반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
기술이야기
검색
기술이야기
복잡한 네트워크 트래픽, Zenius NMS·TMS·NPM으로 정확하게 분석하기
기술이야기
복잡한 네트워크 트래픽, Zenius NMS·TMS·NPM으로 정확하게 분석하기
오늘날 기업의 IT 인프라는 클라우드, 가상화, 마이크로서비스(Kubernetes)로 빠르게 전환되고 있습니다. 서비스는 점점 더 세분화되고 연결 구조는 복잡해지면서, 단일 지점에서 발생한 문제라도 전체 서비스 품질에 즉각적인 영향을 미칠 수 있습니다. 그러나 기존의 네트워크 모니터링 방식은 주로 장비 단위에 국한되어 있어, 트래픽 증가나 지연 같은 현상이 발생했을 때 원인을 신속하고 정확하게 파악하기가 쉽지 않습니다. 이러한 환경에서는 단순한 장비 레벨 모니터링을 넘어, 인터페이스 → 트래픽 흐름 → 프로세스 단위까지 네트워크를 다각도로 관찰하는 체계가 필요합니다. Zenius의 NMS, TMS, NPM은 각각의 레벨에서 데이터를 수집·분석함으로써, 네트워크 전반을 단계적으로 추적하고 문제 지점을 빠르게 규명할 수 있도록 돕습니다. 이번 글에서는 세 가지 솔루션을 연계하여 실제 운영 환경에서 어떻게 트래픽 원인을 분석할 수 있는지를 구체적으로 살펴보겠습니다. Zenius NMS·TMS·NPM: 각 솔루션의 특징과 차이점 Zenius NMS, TMS, NPM의 정의와 역할을 먼저 정리해보겠습니다. 각각의 솔루션은 모두 네트워크 트래픽을 모니터링하고 분석하는 기능을 제공하지만, 적용되는 관점과 수집 방식, 그리고 활용 목적에서 분명한 차이가 있습니다. Zenius NMS(Network Management System)는 SNMP를 기반으로 라우터, 스위치 등 네트워크 장비의 물리 인터페이스 관점에서 트래픽을 모니터링합니다. 이를 통해 장비별 포트 사용량, bps/pps, 에러 발생 여부 등을 실시간으로 확인할 수 있으며, 네트워크 전반의 기본적인 상태를 빠르게 파악하는 데 유용합니다. 반면 Zenius TMS(Traffic Management System)는 NetFlow, sFlow, IPFIX와 같은 Flow 데이터를 활용하여, 네트워크를 경유하는 IP·Port 단위 트래픽 흐름을 분석합니다. 스위치를 경유하는 트래픽에 대해 bps/pps와 같은 기본 지표를 확인할 수 있을 뿐 아니라, 애플리케이션별·서비스별·포트별로 트래픽을 분류하고 TopN 분석을 제공하기 때문에, 백본이나 라우터 구간에서 어떤 서비스가 대역폭을 가장 많이 사용하는지 직관적으로 파악할 수 있습니다. 마지막으로 Zenius NPM(Network Performance Monitoring)은 eBPF 기술을 기반으로 서버 및 컨테이너 환경의 커널 레벨 통신을 모니터링합니다. 단순 트래픽량뿐만 아니라 Latency, RTT, Jitter, Retransmit 등 정밀한 성능 지표까지 수집할 수 있어, Kubernetes나 MSA 기반 서비스처럼 복잡한 구조에서 세밀한 원인 분석이 가능합니다. 정리하자면, NMS는 장비·인터페이스 레벨, TMS는 네트워크 경로·서비스 레벨, NPM은 서버·프로세스 레벨에서 각각 네트워크를 해석합니다. 이 세 가지를 유기적으로 결합하면, 물리적 인터페이스 → 네트워크 경로 → 커널 기반 통신까지 다층적으로 추적할 수 있어, 복잡한 네트워크 환경에서 발생하는 트래픽 문제를 효과적으로 해결할 수 있습니다. 이제 각 솔루션이 실제로 어떻게 연계되어 활용되는지, 구체적인 기능 구성 및 분석 절차를 하나씩 살펴보겠습니다. NMS·TMS·NPM 기반 트래픽 분석 기능 구성 및 확인 절차 본격적으로 NMS·TMS·NPM 기반 트래픽 분석 절차를 살펴보겠습니다. 이번 사례는 쿠버네티스(K8s) 기반 WAS 서비스의 트래픽 흐름을 추적하며, 각 구간을 어떤 방식으로 점검할 수 있는지를 단계별로 살펴보겠습니다. [Step 1] 운영환경과 트래픽 흐름 구간 확인 먼저 운영환경의 기본 구성도를 확인하고 분석 대상이 되는 구간을 정리합니다. 본 사례에서는 DB POD → WAS POD → Worker Node → 내부 L3 → 백본 → 방화벽으로 이어지는 흐름을 점검 대상으로 삼습니다. 이러한 흐름을 명확히 정의해두면 이후 어떤 도구와 지표를 중점적으로 확인해야 할지 쉽게 구분할 수 있습니다. [Step 2] 구간별 모니터링 체계 구성 다음으로 각 구간을 어떤 방식으로 수용하고 분석할지 체계를 구성합니다. - 내부 L3, 백본, 방화벽은 SNMP를 통해 NMS에 연계하여 인터페이스 단위 트래픽을 수집합니다. - 백본은 NetFlow, sFlow 등의 Flow 데이터를 TMS에 수용해 애플리케이션 및 서비스 흐름을 분석합니다. - Worker Node는 Agent 기반으로 NPM에 연결해 POD 간 세밀한 통신 현황을 추적합니다. 이렇게 구성하면 서버, 네트워크 장비, 서비스 경로까지 계층별로 입체적인 모니터링이 가능합니다. [Step 3] 구간별 상세 분석 ① POD ↔ WAS POD DB POD와 WAS POD 사이의 통신은 [NPM > 모니터링 > 트래픽 > View, 필터 조건 검색] 경로를 통해 확인합니다. 여기서 IP와 Port를 기준으로 필터링하면, 해당 세션의 트래픽량뿐 아니라 Latency, RTT, Jitter, Retransmit 같은 세밀한 성능 지표를 함께 살펴볼 수 있습니다. 