반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
기술이야기
검색
기술이야기
쿠버네티스 모니터링 솔루션, Zenius K8s의 주요기능과 특장점
기술이야기
쿠버네티스 모니터링 솔루션, Zenius K8s의 주요기능과 특장점
많은 기업이 Kubernetes(K8s)를 통해 애플리케이션을 대규모로 배포하고 관리하면서, 이에 맞는 모니터링 솔루션의 중요성이 더욱 커지고 있습니다. 멀티 클러스터 환경이 확산되고 애플리케이션과 인프라 요소가 긴밀히 연결된 IT 인프라에서는, 리소스 상태를 실시간으로 파악하고 신속하게 대응할 수 있는 모니터링이 필요하기 때문입니다. 이러한 상황에서 Zenius K8s는 멀티 클러스터 통합 관리, 애플리케이션 성능 분석, 연관 장비 모니터링 등 다양한 기능을 제공합니다. Kubernetes 환경을 더욱 효과적으로 관리하게 해주는 Zenius K8s의 주요기능과 특장점을 알아보겠습니다. Zenius K8s의 주요기능 [1] 멀티 클러스터 통합 모니터링 쿠버네티스 환경에서는 여러 클러스터를 동시에 관리해야 할 상황이 빈번하게 발생합니다. Zenius K8s는 멀티 클러스터 환경을 단일 화면에서 통합해서 관리할 수 있는 기능을 제공하여, 운영자가 각 클러스터의 상태를 손쉽게 모니터링할 수 있도록 지원합니다. 특히, 자동 생성되는 Topology Map은 클러스터 내부 구성 요소(Node, Pod, Container) 간의 관계를 직관적으로 시각화합니다. 이를 통해 운영자는 각 구성 요소의 연관성과 의존성을 명확히 이해할 수 있으며, 잠재적인 문제를 빠르게 식별할 수 있습니다. 이러한 시각적 도구는 운영자가 복잡한 구조를 보다 체계적으로 관리하는 데 중요한 역할을 합니다. [전체 클러스터 운영 요약 화면 예시] Zenius K8s는 또한, 클러스터별 주요 성능 지표를 요약한 화면과 세부 데이터를 확인할 수 있는 상세 데이터 화면을 제공합니다. 요약 화면에서는 클러스터 간의 성능 차이를 비교 분석할 수 있으며, 세부 데이터 화면에서는 개별 클러스터 내 특정 구성 요소의 성능 문제를 심층적으로 분석할 수 있습니다. 예를 들어, 특정 클러스터에서 리소스 사용량이 급증하는 현상을 요약 화면에서 확인한 후, 상세 데이터 화면으로 전환해 어떤 Pod나 노드가 문제의 원인인지 정확히 파악할 수 있습니다. 이러한 데이터 기반의 접근 방식은 운영자가 적절한 대응 조치를 빠르게 취할 수 있도록 합니다. [2] 지능형 장애 탐지 및 신속한 대응 지원 Zenius K8s는 쿠버네티스의 기본 이벤트 관리 기능을 확장하여, Kubernetes 자체 이벤트와 Zenius 전용 이벤트를 구분해 보다 세부적으로 체계화된 장애 관리 기능을 제공합니다. 각 이벤트에 대해 임계값과 심각도를 운영자 정의할 수 있어, 운영자는 환경에 적합한 기준으로 장애를 감지하고 우선순위를 설정할 수 있습니다. Zenius K8s의 다채널 알림 시스템은 푸시 앱, 이메일, 문자 등 다양한 방식으로 장애 정보를 즉시 전달하여 운영자가 신속하게 대응할 수 있도록 합니다. 단순히 알림을 보내는 것에 그치지 않고, 장애 발생 시점부터 종료 시점까지의 전체 상황을 기록하고 분석할 수 있어, 운영자는 문제 해결뿐만 아니라 유사 상황에 대한 재발 방지 대책을 수립할 수 있습니다. 또한, Zenius K8s는 발생한 장애 이벤트에 대한 상세 로그와 이력 데이터를 제공하여, 운영자가 근본 원인을 신속히 파악할 수 있도록 지원합니다. 이를 기반으로 장애 발생 원인과 영향을 체계적으로 분석하고, 동일한 문제가 재발하지 않도록 최적의 운영 환경을 설계할 수 있습니다. [이벤트 현황관리 화면 예시] [3] 실시간 로그 모니터링 및 분석 운영 환경에서 발생하는 로그는 문제의 원인을 파악하고 성능을 최적화하는 데 중요한 데이터를 제공합니다. Zenius K8s는 컨테이너 기반 애플리케이션의 동작, 오류, 디버깅 로그는 물론, Kubernetes 이벤트 로그(Kubelet, API Server 등)까지 실시간으로 수집하고 분석할 수 있는 기능을 제공합니다. 이 기능은 운영자가 시스템의 전반적인 상태를 심층적으로 모니터링하고, 잠재적 문제를 사전에 발견할 수 있도록 지원합니다. Zenius K8s의 실시간 로그 모니터링은 시점별 데이터 분석 기능을 통해 특정 기간 동안 발생한 로그 데이터를 확인하고, 문제 발생 시점과 원인을 빠르게 추적할 수 있도록 돕습니다. 운영자는 실시간으로 발생하는 로그를 모니터링하며, 필요할 경우 보고서 형태로 데이터를 내보내어 팀 내 공유나 추가 분석에 활용할 수 있습니다. 이 기능은 장애 대응 시간을 단축시키는 동시에, 문제 해결을 위한 협업을 효율적으로 지원합니다. 또한, Zenius K8s의 실시간 로그 분석 기능을 통해 운영자는 현재 발생하고 있는 로그를 실시간으로 확인하여 상황에 따라 빠르게 조치를 취할 수 있습니다. 이 기능은 운영 환경에서 투명성을 강화하고, 예기치 않은 장애로 인한 서비스 중단을 최소화하는 데 중요한 역할을 합니다. [4] 효율적인 리소스 활용 지원 Zenius K8s는 클러스터와 주요 구성 요소(Node, Pod, Container)의 CPU, 메모리, 네트워크 사용량을 실시간으로 추적하여, 자원이 비효율적으로 사용되거나 과부하가 발생할 가능성을 사전에 감지할 수 있는 모니터링 기능을 제공합니다. 