 로깅(Logging), 트레이싱(Tracing) 등 작업이 가능한데요. 좀 더 자세히 살펴보겠습니다. Metric 모니터링 분야에서 Metric(메트릭)이란, 인프라 혹은 서비스 성능과 상태를 나타내는 지표입니다. 여기서 중요한 점은 단순히 현재 상태를 보기 쉽게 표현하는 것에서 더 나아가 '시계열 데이터' 형태로 변화하는 데이터를 보여줘야 합니다. 예를 들어 CPU 사용률, 메모리 사용률, 스레드 사용률과 같이 시간이 지남에 따라 어떻게 변화하는지 효율적으로 보여줄 수 있어야 하죠. 또한 메트릭은 여러 AI 분석툴과 오픈소스와 결합하여, 직관적인 파라미터를 통해 시계열 데이터의 다양한 패턴을 자동 감지할 수 있어야 합니다. 운영자와 개발자에게 필요한 리소스를 선택할 수 있도록 성능 예측하는 지표도 필요합니다. Logging Logging(로깅)은 운영 중인 시스템과 애플리케이션에서 발생하는 다양한 이벤트와 에러 등을 기록하는 과정입니다. Observability는 여기서 더 나아가 클라우드 시스템의 모든 로그를 수집하여, 해당 로그를 통해 문제 원인을 식별할 수 있어야 합니다. 물론 각 로그 스트림은 단일 인스턴스에 대한 이벤트를 알려주기 때문에, 마이크로 서비스 환경에서 전체적인 문제 원인을 파악하기 어려울 수 있습니다. 하지만 중앙 집중식 로깅을 사용하면, 애플리케이션 로그를 한곳에 저장할 수 있습니다. 이를 통해 여러 서비스로 구성된 MSA 환경에서 로그를 효과적으로 검색하고 모니터링할 수 있죠. 이러한 작업을 하기 위해서 ELK Stack1 과 같은 로그 수집 활용 도구가 필요한데요. 이 도구는 로그 관리를 단순화화여, 전체 시스템 문제를 더 쉽게 분석할 수 있도록 도와줍니다. *ELK Stack1: Elastic Search. Logstash, Kibana의 약자로 데이터를 수집하고 분석하는 도구 모음 Tracing 트레이싱은 애플리케이션 실행 정보를 기록하는 '특별한 로깅' 방식을 의미합니다. 사실 로깅과 트레이싱을 구분하는 것에 큰 의미는 없습니다. 하지만 Observability 관점에서 트레이싱은, 전체 로그 중 문제를 일으키는 특정 로그들을 시각화하고 이를 선택적으로 관찰하는데 의미가 있습니다. Debugging Observability에서 말하는 디버깅은, 시스템과 서비스 성능을 확인하고 검사할 수 있는 다양한 도구입니다. 장애 원인을 찾을 경우 그 장애 원인뿐만 아니라, 연관관계를 가진 여러 인프라와 애플리케이션을 함께 보여줄 수 있어야 하죠. RUM RUM은 Real User Monitoring 약자로, 사용자의 인터랙션을 추적하여 웹사이트나 애플리케이션 성능을 실시간으로 모니터링하는 기술입니다. 옵저버빌리티는 앞서 언급했듯, 더 이상 IT 인프라 운영자를 위한 도구가 아닙니다. DevOps를 위한 통합적인 가시성을 제공하는 도구이죠. 따라서 운영자와 개발자를 위한 '실제 사용자 관점'에서 모니터링을 제공해야 합니다. 이처럼 옵저버빌리티 시스템은 애플리케이션의 전체적인 상태를 깊이 있게 파악하고, 문제 원인을 분석하는 데 중점을 두는 접근 방식입니다. 그렇다면 애플리케이션 성능 관리 시스템인 APM 도구와는 어떤 차이점이 있을까요? │APM과 Observability 차이점 어떻게 보면 APM과 Observability는 비슷해 보이지만, 문제 원인과 인프라를 분석하는 시각에 따라서 다양한 차이점을 지니고 있습니다. 우선 첫 번째 차이점으로는 모니터링 목적 대상에 따른 차이가 있습니다. APM은 E2E(End-to-End) 성능 구간에 주목합니다. WEB-WAS-DB에 걸친 이 과정을 실제 서비스 사용자의 *액티브 서비스2에 초점을 맞춰, 애플리케이션 성능을 분석하고 모니터링하죠. *액티브 서비스: 현재 시점에서 사용자에게 제공되고 있는 상태 Observability는 APM에서 주목하는 E2E보다, 더 많은 범위를 모니터링합니다. 시스템 인프라, WAS, DB에 대한 정밀 성능 분석과 장애 감지는 물론. 운영 중인 인프라와 서비스를 통합하여 문제 원인을 찾는 데 집중합니다. [그림] Zenius-APM 사용자 정의 실시간 모니터링 상황판 따라서 두 번째 차이점으로는, 측정하는 지표에도 많은 차이가 있는데요. APM은 사용자 요청에 따른 응답 시간과 응답 분포, 액티브 서비스 상태, 트랜잭션 처리율, 이슈 중심으로 '사용자 요청' 관점에 따라 주요 지표를 확인할 수 있습니다. Observability는 사용자의 요청 관점이 아닌, 발생할 수 있는 '모든 이벤트 지표'에 주목합니다. 보다 더 전방위적인 모니터링이 가능하죠. 또한 옵저버빌리티는 기존 APM에서 발생하는 주요 장애 원인뿐 아니라, 예측하지 못한 장애를 객관적인 지표로 보여줍니다. 정리한다면 인프라와 서비스를 분석하고 장애를 탐지한다는 점에서 APM과 Observability는 동일한 역할을 갖지만, 결국 사용자가 무엇을 더 초점에 맞추느냐에 따라 사용 목적은 아래와 같이 달라질 수 있습니다. 우리 기업은 Observability가 맞을까, APM가 맞을까? APM Type Observability Type 애플리케이션 성능 최적화가 필요한 경우 애플리케이션 코드 내의 문제를 식별하고 해결하는 데 중점을 둘 경우 MSA 환경이 아닌 모놀리식 아키텍처에서 서비스를 구성하고 있는 경우 MSA 환경에서의 분산 시스템을 통해 서비스를 구성하는 경우 단순한 애플리케이션 성능을 넘어 전체 IT 인프라 환경에 대한 통찰력 확보가 필요한 경우 인프라 운영자, 개발자, 보안담당자 모두가 통합 모니터링 환경이 필요한 경우 이번 글에서는 옵저버빌리티의 중요성과 APM의 차이점을 자세히 살펴보았습니다. 결론적으로 옵저버빌리티와 APM 중 어느 하나를 더 좋다고 할 수 없으며, 각 조직의 요구사항과 사용 편의성에 맞춰 선택해야 합니다. 그러나 점점 복잡해지는 IT 환경을 고려한다면, 옵저버빌리티를 기반으로 한 Zenius-APM과 같은 도구를 활용하여 좀 더 효율적으로 웹 애플리케이션을 관리해 보는 것은 어떨까요? 🔍더보기 Zenius APM 더 자세히 보기 📝함께 읽으면 더 좋아요 • APM에서 꼭 관리해야 할 주요 지표는?! • APM의 핵심요소와 주요기능은?!
2024.07.24
기술이야기
APM의 핵심요소와 주요기능은?!
기술이야기
APM의 핵심요소와 주요기능은?!