또한, [NPM > 모니터링 > 트래픽현황 > View, 필터 조건 검색] 메뉴를 이용하면 DB POD Port를 기준으로 실제 트래픽 흐름이 어떻게 연결되는지를 시각적으로 파악할 수 있습니다. ② WAS POD ↔ Worker Node ↔ 내부 L3 그다음에는 [NPM > 모니터링 > 트래픽현황] 화면에서 Worker Node 전체 기준으로 트래픽을 점검합니다. 이 과정에서는 상위 트래픽 발생 호스트, 송수신 바이트, Latency, Jitter 추이를 시간대별로 확인할 수 있어, 특정 시점에서 발생한 지연 현상을 이벤트와 연관 지어 분석하기에 적합합니다. ③ Worker Node ↔ 내부 L3 내부 L3 구간은 [NMS > 모니터링 > 장비 > 인터페이스] 메뉴에서 확인합니다. bps, pps, 에러 발생 여부 같은 항목을 중심으로 살펴보면 링크의 안정성과 과부하 여부를 빠르게 점검할 수 있습니다. 또한, [NMS > 모니터링 > 성능 > 인터페이스] 메뉴를 활용하면 시간대별 bps/pps 그래프를 통해 트래픽 패턴 변화를 확인할 수 있으며, 이는 NPM에서 관측한 Latency나 Jitter 지표와 교차 검증하는 데 도움이 됩니다. ④ 내부 L3 ↔ 백본 ↔ 방화벽 마지막으로 백본 구간은 TMS를 통해 흐름을 분석합니다. [TMS > TopN > 어플리케이션] 메뉴에서 HTTPS, PostgreSQL 등 주요 애플리케이션별 트래픽 분포를 확인할 수 있으며, [TMS > TopN > 트래픽, Port] 화면에서는 IP와 Port를 기준으로 어떤 서비스가 대역폭을 점유하고 있는지 빠르게 파악할 수 있습니다. [ TMS > TopN > 트래픽, Port ] IP, Port 등 다양한 기준의 백본 경유 트래픽 분석 결국, NPM은 POD·서버 간 세밀한 지연과 통신 성능을, NMS는 네트워크 장비 인터페이스 단위 안정성을, TMS는 서비스 및 애플리케이션 흐름을 각각 보여줍니다. 이렇게 다층적인 분석을 통해, 단일 구간이 아닌 전체 서비스 경로를 종합적으로 추적할 수 있으며, 이는 재현이 어려운 네트워크 장애 원인 파악에 큰 도움이 됩니다. 활용 예시 “특정 Worker Node 트래픽 급증” 원인 추적하기 쿠버네티스(K8s) 환경의 서비스는 일반적으로 다수의 POD가 상호 연결되어 하나의 서비스를 제공합니다. 이러한 구조에서는 특정 Worker Node의 트래픽이 급격히 증가했을 때, 기존의 일반 모니터링 도구(SMS) 만으로는 증가 원인을 정확히 분석하기 어렵습니다. SMS는 대개 NIC 단위 트래픽 수준까지만 보여주기 때문입니다. 따라서 Zenius NPM을 활용해 OS(커널) 관점에서 IP·Port 기준의 세밀 분석을 수행해야만, 어떤 POD·세션·포트가 원인인지 구체적으로 밝혀낼 수 있습니다. 1) NPM으로 포트/세션 단서 포착 먼저 [NPM > 모니터링 > 트래픽 > View, 필터 조건 검색]에서 문제의 Worker Node를 기준으로 플로우 목록을 정렬합니다. 다수의 POD에서 동일 포트(예: 8081) 로 통신하는 패턴이 확인되면, 수집 트래픽 증가 가능성이 높습니다. → 8081은 Zenius APM 데이터 수집 포트이므로, APM 수집량 증가에 따른 네트워크 사용량 상승을 1차 가설로 설정합니다. 2) NPM 트래픽 맵으로 대상·방향 확정 다음으로 [NPM > 모니터링 > 트래픽현황 > View, 필터 조건 검색]에서 RemotePort = 8081로 필터링합니다. 트래픽 맵을 통해 어떤 POD들이 8081 수집 지점으로 트래픽을 보내는지와 연결 방향을 직관적으로 확인할 수 있습니다. 본 사례에서는 4개의 POD에서 동일 포트로 집중되는 흐름이 나타났고, 추가 8081 통신 대상은 확인되지 않았습니다. 3) K8s에서 트래픽 발생 POD 상태 교차 검증 이제 [Zenius K8s > 모니터링 > 파드]에서 트래픽 발생 POD(예: 192.168.0.216) 를 선택해 상태와 자원 사용률(CPU/메모리), 네트워크(bps) 를 확인합니다. 본 사례에서는 상태가 정상이고 Limit 대비 사용률도 안정적이어서, 트래픽 증가는 장애가 아닌 정상적인 수집 과정에서 발생한 현상으로 판단할 수 있습니다. 4) APM 지표로 맥락 검증 마지막으로 [Zenius APM > 모니터링] 대시보드에서 요청 건수, 응답 시간, 동시 사용자 등의 애플리케이션 지표를 확인합니다. NPM에서 포착된 8081 증가 시점과 APM 지표가 동조하면, 네트워크 증가는 APM 수집 트래픽 증가(정상 동작)로 판단할 수 있습니다. 반대로 APM 지표가 평온한데 8081만 치솟는다면, 이는 수집 설정이나 라우팅 구성의 이상을 의심해야 합니다. 이 경우, 동일 조건을 재현해 문제를 다시 발생시켜 보고, 원인이 확인되면 수집 주기·라우팅·리소스 할당 등을 조정(튜닝)하여 최적화할 수 있습니다. NPM–NMS–TMS–K8s–APM을 유기적으로 연결해, 특정 Worker Node 트래픽 급증 이슈를 포트/세션 단서 포착 → 흐름 확인 → POD 상태 교차 검증 → 애플리케이션 지표로 맥락 확인의 순서로 좁혀가는 방법을 살펴봤습니다. 핵심은 커널 레벨의 정밀 지표(NPM)로 원인을 가설화하고, 맵/인터페이스/서비스 흐름을 통해 이를 빠르게 검증하는 것입니다. 이 흐름을 표준 운영 절차로 적용하면, 재현이 어려운 상황에서도 원인 구간의 신속한 특정과 실질적인 조치(설정·라우팅·리소스 튜닝)도 가능합니다. 이번 글에서는 Zenius NMS·TMS·NPM을 통해 네트워크 트래픽을 다층적으로 분석하는 방법을 살펴보았습니다. 각 솔루션이 담당하는 관점과 역할은 다르지만, 함께 연계해 활용하면 장애 원인을 더 빠르고 정확하게 파악할 수 있습니다. 복잡해지는 인프라 환경에서 이런 분석 체계를 마련해 두는 것이 안정적인 서비스 운영의 핵심입니다.
