반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
기술이야기
검색
기술이야기
메모리 누수 위험있는 FinalReference 참조 분석하기
기술이야기
메모리 누수 위험있는 FinalReference 참조 분석하기
Java에서 가장 많이 접하는 문제는 무엇이라 생각하시나요? 바로 리소스 부족 특히 ‘JVM(Java Virtual Machine) 메모리 부족 오류’가 아닐까 생각해요. 메모리 부족 원인에는 우리가 일반적으로 자주 접하는 누수, 긴 생명주기, 다량의 데이터 처리 등 몇 가지 패턴들이 있는데요. 오늘은 좀 일반적이지 않은(?) 유형에 대해 이야기해 볼게요! Java 객체 참조 시스템은 강력한 참조 외에도 4가지 참조를 구현해요. 바로 성능과 확장성 기타 고려사항에 대한 SoftReference, WeakReference, PhantomReference, FinalReference이죠. 이번 포스팅은 FinalReference를 대표적인 사례로 다루어 볼게요. PART1. 분석툴을 활용해 메모리 누수 발생 원인 파악하기 메모리 분석 도구를 통해 힙 덤프(Heap Dump)를 분석할 때, java.lang.ref.Finalizer 객체가 많은 메모리를 점유하는 경우가 있어요. 이 클래스는 FinalReference와 불가분의 관계에요. 나눌 수 없는 관계라는 의미죠. 아래 그림 사례는 힙 메모리(Heap Memory)의 지속적인 증가 후 최대 Heap에 근접 도달 시, 서비스 무응답 현상에 빠지는 분석 사례인데요. 이를 통해 FinalReference 참조가 메모리 누수를 발생시킬 수 있는 조건을 살펴볼게요! Heap Analyzer 분석툴을 활용하여, 힙 덤프 전체 메모리 요약 현황을 볼게요. java.lang.ref.Finalizer의 점유율이 메모리의 대부분을 점유하고 있죠. 여기서 Finalizer는, 앞에서 언급된 FinalReference를 확장하여 구현한 클래스에요. JVM은 GC(Garbage Collection) 실행 시 해제 대상 객체(Object)를 수집하기 전, Finalize를 처리해야 해요. Java Object 클래스에는 아래 그림과 같이 Finalize 메서드(Method)가 존재하는데요. 모든 객체가 Finalize 대상은 아니에요. JVM은 클래스 로드 시, Finalize 메서드가 재정의(Override)된 객체를 식별해요. 객체 생성 시에는 Finalizer.register() 메서드를 통해, 해당 객체를 참조하는 Finalizer 객체를 생성하죠. 그다음은 Unfinalized 체인(Chain)에 등록해요. 이러한 객체는 GC 발생 시 즉시 Heap에서 수집되진 않아요. Finalizer의 대기 큐(Queue)에 들어가 객체에 재정의된 Finalize 처리를 위해 대기(Pending) 상태에 놓여있죠. 위 그림과 같이 참조 트리(Tree)를 확인해 보면, 많은 Finalizer 객체가 체인처럼 연결되어 있어요. 그럼 Finalizer 객체가 실제 참조하고 있는 객체는 무엇인지 바로 살펴볼까요? 그림에 나온 바와 같이 PostgreSql JDBC Driver의 org.postgresql.jdbc3g.Jdbc3gPreparedStatement인 점을 확인할 수 있어요. 해당 시스템은 PostgreSql DB를 사용하고 있었네요. 이처럼 Finalizer 참조 객체 대부분은 Jdbc3gPreparedStatement 객체임을 알 수 있어요. 여기서 Statement 객체는, DB에 SQL Query를 실행하기 위한 객체에요. 그렇다면, 아직 Finalize 처리되지 않은 Statement 객체가 증가하는 이유는 무엇일까요? 먼저 해당 Statement 객체는 실제로 어디서 참조하는지 살펴볼게요. 해당 객체는 TimerThread가 참조하는 TaskQueue에 들어가 있어요. 해당 Timer는 Postgresql Driver의 CancelTimer이죠. 해당 Timer의 작업 큐를 확인해 보면 PostgreSql Statement 객체와 관련된 Task 객체도 알 수도 있어요. 그럼 org.postgresql.jdbc3g.Jdbc3gPreparedStatement 클래스가 어떻게 동작하는지 자세히 알아볼까요? org.postgresql.jdbc3g.Jdbc3gPreparedStatement는 org.postgresql.jdbc2.AbstractJdbc2Statement의 상속 클래스이며 finalize() 메서드를 재정의한 클래스에요. Finalize 처리를 위해 객체 생성 시, JVM에 의해 Finalizer 체인으로 등록되죠. 위와 같은 코드로 보아 CancelTimer는, Query 실행 후 일정 시간이 지나면 자동으로 TimeOut 취소 처리를 위한 Timer에요. 정해진 시간 내에 정상적으로 Query가 수행되고 객체를 종료(Close) 시, Timer를 취소하도록 되어 있어요. 이때 취소된 Task는 상태 값만 변경되고, 실제로는 Timer의 큐에서 아직 사라지진 않아요. Timer에 등록된 작업은, TimerThread에 의해 순차적으로 처리돼요. Task는 TimerThread에서 처리를 해야 비로소 큐에서 제거되거든요. 이때 가져온 Task는 취소 상태가 아니며, 처리 시간에 아직 도달하지 않은 경우 해당 Task의 실행 예정 시간까지 대기해야 돼요. 여기서 문제점이 발생해요. 이 대기 시간이 길어지면 TimerThread의 처리가 지연되기 때문이죠. 이후 대기 Task들은 상태 여부에 상관없이, 큐에 지속적으로 남아있게 돼요. 만약 오랜 시간 동안 처리가 진행되지 않는다면, 여러 번의 Minor GC 발생 후 참조 객체들은 영구 영역(Old Gen)으로 이동될 수 있어요. 영구 영역으로 이동된 객체는, 메모리에 즉시 제거되지 못하고 오랜 기간 남게 되죠. 이는 Old(Full) GC를 발생시켜 시스템 부하를 유발하게 해요. 실제로 시스템에 설정된 TimeOut 값은 3,000초(50분)에요. Finalizer 참조 객체는 GC 발생 시, 즉시 메모리에서 수집되지 않고 Finalize 처리를 위한 대기 큐에 들어가요. 그다음 FinalizerThread에 의해 Finalize 처리 후 GC 발생 시 비로소 제거되죠. 때문에 리소스의 수집 처리가 지연될 수 있어요. 또한 FinalizerThread 스레드는 우선순위가 낮아요. Finalize 처리 객체가 많은 경우, CPU 리소스가 상대적으로 부족해지면 개체의 Finalize 메서드 실행을 지연하게 만들어요. 처리되지 못한 객체는 누적되게 만들죠. 요약한다면 FinalReference 참조 객체의 잘못된 관리는 1) 객체의 재 참조를 유발 2) 불필요한 객체의 누적을 유발 3) Finalize 처리 지연으로 인한 리소스 누적을 유발하게 해요. PART2. 제니우스 APM을 통해 Finalize 객체를 모니터링하는 방법 Zenius APM에서는 JVM 메모리를 모니터링하고 분석하기 위한, 다양한 데이터를 수집하고 있어요. 상단에서 보았던 FinalReference 참조 객체의 현황에 대한 항목도 확인할 수 있죠. APM 모니터링을 통해 Finalize 처리에 대한 문제 발생 가능성도 ‘사전’에 확인 할 수 있답니다! 위에 있는 그림은 Finalize 처리 대기(Pending)중인 객체의 개수를 확인 가능한 컴포넌트에요. 이외에도 영역별 메모리 현황 정보와 GC 처리 현황에 대해서도 다양한 정보를 확인 할 수 있어요! 이상으로 Finalize 처리 객체에 의한 리소스 문제 발생 가능성을, 사례를 통해 살펴봤어요. 서비스에 리소스 문제가 발생하고 있다면, 꼭 도움이 되었길 바라요! ------------------------------------------------------------ ©참고 자료 ◾ uxys, http://www.uxys.com/html/JavaKfjs/20200117/101590.html ◾ Peter Lawrey, 「is memory leak? why java.lang.ref.Finalizer eat so much memory」, stackoverflow, https://stackoverflow.com/questions/8355064/is-memory-leak-why-java-lang-ref-finalizer-eat-so-much-memory ◾ Florian Weimer, 「Performance issues with Java finalizersenyo」, enyo, https://www.enyo.de/fw/notes/java-gc-finalizers.html ------------------------------------------------------------
2023.10.12
기술이야기
카프카를 통한 로그 관리 방법
기술이야기
카프카를 통한 로그 관리 방법
안녕하세요! 저는 개발4그룹에서 제니우스(Zenius) SIEM의 로그 관리 기능 개발을 담당하고 있는 김채욱 입니다. 제가 하고 있는 일은 실시간으로 대용량 로그 데이터를 수집하여 분석 후, 사용자에게 가치 있는 정보를 시각화하여 보여주는 일입니다. 이번 글에서 다룰 내용은 1) 그동안 로그(Log)에 대해 조사한 것과 2) 최근에 CCDAK 카프카 자격증을 딴 기념으로, 카프카(Kafka)를 이용하여 어떻게 로그 관리를 하는지에 대해 이야기해 보겠습니다. PART1. 로그 1. 로그의 표면적 형태 로그(Log)는 기본적으로 시스템의 일련된 동작이나 사건의 기록입니다. 시스템의 일기장과도 같죠. 로그를 통해 특정 시간에 시스템에서 ‘어떤 일’이 일어났는지 파악할 수도 있습니다. 이렇게 로그는 시간에 따른 시스템의 동작을 기록하고, 정보는 순차적으로 저장됩니다. 이처럼 로그의 핵심 개념은 ‘시간’입니다. 순차적으로 발생된 로그를 통해 시스템의 동작을 이해하며, 일종의 생활기록부 역할을 하죠. 시스템 내에서 어떤 행동이 발생하였고, 어떤 문제가 일어났으며, 유저와의 어떤 교류가 일어났는지 모두 알 수 있습니다. 만약 시간의 개념이 없다면 어떻게 될까요? 발생한 모든 일들이 뒤섞이며, 로그 해석을 하는데 어려움이 생기겠죠. 이처럼 로그를 통해 시스템은 과거의 변화를 추적합니다. 똑같은 상황이 주어지면 항상 같은 결과를 내놓는 ‘결정론적’인 동작을 보장할 수 있죠. 로그의 중요성, 이제 조금 이해가 되실까요? 2. 로그와 카프카의 관계 자, 그렇다면! 로그(Log)와 카프카(Kafka)는 어떤 관계일까요? 우선 카프카는 분산 스트리밍 플랫폼으로서, 실시간으로 대용량의 데이터를 처리하고 전송하는데 탁월한 성능을 자랑합니다. 그 중심에는 바로 ‘로그’라는 개념이 있는데요. 좀 더 자세히 짚고 넘어가 보겠습니다. 3. 카프카에서의 로그 시스템 카프카에서의 로그 시스템은, 단순히 시스템의 에러나 이벤트를 기록하는 것만이 아닙니다. 연속된 데이터 레코드들의 스트림을 의미하며, 이를 ‘토픽(Topic)’이라는 카테고리로 구분하죠. 각 토픽은 다시 *파티션(Partition)으로 나누어, 단일 혹은 여러 서버에 분산 저장됩니다. 이렇게 분산 저장되는 로그 데이터는, 높은 내구성과 가용성을 보장합니다. *파티션(Partition): 하드디스크를 논리적으로 나눈 구역 4. 카프카가 로그를 사용하는 이유 로그의 순차적인 특성은 카프카의 ‘핵심 아키텍처’와 깊게 연결되어 있습니다. 로그를 사용하면, 데이터의 순서를 보장할 수 있어 대용량의 데이터 스트림을 효율적으로 처리할 수 있기 때문이죠. 데이터를 ‘영구적’으로 저장할 수 있어, 데이터 손실 위험 또한 크게 줄어듭니다. 로그를 사용하는 또 다른 이유는 ‘장애 복구’입니다. 서버가 장애로 인해 중단되었다가 다시 시작되면, 저장된 로그를 이용하여 이전 상태로 복구할 수 있게 되죠. 이는 ‘카프카가 높은 가용성’을 보장하는 데 중요한 요소입니다. ∴ 로그 요약 로그는 단순한 시스템 메시지를 넘어 ‘데이터 스트림’의 핵심 요소로 활용됩니다. 카프카와 같은 현대의 데이터 처리 시스템은 로그의 이러한 특성을 극대화하여, 대용량의 실시간 데이터 스트림을 효율적으로 처리할 수 있는 거죠. 로그의 중요성을 다시 한번 깨닫게 되는 순간이네요! PART2. 카프카 로그에 이어 에 대해 설명하겠습니다. 들어가기에 앞서 가볍게 ‘구조’부터 알아가 볼까요? 1. 카프카 구조 · 브로커(Broker) 브로커는 *클러스터(Cluster) 안에 구성된 여러 서버 중 각 서버를 의미합니다. 이러한 브로커들은, 레코드 형태인 메시지 데이터의 저장과 검색 및 컨슈머에게 전달하고 관리합니다. *클러스터(Cluster): 여러 대의 컴퓨터들이 연결되어 하나의 시스템처럼 동작하는 컴퓨터들의 집합 데이터 분배와 중복성도 촉진합니다. 브로커에 문제가 발생하면, 데이터가 여러 브로커에 데이터가 복제되어 데이터 손실이 되지 않죠. · 프로듀서(Producer) 프로듀서는 토픽에 레코드를 전송 또는 생성하는 *엔터티(Entity)입니다. 카프카 생태계에서 ‘데이터의 진입점’ 역할도 함께 하고 있죠. 레코드가 전송될 토픽 및 파티션도 결정할 수 있습니다. *엔터티(Entity): 업무에 필요한 정보를 저장하고 관리하는 집합적인 것 · 컨슈머(Consumer) 컨슈머는 토픽에서 레코드를 읽습니다. 하나 이상의 토픽을 구독하고, 브로커로부터 레코드를 소비합니다. 데이터의 출구점을 나타내기도 하며, 프로듀서에 의해 전송된 메시지를 최종적으로 읽히고 처리되도록 합니다. · 토픽(Topic) 토픽은 프로듀서로부터 전송된 레코드 카테고리입니다. 각 토픽은 파티션으로 나뉘며, 이 파티션은 브로커 간에 복제됩니다. 카프카로 들어오는 데이터를 조직화하고, 분류하는 방법을 제공하기도 합니다. 