지난 글을 통해서 APM의 필요성과 '트랜잭션' 현황 파악의 중요성에 대해서 알아봤습니다. 이번 시간에는 트랜잭션을 어떤 방식으로 추적하는지 APM 동작 과정을 통해 살펴보고, APM 시스템을 최적화하는 핵심 요소와 기능은 무엇인지 자세히 알아보겠습니다. │APM 동작 과정 APM은 Client-Web Application-DBMS와 같은 구성요소 사이에 트랜잭션1을 추적할 수 있어야 합니다. 이를 통해 웹 서비스 전반적인 성능을 모니터링하고, 문제가 발생했을 때 원인을 신속하게 진단할 수 있기 때문인데요. 그렇다면 각 단계별로 APM가 어떻게 트랜잭션1을 추적하는지 좀 더 자세히 살펴보겠습니다. *트랜잭션1: 쉽게 말해 데이터베이스에 실행되는 작업 단위를 의미합니다. 트랜잭션은 작은 여러 작업들을 하나의 그룹으로 묶어 처리하기 때문에, A라는 작업에서 일부가 성공했다고 하더라도 하나의 트랜잭션 처리가 비정상적으로 종료되면 모두 실패한 것이죠. 클라이언트(Client) 웹 서비스 사용자가 이용하는 디바이스 또는 브라우저입니다. 클라이언트에서 발생하는 요청과 응답을 추적하여 페이지 로딩 시간, 사용자 활동, 에러 발생 등을 파악할 수 있습니다. 이 정보들을 통해 사용자 경험을 분석하고 개선하는데 기초 자료로 사용되죠. 웹서버(Web Server) 클라이언트 요청을 받아, 적절한 답을 생성하여 보내는 서버입니다. 이 단계에서 APM은 서버(예: Apache, Nginx) 로그와 성능 지표를 분석하여 요청 처리 시간, 데이터 전송량, 서버 오류 등 정보를 모니터링하고 기록합니다. 웹 애플리케이션 서버(WAS) WAS는 Web Application Server의 약자로, 애플리케이션에서 사용하는 데이터를 저장하고 관리하는 시스템입니다. 이 단계에서 APM은 데이터베이스 성능을 모니터링하여 DB 쿼리 실행시간과 DB 서버 부하 등을 측정하고, 성능 문제를 파악하는 데 도움을 줍니다. WAS 종류로는 WebLogic, Websphere, JEUS, Tomcat 등이 있습니다. 데이터베이스(DBMS) DBMS(Database Management System)는 기업에서 발생하는 모든 데이터를 저장하고 관리하는 소프트웨어입니다. 이 단계에서는 DB 성능 관리 솔루션을 통해, 애플리케이션 개발자가 작성한 SQL 튜닝과 DBMS 소프트웨어 병목 현상 등을 모니터링할 수 있습니다. 특히 데이터베이스는 IT 인프라에서 필수 요소입니다. 기업 서비스 대부분이 데이터베이스에 접근하여, 데이터를 조회하고 수정해야 하기 때문에 DB 관리는 매우 중요하다 할 수 있죠. 이처럼 APM은 Client-Web Server-Was-DB 각 구성요소 사이에 있는 트랜잭션을 추적하여 웹 서비스 성능을 평가할 수 있습니다. 그다음으로는 APM 시스템 전체적인 성능을 평가하고 최적화하는 핵심 요소는 무엇인지 살펴보겠습니다. │APM 성능을 최적화하는 핵심요소 APM 시스템은 크게 5가지 요소를 통해, 전체적인 성능을 최적화할 수 있습니다. 우선 Resource는 시스템 성능과 안정성을 평가하는데 중요한 역할을 하며, DataBase는 SQL 쿼리의 실행 계획이나 DB 연결 상태와 같은 세부 정보를 분석하여 데이터베이스 성능을 최적화합니다. Alert는 모니터링된 데이터에서 문제를 식별하고 사용자나 운영자에게 경고를 보내며, User 경험과 행동을 추적하여 서비스 품질을 평가합니다. WAS는 서버 내부에서 발생하는 이벤트를 모니터링하고, 서버 성능을 평가하는 역할을 합니다. Resource-Database-Alert-User-WAS 이 5가지 요소는 APM 아키텍처를 구성하는 핵심 요소이기도 한데요. 다음 내용을 통해 APM 아키텍처를 좀 더 자세히 살펴보겠습니다. │APM 아키텍처 APM 아키텍처는 Agent를 통해 WAS(관리대상) 실시간 데이터를 수집하고 → Manager에서 데이터를 수집/분석/가공 한 뒤 → 다양한 UI로 시각화합니다. 특히 꼭 기억해야 할 APM 아키텍처 핵심 3가지는 에이전트, 데이터베이스, 통신방식인데요. 좀 더 자세히 알아보겠습니다. 에이전트 APM 관리대상(예시: WebSphere, WebLogic, JBoss, JEUS, Tomcat 등)에 Agent라고 불리는 소프트웨어를 설치합니다. 그다음 모니터링 대상 시스템(WAS)에서 데이터를 수집하죠. 에이전트는 애플리케이션 내부 동작을 모니터링하고, 성능 데이터를 수집하는 역할을 합니다. 이러한 데이터를 활용하여 에이전트는 서비스 구간별 현황과 초당 처리 건수, 서비스 응답시간, 동시 접속자 수, 트랜잭션 거래량, 에러 등 상세한 지표를 제공해 주죠. 데이터베이스 수집된 데이터를 보관하고 분석하기 위해서는, 데이터베이스(DataBase)를 사용합니다. 이 데이터베이스는 대규모 데이터를 저장하고 관리하는 구조여야 하며, 분석하고 보고서를 생성하는데 필요한 데이터를 효율적으로 쿼리 할 수 있어야 합니다. 통신방식 APM 시스템은 보통 다양한 통신 프로토콜(Communication Protocol)을 사용하여, 데이터를 수집하고 전송합니다. 예를 들어 웹 소켓(WebSocket)을 통해 실시간 데이터를 전송하거나 http(s)를 사용하여 주기적으로 데이터를 전송하는 방식이 일반적입니다. 그다음으로는 APM은 어떤 주요 기능을 제공하는지 알아보도록 하겠습니다. │APM 주요기능 APM은 대표적으로 웹사이트와 소프트웨어 애플리케이션 및 서비스에서, 성능을 모니터링하고 분석하는 기능이 있는데요. 좀 더 자세한 APM 기능을 살펴보겠습니다. 실시간 성능 통합 모니터링 [그림] Zenius-APM 토폴로지 맵 APM은 Tomcat, Jboss, WebLogic, JEUS 등 다양한 애플리케이션 서버(WAS) 환경에서 실행되는 애플리케이션 통합 모니터링을 제공합니다. 시스템 간의 처리 성능과 현황 정보는 토폴로지 뷰를 통해 시각적으로 파악할 수 있죠. [그림] Zenius-APM 모니터링 상황판 또한 각 서버의 트랜잭션 처리량, 처리 속도, 자원 사용량을 실시간으로 분석하여 시스템 성능을 관리합니다. 특정 트랜잭션 실행 경로를 추적하고 분석하여, 성능 병목 현상도 식별할 수 있습니다. [그림] Zenius-APM 모니터링 서비스 응답분포 APM은 서비스 응답 분포도를 제공하여, 비정상적인 트랜잭션을 집중적으로 조회하고 분석할 수 있습니다. 장애관리 APM은 메모리 누수, 서비스 응답 지연과 같은 장애 원인을 실시간으로 추적하고 분석하는 기능을 제공합니다. Rawdata를 기반으로 장애 발생 시점을 재현하여, 문제의 근본 원인을 파악하는 데 도움을 주죠. 또한 자동 이벤트 처리는 장애 관리 규칙(Rule)에 따라 이루어지며, 문제 발생 시에는 사용자에게 즉각적인 알림을 제공합니다. 성능 분석과 통계 APM은 애플리케이션 성능을 다양한 지표(예: 성능비교, 기간비교, 증설 필요성, 시간대별 등)를 통해 분석하고, 여러 파일 형식의 보고서로 제공합니다. 또한 애플리케이션 성능 문제와 SQL 쿼리 간의 연관성을 분석하여 성능 개선 방안을 제안합니다. 다양한 환경 지원 레거시 시스템에서 클라우드 인프라에 이르기까지, APM은 다양한 IT 환경을 효과적으로 지원합니다. 또한 WAS 중심 성능 관리와 MSA(마이크로 서비스 아키텍처) 환경 모니터링을 가능하게 하는 기술을 제공하죠. 이번 시간에 알아본 내용처럼 APM은 다양한 애플리케이션 서버(WAS) 환경에서 실행되며, 트랜잭션 성능을 관리하는 통합 모니터링 제품입니다. Zenius-APM와 같이 다양한 WAS 환경에서의 통합 모니터링과 트랜잭션 처리 현황을 체계적으로 파악할 수 있는 APM을 통해, 효과적으로 웹 애플리케이션을 관리해 보세요!
2024.07.19
기술이야기
성공적인 네트워크 관리의 세 가지 조건!
기술이야기
성공적인 네트워크 관리의 세 가지 조건!
한 기업에서 네트워크 지연 및 접속 오류 등의 장애가 생기면 어느 정도의 피해 비용이 발생할까요? Gartner 리포트에 따르면, 1분당 평균 700만 원 이상의 비용이 발생한다고 합니다. 여기에 브랜드 신뢰도나 이미지 추락 등 당장 보이지 않는 부분까지 포함하면 피해 비용은 기하급수적으로 늘어납니다. 따라서 IT 산업에 속한 기업뿐 아니라 다른 분야의 민간기업, 그리고 정부기관과 공기업에 이르기까지 안정적으로 네트워크를 관리하기 위한 노력을 이어가고 있습니다. [그림] 네트워크 장애를 막기 위한 정부 차원의 노력 네트워크 활용도와 중요성이 증가함에 따라서 NMS(Network Management System) 시장의 규모도 빠르게 확대되고 있습니다. 전 세계적인 NMS 시장의 규모는 2022년 12조 원을 넘어서 2027년에는 19조 원에 이를 것으로 예상됩니다. 하지만 NMS를 사용한다고 네트워크 관리가 무조건 수월해지는 것은 아닙니다. 성공적인 네트워크 관리를 위한 도구로써 NMS가 갖춰야 할 세 가지 필수 항목이 있는데요, 지금부터 자세히 알아보겠습니다. ㅣNMS(네트워크 관리 시스템)의 세 가지 필수 조건 NMS 솔루션 선택 시 아래 세 가지를 꼭 점검해 보시기 바랍니다. 첫 번째, 유/무선/가상 네트워크 환경에 대한 성능 모니터링이 가능한가? NMS는 네트워크 장비부터 무선 엑세스 포인트(AP), 소프트웨어 정의 네트워크(SDN)에 이르기까지 다양한 네트워크 환경에 대해서 통합적으로 모니터링할 수 있어야 합니다. 또한 라우터, 스위치, 서버, 애플리케이션 등 네트워크로 연결된 모든 환경에 대한 가시성 확보가 중요합니다. 이를 통해서 트래픽, CPU 사용률, 지연시간, 장비의 다운타임 등 주요 지표들에 대한 모니터링을 통해 네트워크 성능을 최적화할 수 있게 때문이죠. [그림] NMS 예시화면 (제니우스: 전체 네트워크에 대한 통합 모니터링) 두 번째, 연관 장비에 대한 복합적인 관리가 가능한가? NMS는 네트워크 장비 관점의 트래픽과, 네트워크 장비에 연결된 서버 관점의 트래픽까지 복합적으로 분석할 수 있어야 합니다. 이러한 기능을 통해 하드웨어 오류 및 소프트웨어 장애 관리를 넘어서 서비스의 통신 상태, 트래픽 양과 흐름을 모니터링하여 전체 서비스에 대한 가용성 및 병목현상을 확인할 수 있기 때문입니다. [그림] NMS 예시화면(제니우스: 네트워크 장비 요약 view) 세 번째, 다양한 이벤트에 대한 관리가 가능한가? NMS는 임계치 기반의 즉각적인 문제 원인 식별과 정상 범위 이탈 시의 통보 기능을 통해 문제 해결 및 예방에 활용될 수 있어야 합니다. 이뿐 아니라 이벤트가 발생할 경우 스크립트를 통한 자동화 프로세스로 관리자의 업무 효율도 향상시킬 수 있어야 합니다. 더불어서 보안 취약점을 관리하여 보안 위협을 사전에 막고, 사용자의 접근으로부터 보호하는 기능도 반드시 필요합니다. 지금까지 살펴본 NMS의 세 가지 조건은 네트워크의 안정성, 보안성, 효율성을 보장하기 위한 필수조건입니다. 네트워크의 중요성과 활용도가 커지는 가운데 '제대로 된' NMS의 활용을 통해 높은 경쟁력을 확보하시기 바랍니다.