운영자는 이를 통해 특정 구성 요소가 리소스를 과도하게 소모하고 있는지 빠르게 확인할 수 있으며, 이를 기반으로 적절한 조치를 취할 수 있습니다. 예를 들어, 특정 Pod가 비정상적인 메모리 사용량을 보일 경우, Zenius K8s는 이를 즉각 감지하여 경고를 제공하고, 운영자가 문제를 해결할 수 있도록 도와줍니다. 이러한 기능은 리소스의 낭비를 줄이고, 시스템의 안정성을 높이는 데 중요한 역할을 합니다. 또한, 쿠버네티스의 자동 확장 기능에 따라 생성되는 파드(Pod)에 대해 Zenius K8s는 자동으로 모니터링을 수행합니다. 이를 통해 새로 생성된 파드의 상태와 리소스 사용량을 실시간으로 추적하여 운영자는 추가적인 설정 없이도 전체 시스템의 상태를 효율적으로 관리할 수 있습니다. Zenius K8s의 특장점 Zenius는 K8s는 위에 살펴본 주요기능에 더해서, 복잡한 쿠버네티스 환경을 더욱 효과적으로 운영하고 관리할 수 있도록 지원할 수 있는 세 가지 특장점을 가지고 있습니다. [1] 확장성 있는 구조를 바탕으로 한 연관 장비 통합 모니터링 Zenius는 K8s 모니터링을 포함하여 SMS, NMS, APM, DBMS등 총 23개의 포인트 솔루션을 연계할 수 있는 Framework으로 구성되어 있습니다. 따라서 운영자는 Kubernetes 클러스터는 물론 컨테이너 오케스트레이션, 서비스 모니터링, 네트워크 관리, 애플리케이션 성능 분석까지 한 시스템에서 일괄적으로 모니터링하고 관리할 수 있습니다. 이러한 확장성은 운영자가 새로운 모니터링 대상을 손쉽게 추가하고, 기존 인프라와 새로운 인프라를 유기적으로 통합하여 대규모 환경에서도 일관된 관리 체계를 유지할 수 있도록 합니다. 예를 들어, Kubernetes 클러스터와 네트워크 장비를 연결해 네트워크 병목 현상이 클러스터 및 애플리케이션 성능에 미치는 영향을 파악할 수 있습니다. 이러한 통합 모니터링은 대규모 환경에서도 일관성을 유지하며, 복잡한 IT 환경에서 발생하는 문제의 근본 원인을 효율적으로 분석할 수 있도록 지원합니다. Zenius K8s는 또한, 서버, 네트워크 장비, 애플리케이션 등 IT 인프라 전반에 대한 성능 데이터를 통합적으로 제공합니다. 이를 통해 특정 장비나 네트워크에서 발생한 성능 저하가 클러스터 및 애플리케이션 운영에 미치는 영향을 직관적으로 파악할 수 있습니다. 이처럼 전체 IT 인프라를 아우르는 통합 모니터링 기능은 운영자에게 단순히 데이터를 제공하는 것을 넘어, 서비스 안정성과 문제 해결의 정확성을 높이는데 기여합니다. [2] APM 연계를 통한 애플리케이션 심층 분석 쿠버네티스는 애플리케이션을 컨테이너화하여 자동화된 배포, 확장, 관리를 가능하게 함으로써 서비스의 안정성과 효율성을 높이는 데 주로 활용됩니다. 따라서 쿠버네티스 모니터링 솔루션은 APM(Application Performance Management)과의 연계가 중요합니다. Zenius K8s는 APM과의 강력한 연계를 통해 Kubernetes 환경 내에서 운영 중인 애플리케이션의 성능을 세밀하게 분석할 수 있도록 지원합니다. 이를 통해 애플리케이션이 처리하는 트랜잭션 속도와 같은 주요 성능 지표는 물론, 지연 발생 구간, 병목 현상 등을 실시간으로 모니터링하고 분석하여 문제의 근본 원인을 신속히 진단할 수 있도록 합니다. 특히, APM 연계를 통해 애플리케이션의 전체 트랜잭션 흐름을 시각화함으로써 개별 트랜잭션에서 발생하는 성능 저하나 지연이 클러스터 성능에 미치는 영향을 파악할 수 있습니다. 예를 들어, 특정 트랜잭션에서 비정상적인 지연이 발생할 경우, APM 솔루션은 이를 실시간으로 탐지하여 해당 구간에 대한 세부적인 성능 데이터를 제공합니다. 이를 통해 트랜잭션 지연의 원인을 파악하고, 최적화 작업을 통해 성능을 개선할 수 있습니다. 또한, Zenius K8s는 트랜잭션 병목 현상의 위치와 원인을 명확히 규명할 수 있는 분석 도구를 포함하고 있어, 특히 마이크로서비스 구조의 복잡한 애플리케이션에서 병목 구간을 체계적으로 최적화할 수 있습니다. 이와 같은 심층적인 성능 분석 기능은 단순히 자원 사용 모니터링을 넘어, 애플리케이션 내부에서 발생하는 성능 이슈를 구체적으로 진단하는 데 중점을 둡니다. [3] 메타정보와 변경 이력 관리의 편의성 Zenius K8s는 Kubernetes 오브젝트에 대한 상세한 메타정보를 명령어 입력 없이 직관적으로 조회할 수 있는 고급 메타정보 뷰어를 제공합니다. 운영자는 각 오브젝트의 이름, 라벨(Label), 주석(Annotation) 등 주요 메타정보를 빠르게 확인할 수 있어 오브젝트 상태를 명확히 이해할 수 있습니다. 이 기능은 클러스터의 모든 오브젝트에 대해 체계적인 정보를 제공하며, 특히 동적이고 복잡한 Kubernetes 환경에서 유용하게 활용됩니다. [K8s 구성 요소 별 메타 정보 조회 화면 예시] 또한, Zenius K8s는 구성 변경 이력 관리 기능을 포함하여 이전에 수행된 구성 변경 사항을 시각적으로 한눈에 확인할 수 있도록 지원합니다. 