파티션으로 나눔으로써 카프카는 ‘수평 확장성과 장애 허용성’을 보장합니다. · 주키퍼(ZooKeeper) 주키퍼는 브로커를 관리하고 조정하는 데 도움을 주는 ‘중앙 관리소’입니다. 클러스터 노드의 상태, 토픽 *메타데이터(Metadata) 등의 상태를 추적합니다. *메타데이터(Metadata): 데이터에 관한 구조화된 데이터로, 다른 데이터를 설명해 주는 데이터 카프카는 분산 조정을 위해 주키퍼에 의존합니다. 주키퍼는 브로커에 문제가 발생하면, 다른 브로커에 알리고 클러스터 전체에 일관된 데이터를 보장하죠. ∴ 카프카 구조 요약 요약한다면 카프카는 1) 복잡하지만 견고한 아키텍처 2) 대규모 스트림 데이터를 실시간으로 처리하는 데 있어 안정적이고 장애 허용성이 있음 3) 고도로 확장 가능한 플랫폼을 제공으로 정리할 수 있습니다. 이처럼 카프카가 큰 데이터 환경에서 ‘어떻게’ 정보 흐름을 관리하고 최적화하는지 5가지의 구조를 통해 살펴보았습니다. 이제 카프카에 대해 조금 더 명확한 그림이 그려지지 않나요? 2. 컨슈머 그룹과 성능을 위한 탐색 카프카의 가장 주목할 만한 특징 중 하나는 ‘컨슈머 그룹의 구현’입니다. 이는 카프카의 확장성과 성능 잠재력을 이해하는 데 중심적인 개념이죠. 컨슈머 그룹 이해하기 카프카의 핵심은 ‘메시지를 생산하고 소비’ 하는 것입니다. 그런데 수백만, 심지어 수십억의 메시지가 흐르고 있을 때 어떻게 효율적으로 소비될까요? 여기서 컨슈머 그룹(Consumer Group)이 등장합니다. 컨슈머 그룹은, 하나 또는 그 이상의 컨슈머로 구성되어 하나 또는 여러 토픽에서 메시지를 소비하는데 협력합니다. 그렇다면 왜 효율적인지 알아보겠습니다. · 로드 밸런싱: 하나의 컨슈머가 모든 메시지를 처리하는 대신, 그룹이 부하를 분산할 수 있습니다. 토픽의 각 파티션은 그룹 내에서 정확히 하나의 컨슈머에 의해 소비됩니다. 이는 메시지가 더 빠르고 효율적으로 처리된다는 것을 보장합니다. · 장애 허용성: 컨슈머에 문제가 발생하면, 그룹 내의 다른 컨슈머가 그 파티션을 인수하여 메시지 처리에 차질이 없도록 합니다. · 유연성: 데이터 흐름이 변함에 따라 그룹에서 컨슈머를 쉽게 추가하거나 제거합니다. 이에 따라 증가하거나 감소하는 부하를 처리할 수 있습니다. 여기까지는 최적의 성능을 위한 ‘카프카 튜닝 컨슈머 그룹의 기본 사항’을 다루었으니, 이와 관련된 ‘성능 튜닝 전략’에 대해 알아볼까요? 성능 튜닝 전략 · 파티션 전략: 토픽의 파티션 수는, 얼마나 많은 컨슈머가 활성화되어 메시지를 소비할 수 있는지 영향을 줍니다. 더 많은 파티션은 더 많은 컨슈머가 병렬로 작동할 수 있음을 의미하는 거죠. 그러나 너무 많은 파티션은 *오버헤드를 야기할 수 있습니다. *오버헤드: 어떤 처리를 하기 위해 간접적인 처리 시간 · 컨슈머 구성: *fetch.min.bytes 및 *fetch.max.wait.ms와 같은 매개변수를 조정합니다. 그다음 한 번에 얼마나 많은 데이터를 컨슈머가 가져오는지 제어합니다. 이러한 최적화를 통해 브로커에게 요청하는 횟수를 줄이고, 처리량을 높입니다. *fetch.min.bytes: 한 번에 가져올 수 있는 최소 데이터 사이즈 *fetch.max.wait.ms: 데이터가 최소 크기가 될 때까지 기다릴 시간 · 메시지 배치: 프로듀서는 메시지를 함께 배치하여 처리량을 높일 수 있게 구성됩니다. *batch.size 및 *linger.ms와 같은 매개변수를 조정하여, 대기 시간과 처리량 사이의 균형을 찾을 수 있게 되죠. *batch.size: 한 번에 모델이 학습하는 데이터 샘플의 개수 *linger.ms: 전송 대기 시간 · 압축: 카프카는 메시지 압축을 지원하여 전송 및 저장되는 데이터의 양을 줄입니다. 이로 인해 전송 속도가 빨라지고 전체 성능이 향상될 수 있습니다. · 로그 정리 정책: 카프카 토픽은, 설정된 기간 또는 크기 동안 메시지를 유지할 수 있습니다. 보존 정책을 조정하면, 브로커가 저장 공간이 부족해지는 점과 성능이 저하되는 점을 방지할 수 있습니다. 3. 컨슈머 그룹과 성능을 위한 실제 코드 예시 다음 그림과 같은 코드를 보며 조금 더 자세히 살펴보겠습니다. NodeJS 코드 중 일부를 발췌했습니다. 카프카 설치 시에 사용되는 설정 파일 *server.properties에서 파티션의 개수를 CPU 코어 수와 같게 설정하는 코드입니다. 이에 대한 장점들을 쭉 살펴볼까요? *server.properties: 마인크래프트 서버 옵션을 설정할 수 있는 파일 CPU 코어 수에 파티션 수를 맞추었을 때의 장점 · 최적화된 리소스 활용: 카프카에서는 각 파티션이 읽기와 쓰기를 위한 자체 *I/O(입출력) 스레드를 종종 운영합니다. 사용 가능한 CPU 코어 수와 파티션 수를 일치시키면, 각 코어가 특정 파티션의 I/O 작업을 처리합니다. 이 동시성은 리소스에서 최대의 성능을 추출하는 데 도움 됩니다. · 최대 병렬 처리: 카프카의 설계 철학은 ‘병렬 데이터 처리’를 중심으로 합니다. 코어 수와 파티션 수 사이의 일치는, 동시에 처리되어 처리량을 높일 수 있습니다. · 간소화된 용량 계획: 이 접근 방식은, 리소스 계획에 대한 명확한 기준을 제공합니다. 성능 병목이 발생하면 CPU에 *바인딩(Binding)되어 있는지 명확하게 알 수 있습니다. 인프라를 정확하게 조정할 수도 있게 되죠. *바인딩(Binding): 두 프로그래밍 언어를 이어주는 래퍼 라이브러리 · 오버헤드 감소: 병렬 처리와 오버헤드 사이의 균형은 미묘합니다. 파티션 증가는 병렬 처리를 촉진할 수 있습니다. 하지만 더 많은 주키퍼 부하, 브로커 시작 시간 연장, 리더 선거 빈도 증가와 같은 오버헤드도 가져올 수도 있습니다. 파티션을 CPU 코어에 맞추는 것은 균형을 이룰 수 있게 합니다. 다음은 프로세스 수를 CPU 코어 수만큼 생성하여, 토픽의 파티션 개수와 일치시킨 코드에 대한 장점입니다. 파티션 수와 컨슈머 프로세스 수 일치의 장점 · 최적의 병렬 처리: 카프카 파티션의 각각은 동시에 처리될 수 있습니다. 컨슈머 수가 파티션 수와 일치하면, 각 컨슈머는 특정 파티션에서 메시지를 독립적으로 소비할 수 있게 되죠. 따라서 병렬 처리가 향상됩니다. · 리소스 효율성: 파티션 수와 컨슈머 수가 일치하면, 각 컨슈머가 처리하는 데이터의 양이 균등하게 분배됩니다. 이로 인해 전체 시스템의 리소스 사용이 균형을 이루게 되죠. · 탄력성과 확장성: 트래픽이 증가하면, 추가적인 컨슈머를 컨슈머 그룹에 추가하여 처리 능력을 증가시킵니다. 동일한 방식으로 트래픽이 감소하면 컨슈머를 줄여 리소스를 절약할 수 있습니다. · 고가용성과 오류 회복: 컨슈머 중 하나가 실패하면, 해당 컨슈머가 처리하던 파티션은 다른 컨슈머에게 자동 재분배됩니다. 이를 통해 시스템 내의 다른 컨슈머가 실패한 컨슈머의 작업을 빠르게 인수하여, 메시지 처리가 중단되지 않습니다. 마지막으로 각 프로세스별 컨슈머를 생성해서 토픽에 구독 후, 소비하는 과정을 나타낸 소스코드입니다. ∴ 컨슈머 그룹 요약 컨슈머 그룹은 높은 처리량과 장애 허용성 있는 메시지 소비를 제공하는 능력이 핵심입니다. 카프카가 어떤 식으로 운영되는지에 대한 상세한 부분을 이해하고 다양한 매개변수를 신중하게 조정한다면, 어떠한 상황에서도 카프카의 최대 성능을 이끌어낼 수 있습니다! ------------------------------------------------------------ ©참고 자료 · Jay Kreps, “I Hearts Logs”, Confluent · 위키피디아, “Logging(computing)” · Confluent, “https://docs.confluent.io/kafka/overview.html” · Neha Narkhede, Gwen Shapira, Todd Palino, “Kafka: The Definitive Guide” ------------------------------------------------------------
2023.09.19
기술이야기
[브레인저가 알려주는 IT#1] 네트워크 관리, SNMP가 뭔가요?
기술이야기
[브레인저가 알려주는 IT#1] 네트워크 관리, SNMP가 뭔가요?
1. SNMP(Simple Network Management Protocol)란? 컴퓨터 네트워크 장치를 관리하고 모니터링하기 위해 사용되는 네트워크 관리 프로토콜이에요. 네트워크 장치, 서버, 라우터, 스위치, 프린터 등과 같은 네트워크 장치들의 상태를 모니터링하고 구성할 수 있는 표준 방법 또한 제공하고 있어요. 요약한다면 네트워크에 있는 장비들을 관리하기 위한 프로토콜이라고 이해하시면 된답니다! (1) SNMP의 역사 • SNMPv1(1988)초기 SNMP 버전으로 RFC 1067에 정의되었어요. 간단한 모니터링과 설정 변경 기능을 제공했으나, 보안 측면에서 취약점이 있었어요. 커뮤니티 문자열(Community String)을 사용하여 인증을 수행했어요. • SNMPv2(1993) SNMPv1의 한계와 보안 이슈를 개선하기 위해 개발되었어요. 여러 개의 추가 기능을 제공하려 했으나, 규격이 복잡해졌고 보안 문제로 인해 널리 채택되지 않았어요. • SNMPv2c(1996) SNMPv2의 복잡성을 줄이고 보안을 개선한 버전이에요. 커뮤니티 문자열을 계속 사용하여 보안적인 취약성은 여전히 존재했어요. • SNMPv3(1998) 현재까지 널리 사용되고 있는 최신 버전이에요. 보안 기능을 크게 강화하여 데이터 암호화, 사용자 인증, 데이터 무결성 검사 등을 제공하고 있어요. 비동기적인 알림 메커니즘으로 Trap 메시지와 함께 메시지의 암호화 및 보안 기능을 지원해요. • SNMPv3의 보안 개선(2002 이후~) SNMPv3에서 시작된 보안 향상이 계속 발전되어 왔어요. 데이터 암호화와 사용자 인증 등의 기능이 더욱 강화되고, 다양한 보안 솔루션과 표준이 제안되었어요. 2. SNMP의 주요 특징과 역할 (1) 클라이언트-서버 모델 SNMP는 관리자의 명령을 수행하는 에이전트와, 에이전트의 정보를 수집하는 매니저 간의 통신을 기반으로 해요. (2) MIB(Management Information Base) 네트워크 장치의 정보를 계층 구조로 정의한 데이터베이스입니다. 각 정보 항목은 OID(Object Identifier)로 식별되며, 매니저는 OID를 통해 특정 정보를 요청하고 수집할 수 있어요. (3) 동작 방식 • GET: 매니저가 에이전트에게 특정 정보의 값을 요청해요. • SET: 매니저가 에이전트에게 특정 정보의 값을 변경하도록 요청합니다. • TRAP: 에이전트가 이벤트 발생 시 매니저에게 알림을 보내요. (4) 보안 • SNMPv1: 초기 버전으로, 보안에 취약한 프로토콜이었어요. • SNMPv2c: SNMPv1을 확장한 버전으로, 여전히 보안에 취약했어요. • SNMPv3: 보안 강화 버전으로 데이터 암호화, 사용자 인증, 데이터 무결성 검사 등을 지원하여 보안을 강화했어요. (5) 확장 가능성 SNMP는 다양한 버전과 확장 프로토콜을 지원하여 새로운 기능을 추가하거나 보완할 수 있어요. (6) 주요 용도 • 네트워크 장치 모니터링: 장비의 성능, 상태, 트래픽 등 정보를 수집하여 네트워크를 모니터링해요. • 구성 관리: 장치의 설정 변경 및 관리를 원격으로 수행할 수 있어요. • 이벤트 알림: 장애나 이상 상태가 발생하면 즉시 알림을 받을 수 있어요. 이처럼 SNMP는 네트워크 관리에 필수적인 프로토콜 중 하나로, 네트워크의 안정성과 성능을 유지하며 문제를 신속하게 해결하는 데 도움을 준답니다! 3. Zenius에서의 SNMP 활용 안내 (1) NMS 모니터링 SNMP GET 방식으로 데이터를 수집할 수 있어요. SNMP를 활용하여 장비모니터링 화면, 등록된 장비의 장비명, IP, 성능데이터 등을 확인 할 수 있어요. 장비의 상세한 데이터를 모니터링 할 수 있어요. IF 포트의 UP/DOWN과 트래픽 데이터를 수집하여 확인 가능해요. • NMS in/out bps 전일 대비 In/Out bps의 데이터 확인 및 추이 분석기능도 제공하고 있어요. 사진과 같이 초 단위 실시간 데이터를 통한 상세 트랙픽 분석도 가능하답니다! 성능 데이터를 수집하여 그래프 형태로 보관하고 제공하고 있어요. 수집 시간대별 데이터도 제공해요. 해당 데이터를 통하여, 트래픽사용량이 많이 발생한 시간을 찾을수 있어요. • 장비등록 화면 SNMP 모든 버전에 대해서 모니터링을 제공하고 있어요. 장비 설정에 따라서, 버전 및 정보 입력하여 등록하여 모니터링 할 수 있어요. (2) TRAP 모니터링 • 네트워크 장비와 시스템에서 발생하는 이벤트나 상태 변화를 실시간으로 알려주기 위한 SNMP의 비동기적인 메시지에요. 이벤트 발생 시, 장치가 주도적으로 SNMP 매니저에게 알림을 보내는 방식으로 작동해요. Trap은 장애 상황이나 경고 상태 등에 대한 신속한 대응을 가능하게 해요. • Trap은 네트워크 관리자에게 실시간 정보를 제공해요. 장비나 시스템의 이상 상태를 빠르게 감지하고 대응하여, 서비스의 가용성과 신뢰성을 유지하는 데 중요한 역할을 하고 있죠. • Trap의 활용✅ 장애 관리: 장비나 시스템의 고장이나 다운 상태 등의 이벤트가 발생하면 즉시 Trap이 생성되어 매니저에게 알려줘요.✅ 경고 및 알림: 주의가 필요한 상황에서도 Trap을 활용하여 관리자에게 알림을 제공해요.✅ 보안 이벤트: 불법 로그인 시도나 보안 위반 등의 이벤트가 발생하면, 해당 정보를 Trap으로 매니저에게 전송하여 보안 조치를 취할 수 있어요. Trap 발생시, 모니터링 화면을 통해서 내용을 확인 할 수 있어요. Trap 받은 내역을 저장하여, 기간 검색 등을 통하여 활용할 수 있어요. 이제 Zenius를 활용하여 네트워크 장비를 모니터링 해보는 것은 어떨까요?