2024.05.10
기술이야기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
기술이야기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
앞선 글들을 통해서 NMS의 기본 개념, 구성요소와 기능, 정보 수집 프로토콜에 대해서 알아봤었는데요. 이번 글에서는 NMS의 역사와 진화 과정, 그리고 최근 트렌드에 대해서 자세히 알아보겠습니다. EMS, NPM, 그리고 AIOps에 이르기까지 네트워크의 빠른 변화에 발맞추어 진화하고 있는 NMS에 대해서 하나씩 하나씩 살펴보겠습니다. ㅣNMS의 역사와 진화 과정 우선 NMS의 전반적인 역사와 진화 과정을 살펴보겠습니다. [1] 초기 단계 (1980년대 이전) 초기에는 네트워크 관리가 수동적이었습니다. 네트워크 운영자들은 네트워크를 모니터링하고 문제를 해결하기 위해 로그 파일을 수동으로 분석하고 감독했습니다. [2] SNMP의 등장 (1988년) SNMP(Simple Network Management Protocol)의 등장으로 네트워크 장비에서 데이터를 수집하고 이를 중앙 집중식으로 관리하는 표준 프로토콜을 통해 네트워크 관리자들이 네트워크 장비의 상태를 실시간으로 모니터링하고 제어할 수 있게 됐습니다. [3] 네트워크 관리 플랫폼의 출현 (1990년대 중후반) 1990년대 후반부에는 상용 및 오픈 소스 기반의 통합된 네트워크 관리 플랫폼이 등장했습니다. 이러한 플랫폼들은 다양한 네트워크 장비와 프로토콜을 지원하고, 시각화된 대시보드와 경고 기능 등을 제공하여 네트워크 관리의 편의성을 높였습니다. [4] 웹 기반 NMS (2000년대 중반) 2000년대 중반에는 웹 기반의 NMS가 등장했습니다. 이러한 시스템은 사용자 친화적인 웹 인터페이스를 통해 네트워크 상태를 모니터링하고 관리할 수 있게 했습니다. [5] 클라우드 기반 NMS (2010년대 이후) 최근 몇 년간 클라우드 기반 NMS의 등장으로 네트워크 관리의 패러다임이 변화하고 있습니다. 또한 빅데이터 기술과 인공지능(AI) 기술을 활용하여 네트워크 성능을 최적화하고, 향후 성능을 예측할 수 있는 성능 예측 기능까지 NMS에서 제공하고 있습니다. ㅣNMS에서 EMS로의 진화 네트워크 환경은 빠르게 변화하게 되고, 이에 따라서 NMS도 EMS로 진화하게 됩니다. NMS의 진화는 총 세 가지 세대로 나눌 수 있습니다. 1세대: 디바이스 관리 시스템 기존의 NMS는 외산 제조사에서 제공하는 전용 네트워크 솔루션이 주를 이루었습니다. CISCO의 시스코웍스(CiscoWorks), IBM의 넷뷰(NetView) HP의 네트워크 노드 매니저(Network Node Manager) 등 다양한 벤더들이 자사의 제품에 대한 모니터링 서비스를 제공하기 위해 특화된 디바이스 관리 솔루션을 내놓았죠. HP Network Node Manager 예시 화면(출처ⓒ omgfreeet.live) 물론 자사의 제품을 관리하기 위한 목적에서 출발한 솔루션이었기에, 대규모 이기종 IT 인프라 환경에 대한 모니터링 기능은 제공하지 못했습니다. 2세대: IT 인프라 관리 시스템 EMS의 등장 1세대의 NMS의 경우 빠르게 급변하는 네트워크 트렌드를 따라갈 수 없었습니다. 가상랜(VLAN), 클라이언트-서버 기술이 발달하게 되자, IP 네트워크 관계만으로 실제 토폴로지를 파악하기 어려웠습니다. 또한 네트워크장비 및 회선의 상태뿐 아니라, 서버 등의 이기종 IT 인프라 통합 모니터링에 대한 니즈와 함께 EMS(Enterprise Management System)의 시대가 시작됩니다. 이에 따라 서비스 관리 차원의 통합 관제 서비스가 등장합니다. 기존의 네트워크 모니터링뿐 아니라 서버, DBMS, WAS 등 IT 서비스를 이루고 있는 모든 인프라들에 대한 통합 모니터링에 대한 관심과 니즈가 증가했기 때문입니다. 3세대: 클라우드 네이티브 환경의 EMS 2010년 중 이후 서버, 네트워크 등 IT 인프라에 대한 클라우드 네이티브로의 전환이 가속화되었습니다. 기존의 레거시 환경에 대한 모니터링과 함께 퍼블릭, 프라이빗 클라우드에 대한 모니터링 니즈가 증가하면서 모든 환경에 대한 통합적인 가시성을 제공해 줄 수 있는 EMS가 필요하게 되었죠. 이외에도 AI의 발전을 통해 AIOps, Observability라는 이름으로 인프라에 대한 장애를 사전적으로 예측할 수 있는 기능이 필요하게 됐습니다. ㅣ네트워크 환경 변화(가상화)와 NMS의 변화 이번에는 네트워크 환경 변화에 따른 NMS의 변화에 대해서 알아보겠습니다. 네트워크 환경 변화(네트워크 가상화) 네트워크 구성 방식은 지속적으로 변화해왔습니다. 클라이언트-서버 모델부터 중앙 집중식 네트워크, MSA 환경에서의 네트워크 구성까지 이러한 변화는 기술 발전, 비즈니스 요구 사항, 보안 요구 사항 등 다양한 요인에 의해 영향을 받았는데요. 무엇보다 가장 중요한 변화는 전통적인 온 프레미스 네트워크 구조에서 네트워크 자원이 더 이상 물리적인 장비 기반의 구성이 아닌 가상화 환경에서 구성된다는 점입니다. ▪소프트웨어 정의 네트워킹(SDN, 2000년대 후반 - 현재): 네트워크 관리와 제어를 분리하고 소프트웨어로 정의하여 유연성과 자동화를 향상시키는 접근 방식입니다. SDN은 네트워크 관리의 복잡성을 줄이고 가상화, 클라우드 컴퓨팅 및 컨테이너화와 같은 새로운 기술의 통합을 촉진시켰습니다. ▪네트워크 가상화 (NFV, 현재): 기존 하드웨어 기반 전용 장비에서 수행되던 네트워크 기능을 소프트웨어로 가상화하여 하드웨어 의존성과 장비 벤더에 대한 종속성을 배제하고, 네트워크 오케스트레이션을 통해 네트워크 환경 변화에 민첩한 대응을 가능하게 합니다. ㅣ클라우드, AI 등의 등장에 따른 NMS의 방향 클라우드 네이티브가 가속화되고, AI를 통한 인프라 관리가 주요 화두로 급부상하면서 네트워크 구성과 이를 모니터링하는 NMS의 환경 역시 급변하고 있습니다. 클라우드 내의 네트워크: VPC VPC(Virtual Private Cloud)는 퍼블릭 클라우드 환경에서 사용할 수 있는 전용 사설 네트워크입니다. VPC 개념에 앞서 VPN에 대한 개념을 단단히 잡고 넘어가야 합니다. VPN(Virtual Private Network)은 가상사설망으로 '가상'이라는 단어에서 유추할 수 있듯이 실제 사설망이 아닌 가상의 사설망입니다. VPN을 통해 하나의 네트워크를 가상의 망으로 분리하여, 논리적으로 다른 네트워크인 것처럼 구성할 수 있습니다. VPC도 이와 마찬가지로 클라우드 환경을 퍼블릭과 프라이빗의 논리적인 독립된 네트워크 영역으로 분리할 수 있게 해줍니다. VPC가 등장한 후 클라우드 내에 있는 여러 리소스를 격리할 수 있게 되었는데요. 예를 들어 'IP 주소 간에는 중첩되는 부분이 없었는지', '클라우드 내에 네트워크 분리 방안' 등 다양한 문제들을 VPC를 통해 해결할 수 있었습니다. ▪서브넷(Subnet): 서브넷은 서브 네트워크(Subnetwork)의 줄임말로 IP 네트워크의 논리적인 영역을 부분적으로 나눈 하위망을 말합니다. AWS, Azure, KT클라우드, NHN 등 다양한 퍼블릭 클라우드의 VPC 서브넷을 통해 네트워크를 분리할 수 있습니다. ▪서브넷은 크게 퍼블릿 서브넷과 프라이빗 서브넷으로 나눌 수 있습니다. 말 그대로 외부 인터넷 구간과 직접적으로 통신할 수 있는 공공, 폐쇄적인 네트워크 망입니다. VPC를 이용하면 Public subnet, Private subnet, VPN only subnet 등 필요에 따라 다양한 서브넷을 생성할 수 있습니다. ▪가상 라우터와 라우트 테이블(routing table): VPC를 통해 가상의 라우터와 라우트 테이블이 생성됩니다. NPM(Network Performance Monitoring) 네트워크 퍼포먼스 모니터링(NPM)은 전통적인 네트워크 모니터링을 넘어 사용자가 경험하는 네트워크 서비스 품질을 측정, 진단, 최적화하는 프로세스입니다. NPM 솔루션은 다양한 유형의 네트워크 데이터(ex: packet, flow, metric, test result)를 결합하여 네트워크의 성능과 가용성, 그리고 사용자의 비즈니스와 연관된 네트워크 지표들을 분석합니다. 단순하게 네트워크 성능 데이터(Packet, SNMP, Flow 등)를 수집하는 수동적인 과거의 네트워크 모니터링과는 다릅니다. 우선 NPM은 네트워크 테스트(Synthetic test)를 통해 수집한 데이터까지 활용하여, 실제 네트워크 사용자가 경험하는 네트워킹 서비스 품질을 높이는데 그 목적이 있습니다. NPM 솔루션은 NPMD라는 이름으로 불리기도 합니다. Gartner는 네트워크 성능 모니터링 시장을 NPMD 시장으로 명명하고 다양한 데이터를 조합하여 활용하는 솔루션이라고 정의했습니다. 