2025.09.23
기술이야기
eBPF로 구현하는 TCP 상태 추적 기반 네트워크 모니터링
기술이야기
eBPF로 구현하는 TCP 상태 추적 기반 네트워크 모니터링
예전에는 네트워크 성능을 모니터링할 때 tcpdump로 패킷을 캡처하거나, netstat으로 연결 상태를 확인하거나, NetFlow/sFlow 기반 분석을 많이 사용했습니다. 하지만 네트워크 환경이 복잡해지고 암호화 트래픽이 늘어나면서, 그리고 컨테이너·MSA 환경으로 서비스가 쪼개지면서 기존 방식의 패킷 기반 모니터링은 점점 한계를 드러냈습니다. 성능 부하는 커지고, 세부 가시성은 부족했습니다. 이 문제를 해결해 준 게 바로 eBPF(extended Berkeley Packet Filter)입니다. eBPF는 커널 내부 함수에 직접 훅(Hook)을 걸어서 데이터를 가져올 수 있기 때문에, 서비스에 큰 영향을 주지 않고도 운영 환경에서 실시간 성능 분석이 가능합니다. 쉽게 말해, 예전에는 netstat으로 “포트가 지금 어떤 상태인지”만 볼 수 있었다면, eBPF를 쓰면 “그 포트의 상태가 어떻게 변하고 있는지”까지 관찰할 수 있습니다. 그래서 최근 클라우드 네이티브 환경이나 초저지연 서비스 운영에서는 eBPF가 차세대 네트워크 모니터링 기술로 주목받고 있습니다. eBPF란? eBPF는 커널 안에서 안전하게 실행되는 작은 프로그램으로, 네트워크·시스템 동작을 실시간으로 추적하는 데 강점을 가집니다. 네트워크 모니터링 관점에서 자주 쓰이는 기능은 다음과 같습니다. • kprobe/kretprobe: 커널 함수 진입·종료 시점 후킹 • tracepoint: 커널 이벤트 발생 시점 후킹 • BPF Map: 커널과 사용자 공간 간 데이터 공유 • BPF Helper 함수: 커널 리소스 접근 API eBPF는 Verifier(검증기)가 프로그램의 안전성을 보장하지 못하면 로드를 거부합니다. 과거에는 Verifier가 루프의 종료를 판별하지 못해 루프 사용이 전혀 허용되지 않았지만, 최근에는 단순 반복문은 사용할 수 있게 되었습니다. 또한 BTF(BPF Type Format)와 CO-RE(Compile Once – Run Everywhere) 기술 덕분에, 커널 버전이 달라져도 동일한 eBPF 프로그램을 별도 빌드 과정 없이 그대로 운용할 수 있습니다. eBPF 사용 방법 제가 공부하면서 가장 흥미로웠던 예제는 BCC 툴셋에 포함된 **tcpstates**입니다. TCP 연결 상태 변화를 추적하는 예제인데, 구조를 간단히 정리하면 다음과 같습니다. • bpf.c: 커널에서 실행되는 함수 중 “어떤 걸 관찰할지”와 “관찰 시 어떤 데이터를 수집할지” 정의 • .h: 커널과 유저 공간이 공유하는 데이터 구조체 정의 • .c: 수집된 데이터를 가공해서 사용자에게 출력 예를 들어, tcpstates.bpf.c에서는 커널 tracepoint inet_sock_set_state를 후킹해서 TCP 상태 변화를 잡아냅니다. 아래 코드를 보면 이해가 쉬우실 겁니다. int handle_set_state(struct trace_event_raw_inet_sock_set_state *ctx) { struct sock *sk = (struct sock *)ctx->skaddr; __u16 family = ctx->family; __u16 sport = ctx->sport; __u16 dport = ctx->dport; __u64 *tsp, delta_us, ts; struct tcpstates_t tcpstates = {}; if (ctx->protocol != IPPROTO_TCP) return 0; ts = bpf_ktime_get_ns(); tcpstates.skaddr = (__u64)sk; tcpstates.ts_us = ts / 1000; tcpstates.pid = bpf_get_current_pid_tgid() >> 32; tcpstates.oldstate = ctx->oldstate; tcpstates.newstate = ctx->newstate; tcpstates.family = family; tcpstates.sport = sport; tcpstates.dport = dport; bpf_get_current_comm(&tcpstates.task, sizeof(tcpstates.task)); if (family == AF_INET) { bpf_probe_read_kernel(&tcpstates.saddr, sizeof(tcpstates.saddr), &sk->__sk_common.skc_rcv_saddr); bpf_probe_read_kernel(&tcpstates.daddr, sizeof(tcpstates.daddr), &sk->__sk_common.skc_daddr); } else { /* family == AF_INET6 */ bpf_probe_read_kernel(&tcpstates.saddr, sizeof(tcpstates.saddr), &sk->__sk_common.skc_v6_rcv_saddr.in6_u.u6_addr32); bpf_probe_read_kernel(&tcpstates.daddr, sizeof(tcpstates.daddr), &sk->__sk_common.skc_v6_daddr.in6_u.u6_addr32); } // 상태가 변경되면 유저 공간에 알리는 부분 bpf_perf_event_output(ctx, &events, BPF_F_CURRENT_CPU, &tcpstates, sizeof(tcpstates)); return 0; } 핵심 로직은 단순합니다. 커널에서 inet_sock_set_state가 호출되면 handle_set_state 함수가 실행되고, 이때 변경된 TCP 상태를 잡아내 사용자 공간으로 전달합니다. 언뜻 보면 복잡해 보일 수 있지만, 사실 bpf.c의 역할은 데이터를 가공하는 것이 아니라 수집하는 것입니다. 결국 중요한 것은 “내가 원하는 값이 구조체의 어디에 들어 있는지”를 정확히 찾아내는 일입니다. 그 값을 Map에 담아 사용자 공간으로 넘기면 됩니다. netstat으로 보이는 출력은 아래와 같죠. Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name tcp 0 0 192.168.0.10:22 192.168.0.55:54321 ESTABLISHED 2048/sshd: user@pts/0 netstat은 사용자가 명령어를 실행한 시점의 상태만 스냅샷 형태로 보여줍니다. 그래서 LISTEN, ESTABLISHED, CLOSE_WAIT처럼 비교적 오래 유지되는 상태만 주로 확인할 수 있습니다. 반면 tcpstates를 활용하면 커널 내부에서 발생하는 모든 TCP 상태 변화를 이벤트 단위로 추적할 수 있습니다. 덕분에 기존 툴로는 관찰하기 어려웠던 3-way handshake와 4-way handshake 과정까지 실제로 확인할 수 있다는 점이 흥미로웠습니다. 조금 더 실무적으로 활용하자면, CLOSE_WAIT이 비정상적으로 쌓이는 경우 커넥션 누수를 빠르게 탐지할 수 있고, TIME_WAIT이나 FIN_WAIT2 패턴을 분석하면 리소스 사용량 문제를 조기에 파악할 수 있습니다. 관측용 예제지만, 확장하면 운영 환경에서도 충분히 유용한 진단 도구가 될 수 있습니다 다음으로 유저 공간의 tcpstates.c는 커널 eBPF 프로그램이 보낸 이벤트를 받아서 보기 좋게 출력하는 역할을 합니다. 흐름은 단순합니다. ①eBPF 오브젝트 열기 (tcpstates_bpf__open()) ②프로그램 커널 로드 (tcpstates_bpf__load()) ③훅 부착 (tcpstates_bpf__attach()) ④필요 시 cgroup 필터 등록 (open(), bpf_map_update_elem()) ⑤주기적으로 Map을 읽거나 이벤트를 받아 상태 출력 현재는 TCP 상태 변경 이벤트가 발생할 때마다 화면에 출력하는 방식으로 동작하지만, 필요하다면 일정 주기마다 netstat을 호출하듯이 현재 상태를 스냅샷 형태로 출력하도록 구현할 수도 있습니다. 마무리하며 이처럼 간단한 코드만으로도 tcpdump나 netstat보다 훨씬 세밀하게 네트워크 흐름을 분석하는 프로그램을 만들 수 있습니다. tcpstates 같은 예제는 단순하지만, eBPF의 장점을 잘 보여줍니다. • 저부하 eBPF는 패킷 전체를 캡처하지 않고, 연결 상태나 세션 정보 같은 핵심 메타데이터만 선택적으로 수집합니다. 이로 인해 CPU와 메모리 사용 부담이 최소화되며, 운영 중인 서비스에 성능 저하를 거의 일으키지 않습니다. 즉, 실서비스 환경에서도 안정적으로 적용 가능한 경량 모니터링 방식입니다. • 높은 가시성 단순히 IP와 포트 수준의 정보만 보여주는 데 그치지 않고, 프로세스명·PID·서비스 단위까지 트래픽을 구분할 수 있습니다. 이를 통해 “어떤 서비스가 얼마만큼의 네트워크 자원을 소비하는지”를 즉시 파악할 수 있으며, 서비스별 자원 사용 현황을 보다 세밀하게 모니터링할 수 있습니다. • 확장성 기본적인 송·수신량 분석을 넘어, RTT(왕복 지연시간), 재전송률, 패킷 드롭률 등 다양한 지표를 손쉽게 확장할 수 있습니다. 필요한 메트릭을 커널 훅(Hook)에 연결해 Map에 저장하기만 하면, 곧바로 시각화와 분석에 활용할 수 있습니다. 이 덕분에 환경 변화나 분석 요구에도 유연하게 대응 가능한 구조를 제공합니다. 브레인즈컴퍼니 역시 이 기술을 Zenius NPM(Network Performance Monitoring)에 적용하면서 기존 방식으로는 확인하기 어려웠던 세밀한 성능 데이터를 확보할 수 있었습니다. 이를 통해 단순한 모니터링을 넘어 서비스 간 통신 병목을 실시간으로 파악하고, 장애 분석 시간을 크게 줄일 수 있는 솔루션을 완성할 수 있었던 점이 큰 성과였습니다. 앞으로도 이러한 경험을 바탕으로 eBPF 활용을 더 넓혀가고자 합니다.