예를 들어, 운영자는 특정 시점에서 이루어진 설정 변경이 클러스터 성능에 미친 영향을 파악하거나, 문제 발생 시 원인을 추적하여 신속히 복구할 수 있습니다. 이를 통해 변경 이력 내역을 단계별로 조회할 수 있습니다. Zenius K8s의 메타정보 및 변경 이력 관리 기능은 구성 변경이 빈번하게 발생하는 대규모 Kubernetes 환경에서 특히 중요한 역할을 합니다. 구성 요소가 많고 자주 변경되는 환경에서는 변화에 따른 혼선이 발생하기 쉬운데, 이 기능은 구성 내역의 투명성을 제공하고, 불필요한 문제를 예방하며, 신속한 문제 해결을 가능하게 합니다. 운영자는 변경 이력을 기반으로 각 오브젝트의 최신 상태와 과거 설정 내역을 체계적으로 관리하여 안정적인 운영을 유지할 수 있습니다. [메타 정보 이력 추적 및 변경 사항 조회 화면 예시] Zenius K8s는 멀티 클러스터 관리, 실시간 모니터링, 장애 탐지 및 대응, 자원 활용 최적화 등 Kubernetes 운영에서 필수적인 기능을 제공합니다. 특히, Framework 기반 구조를 통해 SMS, NMS, APM, DBMS와 같은 다양한 포인트 솔루션과 연계가 가능하여, 컨테이너 오케스트레이션부터 네트워크 관리, 애플리케이션 성능 분석까지 포괄적인 모니터링과 관리를 지원합니다. 특히, APM 연계 기능은 애플리케이션의 트랜잭션 속도, 병목 현상, 지연 발생 구간 등 주요 성능 지표를 실시간으로 모니터링하고 분석할 수 있도록 하여, 문제의 근본 원인을 빠르게 진단하고 최적화할 수 있도록 돕습니다. 연관 장비 모니터링 기능은 서버, 네트워크 장비 등 IT 인프라 전반의 상태를 통합적으로 분석하여, 각 요소가 Kubernetes 클러스터와 애플리케이션 성능에 미치는 영향을 정확히 파악할 수 있도록 지원합니다. Zenius K8s는 이러한 기능들을 통해 운영자가 복잡한 IT 환경에서도 안정적이고 효율적인 관리 체계를 구축할 수 있도록 도와주는 유용한 솔루션입니다.
2024.11.21
기술이야기
리눅스와 윈도우의 시스템 로그를 효과적으로 모니터링하는 법
기술이야기
리눅스와 윈도우의 시스템 로그를 효과적으로 모니터링하는 법
대부분의 운영체제(OS)와 프로그램은 시스템 상태를 기록하기 위해 다양한 로그를 생성합니다. 이 로그들은 시스템의 장애를 감지하고, 예측하며, 침입을 탐지하고, 서비스가 정상적으로 작동하는지를 확인할 수 있습니다. 그렇다면 모든 운영체제가 동일한 방식으로 로그를 남길까요? 정답은 NO!입니다. 우리가 주로 사용하는 리눅스(Linux)와 윈도우(Window) 운영체제는 로그 관리 방식이 서로 다릅니다. 리눅스는 여러 위치에 로그를 분산해 저장하는 반면, 윈도우는 이벤트 로그라는 중앙 집중화된 방식으로 관리합니다. 따라서 이번 글에서는 각 운영체제의 로그 체계가 어떻게 구성되어 있는지, 이러한 로그들이 왜 중요하고, 효과적으로 모니터링하는 방법은 무엇인지 살펴보도록 하겠습니다. 1. 리눅스 로그 종류 리눅스의 주요 로그는 /var/log 디렉토리에 저장되며, 파일 형태 또는 바이너리(이진법) 형태로 기록됩니다. 이 로그 파일들은 특정 상황을 기록하고, 장애 발생 시 필요한 정보를 제공합니다. 리눅스 로그는 크게 시스템 로그, 부팅 로그, 보안 로그로 분류하여 관리합니다. 시스템 로그는 syslog나 rsyslog에 의해 관리되며, 설정에 따라 특정 항목을 제외한 대부분의 시스템 이벤트가 기록됩니다. 시스템 로그에는 메모리 부족으로 인한 성능 저하나 애플리케이션 종료와 같은 자원 문제뿐 아니라, 네트워크 연결 오류로 인해 네트워크 인터페이스 카드(NIC)에서 발생한 문제, 프로그램이 시스템 내 잘못된 경로나 리소스에 접근하려 할 때의 오류가 포함됩니다. 문제가 발생했을 때 가장 먼저 확인하는 로그 파일로, 문제 원인 분석과 해결에 중요한 역할을 합니다. 서버에는 운영 체제(OS) 외에도 데이터베이스(DB), 웹 애플리케이션 서버(WAS) 등 다양한 애플리케이션이 실행됩니다. 이때 시스템 자원 문제는 애플리케이션 성능을 저하시킬 수 있고, 반대로 애플리케이션 오류가 시스템에 영향을 주기도 합니다. 시스템 로그는 이러한 상호작용을 파악하고 장애를 조기에 진단하는 데 필요한 데이터를 제공합니다. 부팅 로그는 서버가 시작될 때 발생하는 주요 이벤트를 기록하여 시스템이 정상적으로 초기화되었는지 확인하는 데 사용됩니다. 이 로그는 커널 업데이트나 BIOS 펌웨어 변경으로 서버를 재부팅하거나 설정이 변경될 때 유용한 자료가 됩니다. 부팅 로그는 주로 두 파일로 구성되는데요. boot.log는 각 서비스가 정상적으로 시작되었는지 기록하고, dmesg는 커널이 기록한 하드웨어 상태와 초기 설정 정보를 포함합니다. 이를 통해 서버가 정상적으로 부팅되지 않거나 서비스가 제대로 작동하지 않을 때 문제의 원인을 파악할 수 있습니다. 보안 로그는 서버에 접근한 기록과 인증 정보를 담고 있습니다. 예를 들어 telnet, SSH, FTP 등을 통해 서버에 로그인할 때마다 어떤 방식을 접속했는지 secure 로그 파일에 기록됩니다. 