즉 기존의 ICMP, SNMP 활용 및 Flow 데이터 활용과 패킷 캡처(PCAP), 퍼블릭 클라우드에서 제공하는 네트워크 데이터 활용까지 모든 네트워크 데이터를 조합하는 것이 핵심이라 할 수 있습니다. AIOps: AI를 활용한 네트워크 모니터링 AI 모델을 활용한 IT 운영을 'AIOps'라고 부릅니다. 2014년 Gartner를 통해 처음으로 등장한 이 단어는 IT 인프라 운영에 머신러닝, 빅데이터 등 AI 모델을 활용하여 리소스 관리 및 성능에 대한 예측 관리를 실현하는 것을 말합니다. 가트너에서는 AIOps에 대한 이해를 위해 관제 서비스, 운영, 자동화라는 세 가지 영역으로 분류해서 설명하고 있습니다. ▪관제(Observe): AIOps는 장애 이벤트가 발생할 때 분석에 필요한 로그, 성능 메트릭 정보 및 기타 데이터를 자동으로 수집하여 모든 데이터를 통합하고 패턴을 식별할 수 있는 관제 단계가 필요합니다. ▪운영(Engine): 수집된 데이터를 분석하여 장애의 근본 원인을 판단하고 진단하는 단계로, 장애 해결을 위해 상황에 맞는 정보를 IT 운영 담당자에게 전달하여 반복적인 장애에 대한 조치 방안을 자동화하는 과정입니다. ▪자동화(Automation): 장애 발생 시 적절한 해결책을 제시하고 정상 복구할 수 있는 방안을 제시하여, 유사 상황에도 AIOps가 자동으로 조치할 수 있는 방안을 마련하는 단계입니다. 위의 세 단계를 거쳐 AIOps를 적용하면 IT 운영을 사전 예방의 성격으로 사용자가 이용하는 서비스, 애플리케이션, 그리고 인프라까지 전 구간의 사전 예방적 모니터링을 가능하게 합니다. 또한 구축한 데이터를 기반으로 AI 알고리즘 및 머신 러닝을 활용하여 그 어떠한 장애에 대한 신속한 조치와 대응도 자동으로 가능하게 합니다. Zenius를 통한 클라우드 네트워크 모니터링 참고로 Zenius를 통해 각 퍼블릭 클라우드 별 VPC 모니터링이 가능합니다. VPC의 상태 정보와 라우팅 테이블, 서브넷 목록 및 서브넷 별 상세 정보 (Subnet ID, Available IP, Availability Zone 등)에 대한 모니터링 할 수 있습니다. Zenius-CMS를 통한 AWS VPC 모니터링 이외에도 각 클라우드 서비스에 대한 상세 모니터링을 통해 클라우드 모니터링 및 온 프레미스를 하나의 화면에서 모니터링하실 수 있습니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼, 네트워크의 변화에 따라서 NMS는 계속해서 진화하고 있습니다. 현재의 네트워크 환경과 변화할 환경을 모두 완벽하게 관리할 수 있는 NMS 솔루션을 통해 안정적으로 서비스를 운영하시기 바랍니다.
2024.04.03
기술이야기
무선 AP를 WNMS를 통해 올바르게 관리하는 방법
기술이야기
무선 AP를 WNMS를 통해 올바르게 관리하는 방법
이제 어디서나 인터넷을 빠르고 쉽게 이용하는 것은 '기본'이 되었습니다. 우리나라 정부와 지차체는 공공장소에서의 무료 와이파이(WiFi) 접근성을 높이기 위해, 공공와이파이 확대 프로젝트를 진행하고 있습니다. 한국 지능정보사회진흥원(NIA)에서는 23년에 공공와이파이를 4,400개소에 신규 구축하여 총 5만 8000개소의 공공장소에서 이용할 수 있게 된 것이죠. 또한 교육부에서는 디지털뉴딜 사업의 일환으로 「전교실 무선망 구축 사업」을 크게 확대시켜, 약 21만 개의 무선 AP(Access Points)를 교실에 설치했습니다. 이를 통해 온라인 학습 자료의 접근성을 높이고, 디지털 콘텐츠의 활용을 원활하게 하고 있습니다. 이 밖에도 대형 쇼핑몰, 카페 체인점, 호텔 등 무선 AP의 활용 범위가 지속적으로 확대되고 있는데요. 하지만 여러 장소에서 더 많은 무선 AP들이 설치됨에 따라, AP를 감지하고 관리하는 부분의 필요성이 커지고 있습니다. 이에 따라 AP를 중앙에서 관리할 수 있는 WLC(Wireless LAN Controller, 무선랜 컨트롤러)나 WNMS(Wireless Network Management System)의 중요성도 점점 더 커지고 있습니다. 이 중에서도 광범위한 네트워크 관리 기능을 제공하는 WNMS를 활용하는 사례가 많은데요. 오늘은 WNMS를 통해 '제대로' 무선 AP를 관리할 수 있는 방법을 알아보겠습니다. ㅣ무선 AP를 효과적으로 관리하는 법 WNMS는 AP 장비와 컨트롤러에 수집된 데이터를 바탕으로, 다양한 View를 통해 실시간으로 성능을 모니터링하고, 개선할 수 있도록 돕는 시스템입니다. 즉 무선 네트워크의 '눈'이 되어, 사용자들이 일상생활이나 업무에서 끊김 없이 높은 품질의 무선 인터넷 서비스를 이용할 수 있도록 제공하죠. 하지만 WNMS을 무조건 도입만 한다고 해서 AP와 컨트롤러를 올바르게 관리할 수 있을까요? WNMS를 제대로 '잘' 이용하기 위해서는, 다음과 같은 2가지 핵심 개념을 기억해야 합니다. 하나, AP 장비를 한눈에 모니터링할 수 있어야 합니다 우선 핵심 개념 첫 번째는 여러 위치에 분산된 무선 AP와 컨트롤러를 한눈에 쉽게 모니터링할 수 있어야 한다는 점입니다. 다시 말해, 네트워크 관리자가 AP의 핵심 현황들을 종합적으로 모니터링할 수 있어야 하죠. 예를 들어 AP가 네트워크에 연결되어 정상적으로 작동하는지(UP), 연결이 끊어지거나 오류 상태가 있는지(Down)는 필수적으로 확인할 수 있어야 합니다. AP Up/Down은 무선 네트워크 관리의 핵심 요소로, 네트워크의 신뢰성과 성능을 보장하는 데 필수적이기 때문이죠. 또한 전송량이 높은 AP와 전송량이 많은 사용자 또한 파악할 수 있어야 합니다. [그림] Zenius-WNMS : 핵심 요약 페이지 Zenius(제니우스) WNMS를 통해 구체적으로 살펴볼까요? Zenius WNMS는 무선 AP 관제 상황에 대한 핵심 요약 페이지를 제공하여, 한 화면에서 무선 네트워크 상황을 일목요연하게 확인할 수 있습니다. AP의 핵심 현황인 AP Up/Down 상태는 물론, 전송량이 높은 AP 장비, 사용자 별로 전송량이 많은 항목들을 Top 10으로 선별하여 제공하고 있죠. 이처럼 AP 핵심 요약 페이지를 통해 무선 네트워크 상태를 신속하게 파악할 수 있습니다. 둘, AP 장비의 성능을 직관적으로 확인할 수 있어야 합니다 두 번째 핵심 개념은 컨트롤러에 연결된 무선 AP 장비별 성능을 직관적으로 확인할 수 있어야 한다는 점입니다. 특히 각 AP 별로 In/Out bps(bits per second) 정보를 기간 단위로 성능 추이를 확인할 수 있어야 하는데요. 이는 네트워크 트래픽의 흐름을 파악하여, 어느 시간대에 트래픽이 집중되는지를 알 수 있는 중요한 지표이기 때문이죠. 이에 따라 잠재적인 네트워크 문제나 과부하 상황을 사전에 식별하고, 이에 대응할 수 있습니다. 쉽게 예를 든다면 온라인 대형 쇼핑몰에서 특별 이벤트 기간일 경우 방문객이 급증하곤 하는데요. 이때 WNMS를 통해 AP 별 In/Out bps 정보를 모니터링한다면, 트래픽 패턴을 파악할 수 있습니다. 이 정보를 바탕으로 관리자는 네트워크 용량을 사전에 조정하고, 방문객에게 끊김 없는 와이파이 서비스를 제공할 수 있게 되죠. [그림] Zenius-WNMS : AP 장비 성능 모니터링 페이지 Zenius WNMS를 통해 좀 더 자세히 살펴보겠습니다. 위 이미지에 나와있듯이, Zenius WNMS는 무선 AP 장비 별 In/Out bps 성능 추이를 직관적으로 모니터링할 수 있습니다. 특정 시간대에 데이터 트래픽이 집중되는 경우, 추가적인 네트워크 자원을 할당하여 사용자의 불편을 최소화할 수 있죠. 이처럼 네트워크의 전반적인 성능을 평가하고, 필요한 경우 네트워크 구성을 조정하여, 전체 성능을 최적화할 수 있습니다. 또한 커서의 움직임에 따라 실시간으로 In/Out bps와 AP 사용자 수를 동시에 확인할 수 있습니다. 이에 따라 평소보다 많은 데이터를 소비하는 AP나, 비정상적으로 많은 사용자가 연결된 AP를 모니터링하고 조치할 수 있죠. 이처럼 가시성 높은 직관적인 UI를 통해 네트워크의 성능을 지속적으로 개선하고, 사용자에게 최적의 서비스를 제공할 수 있습니다. [그림] Zenius-WNMS : AP 장비 세부 항목별 추이 모니터링 뿐만 아니라 관리하고 있는 무선 AP 장비와 컨트롤러 페이지를 각각 한눈에 확인할 수 있고, 성능 항목에 대해서 일/주/월/년 기간 별 추이 모니터링도 지원하고 있습니다. 이를 통해 장기적인 네트워크 사용 패턴을 파악할 수 있으며, 예측 가능한 네트워크 용량 계획을 수립할 수 있습니다. 。。。。。。。。。。。。 스마트시티 구축, IoT(사물인터넷)의 증가, 산업 자동화 확대 등 무선 네트워크를 활용한 다양한 분야에서 WNMS의 역할이 확대되고 있습니다. 앞서 언급했듯 WNMS는 '사용자 입장'에서 무선 AP 장비와 성능을 직관적으로 모니터링할 수 있는지가 매우 중요합니다. 사용자가 손쉽게 네트워크 상태를 확인할 수 있어야, 필요한 조치를 신속하게 취할 수 있기 때문이죠. 분산된 AP 장비에 대한 통합 모니터링 UI를 제공하여 장애 발생 시 빠른 조치를 할 수 있게 하는 Zenius(제니우스) WNMS와 같은 도구를 활용하여, 성공적으로 무선 AP를 관리하시길 바랍니다!