2025.09.18
기술이야기
하이브리드 클라우드 모니터링에 Zenius EMS가 필요한 4가지 이유
기술이야기
하이브리드 클라우드 모니터링에 Zenius EMS가 필요한 4가지 이유
오늘날 기업의 IT 인프라는 퍼블릭 클라우드와 프라이빗 클라우드(또는 온프레미스 환경)를 함께 사용하는 하이브리드 클라우드 구조로 빠르게 전환되고 있습니다. 이처럼 두 환경의 장점을 결합한 하이브리드 클라우드는 유연한 확장성과 높은 보안성을 동시에 확보할 수 있어, 다양한 산업 분야에서 널리 채택되고 있습니다. 하지만 하이브리드 클라우드 환경은 운영 가시성을 확보하고, 시스템 전반을 효율적으로 관리하는 부분 등에서 어려움이 있습니다. 특히 서로 다른 환경을 하나의 관점에서 통합적으로 모니터링하려면, 기존의 단일형 관제 시스템만으로는 분명한 한계가 존재합니다. Zenius EMS는 이러한 복잡성을 해결하기 위해 설계된 지능형 IT 인프라 통합 모니터링 솔루션입니다. 다양한 인프라를 하나의 프레임워크 안에서 통합 관리할 수 있도록 돕고, 자동화된 장애 대응 기능과 대규모 인프라 수용 능력을 함께 갖추고 있어, 복잡한 클라우드 운영 환경에서도 안정성과 효율성을 동시에 실현할 수 있습니다. 그렇다면 구체적으로 Zenius EMS가 하이브리드 클라우드 모니터링에 왜 필요한지 네 가지로 나눠서 살펴보겠습니다. Zenius EMS가 하이브리드 클라우드 모니터링에 필요한 네 가지 이유 1) 다양한 인프라를 하나의 화면에서 통합 관리 Zenius EMS는 각 인프라 유형에 최적화된 전용 모듈을 통해 인프라 상태와 성능을 체계적으로 수집하고 분석합니다. 예를 들어, CMS 모듈(Zenius CMS)은 클라우드 서비스별 리소스 상태, 사용 지표, 비용 초과 알림 등을 통합해 관리하며, K8s 모듈(Zenius K8s)은 클러스터 전체 구성요소의 상태, 리소스 사용률, 이벤트 발생 내역을 실시간으로 관제합니다. 또한 자동 생성되는 Topology Map을 통해 워크로드 간 연관 관계와 서비스 흐름을 시각적으로 표현할 수 있어, 클러스터 내부에서 발생하는 병목이나 장애 영향을 직관적으로 파악할 수 있습니다. APM 모듈(Zenius APM)은 웹 애플리케이션의 트랜잭션 처리량, 응답 지연, 사용자 행동 흐름 등을 실시간 분석하며, 동시에 WAS, DB, 외부 연계 시스템 등 전체 요청 경로 상의 성능 병목을 식별할 수 있습니다. NPM 모듈(Zenius NPM)은 커널 수준에서 수집한 네트워크 트래픽 데이터를 기반으로, 장비 단위가 아닌 프로세스 단위의 통신 현황을 분석하여 어떤 서비스가 어느 포트, 어느 서버와 언제 얼마나 통신했는지를 정확하게 추적할 수 있도록 돕습니다. 특히 Zenius EMS의 큰 강점은, 이러한 각기 다른 모듈들이 단순히 병렬적으로 구성되는 것이 아니라, 하나의 통합 관제 프레임워크 내에서 상호 연동되어 작동한다는 점입니다. 예를 들어, K8s 모듈과 APM 모듈을 연계하면, 클러스터 내 서비스의 성능 저하가 애플리케이션 차원에서 어떤 영향을 주는지를 교차 분석할 수 있으며, 그 결과를 기반으로 장애 발생 원인을 보다 정밀하게 추적할 수 있습니다. Zenius EMS는 단일 뷰 기반의 통합 화면 구성과 모듈 간 연계 분석 기능을 통해, 복잡한 하이브리드 인프라 환경에서도 인프라 상태를 실시간으로 가시화하고, 장애의 흐름과 구조를 맥락적으로 이해할 수 있도록 지원합니다. 2) 운영 자동화와 예측 분석으로 장애 대응 시간 최소화 하이브리드 클라우드 환경에서는 장애가 언제, 어디서, 어떤 형태로 발생할지 예측하기 어렵기 때문에, 수동적인 장애 대응 방식으로는 복잡한 인프라 환경을 안정적으로 운영하기 어렵습니다. Zenius EMS는 운영자의 개입을 최소화하면서도 정확하고 빠르게 대응할 수 있는 자동화된 장애 관리 체계를 내장하고 있습니다. 먼저, Agent가 각 인프라 노드나 애플리케이션에 설치되어 이벤트 발생을 실시간으로 감지하며, 감시정책에 따라 자동으로 알림을 전송하고, 장애의 심각도에 따라 최대 3단계까지 에스컬레이션 (escalation)되는 체계를 제공합니다. 복구가 완료되면, 시스템은 정상 상태로의 전환 여부를 다시 감지하고, 담당자에게 자동 통보함으로써 알림 누락이나 대응 지연을 최소화합니다. 또한 Zenius EMS는 장애 발생 당시의 인프라 상태를 Snapshot 형태로 저장하여 이후 원인 분석에 활용할 수 있습니다. 단순한 수치 기록을 넘어서 해당 시점의 구성요소 상태, 트래픽 흐름, 애플리케이션 반응 시간 등 실시간 운영 데이터 전체를 캡처할 수 있어 문제 발생의 맥락을 복원하는 데 용이합니다. 저장된 장애 이력은 Knowledge DB에 축적되며, 유사 장애 발생 시 자동으로 과거의 대응 이력을 불러와 선제적인 조치를 제안합니다. 이와 함께 Zenius EMS는 AI 알고리즘 기반의 성능 예측 기능도 지원합니다. 장기간 축적된 메트릭 데이터를 분석해 자원 사용률 급증, 트래픽 편중, 프로세스 과부하 같은 이상 징후를 사전에 감지하고, 장애로 이어지기 전 조치를 취할 수 있도록 도와줍니다. 이로써 Zenius EMS는 장애 탐지, 원인 분석, 대응, 재발 방지, 선제 대응까지 운영 전 과정을 자동화하고 지능화된 방식으로 처리할 수 있는 환경을 제공합니다. 3) 대규모 환경에서도 안정적으로 작동하는 구조 Zenius EMS는 복잡한 구성과 대규모 트래픽이 동시에 존재하는 엔터프라이즈급 인프라 환경에서도 안정성과 성능을 유지할 수 있는 구조적 기반을 갖추고 있습니다. 단일 Manager Set만으로도 최대 1,500대 이상의 서버를 동시에 관제할 수 있으며, SIEM 모듈 기준 초당 160만 건의 데이터 입력을 처리할 수 있는 고성능 분석 엔진을 보유하고 있습니다. 이는 TTA 인증을 통해 공식적으로 성능을 입증받은 결과입니다. Zenius EMS는 전체 시스템이 초경량 매니저 및 에이전트 구조로 설계되어 있어 낮은 리소스 점유율로도 높은 처리 효율을 유지할 수 있습니다. 모듈 간 데이터 전달 및 상호작용도 최소한의 네트워크 부하로 작동되도록 설계되어, 대용량 환경에서도 병목 없이 관제 품질을 유지합니다. 특히 확장된 환경에서는 모듈 추가만으로 수용량을 유연하게 늘릴 수 있어, 인프라 확장에 따른 별도의 구조 변경 없이 유연한 확장 대응이 가능해, 인프라 변화에 빠르게 적응할 수 있습니다. 또한 Zenius EMS는 국내외 주요 클라우드 서비스 제공업체(CSP)의 마켓플레이스 8곳에 등록되어 있어, 클라우드 환경에서도 간편하고 신속한 도입이 가능합니다. 이미 다양한 산업의 대규모 고객 환경에 적용되어 성능과 안정성을 입증했으며, 이를 통해 높은 기술적 신뢰성을 확보하고 있습니다. 4) 검증된 안정성과 지속적인 기술 지원 Zenius EMS는 기능적 완성도뿐 아니라, 현장 중심의 운영 안정성과 체계적인 기술 지원 역량을 함께 갖춘 IT 인프라 관제 솔루션입니다. 