2023.09.05
기술이야기
시련이 많았던 경험자의 CI/CD 간략 소개
기술이야기
시련이 많았던 경험자의 CI/CD 간략 소개
과거에는 근로자 1명이 기획/설계/구현 테스트까지 진행이 가능했다고 합니다. 하지만 최근에는 근로자 1명이 기획부터 테스트까지 진행하는 일은 거의 드물다고 볼 수 있습니다. OLD SCHOOL 지금 이 시간에도 많은 회사 내의 개발자들은 자신에게 주어진 기능 구현을 훌륭하게 완수하기 위해서 모니터를 째려보고 있습니다. 모니터를 째려보다가 자신이 작성한 내용을 다른 팀원에게 공유하고자 혹은 반대로 다른 팀원이 작성한 내용을 공유받고자 '형상 관리 시스템'을 사용하고 있습니다. CVS와 SVN으로 대표되는 이 시스템은 최근들어 Git을 많이 사용하는 추세라고 합니다. 필자 역시 여러 프로젝트에서 해당 시스템을 사용도 해보았고, 연동하여 다른 시스템을 구현한 경험이 있습니다. 하지만 프로젝트 마다 해당 시스템 사용에 있어서 몇몇 시련이 있었습니다. "차주에 전체 기능 리뷰가 있습니다. 각 파트 별로 코드 커밋해주세요." 라고 PM(Project Manager) 또는 PL(Project Leader)이 요청을 하면, 각 하위 PL(Part Leader)은 파트(Part)에 돌아가 파트원들에게 이 내용을 공유하고, 개별 개발자들은 자신이 작성한 코드를 관리 시스템에 커밋하게 됩니다. 잠시 후 형상 관리 시스템에서 작성 코드를 내려 받은 PL(Part Leader)은 아래와 같은 상황에 직면하게 됩니다. - 동료의 작성 코드에는 관심 없이, 본인의 작성물만 커밋하는 경우 - 별도의 공지 없이 이미 작성된 파일 등을 삭제하여 커밋하는 경우 - 약속되지 않은 환경이나 lib으로 작성한 코드를 커밋하는 경우 프로젝트에 따라 기간이 길어지거나 다른 여러 상황이 발생하면 위의 문제보다 더 많은 문제를 경험하게 됩니다. 각 파트 단위로 위와 같은 문제가 해결되고 정상적으로 컴파일, 빌드까지 완료되면, PL(Part Leader)들은 파트별로 단위테스트를 완료하고 결과가 정상적이면 결과를 품질관리자에게 통보합니다. 각 파트별로 완료 통보를 받은 품질관리자는 다시 관리 시스템에서 전체 작성물을 수동으로 내려받아 통합테스트를 진행합니다. 통합테스트까지 완료되었다면 해당 내용을 릴리즈관리자에게 통보합니다. 릴리즈관리자는 바뀐 부분만 찾아서 변경하면 시간적으로 적용이 빠르겠지만 '바뀐 부분만 변경하면 될까?'라는 의심으로 전체 작성물을 수작업으로 전처리(컴파일 & 빌드)하고 다시 수작업으로 릴리즈하게 됩니다. 만약 진행상의 이슈가 없다면 이제 기능 리뷰 준비가 완료됩니다. 단계별로 문제 없이 진행되고 모든 기능을 확인하였다고 하지만 기능 리뷰 혹은 데모만하면 꼭! 오류가 발생하여 난처한 상황이 종종 발생하곤 합니다. 필자 역시 이런 경우가 많았으며 그때마다 문제 부분을 찾기 위해 많이 고생했습니다. 아래의 개념은 아마도 저 같은 경험을 하고 있는 많은 사람들을 위한 것이 아닌가 싶습니다. CI (Continuous Integration, 지속적인 통합) '지속적인 통합'이란 개발 과정에서 생산되는 코드의 관리와 코드의 문법적인 오류 확인 및 기능 점검(=테스트)을 특정한 일정에 진행하는 것이 아니라 날마다 혹은 특정 시간마다 진행하여 코드 및 기능에 대한 품질을 유지하는 개념이라고 말할 수 있을 것입니다. 앞에서 언급했던 과거 모습을 개선하는 노력은 CI 라는 개념이 나오기 이전부터 많은 개발사 혹은 팀에서 그들만의 문화나 관습으로 처리하는 경우가 있었을 것입니다. 하지만 문제는 새로운 구성원이 생겼을 때 입니다. 조직 문화를 새로이 접하는 이들에게는 이를 설명하고 이해시키는 일은 시간과 노력이 드는 일이니까요. 하지만 이젠 일반적인 Java 개발팀에서는 SVN(or GitHub)+Jenkins+Maven+JUnit으로 구성하는 개발 환경을 사용하고 있습니다. 다만, 프로젝트 목표나 목적되는 환경에 따라 약간씩 다른 환경을 구성하기도 합니다. 그러나 대부분의 경우 Open Source 기반으로 CI 개념을 구성하는 경우가 많습니다. 이는 일단 무료라는 큰 장점과 많은 레퍼런스가 있어 구성하기 편리하고 "우린 Open Source인 SVN과 Jenkins를 사용합니다. 일단 자세한 개념과 동작 원리는 너트뷰 선생님께..." 라고 하며 짧은 노력으로 교육을 끝낼 수 있어 그런 것이 아닌가 합니다. CI 개념을 활용하는 개발 프로젝트에서는 UI 메뉴 혹은 구현 단위 기준으로 구분하여 개발파트나 개발자를 할당하고는 합니다. 각각의 개발자는 할당받은 구현 범위에 대한 문제를 개별적으로 개발 도구를 활용하여 구현하고 구현 내용을 형상 관리 시스템에 커밋합니다. 이런 과정을 다른 개발자들도 같이 수행한 후에 빌드 자동화 환경에서 컴파일 및 빌드 스크립트에 맞춰서 문법적으로 확인된 결과물을 만들고 이를 다시 기능이 확인이 가능한 테스트 스크립트에 맞춰서 테스까지 진행합니다. 만약 테스트 과정에서 비정상적인 결과가 발생할 경우, 해당 내용 수정 후 위의 작업을 다시 진행하게 됩니다. 이런 일련의 절차는 일정 시간 준위 단위로 수행되어 구현하고 있는 기능을 주기적으로 확인하는 과정을 수행합니다. 올바른 진행을 위하여 개발자 개개인에게 분장되는 업무의 크기가 비슷해야 한다고 생각됩니다. 개발자별로 업무의 크기가 서로 다른 겨우, 결과물이 정상적이라고 볼 수 없게 될 것이고 그렇게 된다면 테스트 결과 역시 믿을 수 없는 경우가 발생할 것입니다. CD (Continuous Delivery/Deploy, 지속적 제공/배포) 지속적인 통합(CI)을 사용하던, 기존의 개발 환경을 사용하던, 결국 작성된 결과물은 최종적으로 운영환경에 적용되어 사용작 혹은 타 시스템과 연결되어야 합니다. 그래야 제품 개발 또는 프로젝트가 완료됩니다. CD는 결과물을 운영환경에 적용하는 방식을 나타내는 환경으로써 결과물 적용 여부를 판단하는 행위를 담당하는 주체가 누구냐에 따라, Continuous Delivery와 Continuous Deploy로 구분됩니다. Continuous Delivery는 CI 환경을 통하여 자동으로 컴파일 및 빌드가 되고, 테스트된 결과물에 대해서 릴리즈 관리자가 적용 시점마다 테스트 결과 및 서비스 영향도를 판단하여 수동으로 적용하는 방식이며, Continuous Deploy는 결과물은 항상 옳고 서비스 영향도는 없다고 미리 판단하여 자동으로 적용하는 방식입니다. 아마도 대부분의 개발 환경에서는 Continuous Delivery로 적용하고 있기에 CD라고 표기되는 경우 Continuous Delivery를 의미하는 경우가 많을 것입니다. 소프트웨어 솔루션을 제작하는 개발팀에서는 아마도 Continuous Delivery로 또한 MSA 기반의 서비스를 제공하는 개발팀에서는 Continuous Deploy를 사용하는 편이 여러 관계를 보았을 때 유리하다고 판단합니다. 하지만, 개발팀의 업무 성격과 제품 혹은 서비스의 출시 시기 등이 CD 방식을 결정하는 가장 중요한 요소가 될 것입니다. 지금까지 CI/CD 도입 배경과 내용을 필자의 경험을 바탕으로 간략하게 정리하였습니다. 개발자들이 자기가 맡은 기능 혹은 프로세스에만 전념할 수 있는 훌륭하고 편리한 개발 환경 및 적용 환경이 언제 어떻게 나타나게 될지 궁금합니다. 가능하다면, 많이 바꿔서 따라가기 귀찮은 시니어들과 새롭게 따라가야하는 주니어 개발자 모두에게 즐거운 환경이 등장했으면 합니다. 감사합니다.
2023.08.22
기술이야기
옵저버빌리티 향상을 위한 제니우스 대표 기능들
기술이야기
옵저버빌리티 향상을 위한 제니우스 대표 기능들
이번 블로그에서는 지난 블로그에서 다루었던 옵저버빌리티를 구현하기 위한 오픈 소스들은 어떤 것들이 있는지 간략히 알아보고, 제니우스(Zenius-EMS)에서는 옵저버빌리티 향상을 위해서 어떤 제품들을 제공하고 있는 지 살펴보겠습니다. 옵저버빌리티 구현을 위해 널리 활용되는 대표적인 오픈소스로는 아래 네 가지 정도를 들 수 있습니다. l Prometheus: 메트릭 수집 및 저장을 전문으로 하는 도구입니다. Prometheus는 강력한 쿼리 기능을 가지고 있으며, 다양한 기본 메트릭을 제공하며 데이터 시각화를 위해 Grafana와 같은 도구와 통합될 수 있습니다. 또한 이메일, Slack 및 PagerDuty와 같은 다양한 채널을 통해 알림을 보낼 수 있습니다. l OpenTelemetry: 에이전트 추가 없이 원격으로 클라우드 기반의 애플리케이션이나 인프라에서 측정한 데이터, 트레이스와 로그를 백엔드에 전달하는 기술을 제공합니다. Java, Go, Python 및 .NET을 포함한 다양한 언어를 지원하며 추적 및 로그에 대한 통합 API를 제공합니다. l Jaeger: 분산 서비스 환경에서는 한번의 요청으로 서로 다른 마이크로서비스가 실행될 수 있습니다. Jaeger는 서비스 간 트랜잭션을 추적하는 기능을 가지고 있는 오픈 소스 소프트웨어입니다. 이 기능을 통해 애플리케이션 속도를 저해하는 병목지점을 찾을 수 있으며 동작에 문제가 있는 애플리케이션에서 문제의 시작점을 찾는데 유용합니다. l Grafana: 시계열 메트릭 데이터를 시각화 하는데 필요한 도구를 제공하는 툴킷입니다. 다양한 DB를 연결하여 데이터를 가져와 시각화 할 수 있으며, 그래프를 그릴 수도 있습니다. 시각화한 그래프에서 특정 수치 이상일 때 알람 기능을 제공하며 다양한 플러그인으로 기능확장이 가능합니다. ------------------------------------------------- 오픈 기술을 이용해 Do It Yourself 방식으로 옵저버빌리티를 구현한다면 어떨까요? 직접 옵저버빌리티를 구현하기 위해서는 먼저 필요한 데이터를 수집해야 합니다. 필요한 데이터가 무엇인지, 어떤 방식으로 수집할지 결정하고 Prometheus, OpenTelemetry 같은 도구들을 이용해 설치 및 설정합니다. 이 단계는 시간이 가장 오래 걸리고, 나중에 잘못된 구성이나 누락이 발견되기도 합니다. 다음 단계는 데이터 저장입니다. 이 단계에서 주의할 점은 예전처럼 여러 소스에서 수집한 데이터를 단순하게 저장하는 것이 아니라, 전체적인 관점에서 어떤 이벤트가 일어나는지를 추적이 가능하도록 데이터 간의 연결과 선후 관계를 설정하는 것입니다. 어려운 점은 새로운 클라우드 기술을 도입하거나 기존의 인프라나 애플리케이션에서 변경이 발생할 때마다 데이터를 계속해서 정리를 해야 하는데, 이를 위해 플랫폼을 지속적으로 수정하고 구성을 추가해야 한다는 것입니다. 마지막으로 부정확한 경고들은 제거해야 합니다. 비즈니스 상황과 데이터는 계속해서 변화하기 때문에 이에 맞게 베이스 라인을 지속적으로 확인하고, 임계치를 조정해서 불필요한 알람이나 노이즈 데이터가 생기는 것을 방지해야 합니다. 결론적으로 직접 옵저버빌리티를 구현하는 것은 처음에는 쉬워 보여도 고급 인력과 많은 시간을 확보해야 하며, 별개로 시간이 지남에 따라서 효율성과 확장성이 떨어진다는 점을 감안하면 대부분의 기업은 감당하기 어렵다고 할 수 있습니다. 그렇다면, Zenius(제니우스) EMS는 옵저버빌리티를 어떻게 확보하고 있을까요? 옵저버빌리티 향상을 위한 가장 기본적인 기능은 토폴로지맵 또는 대시보드입니다. 다양한 인프라의 물리적 논리적 연결구조들을 한 눈에 시각적으로 파악할 수 있도록 해야 합니다. Zenius는 각 인프라별 상황을 한 눈에 볼 수 있는 오버뷰와 시스템 전체를 조망할 수 있는 토폴로지맵, 그리고 서비스 별 상황들을 감시할 수 있는 대시보드 등 크게 세가지의 뷰어(Viewer)를 제공합니다. 인프라의 구성 상황에 따라 다층적으로 구성되어 고객들이 인프라에서 일어나는 상황을 즉각 알 수 있도록 해 줍니다. 이러한 뷰어들은 기존 ‘모니터링’의 개념에서 ‘옵저버빌리티’ 개념으로 진화화면서 좀 더 다층적, 다양화되는 형태로 진화하고 있습니다. 또한, Zenius는 기존의 각 인프라별로 단순히 감시를 설정하는 방식이 아닌 다양한 인프라로부터의 로그와 메트릭 정보를 이용해 어떤 상관관계가 있는지 분석하는 ‘복합감시’라는 서비스가 기본적으로 탑재돼 있습니다. 복합감시를 대표 기능에는 ERMS(Event Relation Management System), 스냅샷 그리고 조치 자동화 등을 들 수 있습니다. l ERMS 기능은 로깅, 메트릭 정보와 장비의 상태를 이용해 새로운 감시 기준을 만들어, 의미있는 이벤트를 생성해 사용자에게 개별 장비 수준이 아닌 서비스 관점에서 정확한 상황 정 보를 제공합니다. l 스냅샷은 서비스 동작에서 이벤트가 발생했을 때, 당시 상황을 Rawdata 기반으로 그대로 재현하는 기능으로 SMS, DBMS, APM, NMS 등 모든 인프라를 동시에 볼 수 있습니다. l 조치 자동화는 ERMS를 자동운영시스템과 연동해, 특정 상황에서 자동으로 스크립트를 실행해 제어하는 기능입니다. 트레이싱 기능은 APM에서 제공하는 기능으로, WAS(Web Application Server)에 인입되고 처리되는 모든 트랜잭션들을 실시간으로 모니터링하고 지연되고 있는 상황을 토폴로지 뷰를 통해 가시적으로 분석할 수 있습니다. 사용자는 토폴로지 뷰를 통해 수행 중인 액티브 트랜잭션의 상세정보와 WAS와 연결된 DB, 네트워크 등 여러 노드들 간의 응답속도 및 시간들을 직관적으로 파악할 수 있습니다. 제니우스의 또 다른 옵저버빌리티는 인공지능 기반의 미래 예측 기능으로 미래 상황을 시각적으로 보여줍니다. 인프라 종류에 상관없이 인공신경망 등 다양한 알고리즘을 통해 미래 데이터를 생성하고, 장애발생 가능성을 빠르게 파악해 서비스 다운타임이 없도록 도와줍니다. 또한 이상 탐지 기능은 보안 침해 또는 기타 비정상적인 활동을 나타낼 수 있는 시스템 로그, 메트릭 및 네트워크 트래픽의 비정상적인 패턴을 식별할 수 있습니다. 이상탐지 알고리즘은 시간이 지남에 따라 시스템 동작의 변화에 적응하고 새로운 유형의 위협을 식별하는 방법을 학습할 수 있습니다. 이상과 같이 Zenius(제니우스) EMS는 최고의 옵저버빌리티를 제공하기 위해서 연구개발에 매진하고 있습니다. 옵저버빌리티 향상을 위한 다양한 기능/제품들은 고객의 시스템과 조직 상황에 맞게 선별적으로 사용될 수 있습니다.