2024.03.04
기술이야기
클라우드 전환과 하이브리드 클라우드가 성공하려면?
기술이야기
클라우드 전환과 하이브리드 클라우드가 성공하려면?
정부와 공공기관, 그리고 금융권과 대기업 등 모든 분야에서 클라우드 전환이 가속화되고 있습니다. 이에 따라서 가트너(Gartner)는 2018년 약 2.1조 원이었던 국내 클라우드 시장 규모가 2024년에는 약 '6조 원'에 이를 것으로 내다봤습니다. 。。。。。。。。。。。。 1. 클라우드 전환 단계 ▪초창기: 소규모 Workload가 시범적으로 전환되는 시기 ▪과도기: 인프라, 네이티브 앱 등 주요 Workload가 전환되는 시기 ▪정착기: 모든 Workload가 클라우드에서 개발/구축되는 시기 클라우드 전환은 크게 세 단계로 나누어서 진행됩니다. 대부분의 기업과 기관이 현재 '클라우드 전환 과도기'에 접어든 가운데, 몇 가지 작지 않은 이슈로 인한 어려움을 겪고 있습니다. 2. 클라우드 송환? 클라우드에서 On-Premise로 복귀?! IDC는 최근, "향후 2년 내 프라이빗 클라우드(Private Cloud) 또는 비 클라우드 환경으로의 이전을 계획하고 있는 기업의 비중이 70%가 넘는 것으로 나타났으며, 이러한 현상은 더욱 심화될 전망이다"라고 발표했습니다. '클라우드 송환(Cloud Repatriation)'이라고도 부를 수 있는 이 같은 현상은, 주로 클라우드의 높은 비용·성능 문제·보안 및 규제·공급자 Lock-in 등이 주요 원인으로 지적되고 있습니다. 이와 같은 클라우드 전환 과도기에서의 어려움을 극복하고 효율성을 높이기 위해, '하이브리드 클라우드'로의 전환이 새로운 트렌드로 자리 잡았습니다. 3. 유연하게 활용한다! ‘하이브리드 클라우드’로의 전환 트렌드 하이브리드 클라우드(Hybrid Cloud)는 퍼블릭·프라이빗 클라우드와 대형 IDC 센터와 같은, 온프레미스(On-Premise) 환경을 조합하여 사용하는 것을 말합니다. ⓒ디지털 서비스 이용 지원 시스템 현재 87% 이상의 기업이 2가지 이상의 멀티 클라우드를 사용하며, 72% 이상은 하이브리드 클라우드를 사용하는 것으로 나타났습니다. 하이브리드 클라우드의 장점 ▪다양한 환경을 조합하여 유연하게 리소스를 확장하거나 축소 가능 ▪민감정보를 프라이빗 클라우드에 유지하여 보안성 강화 ▪서로 다른 클라우드 환경의 장점의 조합 및 활용 가능 하이브리드 클라우드는 위와 같은 분명한 장점이 있기에, 계속해서 많은 기업과 기관이 사용할 것으로 예상됩니다. 하지만 하이브리드 클라우드도 반드시 극복해야 할 한계와 문제점이 있습니다. 하이브리드 클라우드의 한계는 크게 세 가지로 나눠볼 수 있는데요. 4. 하이브리드 클라우드의 세 가지 한계, 그리고 극복 방안 관리의 복잡성 Complexity On-Premise, 하이브리드 클라우드, 퍼블릭 클라우드 등은 모두 서로 다른 인프라 구성과 특성을 보유하고 있습니다. 따라서 다양한 CSP와 Legacy 시스템 등을 종합적으로 관제하기 위한 모니터링 기술이 필요합니다. 정책의 분산화 Decentralization 각 CSP의 독자적인 기술과 운영환경에 따라, 기업의 IT 인프라 관리 정책이 분산화될 우려가 있습니다. 따라서 서로 다른 API 환경에 대응할 수 있는 중립적인 모니터링 접근 방식이 필요합니다. 서비스 품질 이슈 Quality 이기종 환경에서의 실시간 성능 모니터링 부재로, 서비스 품질 및 성능 문제가 발생할 수 있습니다. 따라서 실시간 상태 및 성능 지표 모니터링을 통한 최적의 프로비저닝 역량 확보가 중요합니다. 결국 하이브리드 클라우드의 세 가지 한계를 극복할 수 있는 '성공적인 모니터링 전략'이 필요합니다. 5. 하이브리드 클라우드 환경에서의 성공적인 모니터링 전략 앞서 살펴본 것처럼 하이브리드 클라우드의 효율을 높이고 한계를 극복하기 위해선, 성공적인 클라우드 & On-Premise 통합 모니터링이 필요합니다. 통합 모니터링을 통해서 다양한 관리 Point를 단일화하고, 일관된 IT 정책을 적용하며, 다양한 관점별 View를 통한 데이터 가시성을 확보할 수 있습니다. 또한 각 환경에 대한 실시간 성능 지표 모니터링과 신속한 장애 감지 및 원인 분석을 통해, 높은 서비스 품질을 유지할 수 있습니다. 주요 Point에 대해서 자세히 살펴본다면 다음과 같습니다. l 단일 Framework 기반의 통합 모니터링 환경 구성 성공적인 모니터링을 위해서는 Public/Private 클라우드와 On-Premise를 아우르는 단일 Framework 기반의 통합 모니터링 환경을 구성해야 합니다. 다양한 환경에 대한 통합 모니터링 시스템을 구축하여, 대시보드와 토폴로지 맵 등을 통해 분산된 IT 리소스와 서비스 정보를 한눈에 볼 수 있어야 하는 것이죠. l 퍼블릭 클라우드 모니터링: 통합 관리 및 운영 가시성 확보 제니우스(Zenius)의 클라우드 서비스 맵 이용 중인 클라우드 서비스 전체 및 개별 단위의 주요 지표 상세 모니터링으로, 가시성을 확보해야 합니다. 이를 통해서 다양한 서비스의 주요 지표를 관리, 이용 서비스 간의 연관관계 관리, 과금(Billing) 관리, 즉각적인 장애 관리를 할 수 있습니다. l 프라이빗 클라우드 모니터링: 개별적인 구성 환경을 고려한 모니터링 각 기업과 공공기관 개별적인 클라우드 구성 환경을 고려하여, 클라우드 인프라 자원을 관리하고 활용도를 높이기 위한 모니터링 전략도 필요합니다. 위의 설명처럼 쿠버네티스(Kubernetes), 컨테이너(Container), SDN 등 프라이빗 클라우드 환경을 구성하는 요소를 다각적으로 관리하여 IT 인프라 자원의 활용도를 향상시켜야 합니다. l MSA 기반 애플리케이션 모니터링 IDC에 따르면 2025년에 출시되는 앱의 90% 이상이 '클라우드 네이티브'로 구현될 전망이라고 합니다. 클라우드 네이티브의 핵심은 'MSA(Micro Service Architecture)' 방법론으로의 전환입니다. 애플리케이션을 효과적으로 실행·배포·활용하기 위한 핵심요소는 'Container'이죠. 따라서 MSA 환경에서의 성공적인 애플리케이션 관리를 위해서는 실시간 모니터링, 분산 시스템 관제, 서비스 수요 변화 대응 이 세 가지가 가장 중요합니다. 위 도표에 정리된 것처럼 컨테이너 기반의 마이크로 서비스 모니터링, 복잡화된 시스템 간 트랜잭션 분석 및 가시화, 오토스케일링 자동 대응을 통한 관제 연속성 확보 전략을 구축한다면 성공적으로 MSA 기반의 애플리케이션 모니터링을 할 수 있습니다. l 레거시 환경 모니터링 마지막으로 On-premise로 자체 보유하고 있는 레거시 장비와 프라이빗 클라우드 장비가 있는 전산실의 성공적인 모니터링을 위해서는, 먼저 On-premise 환경을 고려한 최적의 포인트 솔루션과 통합 플랫폼 기반 모니터링이 확보되어야 합니다. 또한 안정적인 On-Premise 환경 운영을 위해 전산실 부대설비(UPS, 항온 항습기 등), 환경감시(온/습도, 누수 등)에 대한 레거시 환경 맞춤형 관리가 가능해야 합니다. 물리/가상 자원 간의 그룹화 관리 기능, 다양한 자원 간의 이벤트 연관 설정 및 분석 기능도 성공적인 레거시 환경 모니터링을 위한 필수조건입니다. 6. 성공적인 모니터링 솔루션 선택 기준은? 클라우드 전환기, 하이브리드 클라우드 환경에서 성공적인 모니터링을 위한 루션 선택 기준은 1) 기술력이 있는지 2) 검증된 솔루션인지 3) 믿을 수 있는 기업인지 이렇게 세 가지로 정리할 수 있습니다. 하나, 기술력이 있는 솔루션인가? 클라우드와 레거시 통합을 위한 프레임워크 기반의 솔루션인지, 그리고 여러 환경에 존재하는 IT 자원을 통합적으로 가시화할 수 있는지, 변화에 쉽게 대응할 수 있는 사용자 맞춤 설계형 대시보드를 제공하는지를 꼭 살펴봐야 합니다. 브레인즈컴퍼니 제니우스(Zenius)의 퍼블릭 클라우드 서비스 관제 예시 또한 AI 기술을 통해 장애를 사전에 예방하는 제니우스(Zenius) 처럼, 서비스 장애로 인한 손실을 방지하기 위한 사전 장애 감지 및 대응도 지원하는지 꼭 살펴봐야 합니다. 업무 효율과 편의성을 높이기 위한 오토스케일링 자동 대응, 장애/이벤트 오토리커버리 등 운영 자동화 기능도 필수 요소입니다. 둘, 검증된 솔루션인가? 클라우드 서비스 보안인증(CSAP), 마켓플레이스 등록 등 클라우드 환경에서의 성능 검증 절차 등 거친 솔루션인지도 중요하게 살펴봐야 합니다. 또한 다수의 공공기관 및 다양한 산업군에서 사용되고 있는지도 중요한 판단 기준입니다. 셋, 믿을 수 있는 기업의 솔루션인가? 마지막으로 모니터링 서비스를 개발 및 운영한 업력, 재무 상태 안정성, 전문 인력 보유 등으로 지속적인 지원이 가능한 기업의 솔루션인지를 검토해 봐야 합니다. 。。。。。。。。。。。。 브레인즈컴퍼니는 전통적인 IT 인프라 모니터링 시장에서의 경험을 바탕으로, 하이브리드 환경에서의 성공적인 모니터링을 수행하고 있습니다. 이제 필수가 된 클라우드 전환, 제대로 된 솔루션 선택을 통해 성공적으로 진행하시기 바랍니다!