현재까지 공공, 금융, 의료, 제조 등 다양한 산업 분야에서 1,000여 개 이상의 고객사에 도입되어 실제 운영되고 있으며, 10년 이상 장기 사용 고객 비율이 34%를 넘어설 만큼 높은 충성도와 신뢰를 확보하고 있습니다. 구축 이후에도 Zenius EMS는 단순한 모니터링 시스템을 넘어, 지속 가능한 운영 경험을 제공합니다. 고객 전담 엔지니어가 상시 유지보수와 기술 지원을 전담하며, 운영 중 발생하는 이슈에 신속하고 일관된 대응이 가능하도록 ServiceDesk 체계가 마련되어 있습니다. 또한, 15년 이상의 현장 경험을 가진 전문 엔지니어 인력이 직접 대응하며, QA 전담 테스트팀은 신규 기능이나 환경 변경 시 사전 안정성 검증을 통해 서비스 품질을 철저히 관리합니다. 더불어, 정기적인 제품 고도화와 보안 패치가 지속적으로 이루어지고 있으며, 고객 환경의 변화에 따른 모듈 기능 확장이나 커스터마이징 요청에도 유연하게 대응하고 있습니다. 이러한 운영 지속성과 기술 지원 체계는 Zenius EMS의 큰 강점으로 꼽힙니다. 하이브리드 클라우드 환경은 단순히 퍼블릭과 프라이빗 인프라를 병행해 사용하는 차원을 넘어, 가상화, 컨테이너, 다양한 클라우드 리소스들이 유기적으로 얽혀 있는 복잡한 구조로 변화하고 있습니다. 이처럼 다양한 인프라가 서로 연결되어 있는 환경에서는 단일 장애가 전체 서비스에 어떤 영향을 주는지를 파악하는 일조차 쉽지 않으며, 과거의 이슈와 연관된 맥락까지 함께 분석할 수 있어야 보다 정확하고 신속한 운영이 가능해집니다. Zenius EMS는 단일 리소스 중심의 수치나 지표 제공에 머무르지 않고, 전체 인프라 구조를 맥락적으로 해석하고, 실시간 자동화 및 예측 분석 기능을 통해 장애를 사전에 방지하며, 발생한 이슈에 대해서도 구조적 흐름 안에서 진단할 수 있는 환경을 제공합니다. 여기에 더해, 대규모 인프라 환경에서도 안정적으로 동작할 수 있는 구조와 운영자의 부담을 줄여주는 기술 지원 체계, 그리고 수많은 현장 경험을 통해 검증된 운영 안정성까지 더해지면서, Zenius EMS는 단순한 모니터링 도구를 넘어 하이브리드 인프라 운영을 실질적으로 뒷받침하는 기반 플랫폼으로 자리 잡고 있습니다.
2025.06.12
기술이야기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
기술이야기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
앞선 글들을 통해서 NMS의 기본 개념, 구성요소와 기능, 정보 수집 프로토콜에 대해서 알아봤었는데요. 이번 글에서는 NMS의 역사와 진화 과정, 그리고 최근 트렌드에 대해서 자세히 알아보겠습니다. EMS, NPM, 그리고 AIOps에 이르기까지 네트워크의 빠른 변화에 발맞추어 진화하고 있는 NMS에 대해서 하나씩 하나씩 살펴보겠습니다. ㅣNMS의 역사와 진화 과정 우선 NMS의 전반적인 역사와 진화 과정을 살펴보겠습니다. [1] 초기 단계 (1980년대 이전) 초기에는 네트워크 관리가 수동적이었습니다. 네트워크 운영자들은 네트워크를 모니터링하고 문제를 해결하기 위해 로그 파일을 수동으로 분석하고 감독했습니다. [2] SNMP의 등장 (1988년) SNMP(Simple Network Management Protocol)의 등장으로 네트워크 장비에서 데이터를 수집하고 이를 중앙 집중식으로 관리하는 표준 프로토콜을 통해 네트워크 관리자들이 네트워크 장비의 상태를 실시간으로 모니터링하고 제어할 수 있게 됐습니다. [3] 네트워크 관리 플랫폼의 출현 (1990년대 중후반) 1990년대 후반부에는 상용 및 오픈 소스 기반의 통합된 네트워크 관리 플랫폼이 등장했습니다. 이러한 플랫폼들은 다양한 네트워크 장비와 프로토콜을 지원하고, 시각화된 대시보드와 경고 기능 등을 제공하여 네트워크 관리의 편의성을 높였습니다. [4] 웹 기반 NMS (2000년대 중반) 2000년대 중반에는 웹 기반의 NMS가 등장했습니다. 이러한 시스템은 사용자 친화적인 웹 인터페이스를 통해 네트워크 상태를 모니터링하고 관리할 수 있게 했습니다. [5] 클라우드 기반 NMS (2010년대 이후) 최근 몇 년간 클라우드 기반 NMS의 등장으로 네트워크 관리의 패러다임이 변화하고 있습니다. 또한 빅데이터 기술과 인공지능(AI) 기술을 활용하여 네트워크 성능을 최적화하고, 향후 성능을 예측할 수 있는 성능 예측 기능까지 NMS에서 제공하고 있습니다. ㅣNMS에서 EMS로의 진화 네트워크 환경은 빠르게 변화하게 되고, 이에 따라서 NMS도 EMS로 진화하게 됩니다. NMS의 진화는 총 세 가지 세대로 나눌 수 있습니다. 1세대: 디바이스 관리 시스템 기존의 NMS는 외산 제조사에서 제공하는 전용 네트워크 솔루션이 주를 이루었습니다. CISCO의 시스코웍스(CiscoWorks), IBM의 넷뷰(NetView) HP의 네트워크 노드 매니저(Network Node Manager) 등 다양한 벤더들이 자사의 제품에 대한 모니터링 서비스를 제공하기 위해 특화된 디바이스 관리 솔루션을 내놓았죠. HP Network Node Manager 예시 화면(출처ⓒ omgfreeet.live) 물론 자사의 제품을 관리하기 위한 목적에서 출발한 솔루션이었기에, 대규모 이기종 IT 인프라 환경에 대한 모니터링 기능은 제공하지 못했습니다. 2세대: IT 인프라 관리 시스템 EMS의 등장 1세대의 NMS의 경우 빠르게 급변하는 네트워크 트렌드를 따라갈 수 없었습니다. 가상랜(VLAN), 클라이언트-서버 기술이 발달하게 되자, IP 네트워크 관계만으로 실제 토폴로지를 파악하기 어려웠습니다. 또한 네트워크장비 및 회선의 상태뿐 아니라, 서버 등의 이기종 IT 인프라 통합 모니터링에 대한 니즈와 함께 EMS(Enterprise Management System)의 시대가 시작됩니다. 이에 따라 서비스 관리 차원의 통합 관제 서비스가 등장합니다. 기존의 네트워크 모니터링뿐 아니라 서버, DBMS, WAS 등 IT 서비스를 이루고 있는 모든 인프라들에 대한 통합 모니터링에 대한 관심과 니즈가 증가했기 때문입니다. 3세대: 클라우드 네이티브 환경의 EMS 2010년 중 이후 서버, 네트워크 등 IT 인프라에 대한 클라우드 네이티브로의 전환이 가속화되었습니다. 기존의 레거시 환경에 대한 모니터링과 함께 퍼블릭, 프라이빗 클라우드에 대한 모니터링 니즈가 증가하면서 모든 환경에 대한 통합적인 가시성을 제공해 줄 수 있는 EMS가 필요하게 되었죠. 이외에도 AI의 발전을 통해 AIOps, Observability라는 이름으로 인프라에 대한 장애를 사전적으로 예측할 수 있는 기능이 필요하게 됐습니다. ㅣ네트워크 환경 변화(가상화)와 NMS의 변화 이번에는 네트워크 환경 변화에 따른 NMS의 변화에 대해서 알아보겠습니다. 