2023.04.19
기술이야기
클라우드 송환(Cloud Repatriation): 클라우드에서 다시 온프레미스로
기술이야기
클라우드 송환(Cloud Repatriation): 클라우드에서 다시 온프레미스로
다시 온프레미스로 복귀하려는 움직임 2022년 발표된 IDC 조사 결과에 의하면, 미국 기업의 71%가 향후 2년내에 ‘클라우드 송환’ 계획이 있다고 합니다. 실제 일부 애플리케이션을 클라우드에서 빼내 자체 데이터센터로 다시 가지고 오는 기업이 늘고 있습니다. 우리나라의 경우 ‘클라우드 전환’이 업계의 화두가 되고 있지만, 클라우드 전환을 10년 넘게 경험하고 있는 미국의 경우에는 이제 ‘클라우드 송환’이 또 다른 화두가 되고 있습니다. 클라우드 송환(Cloud repatriation)은 기업이 클라우드 환경에서 운영하던 애플리케이션, 데이터, 서비스 등을 온프레미스 환경으로 되돌리는 것을 말합니다. 이는 퍼블릭 클라우드가 비즈니스 민첩성을 향상시킬 수 있지만, 특정한 상황에서 온프레미스보다 퍼블릭 클라우드의 지출 비용이 더 크다는 사실을 기업이 깨달으면서 해당 애플리케이션 등을 온프레미스로 복귀시키려는 IT 전략입니다. 클라우드 송환 현상은 IT 비용과 성능을 비롯한 여러 측면에서 클라우드가 항상 최선의 해결책은 아니라는 인식을 바탕으로 확대되는 추세이며 이제 기업이 비용, 성능, 보안의 극대화를 위해 기존 환경과 새로운 환경 사이에서 자연스러운 워크로드 분산을 시작했다는 의미이기도 합니다. 미처 몰랐던 클라우드 서비스의 문제점 클라우드를 채택한 기업이 클라우드 송환을 선택하는 이유는 다음과 같은 문제가 있기 때문입니다. 첫째, 클라우드 비용 문제입니다. 2022년 클라우드 현황(Flexera 2022 State of the Cloud Report) 보고서에 따르면, 클라우드 비용의 30% 정도가 낭비되고 있습니다. 클라우드 서비스가 표면적으로 내세우는 클라우드의 가장 큰 장점이 비용 절감임에도 불구하고, 클라우드 전환 OPEX(operational expenses)가 기존 CAPEX(capital expenses) 대비 더 낫다고 단정하기 어렵습니다. 초기에는 클라우드의 비용이 저렴하게 느껴지지만, 가상머신(VM)과 컨테이너 인스턴스에서 처리하는 작업이 늘어날수록 비용도 더해지기 때문입니다. 워크로드가 증가하는 스타트업은 클라우드를 통해 유연성을 확보하는 것이 비용면에서 유리하겠지만, 예측 가능한 수준의 워크플로우를 갖고 있는 기업이라면 얘기가 달라집니다. 특히, 클라우드에서는 인터넷 대역폭 및 스토리지 요금 등 추가적인 비용이 발생할 수 있습니다. 둘째, 보안 문제입니다. 기업은 클라우드 제공자가 제공하는 기본적인 보안 기능 외에도 보안 문제에 대한 책임을 직접 지게 됩니다. 또, 기업은 자체 보안 정책을 준수해야 하며, 이를 클라우드 환경에 적용하는 것이 쉽지 않습니다. 특히 복잡한 멀티클라우드 환경에서는 견고하게 클라우드 보안 아키텍처를 구축하기 어렵고 외주 처리에 따라 많은 비용이 듭니다. 셋째, 성능 문제입니다. 클라우드에서는 다른 기업과 리소스를 공유하기 때문에 성능 문제가 발생할 수 있습니다. 또, 클라우드 환경에서 애플리케이션 및 데이터를 조작하는 데 필요한 대역폭이 충분하지 않을 경우 성능 문제가 발생할 수 있습니다. 따라서 기업은 성능 문제로 인해 클라우드 송환을 선택할 수 있습니다. 넷째, 제어 문제입니다. 클라우드에서는 기본적으로 클라우드 제공자가 인프라 관리와 보안을 담당합니다. 이는 기업이 클라우드 환경에서는 많은 경우 애플리케이션, 데이터, 서비스 등을 직접 제어할 수 없다는 것을 의미합니다. 따라서, 기업이 직접 컨트롤하지 못해서 문제가 발생한다고 느낄 때에는 클라우드 송환을 선택할 수 있습니다. 클라우드 송환의 이점 클라우드 송환(Cloud repatriation)은 기업에게 여러 가지 이점을 제공합니다. 첫째, 기업은 애플리케이션, 데이터, 서비스 등을 직접 관리할 수 있습니다. 이는 기업이 보안 및 규정 준수와 같은 중요한 문제를 직접 다룰 수 있도록 해주며, 제어력을 높임으로써 IT 부서가 잠재적 문제에 대비해 인사이트와 더 나은 계획을 수립할 수 있게 해줍니다. 클라우드에서는 기본적으로 클라우드 제공 업체가 인프라 관리와 보안을 담당하기 때문에, 이를 직접 제어할 수 없습니다. 클라우드 송환에 적합한 케이스는 정적인 기능을 제공하며 사용량이 많은 애플리케이션입니다. 비용이 고정되고 예측 가능한 애플리케이션은 온프레미스 환경에서 관리하는 편이 더 효과적입니다. 둘째, 기업은 클라우드 비용을 절감할 수 있습니다. 한때 퍼블릭 클라우드가 모든 문제의 해답이라고 생각했다가 퍼블릭 클라우드의 비용 특성과 이점이 기업의 상황과는 맞지 않는다는 사실을 깨닫게 됩니다. 2~3년에 걸쳐 추가되는 비용을 감안하면 퍼블릭 클라우드를 계속 사용할 만한 매력은 시간이 갈수록 희석됩니다. 기업은 반복적으로 발생하는 클라우드 운영 비용을 줄이거나 없애는 방법으로 많은 비용을 절감할 수 있습니다. 예를 들어, 어떤 기업의 데이터가 여러 사이트에서 발생하고 그 양이 많다면 클라우드 환경에서 데이터를 보관하고 이동시키는 데 많은 비용이 발생할 수 있습니다. 또 다른 예로 영상을 불러오고 저장하는 작업이 빈번한 영상 제작 기업의 경우, 클라우드 서버에서 병목현상이 발생할 수 있고 내부 LAN처럼 10Gbps 속도로 데이터를 옮기려면 그 비용이 저렴하지 않을 수 있습니다. 비용 외에도 데이터 이동에 많은 시간이 소모되며 이로 인해 데이터를 필터링해 최소한의 데이터만 저장해야 하는 불편함이 있습니다. 한편, 메모리와 디스크 리소스 비용이 계속 하락하면서 기업의 온프레미스 투자가 유리해지고 있습니다. 더불어 클래스 메모리 및 SDN(소프트웨어 정의 네트워크)과 같은 비용에 도움을 주는 솔루션을 활용하면, 한때 퍼블릭 클라우드의 큰 매력이었던 유연성, 확장성, 중복성의 간극이 상당부분 사라집니다. 셋째, 기업은 데이터 보호와 백업을 더욱 쉽게 할 수 있습니다. 클라우드 업체도 데이터 프라이버시에 대해 엄격하지만 온프레미스 환경에서 데이터를 저장하고 백업 받고 복구하는 것보다 더 안전할 수 없습니다. 물론 민감한 정보를 로컬 환경에 저장하는 것 역시 문제 제기가 있겠지만 최소한 고객 데이터가 사라졌을 때 무엇을 어떻게 해야 하는지 알 수 있습니다. 규정 준수 측면에서도 각 국마다 개인정보보호 규정이 달라 우발적인 규정 위반 가능성이 있습니다. 이러한 우려를 줄이는 방법은 애플리케이션을 특정 위치의 온프레미스 환경에서 실행하는 것입니다. 넷째, 대역폭 문제에서 자유로운 장점이 있습니다. 클라우드 환경에서 빅데이터 시스템을 활용하는 기업은 빅데이터 시스템에서 생성되는 데이터가 높은 대역폭을 요구하면서 자사 데이터 센터보다 훨씬 더 많은 운용 비용을 지불합니다. 컴퓨팅은 온디맨드이므로 탄력적인 클라우드가 유리할 수 있지만 스토리지는 매일 매초 비용이 계속 증가하고 있는 사실을 알아야 합니다. 클라우드냐 온프레미스냐 고려할 점 클라우드 송환은 비용면에서 매력적이지만 매우 도전적인 과제입니다. 클라우드 서비스 공급자는 일반적으로 클라우드에서 빠져나오기 상당히 어렵게 계약하고, 해체됐거나 아예 존재하지 않던 온프레미스 환경을 준비하기 위해 기업의 재무와 조직 운영에 큰 영향을 미치기 때문입니다. 게다가 애플리케이션을 온프레미스 데이터센터로 마이그레이션하는 경우 기업은 클라우드의 확장성, 유연성, 가용성, 탄력성을 유지하기 힘들고 자체 데이터센터가 클라우드에 비해 더 안전하다는 보장을 하기도 어렵습니다. 따라서 이런 경우에는 애플리케이션에서 실행 중인 환경에 대한 종속성이 있는 부분과 단순히 데이터를 관리하는 부분을 분리하면 혼란을 최소화할 수 있습니다. 처음부터 클라우드 환경을 고려해 서비스를 설계했다면, 워크로드를 다시 데이터센터로 되돌리기 위해서는 어느 정도의 재설계가 필요하며 빅데이터에 의존하는 기업은 상당한 마이그레이션 작업을 각오해야 합니다. 이처럼 클라우드 송환은 매우 어려운 과제입니다. 따라서 처음부터 워크로드를 퍼블릭 클라우드로 이전하는데 매우 신중한 입장을 취하는 것이 가장 중요합니다. 그래서 최근에는 기업들이 클라우드 환경을 고수하는 것보다는 필요한 경우 클라우드와 온프레미스 환경을 융합하는 하이브리드 클라우드 전략을 선택하는 경향이 있습니다. 모든 서비스를 클라우드로 전환하는 것이 아니라, 단기간에 트래픽이나 사용자가 급속히 늘어날 가능성이 있거나, 클라우드 서비스를 활용해 서비스를 빠르게 런칭해야 하는 경우로 한정하는 것이 필요합니다. 우리나라에서도 많은 기업들이 이미 클라우드가 갖고 있는 단점들을 경험하고 온프레미스로 전환하고 있습니다만, ‘클라우드 전환’이라는 큰 물결 아래 ‘클라우드 송환(Cloud Repatriation)’에 대한 논의는 제한적입니다. 우리나라의 클라우드 전환율이 세계시장과 비교해 볼 때 현저히 낮지만, 오히려 클라우드 환경의 문제를 이미 경험한 나라들의 교훈을 미리 받아들인다면 학습비용을 줄일 수 있을 것으로 기대합니다. Zenius-EMS는 고객들이 레거시 시스템에서부터 클라우드 네이티브 시스템에 이르기까지 다양한 관점의 서버모니터링을 할 수 있도록 지원합니다. 대규모 인프라가 존재하는 데이터센터 및 클라우드 환경에서 대용량 데이터 처리에 대한 높은 성능을 확인할 수 있습니다. 고유의 특허 기술을 통해 수천대의 장비에서 발생되는 데이터들을 안정적으로 수집하고 빠르게 처리할 수 있습니다. [출처] John Edwards, "클라우드의 온프레미스 송환이 타당한 5가지 경우", IT WORLD, 2019.04.16 Steven J. Vaughan-Nichols, "모두가 '클라우드' 외칠 때 '로컬 서버' 선택해야 하는 이유, IT WORLD, 2022.07.27 Andy Patrizio, "기업 71%, 2년 이내 클라우드에서 온프레미스로 복귀할 것", IT WORLD, 2022.06.29 Clint Boulton, "'전진 위한 후퇴'··· 클라우드서 온프레미스로 송환하는 기업들", CIO Korea, 2020.03.30 Brian Adler, "Cloud Computing Trends: Flexera 2022 State of the Cloud Report", flexera, 2022.03.21
2023.04.07
기술이야기
JPA 도입을 위한 고민_ORM 기술을 써야 하나?