보안 로그는 특히 해킹 시도나 비정상적인 접근이 발생했을 때 중요한 자료가 되며, 반복적인 로그인 실패와 같은 의심스러운 활동을 추적하는 데 사용됩니다. 시스템 로그와 보안 로그는 로그 레벨에 따라 로깅의 내용이 달라집니다. 로그 레벨이 높아지면 더 많은 정보가 기록되지만, 그만큼 불필요한 내용까지 출력되기 때문에 상황에 맞게 조절해야 합니다. 특히 ERR 등급 이하의 로그는 시스템이나 프로그램의 정상 작동에 영향을 줄 수 있는 항목이기 때문에, 이러한 이벤트가 발생하면 빠르게 대응하는 것이 필요합니다. 2. 윈도우 로그 종류 윈도우 로그는 이벤트 로그 형식으로 중앙 집중화되어 관리됩니다. 시스템 로그가 한 곳에서 관리되기 때문에 문제가 발생했을 때 접근이 용이합니다. 이벤트 로그는 [시작] → [제어] → [관리 도구] → [이벤트 뷰어] 또는 eventvwr 명령어로 쉽게 확인할 수 있습니다. 윈도우의 이벤트 로그는 시스템, 보안, 애플리케이션, 설치 이렇게 네 가지 카테고리로 통합되어 관리됩니다. 각 이벤트에는 고유한 ID가 부여되어 있어, 문제 발생 시 검색 기능을 통해 빠르게 조회할 수 있습니다. 프로그램이 충돌하여 종료되거나 하드웨어 장애 같은 시스템 문제가 발생하면 이벤트 로그에 오류로 기록되며, 이러한 오류 이벤트가 발생하면 신속한 대응이 필요합니다. 3. 효율적으로 시스템 로그 모니터링하는 법 리눅스와 윈도우가 서로 다른 방식으로 시스템 로그를 관리함에 따라, 각각의 로그 시스템의 상태를 실시간으로 파악하고 문제 발생 시 신속하게 대응할 수 있어야 합니다. 하지만 서버의 개수가 많아질수록 이러한 로그들을 24시간 내내 모니터링 하기란 쉽지 않습니다. 특히 예상치 못한 상황에서 빠르게 대응하려면 효율적인 모니터링 솔루션이 필수입니다. 로그 모니터링이 가능한 Zenius SMS은 시스템 로그의 잠재적인 문제를 사전에 감지하고, 문제가 발생했을 때 즉각적인 알림을 통해 서비스가 안정적으로 운영될 수 있도록 지원합니다. 모니터링이 필요한 로그 파일 경로와 특정 장애 문자열을 설정하면, 커널로그뿐만 아니라 운영 중인 다양한 서비스 로그까지 모니터링할 수 있습니다. 다음 내용을 통해 좀 더 자세한 기능을 살펴보겠습니다. 3-1. 로그 감시 (일반 정규식) Zenius SMS는 기본적으로 일반 정규식을 사용하여 특정 장애 문자열이 포함된 로그 항목을 간단히 감지할 수 있습니다. 예를 들어 'error'와 같은 특정 단어를 설정해두면, 해당 단어가 포함된 로그가 발생할 때마다 자동으로 탐지하여 관련 이벤트로 기록됩니다. 이러한 기능은 간단한 오류 모니터링에 적합하며, 빠르게 문제 상황을 파악할 때 유용합니다. 3-2. 로그 감시 (확장 정규식) Zenius SMS는 보다 정교한 모니터링이 필요한 상황을 위해 확장 정규식 기능도 지원합니다. 특정 패턴이나 조건을 설정하여 로그 이벤트를 세밀하게 감지할 수 있습니다. 예를 들어 변수 문자열을 활용하거나 특정 컨테이너가 'running' 상태가 아닐 때만 탐지하거나, 특정 서비스 이름과 오류 메시지가 함께 포함된 경우만 감지하는 등의 설정이 가능합니다. 이러한 기능은 복잡한 시스템 환경에서 더욱 세부적인 조건을 감지하고 대응하는 데 유리합니다. 윈도우의 이벤트 로그의 중요도에 따라 서버에 직접 접속하지 않고도 실시간으로 확인할 수 있습니다. 또한 '내보내기' 기능을 통해 특정 로그 이벤트의 이력을 별도로 저장하고 관리할 수 있습니다. 3-3. 윈도우 이벤트 로그 감시 Zenius SMS는 윈도우 이벤트 로그에서 특정 내용이나 이벤트 ID를 지정하여 선택적인 모니터링이 가능합니다. 발생 횟수, 유효 기간, 구분(예:시스템), 종류(예:정보) 등의 다양한 조건과 이벤트 ID를 설정하여, 설정된 조건에 맞는 이벤트만 필터링할 수 있습니다. 이를 통해 중요한 이벤트에 집중하여 효율적으로 로그를 관리할 수 있습니다. 3-4. 로그 파일 모니터링 로그 파일은 단순히 장애 문자열을 감지하는 용도뿐만 아니라, 파일 내 특정 값을 추출해 수치 데이터로 관리할 수 있는 다양한 기능을 제공합니다. Zenius SMS 모니터링 솔루션은 이러한 로그 파일에서 추출한 데이터를 차트 형태로 시각화하여 실시간 모니터링이 가능합니다. 로그 감시 설정에서 특정 값에 변수를 지정하면, 로그 파일에서 추출한 count 값이나 현재 상태를 실시간으로 추적할 수 있습니다. 이러한 기능을 통해 서버 상태뿐 아니라, 데이터베이스(DB) 결과 값이나 웹 애플리케이션 서버(WAS) 상태 등도 한눈에 파악할 수 있습니다. 서버 환경이 점차 복잡해질수록 시스템 로그 모니터링의 중요성은 더욱 커지고 있습니다. 특히 리눅스(Linux)와 윈도우(Window) 등 운영체제에서 발생하는 로그 파일을 실시간으로 모니터링하고, 문제가 발생하면 즉각 대응할 수 있는 체계는 안정적인 서비스 운영에 필수입니다. Zenius SMS와 같은 솔루션은 정규식 기반의 로그 감지, 실시간 알림, 데이터 시각화 기능을 통해 잠재적인 문제를 신속하게 파악할 수 있도록 지원합니다. 이러한 기능을 갖춘 솔루션을 통해 서버 상태를 명확히 파악하고, 예기치 않은 상황에서도 안정적인 서비스를 운영해 보시길 바랍니다!