네트워크 환경 변화(네트워크 가상화) 네트워크 구성 방식은 지속적으로 변화해왔습니다. 클라이언트-서버 모델부터 중앙 집중식 네트워크, MSA 환경에서의 네트워크 구성까지 이러한 변화는 기술 발전, 비즈니스 요구 사항, 보안 요구 사항 등 다양한 요인에 의해 영향을 받았는데요. 무엇보다 가장 중요한 변화는 전통적인 온 프레미스 네트워크 구조에서 네트워크 자원이 더 이상 물리적인 장비 기반의 구성이 아닌 가상화 환경에서 구성된다는 점입니다. ▪소프트웨어 정의 네트워킹(SDN, 2000년대 후반 - 현재): 네트워크 관리와 제어를 분리하고 소프트웨어로 정의하여 유연성과 자동화를 향상시키는 접근 방식입니다. SDN은 네트워크 관리의 복잡성을 줄이고 가상화, 클라우드 컴퓨팅 및 컨테이너화와 같은 새로운 기술의 통합을 촉진시켰습니다. ▪네트워크 가상화 (NFV, 현재): 기존 하드웨어 기반 전용 장비에서 수행되던 네트워크 기능을 소프트웨어로 가상화하여 하드웨어 의존성과 장비 벤더에 대한 종속성을 배제하고, 네트워크 오케스트레이션을 통해 네트워크 환경 변화에 민첩한 대응을 가능하게 합니다. ㅣ클라우드, AI 등의 등장에 따른 NMS의 방향 클라우드 네이티브가 가속화되고, AI를 통한 인프라 관리가 주요 화두로 급부상하면서 네트워크 구성과 이를 모니터링하는 NMS의 환경 역시 급변하고 있습니다. 클라우드 내의 네트워크: VPC VPC(Virtual Private Cloud)는 퍼블릭 클라우드 환경에서 사용할 수 있는 전용 사설 네트워크입니다. VPC 개념에 앞서 VPN에 대한 개념을 단단히 잡고 넘어가야 합니다. VPN(Virtual Private Network)은 가상사설망으로 '가상'이라는 단어에서 유추할 수 있듯이 실제 사설망이 아닌 가상의 사설망입니다. VPN을 통해 하나의 네트워크를 가상의 망으로 분리하여, 논리적으로 다른 네트워크인 것처럼 구성할 수 있습니다. VPC도 이와 마찬가지로 클라우드 환경을 퍼블릭과 프라이빗의 논리적인 독립된 네트워크 영역으로 분리할 수 있게 해줍니다. VPC가 등장한 후 클라우드 내에 있는 여러 리소스를 격리할 수 있게 되었는데요. 예를 들어 'IP 주소 간에는 중첩되는 부분이 없었는지', '클라우드 내에 네트워크 분리 방안' 등 다양한 문제들을 VPC를 통해 해결할 수 있었습니다. ▪서브넷(Subnet): 서브넷은 서브 네트워크(Subnetwork)의 줄임말로 IP 네트워크의 논리적인 영역을 부분적으로 나눈 하위망을 말합니다. AWS, Azure, KT클라우드, NHN 등 다양한 퍼블릭 클라우드의 VPC 서브넷을 통해 네트워크를 분리할 수 있습니다. ▪서브넷은 크게 퍼블릿 서브넷과 프라이빗 서브넷으로 나눌 수 있습니다. 말 그대로 외부 인터넷 구간과 직접적으로 통신할 수 있는 공공, 폐쇄적인 네트워크 망입니다. VPC를 이용하면 Public subnet, Private subnet, VPN only subnet 등 필요에 따라 다양한 서브넷을 생성할 수 있습니다. ▪가상 라우터와 라우트 테이블(routing table): VPC를 통해 가상의 라우터와 라우트 테이블이 생성됩니다. NPM(Network Performance Monitoring) 네트워크 퍼포먼스 모니터링(NPM)은 전통적인 네트워크 모니터링을 넘어 사용자가 경험하는 네트워크 서비스 품질을 측정, 진단, 최적화하는 프로세스입니다. NPM 솔루션은 다양한 유형의 네트워크 데이터(ex: packet, flow, metric, test result)를 결합하여 네트워크의 성능과 가용성, 그리고 사용자의 비즈니스와 연관된 네트워크 지표들을 분석합니다. 단순하게 네트워크 성능 데이터(Packet, SNMP, Flow 등)를 수집하는 수동적인 과거의 네트워크 모니터링과는 다릅니다. 우선 NPM은 네트워크 테스트(Synthetic test)를 통해 수집한 데이터까지 활용하여, 실제 네트워크 사용자가 경험하는 네트워킹 서비스 품질을 높이는데 그 목적이 있습니다. NPM 솔루션은 NPMD라는 이름으로 불리기도 합니다. Gartner는 네트워크 성능 모니터링 시장을 NPMD 시장으로 명명하고 다양한 데이터를 조합하여 활용하는 솔루션이라고 정의했습니다. 즉 기존의 ICMP, SNMP 활용 및 Flow 데이터 활용과 패킷 캡처(PCAP), 퍼블릭 클라우드에서 제공하는 네트워크 데이터 활용까지 모든 네트워크 데이터를 조합하는 것이 핵심이라 할 수 있습니다. AIOps: AI를 활용한 네트워크 모니터링 AI 모델을 활용한 IT 운영을 'AIOps'라고 부릅니다. 2014년 Gartner를 통해 처음으로 등장한 이 단어는 IT 인프라 운영에 머신러닝, 빅데이터 등 AI 모델을 활용하여 리소스 관리 및 성능에 대한 예측 관리를 실현하는 것을 말합니다. 가트너에서는 AIOps에 대한 이해를 위해 관제 서비스, 운영, 자동화라는 세 가지 영역으로 분류해서 설명하고 있습니다. ▪관제(Observe): AIOps는 장애 이벤트가 발생할 때 분석에 필요한 로그, 성능 메트릭 정보 및 기타 데이터를 자동으로 수집하여 모든 데이터를 통합하고 패턴을 식별할 수 있는 관제 단계가 필요합니다. ▪운영(Engine): 수집된 데이터를 분석하여 장애의 근본 원인을 판단하고 진단하는 단계로, 장애 해결을 위해 상황에 맞는 정보를 IT 운영 담당자에게 전달하여 반복적인 장애에 대한 조치 방안을 자동화하는 과정입니다. ▪자동화(Automation): 장애 발생 시 적절한 해결책을 제시하고 정상 복구할 수 있는 방안을 제시하여, 유사 상황에도 AIOps가 자동으로 조치할 수 있는 방안을 마련하는 단계입니다. 위의 세 단계를 거쳐 AIOps를 적용하면 IT 운영을 사전 예방의 성격으로 사용자가 이용하는 서비스, 애플리케이션, 그리고 인프라까지 전 구간의 사전 예방적 모니터링을 가능하게 합니다. 또한 구축한 데이터를 기반으로 AI 알고리즘 및 머신 러닝을 활용하여 그 어떠한 장애에 대한 신속한 조치와 대응도 자동으로 가능하게 합니다. Zenius를 통한 클라우드 네트워크 모니터링 참고로 Zenius를 통해 각 퍼블릭 클라우드 별 VPC 모니터링이 가능합니다. VPC의 상태 정보와 라우팅 테이블, 서브넷 목록 및 서브넷 별 상세 정보 (Subnet ID, Available IP, Availability Zone 등)에 대한 모니터링 할 수 있습니다. Zenius-CMS를 통한 AWS VPC 모니터링 이외에도 각 클라우드 서비스에 대한 상세 모니터링을 통해 클라우드 모니터링 및 온 프레미스를 하나의 화면에서 모니터링하실 수 있습니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼, 네트워크의 변화에 따라서 NMS는 계속해서 진화하고 있습니다. 현재의 네트워크 환경과 변화할 환경을 모두 완벽하게 관리할 수 있는 NMS 솔루션을 통해 안정적으로 서비스를 운영하시기 바랍니다.