기술이야기
JPA 도입을 위한 고민_ORM 기술을 써야 하나?
몇 해전에 새로운 버전의 ITSM을 개발하기 시작하면서 JPA 기술 도입을 두고 고민했던 내용을 이제는 한 번쯤 정리해야 할 시점이라고 생각했다. 비단 JPA뿐 아니라 Spring Boot, Thymeleaf, Kotlin과 같은 새로운 개발 기술이나 Git, Gradle, Slack, PR처리 등 새로운 업무 환경까지 상당한 변화를 시작한 프로젝트였기 때문에 고민되는 것이 한두 개가 아니었지만 가장 길고 심각하게 고민했던 부분이라 따로 기록을 남겨본다. 이 글은 기술적인 내용은 아니고 어떻게 보면 당연하고 일반적인 내용이지만 다음 기회에 새로운 기술, 환경, 프로세스에 대한 도입을 검토할 때 조금이나마 도움이 됐으면 하는 마음이다. 여기에선 기술적인 내용에 대한 설명을 덧붙이지 않는 것은 관련된 내용은 'JAVA', 'ORM', 'JPA' 등으로 검색만 해도 비슷한 글들이 넘쳐나는 상황에 하나 더 덧붙이는 건 별로 의미가 없어 보이기 때문이다. 1. ORM에 대한 갑을논박 ORM에 대한 검색을 해보면 정말 여기서 다시 얘기하고 싶지 않을 정도로 오랜 시간동안 많은 사람들의 많은 의견들이 쏟아져 나온다. 게다가 더욱 혼란스러운 점은 구구절절 옳은 말들이라는 점이다. 여기서 뭔가 딱 부러진 결론을 내는 것은 불가능하고 너무 많은 의견들을 접하면서 점점 혼란스러워졌다. 대표적으로 참고 삼아 [자바 ORM 표준 JPA 프로그래밍]을 쓰신 김영한님의 글로 추정되는 링크 하나 투척~ https://okky.kr/article/286812 2. 우리에게 중요한 것 2.1. 진입장벽 : 진입장벽… 이 높다한들 하늘 아래 뫼… 일까? 어떤 기술이든 진입장벽은 그 도입 여부를 결정하는 가장 중요한 요소이다. 개인적으로 스터디를 하거나 한번 써보고 싶은 마음에서라면 진입장벽이 높을수록 구미가 당기는 변태적인 성향이 있는 사람도 있겠지만 이게 업무적인 접근이고 다른 팀원들과 함께 해야 하는 것이라면 진입장벽이 높이에 따라서는 그 기술의 효과가 인정되어도 도입이 쉽지 않은 것이 사실이다. JPA는 많은 사람들이 진입장벽이 높은 편이라고 입을 모아 말한다. 검토를 위해 살짝 들여다 보았을때도 쉬워 보이진 않았다. 말 그대로 ORM을 잘 쓰기 위해서는 Object와 Model에 대한 깊이 있는 사전 지식과 그 둘을 Mapping하는 개념적인 체계가 머리 속에 있어야 충분히 활용할 수 있을 것 같았다. 진입장벽이란 것도 사실 상대적인데 당시에 판단으로 우리 팀에서 도입하기에 진입장벽은 중상(中上)이라고 생각했다. 잘 자리잡기 쉽지 않을 것이고 시간도 오래 걸리리라 생각이 들었다. 이러한 점을 만회할 장점이 있는지 고민이 필요했다. 2.2. 제품 특징 : 우리가 만드는 제품/프로젝트의 특징에 맞는가? 당시에 새롭게 시작되는 프로젝트에서 만드는 제품은 기존 Zenius ITSM 시스템의 새로운 버전이다. 업무적으로 여러가지 특징이 있지만 Model과 관련되어서는 상대적으로 복잡한 구조라 할 순 없었고 극단적인 성능과도 거리가 좀 있다. 상대적으로 깔끔하고 명확한 모델링이 훨씬 더 중요하다고 판단했고 이러한 면은 JPA도입에 대한 긍정적인 입장을 가지게 했다. 쿼리와 관련되어서 수많은 간단한 작업들을 효과적으로 할 수 있을거란 기대감… 만약 만들려고 하는 제품이 특정 RDBMS에 의존적이거나, 혹은 인수인계나 유지보수가 어려울 정도로 비즈니스부터가 복잡한 형태라서 JPA를 쓰면서도 많은 성능 튜닝과 Native Query를 사용해야 하는 상황이거나 한다면 상황은 약간 달라졌을 것이다. 제품의 특징과 더불어 현재 프로젝트의 특성도 같이 살펴봐야 한다. 레거시 시스템의 업그레이드인지, 이번 프로젝트처럼 완전히 새 판에서 시작하는 게 가능한 상황인지… 새로운 제품을 만드는 프로젝트가 납기일이 정해진 프로젝트보다 나은 점은 그나마 초기 학습과 관련된 투입을 감안하기가 좀 더 수월하다는 점이다. SI같은 성격의 프로젝트라면 내부 고객뿐 아니라 상대방 고객도 설득해야 하는 문제점이 더 크다. 그런 면에서 이번 프로젝트는 JPA를 도입하거나 적용하기엔 괜찮은 상황이라는 게 결론이었다. 2.3. 조직/인력 구조 : 바로 우리가 쓰는 기술이다. 기술도 중요하지만 우리도 중요하다. 제목처럼 아무리 좋은 기술이라도 우리에게 맞냐는 게 결정적이다. 아래와 같은 질문들을 던져 보았다. • 현재 구성원들의 사전 지식은 어느 정도인가? • 우리 회사나 우리 팀에서 향후 관련된 개발자를 계속 충원할 수 있는가? • 우리 팀은 새로운 기술을 공부하며 도입할 의지를 가졌는가? • 회사는 관련된 교육과 초기에 벌어질 삽질을 감내할 수 있는가? 결론적으로 반반이었다. 우리 팀은 JPA에 대해서 아는 바가 거의 없는 상태였다. 게다가 지금이야 JPA를 사용하는 사람들도 더 늘어난 것 같고 우리 회사의 위상도 달라졌지만 당시의 우리 회사의 규모나 채용 형태를 봤을 때 관련된 개발자를 충원하는 것도 쉽지는 않을 것 같았다. 반대로 새로운 기술 도입에 대해서 강한 의지까지는 아니라도 긍정적은 자세를 가진 팀원과 초기 삽질에 대해서 어느 정도 감내할 수 있는 회사라는 것이 당시의 생각이었다. 그래도 반이 어디냐…는 게 최종 결론이었다. 2.4. 재미 : 그래서 땡기냐? 이성적이고 객관적인 여러 사실들을 매트릭스화해서 평가를 하면서도 스스로에게 던지는 마지막 질문은… 그래서 땡기냐는 거다. 모든 수치가 부정적인데도 끝까지 미련을 버리지 못하고 하고 싶은 경우가 있고, 모든 결과가 긍정적인데도 뭔가 하기 싫은 경우가 많은데, 결국 그것들은 결과로 이어지더라. 리누스 토발즈가 커널을 업그레이드할 때 가장 중요한 점으로 “얼마나 재미”가 있냐는 점이라고 얘기 했다는데, 우리는 그 정도 레벨의 개발자는 아직(!) 아니지만 우리에게도 “재미”는 가장 중요한 결정요인 중 하나이다. 스스로에게 물어보자. 재미있어 보이나? 그리고, 당시에 나에게는 무척 설레었던 일이었음을 고백해야겠다. 3. 염려스러운 점 3.1. 회귀본능 아직 익숙하지 않은 상태에서 개발을 진행하다 보면 도무지 JPA에서 왜 이런 쿼리를 만들어내는지 이해하기 어려운 경우를 종종 만난다. 혹은 익숙한 SQL이 머리속에서 막 떠오르는데 JPA로 적용하기 위해서 이런저런 삽질을 하다 보면… 아… 그냥 쿼리를 직접 짤까? Native Query도 Mybatis도 지원한다던데… 분명 이런 순간이 올 것이라고 예상했다. 공부를 하는 것도 좋지만 회사에서 업무로 일정에 맞춰 무언가를 만들어내야 하는 압박감은 따로 누가 주지 않아도 가지고 있는 것이니… 침착하자. 익숙하지 않고 힘들다고 나도 모르게 무언가 자꾸 길을 벗어나고 있는 건 아닌지 계속 주의 깊게 들여다 봐야 한다. 결론적으로 지금에 와서 돌이켜보면 초반에는 의도대로 생성되지 않는 쿼리들에 당황하긴 했지만, 약간의 삽질 후에는 왜 그런 상황이 발생되는지 알기가 어렵지는 않았다. 언젠가는 복잡한 통계나 로직 때문에 Native Query를 쓰게 될 날이 오겠지만 아직은 아니다. 3.2. 학습곡선 도입하려는 기술에 따라, 혹은 구성원의 사전 지식에 따라 학습곡선은 상당히 다양한 형태로 나타나는데, 평균적으로 JPA의 학습곡선은 전반적으로 경사가 아주 완만하다고 판단했다. 즉 도입 검토 시점의 진입장벽은 그 자체로 염려스러운 점이었다. 그 얘기는 수준을 일정수준 이상으로 끌어올리기 위해서 많은 시간과 노력이 팀 차원에서 필요하다는 얘기였고 필요로 하는 사전지식도 꽤 있을 듯 했다. 게다가 여러 가지 이유로 개인별로 나타나는 학습곡선도 많이 다르리라 예상했다. 뭔가 기막힌 해결책이 있으면 좋겠지만, 책을 구매해서 읽고 유료 강의, 무료 강의들을 공유하고… 서로서로 도와가며 공부하는 클래식한 정공법을 택했다. (그만큼 사실 효과는 기대하기 힘들다는 것도 알지만…) 지금 생각해보면 어떤 기술이나 프로세스든 누군가 소수의 인원이 먼저 출발해서 끌어줄 수 있는 형태가 되는 것이 제일 나은 것 같다. 서로서로 도움을 주면서 같이 커가는 모양새가 될 수 있을 듯 한데 우리는 그렇지는 못했고 모두가 공평(?)하게 모르는 상태에서 스타뜨~ JPA의 도입에 대한 학습곡선은 최종적으로 도입을 결정하는데 마지막까지 고민을 하게 했던 점이었다. 3.3. Mapper는 누가? 자, 우리는 Object도 Model도 이제까지 다 개발자가 했다. Object야 당연히 개발자가 만들어야 하겠지만 큰 기업에서처럼 DBA가 있거나 화면을 퍼블리싱해주거나 하지 않는다. 우리는 우리가 화면, 미들웨어, DB까지 직접 만들고 컨트롤 해왔다. 그게 좋은 것이냐의 문제를 여기서 얘기하자는 게 아니라 현실이라는걸 얘기하는 거다. 우리 팀원 모두가 JPA 초보이다. Mybatis를 사용하고 Spring을 사용해봤다고 하지만 ORM이나 SQL Mapper에 대한 심도있는 고민은 부족한 상황. 앞으로 JPA에서 Object와 Model은 그렇다고 해도 Mapper역할은 또 필요하지 않을까? 그런 가이드는 또 누가 해야 하나… 모든 개발자에게 알아야 한다고 말할 수 있지만 모든 개발자에게 팀에서 잘하는 메인이 되라고 하기엔 좀 애매한 영역이란 게 항상 있다. 프로그램의 오브젝트와 DB의 모델을 연결하는 Mapper를 잘 구성할 경험이 많은 개발자가 없다는 점은 학습곡선과 더불어 JPA 도입을 망설이게 했던 주요 고민이었다. 결론적으로 선임 개발자를 중심으로 착실히 스터디를 잘 해주었고 제품의 특성상 그렇게 복잡한 관계를 매핑할 일이 많지 않아서인지 초반에 몇 번 팀원들이 같이 머리를 싸매고 논의했던 것 외에 문제는 없었다. 4. 결론(현재까지는…) 도입 결정 후 꽤 긴 시간 제품을 만들고, 이제는 고객사에 납품도 하면서 기능을 계속 추가하고 있는 이 시점에서 돌아보면, 어떤 부분은 팀원들이 너무 잘해주고 있고, 어떤 부분은 전혀 예상하지 않은 형태로 진행이 돼서 난감한 경우도 있지만 전체적으로는 아주 만족하고 있다. 정확하게 측정을 하진 못했지만 쿼리를 직접 짜면서 개발을 진행하는 것보다 생산성 측면에서 확실히 나아졌다고 느끼고 있고 그 효과는 초반에 투입된 시간에 비례해 앞으로 더욱 더 기대된다. 만족하고 있다고는 했지만 여기서 만족이라는 게 성과나 기술적인 완성도에 대한 절대적인 만족은 아니다. 다만 아직 우리 제품에 대한 아쉬움을 가지는 것이 JPA 때문은 아니라는 점은 확실하다. JPA가 유행에 따라 생긴 기술이라고 하기엔 너무 오래된 기술이지만 그래서인가 ORM 자체에 대한 흥미도 점점 더 해가고 있다. JPA도 ORM에 대한 가장 최근의 시도중 하나겠지만, 앞으로 어떤 식으로 발전해 나갈지, 그에 따른 개발 업무는 또 어떤 식으로 변화가 있을지도 궁금하고… 어쨌든, 지금으로서는 다시 돌아가진 않을 생각이다.