2024.01.18
기술이야기
테라폼(Terraform)의 모든 것, 그리고 AWS EC2 생성하기
기술이야기
테라폼(Terraform)의 모든 것, 그리고 AWS EC2 생성하기
클라우드 환경이 도래하면서 CSP(Cloud Service Provider)에서는 콘솔을 통해 클라우드 자원에 쉽게 접근할 수 있게 되었습니다. 하지만 서비스를 운영하며 발생하는 다양한 이슈를 콘솔에서 전부 관리하기에는 무리가 있습니다. 반복적인 작업과 휴먼에러가 발생하기 때문이죠. 이러한 문제를 한 번에 해결할 수 있는 방법이 바로 IaC(Infrastructure as Code)입니다. 인프라를 코드로 관리하는 컨셉으로, 효율적인 데브옵스와 클라우드 자동화 구축을 위해 ‘꼭’ 필요한 기술로 각광받고 있죠. 그중에서도 ‘테라폼(Terraform)’은 가장 강력한 IaC 도구로 꼽힙니다. “테라폼(Terraform)이란?” 테라폼은 하시코프(Hashicorp) 사에서 Go 언어로 개발한 오픈소스 IaC 도구입니다. 테라폼에서는 HCL(Hashicorp Configuration Language, 하시코프 설정 언어)을 사용해 클라우드 리소스를 선언합니다. *쉽게 설명한다면 코드로서 클라우드 인프라 서버를 더 효율적으로 구축하고, 운영할 수 있는 오픈소스 소프트웨어죠. 따라서 이번 시간에는 테라폼의 기본동작방식, 특장점, 명령어의 종류, 구체적인 활용 예시에 대해서 살펴보겠습니다. 。。。。。。。。。。。。 테라폼의 기본동작방식 테라폼은 Write, Plan, Apply 기본동작방식으로 이루어져 있는데요. Write 단계에서는 HCL 언어로 필요한 리소스를 선언하고, Plan 단계에서는 앞에서 선언된 리소스들이 생성 가능한지 테스트 및 예측 실행을 수행하며, Apply 단계에서는 선언된 리소스들을 CSP에 적용하는 과정을 거칩니다. *쉽게 설명한다면 Write 단계는 코드 기반으로 선언하고, Plan 단계는 코드 기반으로 검토하며, Apply 단계는 코드 기반으로 리소스를 생성하는 것이죠. 테라폼의 기본개념 테라폼의 주요 기본개념이자 구성요소입니다. 전부 필수적인 내용이지만 특히 Resource, Provider, State는 많이 쓰이는 중요 개념이며 하단 예시에도 나오니 꼭 기억해 두세요! 테라폼의 장점 테라폼은 다양한 장점들이 있는데요. 그중 가장 큰 장점은 자동화를 통해 코드 기반으로 서버 운영 및 관리가 가능한 점입니다. 초보자도 쉬운 코드 재사용을 통해, 효율적인 협업이 가능하고 생산성도 향상시킬 수 있죠. 또한 테라폼은 AWS, GCP(구글), Azure(MS), Naver Cloud(네이버클라우드) 등 다양한 환경에서 지원이 가능한데요. 즉 테라폼만으로도 멀티 클라우드 리소스들을 선언하고 코드로 관리할 수 있습니다. 테라폼의 명령어 테라폼에서 자주 쓰이는 명령어입니다. 그중에서도 코드를 통해 실행될 내용을 미리 확인하는 Plan, 코드 기반으로 리소스를 생성하는 Apply, 그리고 상태를 확인하는 State가 핵심 명령어로 많이 사용되고 있습니다. 테라폼의 활용예시 테라폼을 통해 많은 것을 할 수 있지만, 이번 시간에는 테라폼을 이용하여 AWS에 가장 중심이 되는 서비스인 EC2(AWS에서 제공하는 서버)를 생성해 보겠습니다. 또한 제니우스(Zenius) 모니터링까지 살펴봅시다! 우선 앞서 [테라폼의 기본동작방식]에서 설명했던 것처럼 테라폼은 Write, Plan, Apply 단계를 거치게 되는데요. 테라폼 명령어가 어떤 방식으로 쓰이고 반응하는지, 예시를 통해 확인해 볼까요? > Write 단계: Provider 및 Resource 선언하기 Writer 단계에서는 [테라폼의 기본개념]으로 언급된 *Provider, Resource를 코드 기반으로 선언한 부분을 확인할 수 있습니다. > Plan 단계: Terraform plan Plan 단계에서는 *Terraform plan을 통해 검증을 하게 되는데요. 위 사진 하단에 나와있듯 1개가 추가되고, 0개가 변하고 0개가 없어진다는 의미입니다. 이처럼 +을 통해 추가되는 인프라의 상세정보를 확인할 수 있습니다. > Apply 단계: Terraform apply Apply 단계에서는 앞서 구축 계획에 문제가 없다면 *Terraform apply를 통해 검증된 결과를 바탕으로 실제 인프라에 적용하는 단계입니다. apply 명령을 이용하여 리소스를 생성·수정·삭제하는 것이죠. > State로 확인해 보기 State list 명령어를 통해서도 확인해 보니, 1개의 인스턴스(instance, 클래스의 현재 생성된 오브젝트)가 확인 되네요. 앞서 State list 명령어를 통해 생성된 ‘부분’만 확인했다면, 이번에는 State show 명령어를 통해 어떻게 생성이 됐는지 ‘상세’하게 확인해 봅시다. State 명령어뿐만 아니라 State는 terraform.tfstate 파일로도 확인 가능해 인스턴스 Name 또한 비교해 보았습니다. 테라폼을 이용해 최종 목표였던 AWS에 EC2 인스턴스가 잘 생성이 되었는지 확인해 봐야겠죠? *빨간색 네모 박스에 표기되어 있는 것처럼 잘 생성 되었습니다. 여기서 다시 주목할 점은 AWS의 인스턴스를 생성하기 위해선, 여러 가지 절차를 거쳐야 하는데요. 테라폼을 이용하면 ‘코드’ 하나로 바로 생성이 가능하다는 점입니다. 코드 기반으로 서버운영 및 관리의 자동화라는 특장점 또한 다시 한번 상기해 볼 수 있겠죠? 이처럼 인프라 서버를 효율적으로 구축하는 테라폼을 이용하여, AWS에 EC2를 생성해 보았습니다. 하지만 ‘생성’만 중요한 게 아닌, 효율적인 클라우드 인프라 관리를 극대화하기 위해 ‘모니터링’하는 점도 매우 중요한데요. 테라폼처럼 매우 쉽고 효율적인 방법을 소개하겠습니다. 바로 AWS EC2 모니터링이 가능한 클라우드 서비스 모니터링 시스템인 제니우스-CMS(Zenius-CMS) 예시를 통해, 다양한 환경에서 인프라 모니터링을 어떻게 하고 있는지 살펴보겠습니다! Zenius에서 AWS 모니터링하기 Zenius-CMS는 API를 통해 AWS 계정 기반으로 자동 모니터링을 제공하고 있는데요. 테라폼을 통해 AWS에서 EC2가 코드 기반으로 쉽게 생성했던 것처럼, CMS도 간편한 AWS 모니터링 실행이 가능합니다. 위 사진처럼 EC2 클라우드 서버에 대한 성능도 모니터링이 가능하죠. 여기서 새로운 인스턴스를 추가하면, 이 또한 자동으로 모니터링이 됩니다. Zenius-CMS는 EC2뿐만 아니라 RDS, VPC 등 과금 현황까지 통합 모니터링할 수 있는데요. AWS 콘솔에 접속하지 않고도, AWS 주요 성능 지표에 대한 모니터링 추이도 확인할 수 있습니다. 。。。。。。。。。。。。 이번 시간에는 인프라 서버를 효율적으로 구축하는 테라폼에 대해 학습하고, AWS에 EC2를 생성해 보며 활용 예시까지 살펴보았습니다. 또한 제니우스-CMS(Zenius-CMS) 예시를 통해, AWS EC2 모니터링뿐만 아니라 다양한 환경에서 인프라 모니터링 방법을 알 수 있었는데요. 앞으로도 클라우드 환경에서의 인프라 관리뿐만 아니라, 다양한 환경에서의 모니터링이 가능한 제니우스 제품에 많은 관심 부탁드릴게요! 📚참고 자료 모두의 Terraform(테라폼) PART1 - 개념(230313) Terraform(테라폼)이란? 간단 사용기(220711) 테라폼(Terraform) 기초 튜토리얼(200314)
2024.01.11
기술이야기
클라우드(Cloud) 관리와 AWS가 뭔가요?