2024.04.03
기술이야기
Helm과 Argo의 개념과 통합 활용법?!
기술이야기
Helm과 Argo의 개념과 통합 활용법?!
애플리케이션을 클라우드 네이티브 환경에서 효율적으로 관리하고 운영할 수 있는 플랫폼인 쿠버네티스(kubernetes)를 활용하는 기업들이 점점 더 늘어나고 있습니다. 이에 따라 효율적인 애플리케이션 관리를 통해 패키징 배포, 관리를 자동화하고 일관된 상태를 유지하는 것이 중요해지고 있습니다. 이번 글을 통해서는 애플리케이션 개발 및 도구 중 최근 많이 사용되는 Helm과 Argo에 대해서 자세히 알아보겠습니다. ㅣHelm의 등장 쿠버네티스를 활용한 애플리케이션 배포에 가장 기본이 되는 단위는 yaml 파일로, 주로 쿠버네티스 object(리소스)들을 정의하고 다루는데 활용됩니다. 쿠버네티스를 통해 애플리케이션을 배포하다 보면 비슷한 틀과 내용을 공유하고, 내부 값(configuration)만 일부 변경하는 작업을 하게 되는데요, 이 과정에서 애플리케이션마다 모두 yaml 파일을 만들어야 하나 보니 매우 번거로웠습니다. 위 이미지를 보면, A 애플리케이션은 정적 파일인 yaml을 오브젝트별(Service, Pod, ConfigMap)로 만들어서 생성하고 배포합니다. 그러다가 프로젝트의 확장에 따른 기능 추가로 인해 B와 C 애플리케이션으로 쪼개어 각각의 yaml 파일을 복사해서 사용합니다. 하지만, 팀 단위로 인프라가 확장될 경우는 어떻게 할까요? 개별 오브젝트에 대한 yaml 개별적으로 관리할 수 있을까요? 만약, 개별적으로 관리한다면 파일의 갯수와 코드량의 증가로 인해 개발자들은 매우 혼잡하게 될 것입니다. 이러한 문제점을 해결하기 위해, 쿠버네티스에서 애플리케이션을 배포하기 위해 사용되는 대표적인 패키징 툴인 Helm이 등장하게 됐습니다. Helm을 활용하면 컨테이너 배포뿐 아니라 애플리케이션을 배포하기 위해 필요한 쿠버네티스 리소스를Node의 npm, Ubuntu의 APT, Mac의 Homebrew처럼 모두 패키지 형태로 배포할 수 있습니다. ㅣHelm의 역사 Helm은 v1부터 v3에 이르기까지 아래와 같은 변화의 과정을 거쳐왔습니다. Helm v1 ◾ [2015년 11월] DEIS의 내부 프로젝트로 시작되어 KubeCon에서 발표 ◾ [2017년 04월] MS에서 DEIS를 인수 Helm v2 ◾ [2016년 01월] Google 프로젝트에 합류 ◾ [2016년 ~ 2018년] Helm v2 고도화, 2.15.0 릴리스 발표에서 v2 향후 계획 세부사항 공유 Helm v3 ◾ [2018년 06월] CNCF 프로젝트에 합류, MS, 삼성 SDS, IBM 및 Blood Orange의 구성원 등이 참여 ◾ [2019년 11월] 릴리스 발표 v2에서 v3로 고도화되면서 가장 눈에 띄는 변화는 Tiller(클러스터 내에서 Helm 패키지 및 배포 상태를 관리하는 서버 구성요소)의 제거입니다. Helm v2에서는 클러스터에 Tiller를 설치하여, API Server와 REST*1 통신을 하고, Client와 gRPC*2 통신을 진행했었는데요, Helm v3부터는 Tiller가 제거되면서 Client에서 바로 REST 통신을 통해 API Server로 요청하는 방식으로 변경되었습니다. 그 외에도 Helm v3으로 업그레이드되면서 보안 취약점이 줄어들었으며, 설치 및 관리 과정이 단순화되었습니다. 또한 사용자에게 보다 더 안전하고 효율적인 배포 및 관리 환경을 제공할 수 있게 되었습니다. *1 REST (Representational State Transfer) : 웹 기반 애플리케이션에서 자원을 관리하기 위한 아키텍처 스타일, 데이터를 고유한 URL로 표현하고 HTTP 메서드(GET, POST, PUT, DELETE 등)를 사용하여 해당 자원에 대한 행위를 정의함 *2 gRPC (google Remote Procedure Call) : 구글에서 개발한 오픈소스 프레임워크, 원격지에 있는 다른 시스템 또는 서버에 있는 함수를 호출하는 방식 ㅣHelm의 주요 개념 Helm은 애플리케이션을 배포해 주는 툴이라고 앞서 살펴봤는데요, Helm과 같이 사용되는 주요 개념들을 살펴보겠습니다. ◾ Helm Chart: 쿠버네티스 리소스를 하나로 묶은 패키지입니다. 이는 yaml 파일의 묶음(패키지)으로, 이 묶음 public 혹은 private registry에 push 해두고, helm 명령어를 통해 Helm Chart를 설치하여 쿠버네티스 리소스를 배포하는 역할을 합니다. ◾ Repository: Helm Chart 들의 저장소 ◾ Release: kubernetes Cluster에서 구동되는 차트 인스턴스이며, Chart는 여러 번 설치되고 새로운 인스턴스는 Release로 관리됩니다. ㅣHelm의 주요 기능 Helm의 두 가지 주요 기능을 살펴보겠습니다. [1] Helm Chart를 통한 손쉬운 배포 Helm을 사용하면 어떻게 되는지 그림으로 살펴보겠습니다. 개발 클러스터가 있고 앱 2개를 배포한다고 가정했을 때, Helm Chart Template을 만들면 변수 처리를 통해 yaml 파일을 하나하나 수정할 필요 없습니다. kubectl 명령어를 통해 yaml 파일의 동적 값을 치환하여 템플릿 형태로 편리하게 배포할 수 있다는 장점이 있습니다. [2] Helm Package를 이용한 오픈소스 설치 및 배포 Helm을 통해서 쿠버네티스에서 가동할 수 있는 아래와 같은 다양한 오픈소스들의 제품들을 쉽게 설치/배포할 수 있습니다. 위제품들 외에도 Helm Chart는 총 14,376개의 패키지와 281,373개의 릴리스를 오픈소스로 제공합니다. 