2023.01.03
기술이야기
[통합로그관리] Filebeat에서 안정적으로 하드웨어 자원 사용하기
기술이야기
[통합로그관리] Filebeat에서 안정적으로 하드웨어 자원 사용하기
Filebeat는 Elastic Stack에서 사용하는 경량(light-weight) 데이터 수집기로 logstash 대비 상대적으로 리소스(CPU와 RAM)를 상당히 적게 소모한다는 장점이 있습니다. 또, Filebeat는 간단한 필터 기능도 제공합니다. 하지만 말 그대로 간단한 필터 기능이라 한번에 대용량의 파일을 관리해야 하는 경우 호스트 서버에 부담이 갈 정도로 많은 리소스를 사용할 수 있습니다. 따라서 브레인즈컴퍼니가 운영하는 통합로그관리 에이전트는 호스트의 서버 환경에 따라 filebeat 에이전트의 설정 파일을 수정해서 안정성을 제공하고 있습니다. 본 내용은 Filebeat 리소스 점유율이 높을 때 트러블슈팅 관련 설정 수정사항입니다. 수정에 필요한 기본 파일 위치 linux : /etc/filebeat/filebeat.yml docker: /usr/share/filebeat/filebeat.yml filebeat 프로세스 메모리 확인하는 방법 top -d 1 | egrep "PID|filebeat" 수정에 앞서 filebeat의 메인 컴포넌트인 harvester의 개념을 간략하게 설명하겠습니다. 하나의 harvester는 하나의 파일을 읽어드립니다. harvester가 실행 중인 경우 파일을 한 줄씩 읽습니다. 각 파일 당 하나의 harvester가 실행됩니다. 상단의 이미지를 보면 filebeat의 컴포넌트인 input과 harvester가 보입니다. 또한 filebeat이 harvester를 관리하며 어느 파일을 읽을지 관리하는걸 알 수 있습니다. harvester가 실행 중인 경우 파일 설명자(File Descriptor) 열린 상태로 유지됩니다. 이는 파일이 삭제되거나 파일명이 변경된다 하더라도 파일을 계속 읽게 해줍니다. 하지만 파일 설명자는 harvester가 닫힐 때까지 디스크 공간을 예약합니다. 1. filebeat.inputs: 2. - type: filestream 3. id: my-filestream-id 4. paths: 5. - /var/log/system.log 6. - /var/log/wifi.log 7. - type: filestream 8. id: apache-filestream-id 9. paths: 10. - "/var/log/apache2/*" 11. fields: 12. apache: true 13. fields_under_root: true <filebeat에서 제공하는 input example> 1. scan_frequency 파일비트가 설정된 filebeat_inputs의 path에 있는 파일들의 갱신 여부를 체크하는 주기입니다. 너무 길게 설정하면 한번에 많은 파일들을 수집하게 됩니다. 반대로 너무 짧게 설정하면 스캔을 너무 잦게 해서 CPU점유율이 올라갑니다. 적당한 조절이 필요합니다. 기본값은 10초입니다. Scan_frequeny가 동작하는 방식은 아래와 같습니다. harvester 읽기 종료 또는 파일 삭제 → scan_frequency 만큼 대기 → 파일 갱신 확인 → 파일 갱신 시 새 harvester 시작 2. backoff Backoff 옵션은 파일비트가 얼마나 더 적극적으로 크롤링 하는지 지정합니다. 기본값은 1인데 1일 경우 새 줄이 추가될 경우 1초마다 확인한다는 의미입니다. Backoff가 동작하는 방식은 아래와 같습니다. harvester 읽기 종료 또는 파일 삭제 → scan_frequency만큼 대기 → 파일 갱신 확인 → 파일 갱신 시 새 harvester 시작 → 파일 갱신 시 Backoff 시간 마다 다시 확인 3. max_procs 파일비트에서 동시에 사용 가능한 최대의 cpu코어의 숫자를 설정합니다. 예를 들어32 CPU코어 시스템에서 max_procs를 1로 설정한다면 cpu사용률은 3.2%(1/32)를 넘지 않습니다. max_procs 설정돼 있으면 harvester가 아무리 많이 생성돼도 cpu의 코어 수만큼 CPU를 점유합니다. 4. harvester_limit harvester의 수가 OS가 감당할 수 있는 파일 핸들러 개수를 초과할 때 사용합니다. 한 input마다 설정되므로 inputs이 5개 선언돼 있으면 해당 input 컴퍼넌트의 harvester 개수 최대치는 5개입니다. 기본값은 0인데, 0일 경우 harvester가 무제한으로 생성 가능합니다. 리소스 관리 최적화에도 유용한데 예를 들어, input1이 input2보다 파일 개수가 3배 많고 중요성이 높을 때 3배 높은 값을 설정하는 것이 좋습니다. 5. close_eof harvester에 의해 파일이 수집되고 있을 때, EOF(End of File)에 도달하는 즉시 파일을 닫습니다. 파일이 계속 갱신된다면 데이터가 유실될 수 있는 여지가 있습니다. [참조] https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-input-log.html
2022.11.17
기술이야기
IT 인프라 모니터링 트렌드
기술이야기
IT 인프라 모니터링 트렌드
EMS란? EMS는 Enterprise Management System의 약자로, 여러 기업과 기관의 IT서비스를 이루는 다양한 IT Infrastructure를 통합적으로 모니터링하는 시스템을 의미합니다. 해외에서는 일반적으로 ITIM(IT Infra Management)이라는 용어로 많이 사용되고 있지만, 국내에서는 EMS라는 용어로 통용되고 있습니다. EMS는 IT인프라의 데이터를 실시간으로 수집 및 분석할 뿐만 아니라, 수집된 데이터를 활용해 비즈니스의 가치를 창출할 수 있습니다. 글로벌 IT분야 연구자문 기업인 “가트너(Gartner)”에서는 ITIM, 즉 EMS를 데이터센터, Edge, IaaS(Infrastructure as a Service), PaaS(Platform as a Service) 등에 존재하는 IT인프라 구성요소의 상태와 리소스 사용률을 수집하는 도구로 정의하며, 컨테이너, 가상화시스템, 서버, 스토리지, 데이터베이스, 라우터, 네트워크 스위치 등에 대한 실시간 모니터링이 가능해야 한다고 서술합니다. <사진 설명: 가트너의 ITIM 정의를 도식화한 그림> 이러한 EMS는 초기에는 기업 전산실에 물리적인 형태로 존재하는 서버, 네트워크의 리소스관리를 중심으로 모니터링해 왔습니다. 서버의 CPU, Memory 등의 리소스 정보를 수집하거나, 네트워크 장비의 트래픽 정보를 모니터링하고 임계치를 기반으로 이벤트 감지하는 역할이 대부분이었으며, 이 정도 수준에서도 충분한 IT 인프라 관리가 이뤄질 수 있었습니다. 그러나 가상화(Virtualization)라는 개념이 생겨나고 다양한 IT 인프라들이 기업 전산실에서 클라우드(Cloud) 환경으로 전환됨에 따라, EMS의 모니터링 분야도 조금씩 바뀌어 가고 있습니다. 많은 기업들이 효율적인 리소스 사용과 비용 절감을 목표로 VMware와 같은 가상화 시스템을 도입해 운영하게 됐으며, 모니터링 부문도 이에 대응하기 위해 가상화 리소스에 대한 관리 영역으로 확장됐습니다. 가상화 환경을 이루는 하이퍼바이저(Hypervisor)와 가상머신(Virtual Machine)의 연관성을 추적하고, 각 가상머신들이 사용하고 있는 리소스를 실시간으로 분석해 효율적인 자원 배분, 즉 프로비저닝(Provisioning)을 위한 근거 데이터를 제공할 수 있도록 하고 있습니다. 더 나아가 VMware, Hyper-V 등의 다양한 가상화 플랫폼에서 가상머신을 생성하고 삭제하고, 실제로 가상머신에 CPU, Memory 등과 같은 리소스를 할당해 줄 수 있는 컨트롤 영역까지 제공하는 제품을 개발하는 벤더사들이 많아지고 있습니다. 이러한 가상화 기술을 기반으로 현대에는 IT 인프라들이 대부분 클라우드 환경으로 전환하고 있는 추세입니다. 클라우드 환경으로의 전환 클라우드(Cloud)란, 언제 어디서나 필요한 컴퓨팅 자원을 필요한 시간만큼 인터넷을 통해 활용할 수 있는 컴퓨팅 방식으로, 최근 기업들은 각자의 목적과 상황에 맞게 AWS, MS Azure와 같은 Public Cloud 및 OpenStack, Nutanix 등을 활용한 Private Cloud 등의 환경으로 기업의 전산설비들을 마이그레이션 하고 있습니다. 클라우드로의 전환과 기술의 발전에 따라, EMS의 IT 인프라 모니터링은 더 이상 *On-Premise 환경에서의 접근이 아닌, Cloud 환경, 특히 MSA(Micro Service Architecture)를 기반으로 하는 클라우드 네이티브(Cloud Native) 관점에서의 IT 운영 관리라는 새로운 접근이 필요하게 됐습니다. (*On-Premise : 기업이 서버를 클라우드 환경이 아닌 자체 설비로 보유하고 운영하는 형태) 클라우드 네이티브란, 클라우드 기반 구성요소를 클라우드 환경에 최적화된 방식으로 조립하기 위한 아키텍처로서, 마이크로서비스 기반의 개발환경, 그리고 컨테이너 중심의 애플리케이션 구동환경 위주의 클라우드를 의미합니다. 클라우드 네이티브는 IT비즈니스의 신속성을 위해 도커(Docker)와 같은 컨테이너를 기반으로 애플리케이션이 운영되므로, EMS는 컨테이너의 성능, 로그, 프로세스 및 파일시스템 등 세부적인 관찰과 이상징후를 판단할 수 있는 기능들이 요구되고 있습니다. 자사 제품인 Zenius SMS에서는 이러한 변화에 따라 Docker에 대한 모니터링 기능을 기본적으로 제공하고 있습니다. Docker 컨테이너가 생성되면 자동으로 관리대상으로 등록되며, Up/Down 뿐만 아니라, CPU, Memory, Network 및 Process의 정보를 실시간으로 모니터링하고 발생되는 로그들을 통합관리 할 수 있도록 합니다. <사진 설명: Zenius-SMS에서 제공하고 있는 Docker 컨테이너 모니터링 기능> 또, 복원력과 탄력성을 위해 쿠버네티스와 같은 오케스트레이션 도구를 활용해 컨테이너를 스핀업하고, 예상되는 성능에 맞게 효율적으로 리소스를 맵핑하고 있으며, 이러한 기술에 대응하기 위해 EMS는 쿠버네티스(Kubernetes), 도커스웜(Docker Swarm) 등의 오케스트레이터들의 동작여부를 직관적으로 관찰하는 제품들이 지속적으로 출시되고 있는 상황입니다. 이와 더불어 컨테이너, 오케스트레이터의 동적 연결관계를 실시간으로 모니터링하고, 파드(POD), 클러스터, 호스트 및 애플리케이션의 관계를 표현하는 역할의 중요성이 점차 커져가고 있습니다. 통합 모니터링(Monitoring) EMS 모니터링의 또 다른 변화로는 통합(Integration)의 역할이 더더욱 강해지고 있다는 것입니다. IT 서비스가 복잡해지고 다양해짐에 따라 IT 인프라의 관리 범위도 점차 증가하면서, 다양한 IT 인프라들을 융합하고 관리하기 위한 노력들이 관찰되고 있습니다. 데이터독(Datadog), 스플렁크(SPLUNK)와 같은 장비 관점의 모니터링 벤더들은 APM과 같은 애플리케이션 모니터링 시장으로, 앱다이나믹스(AppDynamics), 다이나트레이스(Dynatrace), 뉴렐릭(NewRelic)과 같은 애플리케이션 모니터링 시장의 강자들은 인프라 장비 관점의 모니터링 시장으로의 융합이 확인되고 있습니다. 자사 제품인 Zenius 역시 서버, 네트워크 중심의 관리에서 애플리케이션, 데이터베이스 등의 시장으로 관리 범위를 확장해 나가고 있는 추세입니다. IT 서비스의 영속성을 유지하기 위해서는 IT 서비스를 구성하는 다양한 요소들을 실시간으로 모니터링하고 연관관계를 추적해 문제 원인을 찾아내는 것이 중요하기 때문에 다양한 IT 요소들을 통합적으로 모니터링하는 것 뿐만 아니라, 상호 연관관계를 표현하고 추적할 수 있는 기능들이 지속적으로 요구되고 있습니다. 모니터링의 트렌드는 서버, 네트워크 등의 독립적인 개체에 대한 모니터링 아닌 IT 서비스를 중심으로 기반 요소들을 모두 통합적으로 모니터링하고, 각 상호간의 의존성과 영향도를 파악해 RCA(Root Cause Analysis) 분석을 가능하게 하고 이를 통해 IT 서비스의 연속성을 보장할 수 있는 통찰력을 확보하게끔 하는 방향으로 흘러가고 있습니다. Zenius는 서버, 네트워크, 애플리케이션, 데이터베이스 및 각종 로그들의 정보를 시각적으로 통합 모니터링할 수 있는 오버뷰(Overview) 도구와 IT 서비스 레벨에서 인프라들의 연관관계를 정의하고 다양한 조건(Rule)에 따라 서비스 이상유무와 원인분석이 가능한 서비스 맵(Service Map) 도구를 기본적으로 제공하고 있습니다. <사진 설명: Zenius 오버뷰 화면> <사진 설명: Zenius 서비스맵 화면> 앞서 언급했듯이, 클라우드 환경으로 전환함에 따라 통합적 관리 요구는 더욱 높아지고 있습니다. IT 인프라에 대한 통합 뿐만 아니라, AD(Active Directory), SAP 및 AWS, Azure, GCP 등의 다양한 서비스의 주요 지표까지 연계하고 하나의 시스템으로 통합 모니터링하기 위한 노력들이 관찰되고 있습니다. 데이터독(Datadog)의 경우, 500개 이상의 시스템, 애플리케이션 및 서비스들의 지표들을 손쉽게 통합 관리할 수 있다고 돼있습니다. <사진 설명: 데이터독 홈페이지 캡처> 이처럼 IT 서비스의 복잡성과 다양화에 따라 관리해야 될 서비스와 지표들은 점점 늘어나고 있으며, 기업의 현황에 맞게 컴포넌트 기반으로 손쉽게 지표들을 통합할 수 있는 기능과 도구들이 요구되고 있습니다. AI 기반의 예측&자동화 모니터링의 세번째 변화로는 ’AI 기반의 예측과 자동화’입니다. IT 인프라 및 서비스의 주요 지표를 모니터링하는 것도 중요하지만, 축적된 데이터를 기반으로 미래의 상황을 예측 및 이상탐지해 사전에 대비할 수 있는 체계를 갖추는 일은 모니터링 시장에서 중요한 이슈로 자리잡고 있습니다. 현재의 AIOps(AI for IT Operations)를 표방하는 모니터링 기술들은 서버, 네트워크, 애플리케이션, 데이터베이스 등의 주요 지표들을 실시간으로 수집하고, 저장된 데이터를 기반으로 AI 알고리즘 또는 통계기법을 통해 미래데이터를 예측하며 장애 발생가능성을 제공하고 있습니다. 이와 같은 기술을 통해 미래 성능 값을 예측해 IT 인프라의 증설 필요성 등을 판단하고, 장애 예측으로 크리티컬한 문제가 발생되기 전에 미리 조치를 취할 수 있도록 해 효율적인 의사결정을 할 수 있도록 합니다. Zenius도 4차 산업혁명 및 디지털 뉴딜시대가 도래함에 따라 미래예측 기능을 최신 버전에 탑재했으며, 이를 통해 IT운영자가 미래 상황에 유연하고 선제적으로 대응할 수 있도록 합니다. Zenius에서는 서버, 네트워크, 애플리케이션 등 다양한 IT 인프라의 미래 성능 값, 패턴 범위, 이상 범위 등을 예측해 IT 운영자에게 제시합니다. <사진 설명: 인공지능(AI) 기반 미래데이터 예측 화면> 다만, 인공지능 기술을 통해 장애 발생 가능성을 탐지하는 기능 외에, 어디에 문제가 발생됐는지 알려주는 기능은 모니터링 시장에 과제로 남아있고, 이를 제공하기 위한 여러 업체들의 노력이 보이고 있습니다. 이제는 EMS에서 보편적인 것이 됐지만, 모바일 기기를 통해 시∙공간적 제약 없는 모니터링이 이뤄지고 있습니다. 다양한 기종의 스마트폰, 태블릿PC 등을 이용해 운영콘솔(Console) 뿐만 아니라, 회의 등 시간을 잠시 비우더라도 IT 인프라에 대한 연속적인 모니터링이 모바일기기를 통해 가능해졌습니다. <사진 설명: 다양한 기기를 통한 모니터링>
2022.09.05
기술이야기
[Zenius Case#1] 내일까지 서버관리 현황 부탁할게요!