2024.11.05
기술이야기
네트워크 모니터링의 4가지 최신 트렌드
기술이야기
네트워크 모니터링의 4가지 최신 트렌드
클라우드와 엣지 컴퓨팅의 확산, 동영상/음악/게임 분야의 스트리밍 서비스의 성장 등으로 인해 네트워크 인프라는 점점 더 복잡해지고 있으며, 데이터 트래픽 또한 폭발적으로 증가하고 있습니다. 또한 DDoS(Distributed Denial of Service)나 스니핑(Sniffing) 공격과 같은 보안 위협도 확산되고 있습니다. 따라서 네트워크 성능을 안정적으로 유지하고 잠재적인 위협에 빠르게 대응하기 위한 네트워크 모니터링의 중요성이 더욱 커지고 있습니다. 한 조사에 따르면 네트워크 모니터링 시장 규모가 올해 29억 1천만 달러에 이른 후, 4년간 연평균 성장률(CARG) 9.7%를 기록하며 2028년에는 42억 1천만 달러까지 확대될 전망입니다. IT 기술과 서비스의 발전에 따라서 네트워크 모니터링은 구체적으로 어떻게 변화하고 있는지 네 가지로 나눠서 살펴보겠습니다. [1] 멀티 클라우드 환경에서의 네트워크 모니터링 벤더 종속성을 피하고 비용을 줄이며, 서비스의 성능을 높이기 위해 멀티 클라우드 전략이 많이 채택되고 있습니다. 하지만 멀티 클라우드를 구성하는 각 클라우드 서비스마다 네트워크 아키텍처와 성능이 다르기 때문에 안정적으로 네트워크를 관리하는 데에는 많은 어려움이 따르는 것도 사실입니다. 이러한 어려움을 극복하고, 멀티 클라우드의 운영 효율을 최대한 높이기 위한 네트워크 모니터링의 최근의 추세를 살펴보겠습니다. 가시성 높은 통합 대시보드를 통한 관리 복잡한 멀티 클라우드 환경에서 네트워크를 효율적으로 관리하기 위한 가시성 높은 통합 대시보드의 활용이 증가하고 있습니다. 통합 대시보드는 여러 클라우드에 걸쳐 발생하는 트래픽 흐름, 대역폭 사용량, 그리고 네트워크 성능 지표를 한 눈에 보기 쉽게 제공합니다. 이를 통해 관리자가 각 클라우드 서비스 간의 네트워크 상태를 실시간으로 쉽게 파악하고 문제에 빠르게 대응할 수 있게 돕고 있습니다. 특히, 통합 대시보드는 네트워크 토폴로지 맵과 성능 히트맵과 같은 세부적인 기능을 통해, 복잡하게 얽힌 클라우드 간의 트래픽 흐름을 직관적으로 분석할 수 있도록 지원하고 있습니다. 이를 통해 멀티 클라우드의 각 경로에서 발생할 수 있는 트래픽 불균형이나 병목 현상을 신속하게 감지하고 조정할 수 있습니다. 이와 더불어서 관리자가 자신이 중점적으로 모니터링해야 하는 지표들을 쉽게 확인할 수 있도록, 통합 대시보드의 관리자별 맞춤 설정 기능도 강화되고 있습니다. 이를 통해 관리자는 복잡한 멀티 클라우드 환경에서도 하나의 화면에서 리전별 트래픽, 네트워크 지연시간, 패킷 손실율 등 본인이 원하는 부분에 초점을 맞춰서 효율적으로 네트워크를 모니터링 할 수 있습니다. AI와 머신러닝을 통한 자동화된 분석 및 대응 AI와 머신러닝 기술이 적용된 네트워크 모니터링 시스템도 멀티 클라우드 운영 효율을 높이는데 크게 기여하고 있습니다. 우선 멀티 클라우드 환경의 네트워크는 멀티 클라우드 환경은 다양한 변수로 인해 네트워크 문제가 예측 불가능한 경우가 많습니다. 따라서 AI와 머신러닝 기술은 클라우드 간의 네트워크 상관관계, 트래픽 패턴, 대역폭 사용량, 성능 지표를 등을 학습하여 성능 저하나 장애의 잠재적 원인을 탐지하고 빠르게 알리고 있습니다. 또한 AI를 통해 실시간 트래픽 경로 분석하여 병목 현상이 발생하거나 리소스가 과도하게 사용될 경우 동적으로 VLAN 설정을 변경하거나, 트래픽을 다른 클라우드 인스턴스로 우회시키는 등의 자동화된 대응도 강화되고 있습니다. 이와 함께 네트워크 트래픽의 실시간 변화에 맞춰 QoS(서비스 품질) 정책을 자동으로 조정하여 중요한 애플리케이션에 우선순위를 부여하고, 비정상적인 트래픽을 즉시 차단하거나 제한하는 등의 대응도 자동으로 수행할 수 있습니다. 이 같은 자동화된 조치는 네트워크의 가용성을 높이고, 관리자의 개입 없이도 실시간으로 문제를 해결할 수 있어, 멀티 클라우드 환경에서의 네트워크 성능과 안정성을 높이고 있습니다. 시스템의 확장성 및 유연성 강화 멀티 클라우드 환경에서는 클라우드 리소스가 추가되거나 기존 리소스가 제거되면서, 네트워크의 구성과 요구사항이 빠르게 변동됩니다. 따라서 높은 유연성을 바탕으로 빠르게 변화하는 네트워크 환경에 신속하게 대응하는 것이 네트워크 모니터링 시스템의 중요한 요소로 자리잡았습니다. 