이를 통해 사용자들은 자신의 요구에 맞는 가장 적합한 솔루션을 선택하여 개발할 수 있습니다. 또한 많은 사용자들이 검증하고 사용함에 따라 안정성 있는 운영도 가능하죠. 다양한 Helm Chart 패키지는 커스터마이징이 가능한 경우가 많은데요, 사용자는 필요에 따라 구성을 조정하고 수정해서 사용할 수 있는 장점이 있습니다. 다음으로는 Helm 못지않게 많이 활용되는 ArgoCD에 대해서 살펴보겠습니다. ㅣ ArgoCD란?! 기존의 kubernetes 애플리케이션을 배포하고 관리하는 방식은 수동적이었습니다. yaml 파일을 직접 편집하고, kubectl로 변경사항을 클러스터에 적용하는 수동 배포 방식은 실수를 많이 유발했죠. 또한 여러 개발자나 팀이 각자의 방식대로 배포 및 관리를 수행하는 경우, 클러스터 상태의 일관성이 저하되었는데요. 이로 인해 개발 및 운영팀 간의 협업이 어렵고 생산성이 감소되는 문제가 발생하기도 했습니다. 이러한 기존 접근 방식에 대한 대안으로 GitOps가 탄생했는데요, GitOps는 Git 저장소를 사용하는 소프트웨어 배포 접근 방식입니다. GitOps는 인프라와 소프트웨어를 함께 관리함으로써, Git 버전 관리 시스템과 운영환경 간의 일관성을 유지할 수 있도록 합니다. ArgoCD는 GitOps를 구현하기 위한 도구 중 하나로 kubernetes 애플리케이션의 자동 배포를 위한 오픈소스 도구입니다. kubernetes 클러스터에 배포된 애플리케이션의 CI/CD 파이프라인에서 CD 부분을 담당하며, Git 저장소에서 변경사항을 감지하여 자동으로 kubernetes 클러스터에 애플리케이션을 배포할 수 있습니다. kubernetes 애플리케이션 배포 과정을 살펴보겠습니다. ① 사용자가 개발한 내용을 Git 저장소에 Push(이때, kubernetes 배포 방식인 Helm 배포 방식의 구조로 Git 저장소에 Push 할 수 있습니다.) ② ArgoCD가 Git 저장소의 변경 상태를 감지 ③ Git 저장소의 변경된 내용을 kubernetes에 배포하여 반영 ㅣ ArgoCD의 주요 기능 ◾ 애플리케이션을 지정된 환경에 자동으로 배포 ◾ 멀티 클러스터 관리기능 제공 ◾ OCI, OAuth2, LDAP 등 SSO 연동 ◾ 멀티 테넌시와 자체적인 RBAC 정책 제공 ◾ 애플리케이션 리소스 상태 분석 ◾ 애플리케이션 자동 및 수동 동기화 기능 제공 ◾ Argo가 관리하고 있는 쿠버네티스 리소스 시각화 UI 제공 ◾ 자동화 및 CI 통합을 위한 CLI 제공 위 내용은 ArgoCD가 제공하는 주요 기능을 나열한 것인데요, 이 중에서도 대표적인 다섯 가지 기능에 대해서 자세히 살펴보겠습니다. ① 쿠버네티스 모니터링 ArgoCD는 쿠버네티스를 항상 추적하고 있다가 저장소의 변경사항이 감지되면, 자동으로 클러스터의 상태를 저장소의 상태와 동기화합니다. 또한 문제가 생기면 이전 상태로 롤백 할 수 있으며, 이를 통해 시스템 복구 및 문제 해결을 용이하게 합니다. ② 멀티 클러스터 관리 다중 클러스터 환경에서도 배포를 관리할 수 있어 복잡한 인프라 환경에서의 효율적인 작업을 가능하게 합니다. ③ ArgoCD 대시보드 Argo에서는 클러스터 상태를 효과적으로 관리하고 모니터링할 수 있는 대시보드를 제공합니다. ArgoCD 대시보드를 통해 애플리케이션의 실시간 상태와 동기화 상태와 같은 전체적인 배포 파이프라인을 자동화하여 시각적으로 확인할 수 있고, 롤백 및 이력 추적 기능도 동시에 제공하고 있습니다. ④ 안전한 인증 및 권한 관리 역할 기반 액세스 제어(RBAC) 및 권한 제어기능을 통해 민감한 정보에 대한 접근을 제어할 수 있습니다. ⑤ GitOps 지원 ArgoCD는 GitOps 방법론을 따르므로 애플리케이션의 배포를 Git Repository와 동기화할 수 있습니다. 이를 통해 코드와 인프라의 일관성을 유지하고 변경사항을 추적할 수 있습니다. ㅣ Helm과 ArgoCD의 통합 활용 프로세스 Helm과 Argo를 함께 사용하면 개발, 테스트, 배포 프로세스를 효과적으로 관리할 수 있습니다. Helm으로 애플리케이션을 패키징하고 버전을 관리하며, Argo를 활용하여 GitOps 워크플로우를 통해 지속적인 통합 및 배포를 자동화할 수 있습니다. ① develop: Helm을 사용하여 애플리케이션을 Helm Chart로 패키징 합니다. 이후 개발된 Helm Chart를 저장하기 위한 Git 저장소를 설정합니다. ArgoCD에서 저장한 저장소를 특정 배포 대상 Kubernetes 클러스터와 연결하여, Git 저장소의 변경사항을 감지하고 새로운 배포를 시작하여 클러스터에 적용합니다. ② git push: 개발자가 로컬 저장소 내용을 원격 저장소에 배포합니다. ③ Observe(GitOps): ArgoCD는 Git 저장소의 변경 사항을 감지하여, 변경사항이 발생하면 새로운 버전의 애플리케이션을 배포하여 자동화 및 일관성을 유지합니다. ④ 운영/테스트/개발 ㅣ마무리 오늘 함께 살펴본 Helm과 ArgoCD 두 가지 강력한 도구를 함께 이용한다면 CI/CD 통합, 버전 관리, 자동화 등의 이점을 활용해서 kubernetes 환경에서 애플리케이션을 더 효율적으로 관리할 수 있습니다. 한편 애플리케이션을 효과적으로 개발하는 것도 중요하지만, kubernetes 환경의 프로세스를 실시간 모니터링하고 추적하여 관리하는 것도 매우 중요합니다. 브레인즈컴퍼니의 kubernetes 모니터링 솔루션 Zenius-K8s는 다양한 CI/CD 도구를 이용하여 개발한 kubernetes 애플리케이션의 전체 클러스터 및 구성요소에 대한 상세 성능 정보를 모니터링하고, 리소스를 추적함으로써 시스템의 안정성과 성능을 높여주고 있습니다.
2024.03.08
1