기술이야기
클라우드(Cloud) 관리와 AWS가 뭔가요?
오늘날 IT 인프라 운영환경은 매우 복잡해졌어요. 갑작스러운 환경 변화에 따라 신속한 대응도 필요한 시점이죠. 이러한 현상으로 많은 기업들이 온프레미스(On-premise) 환경에서 클라우드(Cloud) 환경으로 전환하는 추세이기도 해요. 클라우드 컴퓨팅 서비스 중에는 여러 벤더가 있는데요. 대표적으론 Amazon Web Services(AWS), Microsoft Azure, Google Cloud Platform(GCP)가 있어요. 그중 ‘AWS’는 국내 클라우드 시장에서 3년 간 70% 내외의 시장점유율로, 1위를 차지했는데요(*클라우드 서비스 분야 실태조사(2022), 공정거래위원회) 이처럼 높은 점유율을 가진 1) AWS의 주요 서비스를 살펴보고 2) 하이브리드 클라우드 모니터링이 필요한 이유는 무엇인지 3) AWS의 각종 서비스를 모니터링할 수 있는 제니우스(Zenius)도 함께 소개해 드릴게요! AWS(Amazon Web Services)란? AWS는 ‘Amazon Web Services’의 약어로, 아마존 닷컴이 제공하는 클라우드 컴퓨팅 플랫폼 및 서비스의 집합이에요. AWS에서 제공하는 여러 가지 서비스를 이용하면, 기업 및 개인이 필요한 컴퓨팅 리소스를 유연하게 확장하고 관리할 수 있죠. AWS 주요 서비스는 다음과 같아요! AWS 주요 서비스 ▪Amazon VPC(Amazon Virtual Private Cloud) 격리된 네트워크 환경을 구성하게 해주는 서비스예요. AWS의 동일 계정이나, 서로 다른 계정 간에 격리된 네트워크를 연결할 수 있도록 다양한 옵션들을 제공해 줘요. ▪Amazon EC2(Amazon Elastic Compute Cloud) AWS에서 가장 많이 사용되는 컴퓨팅 서비스예요. 가상 서버를 호스팅 할 때 사용하죠. 리눅스나 윈도우 환경 등 다양한 인스턴스 유형을 지원하고, 필요에 따라 성능을 조정할 수 있어요. 생성 가능한 인스턴스 타입은 리전 별 차이가 있으나, 100개~300개에 이를 정도로 방대하답니다. ▪AWS Lambda AWS에서 제공하는 서버리스 컴퓨팅 플랫폼이에요. 여기서 ‘서버리스’란 개발자가 서버의 존재를 신경 쓸 필요가 없다는 뜻이에요. AWS에서는 서버 인프라에 대한 프로비저닝, 유지관리 등을 대신 처리해 주죠. 이처럼 개발자가 비즈니스 로직에 집중하여 코드를 실행하게 해줘요. ▪Amazon S3 AWS에서 제공하는 스토리지 서비스예요. S3는 파일시스템이 아닌 오브젝트 스토리지 서비스로, 모든 파일에 API를 통해 접근 가능해요. 무제한적인 확장성, 높은 가용성과 내구성을 제공하며 단일 파일을 최대 5TB까지 업로드할 수 있어요. ▪Amazon EBS(Amazon Elastic Block Store) EC2 인스턴스에 장착하여 사용할 수 있는 가상 저장 장치에요. EBS를 연결하여 파일을 저장하면, EC2 인스턴스와 관계없이 데이터를 영구적으로 보관 가능해요. 이 밖에도 AWS에서 제공하는 서비스는 매우 방대한대요. 아래 URL로 접속 시, 필요한 서비스 목록 확인이 가능하답니다! 🔍 더 많은 AWS 서비스가 궁금하다면? 온프레미스와 AWS의 차이 온프레미스 방식은, 클라우드 컴퓨팅 서비스가 나오기 전까지 기업에서 전통적으로 사용한 ‘일반적인 인프라 구축 방식’이에요. 온프레미스 환경에서 서버를 운영하면, 호스팅 서비스를 이용하거나 서버를 직접 구매 또는 임대하죠. 그다음 데이터 센터(IDC, Internet Data Center) 또는 기업 전산실에 설치하여 운영해요. 하지만 물리적인 서버를 직접 설치할 경우, 많은 시간과 비용이 소모되어 이를 위한 운영 공간과 인력이 필요할 수 있어요. 예시를 들어 볼게요. 대형 콘서트 예매, 대학교 수강신청, 입시 원서 접수 등 단기간에 트래픽이 급증했다가 감소되는 경우를 생각해 볼까요? 이때 ‘온프레미스 방식’으로 시스템을 구축한다면, 매우 많은 비용 낭비가 발생하게 될 거예요. 반면 AWS의 경우는 어떨까요? 인터넷이 연결된 어디에서든 쉽게 인프라를 구축하고, 사용한 만큼 비용을 지불할 수 있어요. 큰 이벤트를 처리한 후 생성된 리소스를 간편하게 삭제할 수 있죠. 이처럼 온프레미스 방식과 대비한다면, 남는 자원에 대한 비용 고민이 없어지겠죠? 하이브리드 클라우드 모니터링이 필요한 이유 이처럼 AWS는 매우 유연하고 확장성 있는 클라우드 서비스예요. 하지만 모든 서비스를 AWS를 이용해서 서비스하는 것은 한계가 있는데요. 이유는 다음과 같아요. ▪보안 및 규정 준수 민감한 데이터나 규정 준수가 필요한 업무의 경우, 사설 클라우드나 온프레미스 환경의 자체 데이터 센터를 통해 운영하려는 경향이 있어요. ▪비용 효율 AWS는 사용한 만큼 비용을 지불하기 때문에, 예측할 수 없는 트래픽 증가 등에 대응하기에 좋아요. 하지만 서비스에 따라 온프레미스 환경에서 운영하는 것이 비용 측면에서 더 효율적인 경우가 있죠. 이처럼 많은 기업이 AWS를 이용한 클라우드 서비스로 전환하는 추세지만, 당분간 온프레미스 방식과 결합한 하이브리드 클라우드 운영환경이 많은 편이에요. 그렇다면 이러한 하이브리드 클라우드 운영 환경을 모니터링할 수 있는 방법이 없을까요? 바로 ‘제니우스’를 활용한다면 가능해요! 제니우스를 이용한 하이브리드 클라우드 모니터링 구성도 제니우스 하이브리드 클라우드 모니터링 프로세스를 간략히 소개할게요! 우선 클라우드 환경 단계에서는 AWS 서비스를 이용하여 구축된 클라우드 환경 정보를 RestAPI 방식으로 수집해요. CMS Manager는 AWS 클라우드 환경에서 수집한 정보를 취합 후 스토리지에 저장해 주죠. EMS Manager는 온프레미스 환경에서 수집한 정보를 취합 후 스토리지에 저장해 줘요. Web UI에서는 스토리지에 저장된 데이터를 이용하여, 사용자에게 모니터링 정보를 제공한답니다! 제니우스에서 AWS 모니터링하기 제니우스를 이용한 ‘하이브리드 클라우드 모니터링 구성’을 좀 더 자세히 살펴볼까요? ▪CMS > 모니터링 > 요약 : 위 그림은 AWS 통합 요약 페이지인데요. EC2, RDS, VPC 등 과금 현황까지 통합 모니터링할 수 있어요. ▪EMS > 토폴로지 > 클라우드 맵 : 리전 별 자동 구성형 클라우드 맵 페이지에서는, AWS 리전 별 이용하는 서비스와 연관관계를 클라우드 맵이 자동으로 구성해 줘요. ▪CMS > 클라우드서비스 > EC2 > 주요 성능 지표 : 주요 성능지표 모니터링 페이지에서는 AWS 콘솔에 접속하지 않고, AWS 주요 성능 지표에 대한 모니터링 추이를 확인할 수 있어요. ▪EMS > 오버뷰 : 오버뷰를 통한 온프레미스 + AWS 통합 모니터링 페이지에서는, AWS 모니터링 항목과 온프레미스 환경 모니터링 항목의 통합 현황판을 확인할 수 있어요. 이처럼 AWS와 온프레미스 환경은 물론, 더 다양한 환경의 인프라 모니터링을 위해 제니우스를 사용을 해보는 건 어떨까요?