구체적으로, 네트워크 모니터링 시스템을 통해 멀티 클라우드 인프라 내에서 새롭게 배포되는 서버나 애플리케이션을 자동으로 감지하고 이를 실시간으로 모니터링할 수 있는 것이 중요해지고 있습니다. 또한, 동적인 멀티 클라우드 환경에서 관리자가 특정 클라우드 서비스나 리소스에 맞춤형 모니터링 설정을 유연하게 적용할 수 있는 기능이 중요해지고 있습니다. 예를 들어, 새로운 클라우드 환경의 네트워크를 모니터링할 때, 해당 환경에 맞춘 모니터링 템플릿을 유연하게 구성하고 배포할 수 있는 기능이 점점 더 중요해지고 있습니다. 이러한 유연한 모니터링 시스템은 멀티 클라우드 인프라의 복잡성을 효과적으로 관리하고 운영 효율성을 높이는 데 중요한 역할을 하고 있습니다. 규정 준수 및 거버넌스 모니터링 멀티 클라우드 환경에서는 다양한 국가와 지역의 규제를 준수해야 합니다. 따라서 네트워크 모니터링 시스템은 네트워크 트래픽, 접근 로그, 보안 이벤트 등을 실시간으로 모니터링하여 잠재적인 규정 위반을 탐지하고 사전에 인지할 수 있도록 지원하고 있습니다. 특히 규정 준수(Compliance) 모니터링은 멀티 클라우드 환경에서 필수적입니다. 예를 들어, 한 클라우드가 유럽에 위치하고 있어 GDPR(유럽 일반 데이터 보호 규정)을 준수해야 하고, 다른 클라우드는 미국의 규제에 따라야 할 때, 네트워크 모니터링 시스템을 통해 각 클라우드에서 발생하는 네트워크 트래픽, 보안 이벤트와 접근 로그를 추적하고, 잠재적인 규정 위반을 사전에 탐지할 수 있도록 지원하고 있습니다. 또한, 거버넌스 모니터링 측면에서는 클라우드 간의 데이터 관리와 접근 통제 정책이 일관되게 적용되도록 지원합니다. 멀티 클라우드 환경에서는 다양한 클라우드 제공자 간에 민감한 데이터가 이동할 수 있기 때문에, 데이터 접근 권한을 관리하고 비인가된 접근 시도를 실시간으로 감시하는 기능이 필수적입니다. 이를 통해 기업은 데이터 유출 위험을 줄이고, 여러 규제와 거버넌스 요구 사항을 준수할 수 있습니다. [2] SDN(소프트웨어 정의 네트워킹) 모니터링 SDN(Software-Defined Networking)은 네트워크를 더 쉽게 관리할 수 있도록 설계된 기술입니다. 전통적인 네트워크는 스위치나 라우터 같은 네트워크 하드웨어 장치가 데이터의 전달 경로와 방식을 스스로 결정했습니다. 하지만 각 장비가 독립적으로 작동하다 보니 네트워크 설정을 변경하는 데 시간이 많이 걸렸고, 특히 대규모 네트워크를 통합적으로 관리하는 데 어려움이 있었습니다. 반면, SDN에서는 소프트웨어 기반의 중앙 컨트롤러(제어 평면, Control Plane)가 데이터의 전달 경로와 방식을 통합하여 결정하고 하드웨어 장치들은 이 결정에 따라 데이터를 전송하는 역할만 수행합니다. 따라서 네트워크 구성을 변경하거나 최적화하기가 쉽고, 대규모 네트워크도 효율적으로 관리할 수 있는 장점이 있습니다. 하지만 동시에 중앙 컨트롤러에 장애가 발생하거나 해킹을 당할 경우 네트워크 전체가 마비될 수 있는 위험이 있으며, 실시간으로 네트워크 상태를 모니터링하고 분석하는 것이 어려운 단점도 존재합니다. 따라서 네트워크 모니터링 시스템은 SDN의 단점을 보완하고 장점을 강화하는 방향으로 발전하고 있습니다. 실시간 데이터 수집 및 분석 실시간 데이터 분석은 네트워크 환경이 계속해서 변화하는 SDN의 특성상 매우 중요합니다. 특히 SDN에서는 스위치, 라우터, 케이블 등 네트워크 하드웨어 장치들이 정상적으로 작동하고 연결된 상태를 나타내는 '물리적 상태'와, 중앙 컨트롤러가 설정한 네트워크 경로와 적용된 정책을 의미하는 '논리적 상태'를 모두 실시간으로 정확하게 모니터링해야 합니다. 네트워크 모니터링 시스템은 이러한 물리적 상태와 논리적 상태를 추적하기 위해, 네트워크 지연 시간, 트래픽 흐름, 패킷 손실, 대역폭 사용량, 링크 상태와 같은 다양한 성능 지표를 실시간으로 수집하고 분석하는 기능을 강화하고 있습니다. 이러한 분석을 통해 네트워크 관리자가 잠재적인 문제나 성능 저하를 조기에 감지하여, 심각한 문제가 발생하기 전에 조치할 수 있도록 돕고 있습니다. 빠르고 자동화된 대응 지원 네트워크 모니터링 시스템은 네트워크 주요 데이터에 대한 수집과 분석에서 그치지 않고, SDN의 컨트롤러와 연계하여 빠르고 자동화된 대응을 지원하고 있습니다. 예를 들어, 특정 시간대에 트래픽이 과도하게 증가하면, 모니터링 시스템이 이를 실시간으로 탐지하고 SDN 컨트롤러를 통해 특정 트래픽을 다른 경로로 자동 분산시킵니다. 