기술이야기
[Zenius Case#1] 내일까지 서버관리 현황 부탁할게요!
퇴근을 준비하는 어느 날, 부장님이 갑자기 요청합니다. “내일까지 서버관리 전반 현황 보고해야 되니 준비 부탁할게! 그럼 고생하고 낼 보자고” 어떤 내용들로 자료를 준비해야 하는 걸까요? 이번에는 Zenius SMS를 활용한 서버관리현황 파악에 대해 살펴보겠습니다. 서버관리 현황 파악의 포인트 1. 얼마나 많은 대상을 관리하고 있으며 종류는 어떤 것이 있는가? 2. 관리가 필요한 주요 성능지표 항목은 어떤 것이 있는가? 3. 주요 성능지표 관련해 현재 상태는 어떠한가? 4. 이슈가 존재하는 서버의 현황과 어떤 이슈를 가지고 있는가? 5. 어떻게 필요한 자료를 쉽고 빨리 확보해 보고할 것인가? 6. 향후 지속적으로 제공 가능한 범위인가?(내일까지 해야 하는데….) 7. 추가적인 요청사항에 대한 대응이 가능한가? 상기 사항들 모두 중요하지만, 그 중에서도 “지속적으로 제공 및 관리가 가능한가?”라는 부분에 집중해야 합니다. 아무리 훌륭한 자료라도 자료구성을 위해 과도한 공수가 발생하는 자료는 사실상 향후 지속적인 관리측면에서 실효성을 상실하게 돼 1회성 보고자료로 끝나게 되는게 현실입니다. 실제 업무에 필요한 자료는 지속적인 관리가 가능해야만 합니다. Zenius로 1분 만에 서버현황 보고자료 정리하기 Step 1. 기본 데이터 취득(10초) Step 2. 현황정보 정리(10초) 저희가 운영하는 대상은Total 12대입니다. OS 별로 Linux 6, Solaris 1, AIX 1, HPUX 1, Window 3 관리 운영 중에 있습니다. Step 3. 주요 성능지표의 상태정리(20초) 먼저 서버(OS) 측면의 주요 성능지표에 대해 알아보도록 하겠습니다. 정보시스템 성능관리 지침에서는 서버 성능관리의 목적을 아래와 같이 정의하고 있습니다. 서버 성능관리의 목적 “서버 성능관리 업무는 최적의 용량을 적시에 확보하기 위한 용량계획의 시점을 제공하고 성능 관련 문제를 사전에 예방함으로써, 사용자의 시스템 활용도 및 만족도를 향상시키기 위하여 수행된다.” 또한 정보시스템 성능관리 지침에서 서버의 주요 성능관리 구성요소는 아래와 같이 정의하고 있습니다. 구성요소 내용 CPU 총 CPU사용률, 시스템 모드 사용률, 사용자 모드 사용률, Run Queue, Pri Queue, 사용자수 등 메모리 총 메모리 사용률, 시스템 및 버퍼 캐쉬, Page In/Out, Swap 공간 사용률 등 디스크 Disk 사용률, Disk I/O Busy, Disk Queue 프로세스 CPU를 집중적으로 사용하는 프로세스, Zombie 프로세스 커널 커널 파라미터 설정을 통한 자원의 적절한 분배 파일시스템 파일시스템 IO Rate, 파일시스템 공간 사용률 네트워크 I/O In 패킷률, Out 패킷률, Collision률, Error률 해당 성능관리 구성요소 중 실제 시스템운영 시 체크가 필요한 몇 개 항목에 대해 간단히 정의하고 넘어가겠습니다. CPU 사용률(%) 서버의 성능을 의미하는 척도로 사용되는 항목으로 CPU의 사용률이 일정 이상을 넘어가면 서비스에 영향을 주기 시작합니다. 순간적으로 급격히 높아질 수 있기 때문에 일반적으로 임계값과 지속시간을 함께 지정해 감시합니다. *여기서 CPU란? Central Processing Unit의 약자로 명령을 해독하고 산술논리연산이나 데이터 처리를 실행하는 장치입니다. Memory 사용률(%) 메모리의 사용량이 너무 빨리 소모되거나 또는 지속적으로 사용량이 떨어지지 않는다면 조치가 필요한 부분입니다. *여기서 Memory란? 기억소자를 지칭하는 것으로 보다 빠른 처리를 위한 프로그램 또는 데이터를 저장하거나 계산된 결과를 임시 또는 반영구적으로 보관하는 기억장치입니다. Disk I/O Busy Rate(%) Disk의 경우 데이터 처리 속도가 메모리나 CPU에 비해 너무 느리기 때문에 Disk I/O Busy Rate의 경우 일정 임계치 이상 지속되는 경우 과다한 입출력이 발생시킴을 의미하며 시스템 성능에 영향을 줄 수 있습니다. *여기서 Disk I/O란? Disk의 입출력 양을 의미합니다. 이제 기본 취득 데이터 기준 주요 성능지표를 정리해 보겠습니다. CPU 사용률(%) 저희가 운영하는 서버 중 CPU 사용률은 다음과 같으며, CPU 사용률이 가장 높은 대상은 Cent7x64 장비입니다. 전일 기준 Peak 치가 59% 정도이며 현재 36%정도의 사용률을 보입니다. Memory 사용률(%) Memory 사용률 현황은 다음과 같으며, Memory 사용률이 가장 높은 대상은 Solaris11 장비 입니다. 전일 기준 Peak 치가 97% 정도이며 현재도 96%정도의 사용률을 보입니다. 해당 장비의 경우 상세분석 진행 예정입니다. Disk I/O Busy Rate(%) Disk I/O Busy Rate 기준으로 모니터링이 필요한 대상은 다음과 같으며 현재 전반 양호한 상태입니다. 가장 높은 대상은 Zenius6.1 장비입니다. 현재 37% 정도를 보이고 있으며 한시적 증가로 요소가 존재하는 상태입니다. 저장장치 사용률(%) 저장장치 사용률의 경우 시스템 전체의 사용률보다는 파티션 별 사용률 관점에서 정리가 필요합니다. 95% 이상 사용중인 파티션 영역이 존재하고, AIX72-ORA, Suse11-x64, Solaris11 장비의 경우 현재 조치 진행 중이며 용량증설 계획도 함께 고려하고 있습니다. Step 4. 이슈사항 정리(20초) 전체관리대상 중 긴급 1건, 위험 4건, 주위 4건의 이슈가 발생해 있는 상태이며 등급 별 상세내역은 다음과 같습니다. 이슈 발생 후 지속시간 2일 이상 지속중인 항목들은 단기 조치 불가 항목으로 조치방안에 대해 논의중인 항목입니다. 이상으로 Zenius를 활용해 1분만에 서버현황 보고자료를 구성해봤습니다. 그럼 이제 다음과 같이 보고를 진행했을 때 추가적으로 유입될 수 있는 요청사항을 Zenius SMS를 활용해 대응해보겠습니다. Zenius SMS를 활용해 추가 요청사항 대응하기 Q. CPU 사용률 높은 장비의 CPU 추이는 어떤가요? 전반 추이와 전일 대비 사용률을 확인해볼 필요가 있습니다. A. 해당장비의 CPU 사용률 추이는 다음과 같으며 전일대비 비교 했을 때 거의 유사한 범위내에 사용률 추이를 보여주고 있습니다. 3단계의 임계라인 기준으로 감시를 수행하고 있습니다. Q. 특정 파티션의 파일시스템 사용률이 높은 장비의 타 파티션의 사용률은 얼마나 되나요? 저장장치 사용률 추이도 함께 검토가 필요해보입니다. A. /nshome40 96% 이외 /home 파티션도 사용률이 90% 이상인 상태입니다. 사용률 추이를 확인했을 때 급격한 증가는 발생하지 않는 상태입니다.
2022.09.02
기술이야기
벽을 넘어서고 싶은 신입 개발자의 브레인즈 생활기
기술이야기
벽을 넘어서고 싶은 신입 개발자의 브레인즈 생활기
지원 이유와 여정 대학교 졸업 후, 부족한 웹개발 역량을 쌓기 위해 5달간의 풀스택 부트캠프 교육을 수료하고 1달간의 기업 협업 인턴을 마쳤습니다. 이후, 제 역량을 마음껏 펼쳐내며 지속적으로 성장할 수 있는 회사에서 일하고 싶다는 생각이 들었습니다. 그러다 풀스택 기술뿐만 아니라, 빅데이터 및 AI 기술을 활용해 차세대 기술을 개발하는 브레인즈컴퍼니의 채용공고를 발견했습니다. 이 회사에서라면 많은 것을 배워 역량을 키우고 성장하며 일할 수 있겠다는 생각에 지원했고, 면접 끝에 첫 직장에 취업하게 됐습니다. 웹개발도 재밌지만 개발자로서 지속적으로 새로운 기술들을 습득하며 성장하는 것에서 성취감과 보람을 느끼는 것이 컸고, 그럴 수 있는 부서에서 첫 회사 생활을 시작할 수 있다는 생각에 기뻤습니다. 채용 과정 면접에서 기억에 남는 질문은 "우리 부서는 프론트엔드 보다 백엔드를 더 추구하는 편이라 함께 일을 하게 된다면, 프론트엔드와 백엔드 모두를 아울러 사용할 것인데 할 수 있습니까?"였습니다. 풀스택 개발자로서 일을 하게 된다는 질문이었고, 저는 이 부분에 대해 긍정적이었기 때문에 자신 있게 할 수 있다고 대답했습니다. 백엔드 개발자보다 많은 영역에서 발전하며 성장할 수 있다는 생각에 더욱 기대되고 설렜던 기억이 있습니다. 그렇게 저의 첫 직장 생활이 시작됐습니다. 입사 후, 지난 3달간의 일대기 채용이 된 후, 출근까지 2주간의 자유 시간이 주어졌습니다. 졸업 후 부트캠프 교육을 이수하면서 줄곧 달려왔고, 즐겁게 공부했지만 지쳐있는 심신을 달래기 위해 여행도 다녀오고 친구들과 가족들과 시간을 보내면서 출근 준비를 했습니다. 그렇게 2주 후 첫 출근을 하는 날이 됐고, 본격적으로 사원으로 근무하는 날이 다가왔습니다! 브레인즈컴퍼니의 개발 그룹은 1~5그룹으로 나눠져 있으며, 저는 개발4그룹에 소속됐습니다. 개발4그룹은 프론트엔드와 백엔드 개발뿐만 아니라, 빅데이터 및 AI 기술을 동원한 신기술 개발을 담당하고 있어, 배울 점도 많고 나아가야할 길도 멀리 펼쳐져 있다고 느꼈습니다. 1st Month_적응기 입사 첫 달은, 개발4그룹에서 집중적으로 개발 진행 중인 로그매니저와 Zenius AI의 제품 매뉴얼과 웹페이지에서 실제로 사용되고 있는 각각의 기능들을 학습하며 제품을 파악하고 익숙해지는 기간을 가졌습니다. 그렇게 한 달 간은 개발에 투입되기보다는 제품 및 사용된 기능들에 대한 학습과 공부를 하는 기간이었습니다. 단순히 제품의 매뉴얼만을 보며 학습을 했다면 집중도가 떨어졌을 수 있지만, 제품에서 사용하고 있는 다양한 기술들, Elasticsearch, Kibana, Kafka, Cluster 등 스택들에 대해 공부하면서 흥미와 재미를 느끼며 학습을 이어갈 수 있었습니다. 잘 몰랐던 신 기술들을 접하면서, 앞으로도 배우게 될 다양한 기술들에 대해 기대감이 부풀었던 한달이었습니다. 이외에도 학습을 진행하면서 원래 사용하던 스택인 JavaScript와 Linux의 Base부터 차근차근 다시 복습하며 결점을 보완하고, 제 자신을 Refactoring하기도 했던 한 달이었습니다. 2nd Month_개인정보 마스킹 기능 개발 입사 두 달째 부터는, 로그매니저와 Zenius AI의 기능들과 매뉴얼에 대해 전반적인 이해를 갖게 됐고, 각 사이트 기능들의 동작 원리 등을 대략적으로 파악할 수 있었습니다. 두 달이 된 이 시점부터 프론트엔드와 백엔드 모두를 사용하는 프로젝트가 주어졌습니다. 주어진 프로젝트는 ‘개인정보 마스킹 기능 개발’ 이었습니다. 로그매니저 내에서 수집되는 대용량의 로그들 안에 개인 정보가 포함될 경우가 있는데, 개인정보가 그대로 노출되는 것을 방지하기 위해 개인정보에 해당하는 정보는 마스킹처리를 자동적으로 진행하는 기능 개발을 진행하게 됐습니다. 예를 들어, 로그에 ‘961219-1234567’, ‘서울시 성동구 성수이로’, ‘010-1234-5678’ 등과 같은 주민등록번호, 주소, 연락처 뿐만 아니라 다양한 개인정보들을 지정한 특수문자(Default로는 *을 사용) 로 마스킹 처리를 해주는 기능을 개발하는 과정이 중점이 되는 프로젝트였습니다. 풀스택 공부를 하면서, 백엔드는 Node.js와 MySQL, PrismaOrm 등을 사용해 기능 개발을 진행했지만, 이번 프로젝트는 Elasticsearch, Kafka.js, Cluster.js 및 커스텀마이징된 다양한 메소드와 함수들을 통해 진행했기 때문에 배울 점이 매우 많았고, 성장하는 것을 느낄 수 있었습니다. 이외에도 프론트엔드에서 Ace.js를 통한 텍스트 편집기를 개발하고, 개인정보유형에 해당하는 정보가 입력되면 Syntax Highlighting 기능을 통해 해당 부분에 형광펜 효과를 적용시켜주는 기능의 개발을 진행했습니다. 개인정보 유형에 해당하는 정보에 대응되는 정규표현식, 그리고 백엔드에서 마스킹 처리될 특수문자 타입의 데이터 등은 Elasticsearch의 Index를 통해서 데이터의 저장과 반환작업 처리를 진행해줬으며, 이 데이터들을 기반으로 프론트엔드와 백엔드에서 모두 정상적인 마스킹 기능과 Syntax Highlighting 기능을 개발할 수 있었습니다. 