2023.11.16
기술이야기
서버 모니터링의 두 가지 방식
기술이야기
서버 모니터링의 두 가지 방식
이번 블로그에서는 일반적으로 서버 모니터링 소프트웨어들이 널리 쓰고 있는 서버 모니터링의 두 가지 방식에 대해서 논의하고 그 차이점을 알아보겠습니다. 지난 블로그에서 언급했듯이, 서버 모니터링은 컴퓨터 서버의 성능을 관찰하고 분석해 최적의 상태로 실행되고 있는지 확인하는 작업입니다. 이 프로세스에는 일반적으로 CPU 사용률, 메모리 사용량, 디스크 I/O, 네트워크 트래픽 및 응용 프로그램 성능과 같은 다양한 메트릭에 대한 데이터를 수집하는 소프트웨어 도구의 사용이 포함됩니다. 서버 모니터링 소프트웨어는 데이터 수집 후 추세, 패턴 및 이상 현상을 식별하기 위해 데이터를 분석합니다. 분석을 통해 잠재적인 문제가 심각해지기 전에 식별하고 서버 관리자가 시정 조치를 취할 수 있도록 합니다. 예를 들어, CPU 사용률이 지속적으로 높은 경우 서버의 성능이 부족해 더 많은 리소스를 할당해야 할 수 있음을 나타낼 수 있습니다. 또는 디스크 I/O가 느린 경우 서버의 저장소가 과부하됐거나 최적화가 필요함을 나타낼 수 있습니다. 서버 모니터링 소프트웨어에는 관리자가 서버 성능을 파악하는데 도움이 되는 대시보드, 경고 및 보고 기능이 포함되는 경우가 많습니다. 대시보드는 핵심 성과 지표의 실시간 보기를 제공하는 동시에 특정 임계값을 초과하거나 문제가 감지되면 관리자에게 알림을 보냅니다. 서버 관리자는 보고 기능을 통해 시간 경과에 따른 성능 추세 및 문제에 대한 보고서를 생성할 수 있으며, 이를 통해 용량 계획 및 리소스 할당 결정을 알리는데 사용할 수 있습니다. 서버 모니터링은 일반적으로 에이전트 없는 서버 모니터링과 에이전트 기반 서버 모니터링, 이 두 가지 주요 접근 방식이 있습니다. 두 가지 모두 장단점이 있으며 어떤 것을 선택하느냐는 특정 요구 사항과 선호도에 따라 달라집니다. 에이전트 기반 서버 모니터링 에이전트 기반 서버 모니터링에는 모니터링하려는 각 서버에 ‘에이전트’라고 하는 별도의 서버용 모니터링 소프트웨어를 설치해 데이터를 수집하는 방식을 말합니다. 에이전트는 서버에서 다양한 성능 메트릭에 대한 데이터를 수집해 모니터링 시스템으로 다시 보냅니다. 이 접근 방식은 에이전트 없는 모니터링보다 더 상세하고 세분화된 데이터와 기능을 제공합니다. 또, 데이터를 암호화하고 보안 채널을 사용해 데이터를 전송하므로 일반적으로 에이전트 없는 모니터링보다 더 안전합니다. 에이전트 기반 서버 모니터링의 주요 기능은 다음과 같습니다. ∙ 성능 모니터링: 에이전트는 CPU, 메모리, 디스크 사용률, 네트워크 트래픽 등의 정보를 수집할 수 있습니다. 이를 이용해 서버의 성능을 모니터링하고, 부하가 높아지면 적시에 대처할 수 있습니다. ∙ 로그 모니터링: 에이전트는 서버에서 발생하는 로그를 수집할 수 있습니다. 이를 이용해 서버에서 발생한 이벤트의 원인 파악에 도움을 줄 수 있습니다. ∙ 보안 모니터링: 에이전트는 서버 내부의 보안 상태를 모니터링할 수 있습니다. 예를 들어, 악성 코드 감지, 사용자 로그인 상태, 파일 권한 등을 체크해 보안 위협을 조기에 감지할 수 있습니다. ∙ 애플리케이션 모니터링: 에이전트는 서버에 설치된 애플리케이션의 상태를 모니터링할 수 있습니다. 예를 들어, 웹 서버에서는 HTTP 요청, 응답 코드, 응답 속도 등을 모니터링해 애플리케이션의 상태를 파악할 수 있습니다. ∙ 자동화된 조치: 에이전트는 모니터링 데이터를 기반으로 자동화된 조치를 수행할 수 있습니다. 예를 들면, CPU 부하가 높아지면 자동으로 스케일 업 또는 스케일 아웃을 수행할 수 있습니다. 에이전트 리스 서버 모니터링 에이전트가 없는 서버 모니터링은 서버 자체에 소프트웨어를 설치할 필요가 없습니다. 대신 모니터링 소프트웨어가 별도의 서버나 워크스테이션에 설치되고, SNMP 또는 WMI와 같은 네트워크 프로토콜을 사용해 대상 서버에서 데이터를 원격으로 수집합니다. 이 접근 방식은 각 서버에 소프트웨어 에이전트를 설치하고 관리할 필요가 없어 일반적으로 설정 및 유지 관리가 더 쉽고 빠릅니다. 또, 에이전트 기반보다 같은 자원을 이용해서 더 많은 수의 서버를 모니터링할 수 있어 경제적입니다. 대신 기능이 제한적이고 프로토콜이 의존해 데이터를 수집하기 때문에 보안 문제가 발생할 수 있습니다. 에이전트 리스 서버 모니터링의 주요 기능은 다음과 같습니다. ∙ 원격 모니터링: 에이전트 없는 모니터링 도구는 원격 데이터 센터, 지사 또는 클라우드 환경에 있는 서버를 포함해 모든 곳에 있는 서버를 원격으로 모니터링할 수 있습니다. 이러한 유연성을 통해 조직의 전체 서버 인프라를 중앙집중식으로 모니터링하고 관리할 수 있습니다. ∙ 확장성: 에이전트 없는 모니터링은 서버 인프라 또는 워크로드 요구사항의 변화를 수용하기 위해 쉽게 확장 또는 축소할 수 있습니다. 추가 에이전트 소프트웨어 설치 또는 구성 없이 모니터링 시스템에 추가 서버를 추가할 수 있습니다. ∙ 포괄적인 모니터링: 에이전트 없는 모니터링은 서버 성능 메트릭을 추적하고 문제를 식별하며, 실시간 경고를 제공함으로써 관리자가 서버 인프라의 상태를 유지하고 중요한 애플리케이션과 서비스가 원활하게 실행되도록 합니다. ∙ 손쉬운 유지 관리 및 업데이트: 에이전트 없는 모니터링을 사용하면 모니터링 되는 각 시스템에서 에이전트 소프트웨어를 관리하고 업데이트할 필요가 없습니다. 이는 유지보수를 단순화하고 모니터링 시스템을 항상 최신 상태로 유지합니다. Zenius(제니우스)의 서버 모니터링 브레인즈컴퍼니의 지능형 IT 인프라 통합관리 소프트웨어 ‘Zenius(제니우스)’는 고객의 시스템 상황에 따라 에이전트 기반 및 리스 방식 모두 가능합니다. 에이전트 기반의 통합 모니터링 소프트웨어 ‘Zenius SMS’는 HTML5 기반 Web UI와 토폴로지 맵을 통해 서버 성능과 상태 및 서버 간 연관관계를 직관적으로 파악합니다. 특히, Zenius SMS는 애플리케이션 단위에 성능이나 로그를 세밀하게 모니터링 및 분석이 가능합니다. Zenius SMS의 주요 기능은 아래와 같습니다. Zenius SMS의 주요 서버 모니터링 기능 1. 프로세스: 프로세스 상태(Up/Down) 및 성능 모니터링(CPU/MEM) 2. 로그: 프로세스나 시스템 로그와 같은 각종 로그 모니터링 3. GPU: GPU의 상태 및 성능 모니터링 4. 보안: 서버의 보안 취약점 점검 5. 자동화: 모니터링 데이터를 기반으로 자동화된 조치 수행 6. 기타: 코어별 온도 모니터링, 서비스 포트별 네트워크 상태, S/W 목록, 환경변수, 계정, 그룹, 스케쥴링, 공유폴더 현황 등 ‘Zenius SMS’ 도입을 통해 체계화된 서버 통합관리를 할 수 있습니다. 반복적이고 수동적인 업무는 자동화돼 업무 효율성을 향상시키며, 객관적인 데이터를 기반으로 정확한 성능 현황 및 비교분석이 가능합니다. 이는 곧 서비스 연속성 확보로 이어지며, 향후 고객 만족도 향상을 기대할 수 있습니다. 반면, 고객 서버에 에이전트 탑재가 불가능한 경우에는 에이전트 리스 방식으로도 사용 가능합니다. 브레인즈컴퍼니의 에이전트 리스 제품으로는 ‘Zenius VMS’가 있습니다. ‘Zenius VMS’는 VMware, Citrix Xen Server, Hyper-V와 같은 서버 가상화 환경에서 호스트 서버와 게스트 서버의 리소스 할당 및 사용 현황, 관계 등을 통합적으로 관제합니다. ‘Zenius VMS’는 프라이빗 클라우드 환경을 모니터링하는데 효과적입니다. Open API로 프라이빗 클라우드 인프라와 통신해, 가상머신의 상태 및 성능, 스토리지 활용도 및 네트워크 트래픽과 같은 환경의 다양한 측면에 대한 데이터를 수집합니다. 수집된 데이터를 분석해 잠재적 문제를 나타낼 수 있는 경향, 패턴 및 이상 현상을 식별하고, 크게 CPU, 메모리, 디스크, MIB 이 4가지 정보를 기본적으로 제공합니다. ‘Zenius VMS’는 VM 상세 관리를 위해 SMS 추가 확장이 용이한 제품입니다. VMS를 통해 호스트-게스트 간 연관관계 기반의 모니터링을 시행하고, 별도로 가상화 서버에 SMS 모듈을 추가해 보다 다양한 모니터링 항목으로 정밀하게 관리함으로써 효과적인 통합관리 환경을 조성할 수 있습니다.
2023.05.09
1
2