링크 장애가 발생하면 모니터링 시스템은 즉시 대체 경로를 설정하여 트래픽이 끊기지 않도록 조치하며, 문제가 해결되면 다시 원래의 경로로 트래픽을 재배치하는 자동 복구 기능을 수행합니다. 이처럼 네트워크 모니터링 시스템과 SDN 컨트롤러와의 연계를 통해 네트워크 운영자의 개입 없이도 스스로 문제를 해결하는 능력이 더욱 진화할 것으로 기대되고 있습니다. 보안이 강화된 모니터링 앞서 살펴본대로 SDN은 네트워크 제어를 중앙집중식으로 처리하는 구조적 특성을 가지고 있기 때문에, 중앙 컨트롤러의 보안이 매우 중요합니다. 따라서 SDN 환경에서 네트워크 모니터링 시스템은 다양한 잠재적인 보안 위협을 사전에 감지하고, 신속하게 대응할 수 있는 강화된 보안 기능을 필수적으로 갖춰가고 있습니다. 예를 들어 네트워크 상에서 발생하는 다양한 이벤트를 실시간으로 감시하고 분석하여, 비정상적인 트래픽 흐름, 의심스러운 로그인 시도, 네트워크 장치 간의 비정상적인 통신 행위 등에 대한 탐지가 가능합니다. 또한 보안을 강화하기 위해서 네트워크 모니터링 시스템과 SIEM(보안 정보 및 이벤트 관리 시스템), IPS(침입 방지 시스템), IDS(침입 탐지 시스템)의 통합이나 연계도 활발하게 이루어지고 있습니다. 분산형 SDN 컨트롤러 모니터링 SDN 환경에서 중앙 컨트롤러 하나에 의존하는 방식의 리스크를 줄이기 위해, 많은 네트워크 운영자들이 분산형 SDN 컨트롤러 아키텍처를 채택하고 있습니다. 분산형 컨트롤러는 각기 독립적으로 운영되면서도 상호 간에 정보와 상태를 동기화하여 안정적인 네트워크 운영이 가능합니다. 따라서 최근 네트워크 모니터링 시스템은 각 컨트롤러의 상태와 성능을 실시간으로 추적하고, 컨트롤러 간 협력 상태를 감시하여 과부하나 장애 발생 시 즉시 다른 컨트롤러로 트래픽을 자동 분산하거나 대체 컨트롤러를 할당하는 기능을 지원하고 있습니다. 또한, 분산된 컨트롤러 간의 상태 동기화 여부를 실시간으로 확인하여, 동기화 문제로 인한 비효율적인 경로 설정이나 보안 취약점을 방지하고, 문제 발생 시 즉각적인 경고 및 자동 수정 기능을 제공합니다. 장애 복구와 복원 기능 또한 필수적으로 강화되어, 장애 발생 시 대체 컨트롤러가 즉각적으로 운영을 이어받고, 문제가 해결된 후에는 트래픽을 원래 컨트롤러로 복원하는 기능도 제공하고 있습니다. [3] 엣지컴퓨팅 환경의 네트워크 모니터링 엣지 컴퓨팅(Edge Computing)은 데이터를 중앙의 대형 데이터센터나 클라우드 서버에서 처리하는 기존 방식과 달리, 데이터를 생성하는 디바이스나 그와 가까운 위치에서 처리하는 기술입니다. 예를 들어 스마트폰, IoT 기기, 자율주행차, 또는 공장 내의 다양한 장비들이 데이터를 스스로 처리하고, 필요한 경우에만 중앙 서버나 클라우드로 데이터를 전송하는 방식입니다. 네트워크 대역폭을 절약할 수 있고, 빠른 서비스 제공이 가능해서 다양한 분야에서 활용이 증가하고 있습니다. 엣지 디바이스들이 데이터를 처리하는 위치가 분산되어 있고, 시스템이 유연하게 확장될 수 있기 때문에, 이러한 환경에 맞춰 각 디바이스와 네트워크의 상태를 실시간으로 모니터링할 수 있는 엣지컴퓨팅 맞춤형 네트워크 모니터링이 필요합니다. 엣지 노드별 모니터링 엣지 컴퓨팅 환경에서는 엣지 노드에서 발생하는 데이터를 실시간으로 정확하게 감지하고 관리해야 합니다. 따라서 네트워크 모니터링 시스템은 각 엣지 노드에 경량화된 에이전트를 배치하거나 에이전트리스 모니터링 방식 등을 활용하여 모니터링을 진행합니다. 이를 통해 엣지 노드의 주요 상태(네트워크 대역폭 소비, 지연 시간 등)를 정확히 분석하고, 비정상적인 상태를 감지하면 중앙 서버에 즉시 알림을 보내고 있습니다. 이때 엣지 노드에서 생성되는 모든 데이터를 중앙 서버로 전송하는 것은 네트워크 대역폭에 큰 부담을 줄 수 있습니다. 따라서 네트워크 모니터링 시스템은 데이터 샘플링을 통해 필수적인 데이터를 효율적으로 선택하고, 데이터 필터링을 통해 불필요한 데이터를 제거하고 전체 네트워크의 부하를 줄이면서 성능을 최적화할 수 있도록 돕고 있습니다. AI/ML 기반의 자동화된 대응 엣지 컴퓨팅의 특성상 문제 발생 시 네트워크 운영자가 모든 노드에 직접 접근해 수동으로 대응하는 것이 현실적으로 어렵습니다. 따라서 운영자의 개입 없이도 엣지 디바이스가 문제를 자율적으로 감지하고 해결할 수 있는 자동화된 대응 시스템이 중요합니다. 네트워크 모니터링 시스템에도 자동화된 대응 기능이 강화되고 있습니다. 