새로운 기술을 활용해 프로젝트를 진행하면서 어려운 점도 많았고 시행착오도 겪었지만, 그만큼얻어가고 배워가는 것이 많았던 첫 업무였습니다. Elasticsearch, Kibana, Cluster, Kafka 등 새로운 기술 스택에 대해 배우고 적용할 수 있었다는 점이 매우 흥미로웠고 뿌듯한 경험이었습니다. <사진 설명: 개인정보 유형과 마스킹 여부, 정규표현식 관리와 마스킹 기능 ON/OFF가 가능한 페이지> <사진 설명: 선택한 개인정보 정규표현식에 해당되는 데이터 Syntax Hilighting 기능 구현> 3rd Month_데몬프로세스 그룹화 작업 및 테스트케이스 입사 세 달째 부터는, 어느 정도 회사 생활에 적응이 된 상태가 됐습니다. 아침 일찍 일어나는 것에도 적응이 됐고, 초반에는 어색했던 업무회의와 주간업무보고서 작성도 이제는 자연스럽게 하고 있는 모습을 발견할 수 있었습니다. 첫번째 프로젝트를 마친 후, 두번째로는 로그매니저의 데몬프로세스 기능을 그룹별로 정렬하는 업무를 맡게 됐습니다. 데몬프로세스가 각각의 그룹 속성을 지니고 있지만, 이를 그룹별로 나눠서 보여준다면 좀 더 가독성과 가시성이 높아질 것이기 때문에, Elasticsearch에서 반환 받는 데이터를 그룹의 조건에 따라 분류해주는 작업이 주가 됐습니다. 두번째 개발 후에는 로그매니저의 각 기능들에 대한 테스트 케이스 및 오류 사항 확인의 과정을 거쳤고, 제가 개발한 ‘개인정보 관리’ 기능에 대한 테스트 케이스 작성도 진행했습니다. 개발자가 개발을 잘하는 것도 중요하지만, 이렇게 자신이 개발한 기능에 대해 테스트케이스를 작성하면서 유저가 해당 테스트케이스를 확인하고, 개발한 기능을 자연스레 사용할 수 있게 해야 하는 것은 개발만큼이나 중요하다고 생각하기 때문에 기분 좋게 테스트케이스 작성을 진행할 수 있었습니다. 또, 로그매니저 제품 각 기술들의 테스트케이스들을 확인하며 각각의 기능들을 모두 테스트해볼 수 있는 기회가 됐으며, 개발하고 서비스되고 있는 기술들에 대해 좀더 명확하게 인지하고 확인할 수 있어 제품 이해에 큰 도움이 됐습니다. 이를 기회로 개발만이 중요한 것이 아닌 테스트케이스의 중요성을 절실히 깨닫고, 제가 개발하는 기술들에 대한 테스트케이스 작성이 필수불가결하다는 것을 느끼게 됐습니다. 느낀 점 브레인즈컴퍼니 개발4그룹에 입사 후, 3달간 근무하며 느낀 점은 제가 만족하며 회사를 다니고 있다는 점입니다. 그룹의 모든 구성원분들이 잘 적응할 수 있도록 도와주고 챙겨주셨고, 문제가 될 수도 있는 실수가 발생해도 모든 그룹원들이 다 잘 다독여 주셨습니다. 또, 좋은 피드백을 줘서 지속적으로 배워가고 성장할 수 있는 회사의 성장할 수 있는 부서라고 생각합니다. 그룹의 상래님, 신후님, 천웅님, 태민님 모두 제게 좋은 피드백과 도움을 주시고, 개선돼야할 점과 공부해야 할 부분, 그리고 개발을 하면서 고쳐야 할 습관들을 알려주셔서 점차 앞으로 나아갈 수 있다고 생각합니다. 일을 하면서 빼놓을 수 없는 게 워라밸일 것이라고 생각합니다. 첫 회사에서 일과 삶의 밸런스가 매우 적절하다고 생각하고 만족하며 근무를 하고 있습니다. 퇴근을 한 뒤에도 운동을 할 수 있고, 식단 관리도 병행하며 몸을 기르고 있습니다. 만약, 워라밸이 좋지 않았더라면 이렇게 삶을 유지할 수 없을 거라는 생각이 듭니다. 글을 마치며 면접에서 제가 했던 말이 있습니다. 저는 앞에 벽이 있다면 돌아가 다른 길을 찾으려 하기보다는 그 벽을 넘을 수 있는 방법을 생각합니다. 앞으로 나아갈 수 있고 성장할 수 있는 삶을 추구하고 있습니다. 비록 그 벽을 넘지 못하더라도, 다음에 그 벽보다 낮은 벽은 넘을 수 있을 것입니다. 시도조차 하지 않으면 당연히 발전도 없다고 생각합니다. 매번 도전하고 또 도전하며 발전하는 개발4그룹의 일원이 돼, 신기술 개발에도 큰 보탬이 되는 개발자로 성장하고 싶습니다. 그리고 브레인즈컴퍼니 개발4그룹에서 반드시 실현 가능하다고 생각합니다. 다양한 기술들을 배우고 학습해 제 것으로 만들고, 그룹과 회사에 보탬이 되는 개발자로 성장하겠습니다! [출처] https://twitter.com/gom_translate https://me2.kr/wvu3p http://jjaltoon.gallery/?p=11311 https://me2.kr/eq144
2022.08.25
기술이야기
머신러닝 기반 메트릭 데이터 이상탐지
기술이야기
머신러닝 기반 메트릭 데이터 이상탐지
개요 이상탐지(Anomaly Detection)는 시계열 데이터에서 과거 또는 비슷한 시점의 다른 데이터의 보편적인 패턴에서 벗어나거나, 벗어나려는 징후가 있는 드문 패턴이나 사실, 대상 개체를 찾아내는 데이터 분석의 한 분야입니다. 시계열이 아닌 것 중에 이상한 것을 찾는 것은 대부분 아웃라이어 탐지에서 다루고 있으나, 아웃라이어 탐지와 이상탐지를 구분하지 않고 넓은 의미에서 이상탐지로 취급합니다. 기존에는 이상탐지를 위해 통계학 기술을 많이 사용해 왔으나, 최근에는 머신러닝 기술을 이상탐지에 적용하는 사례가 늘어가고 있습니다. 당사의 ITIM 제품인 Zenius EMS는 과거 성능 패턴에 대해서 통계 기반의 상∙하한 동적임계치를 구한 뒤, 임계치를 벗어날 가능성이 있는 성능치에 대한 장애 발생가능성을 선제적으로 통보해주는 Proactive(사전장애예측-이상탐지) 기능이 이미 구현돼 있습니다. 필자는 최근에 주목받고 있는 AI 기술을 접목해 단일 성능치가 아닌 메트릭 데이터 셋에 대한 이상탐지 기능을 구현하기 위한 연구를 진행했고 그 결과에 대해 기술하고자 합니다. 이상탐지와 머신러닝 머신러닝으로 이상탐지를 구현하는 학습법은 ▲지도학습 ▲비지도학습 ▲반지도학습으로 구분할 수 있습니다. 지도학습 기반으로 머신러닝을 구현하기 위해서는 기존에 수집된 데이터 중 정상적인 데이터 셋과 이상한 것으로 판별된 데이터 셋을 적절히 섞어서 학습데이터 셋을 만들어야 합니다. 그러나 실제 수집되는 데이터에서 이상 사례로 판별된 학습 데이터를 확보화는 것은 상당히 어렵습니다. 소량의 정답데이터를 이용해서 비슷한 것을 찾아 내거나 학습데이터를 확장시키는 반지도학습을 고려할 수도 있지만, 이 경우도 고객사에 제품을 납품한 이후 일정 시간동안 이상사례에 대한 학습 데이터를 수집해야 하고, 좋은 모델을 만드는데 시간이 너무 오래 소요됩니다. 따라서, 고객사에 제품 납품 후 머신러닝을 빠르게 적용할 수 있도록 비지도학습을 통해 이상탐지를 구현할 수 있는 방법을 중점적으로 고려하게 됐습니다. 비지도학습 이상탐지 ITIM 제품인 Zenius EMS가 수집하는 메트릭 데이터는 대부분 정상 데이터이므로 수집된 데이터 중 일부 비정상 데이터(감시설정에 의해 이벤트가 발생된 데이터)를 자동으로 제거해서 비지도학습을 수행했습니다. 학습에 사용되는 데이터는 모두 정상 데이터이므로 PCA(Principal Component Analysis)를 이용해 차원을 축소하고 복원하는 과정을 통해 비정상 데이터를 검출할 수도 있으나 이번 연구에서는 Neural Network의 Autoencoder 기반의 머신러닝 기법을 사용했습니다. Autoencoder는 입력을 Latent Variable로 압축하는 Encoding과, 이를 다시 원본에 가깝게 복원해내는 Decoding 과정으로 진행되며 이를 통해 데이터의 중요한 정보들만 압축적으로 학습할 수 있습니다. <그림 설명: Autoencoder 개요> 위 그림은 Autoencoder의 기본적인 원리를 나타내고 있습니다. 정상 데이터셋을 통해 학습된 Autoencoder에 정상 샘플을 입력하게 되면 Decoder를 통해 나온 출력이 정상 샘플과 유사하게 잘 복원되지만 비정상적인 샘플을 입력하게 되면, 입력과 출력 값의 차이가 도드라지게 발생하게 되므로 비정상 샘플을 검출할 수 있습니다. 다만, Autoencoder의 Code Size(Latent Variable의 Dimension) 같은 Hyper-Parameter에 따라 전반적인 복원 성능이 좌우되기 때문에 판정 정확도가 지도학습에 비해 다소 불안정하다는 단점이 존재합니다. 또, Autoencoder의 입력과 출력의 차이를 어떻게 정의할 것인지, 어떤 Loss Function을 사용해서 Autoencoder를 학습시킬지 등 여러가지 요인에 따라 성능이 크게 달라질 수 있습니다. 이를 보완하기 위해 ICLE 2018 Conference에서 발표된 Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection을 이용했습니다. (https://iclr.cc/Conferences/2018/Schedule?showEvent=126) DAGMM DAGMM은 축소된 차원과 복원 오차에 대한 특성을 유지하여 입력 값의 중요 정보를 저차원상에서도 보존합니다. DAGMM에서는 차원 축소를 위한 Compression Network에 Autoencoder를 사용해 저차원상의 자료와 축소된 저차원상에서 original data 공간으로의 복원 에러에 대한 특성 정보를 계산할 수 있습니다. DAGMM은 학습된 저차원 공간에서 GMM(Gaussian Mixture Model)을 활용해 복잡한 구조를 가진 입력 자료에 대한 밀도 함수 추정을 수행합니다. 차원 축소와 밀도 함수 추정을 동시에 최적화하기 위해, DAGMM은 저차원 입력을 계산한 뒤, 혼합 밀도 함수를 추정하는 Estimation Network를 사용하고, 입력 자료를 저차원으로 축소시킨 뒤 에너지/가능도 평가 가능하게 해 GMM의 모수를 직접 추정합니다. <그림 설명: DAGMM 개요> DAGMM은 위 그림과 같이 두개의 주요 요소인 Compression Network와 Estimation Network로 구성돼 있습니다. Compression Network는 Deep Autoencoder를 사용해 입력 자료의 차원을 축소하고, Estimation Network는 차원이 축소된 자료를 입력 값으로 해, GMM의 가능도/에너지를 예측합니다. DAGMM에 대한 자세한 내용을 원하시는 경우, ICLR 2018 Conference 홈페이지의 논문 및 자료를 참조해 주십시오. DAGMM 기반 이상탐지 ITIM 제품인 Zenius EMS의 이상탐지를 위해 입력 데이터 셋은 메트릭 데이터로 구성합니다. 연관관계가 있다고 판단되는 메트릭 데이터 중 CPU Usage, Memory Usage, Disk Busy Rate, Network In bps 값을 4차원 데이터셋으로 구성한 후, DAGMM의 Compression Network를 통해 차원 축소를 진행하고 Estimation Network를 통해 가능도 및 에너지 예측을 진행했습니다. 입력 데이터셋은 실제 장비의 메트릭 데이터 중 최근 1000개의 데이터를 사용해 구성했으며, 모델의 정확성을 확인하기 위해 2개의 이상치 데이터를 혼합했습니다. 입력 데이터셋으로 사용된 4차원 데이터를 도식화하기 위해 3차원 Scatter 차트를 사용해서 데이터를 출력하면 아래와 같습니다. <그림 설명: 입력 데이터셋(1)> 위의 그림으로 CPU Usage, Memory Usage, Disk Busy Rate의 관계를 확인할 수 있으며, 이상치 데이터는 붉은 점으로 표시됐습니다. <그림 설명: 입력 데이터셋(2)> 위의 그림으로 CPU Usage, Memory Usage, Network Input bps의 관계를 확인할 수 있으며, 이상치 데이터는 역시 붉은 점으로 표시됐습니다. 입력 데이터셋에 대해 DAGMM epoch 횟수를 1000번으로 학습하여 모델을 생성할 경우 아래와 같은 Energy 밀도와 값을 얻을 수 있습니다. <그림 설명: DAGMM Energy 밀도(1)> <그림 설명: DAGMM Energy 밀도(2)> 생성될 모델에 대해 Energy 값의 99%를 초과할 경우를 이상치 데이터 셋으로 정의할 경우 아래와 같이 입력 데이터셋에서 이상치 데이터로 입력한 값들에 대해 정확하게 이상 징후를 탐지합니다. 이상과 같이 ITIM 제품인 Zenius EMS의 메트릭 데이터에 대한 이상 징후 탐지를 수행하는 방법에 대한 개괄적인 내용을 설명했으며, 이 모델은 당사의 Zenius EMS 시스템의 실시간 이상징후 탐지에 적용할 예정입니다.
2022.08.04
1
2
3
4