자동화된 대응 시스템은 네트워크 모니터링과 관리의 자동화를 통해 분산된 엣지 노드에서 발생하는 문제를 실시간으로 감지하고, 즉각적인 대응을 가능하게 합니다. 특히 AI 및 ML 기술이 이러한 자동화된 대응 시스템의 핵심 기술로 작용하고 있습니다. 예를 들어 정상적인 트래픽 흐름과 비정상적인 트래픽 흐름을 구분하기 위해 각 노드의 트래픽 데이터를 분석하여, 평상시 패턴과 다른 변화를 신속히 감지하고, 이때 이상 징후가 발견되면 트래픽 차단, 리소스 재분배, 또는 네트워크 경로 변경 등의 대응 조치를 자동으로 실행함으로써 네트워크 전체의 안정성을 높이고 있습니다. 확장에 대한 원활한 지원 5G 네트워크의 확산과 IoT 디바이스의 확산등으로 엣지 노드의 수가 폭발적으로 증가하면서 각 노드에서 생성되는 데이터의 양도 기하급수적으로 늘어나고 있습니다. 이러한 환경에서 네트워크 모니터링 시스템은 더 많은 노드를 빠르고 효율적으로 처리할 수 있는 능력을 가져야 하며, 노드 간 상호 연결성을 포함해 분산된 네트워크 전반에 걸쳐 일관된 성능을 유지해야 합니다. 이를 위해 네트워크 모니터링 시스템은 새로운 엣지 노드가 네트워크에 추가될 때마다 별도의 수작업 설정 없이 자동으로 노드를 인식하고, 모니터링을 즉시 시작할 수 있도록 기능이 강화되고 있습니다. 또한 자동 스케일링 기능을 통해 엣지 노드가 증가하면 모니터링 시스템의 리소스를 동적으로 확장하여, 성능 저하 없이 모든 노드를 관리하고 모니터링할 수 있도록 지원하고 있습니다. [4] 네트워크 보안 강화 네트워크 모니터링 분야에서 '보안'은 항상 중요한 주제였지만, 최근 IT 기술의 발전과 빈번한 보안사고 등으로 인해 그 중요성이 더 커지고 있습니다. 네트워크 보안 강화와 관련한 주요 이슈들을 살펴보겠습니다. 제로 트러스트(Zero Trust) 보안 모델의 확산 "절대 신뢰하지 말고, 항상 검증하라"는 원칙에 기반한 제로 트러스트 보안 모델은 내부와 외부를 구분하지 않고, 모든 사용자와 장치의 접근을 철저히 검증하는 접근법입니다. 클라우드 서비스의 확산으로 인해 기업 네트워크의 경계가 모호해지면서 더욱 중요해지고 있습니다. 제로 트러스트 모델을 올바르게 구현하기 위해서는 네트워크의 모든 트래픽을 실시간으로 모니터링하고 비정상적인 활동을 자동으로 탐지하고 즉각적으로 대응할 수 있는 시스템이 필요합니다. 이는 기존 보안 시스템이 단순히 알려진 위협을 차단하는 것에 그쳤다면, 제로 트러스트 모델에서는 잠재적인 위협까지도 감지하고 대응할 수 있어야 한다는 것을 의미합니다. 이를 위해, 최근 네트워크 모니터링 시스템은 AI 기술을 활용하여 자동으로 이상 징후를 탐지하고, 보안 위협에 신속하게 대응하는 능력을 강화하고 있습니다. 예를 들어, AI 기반 모니터링 시스템은 평소와 다른 사용자 행동 패턴을 감지하고, 이를 바탕으로 잠재적인 보안 위협을 조기에 차단하고 있습니다. SASE(Secure Access Service Edge)의 부상 SASE는 네트워크와 보안 기능을 통합하여 클라우드 환경에서 제공하는 혁신적인 보안 모델입니다. VPN, 방화벽, 침입 탐지 시스템, 데이터 손실 방지 등을 하나의 통합 솔루션으로 제공하며, 특히 외부에서 중앙 데이터센터로의 안전한 접근을 보장하는 데 최적화되어 있습니다. SASE는 전통적인 네트워크 보안 솔루션이 클라우드 환경에서 가지는 한계를 극복하고, 어디서든 동일한 보안 수준을 유지할 수 있게 하는 장점이 있습니다. SASE의 핵심은 네트워킹과 보안 기능을 통합하여, 기업이 네트워크와 보안을 하나의 솔루션으로 관리할 수 있도록 하는 것입니다. SASE를 도입하면 방화벽, 클라우드 접근 보안 브로커(CASB), 보안 웹 게이트웨이(SWG) 등 다양한 보안 기능을 단일 플랫폼에서 통합 관리할 수 있어, IT 팀이 더 효율적이고 일관된 보안 정책을 실행할 수 있습니다. 또한, SASE는 네트워크 모니터링 시스템을 진화시켜, 다양한 보안 기능(예: 방화벽, CASB, 보안 웹 게이트웨이 등)을 실시간으로 모니터링하고 관리할 수 있게 합니다. 이를 통해 네트워크 가시성을 높이고, 비정상적인 활동에 대한 즉각적인 대응이 가능해지며, 궁극적으로 조직의 보안을 강화하고 있습니다. XDR(Extended Detection and Response) 도입 XDR은 전통적인 EDR(Endpoint Detection and Response)을 확장하여, 네트워크, 엔드포인트, 서버, 클라우드 환경 등에서 발생하는 보안 위협을 통합적으로 탐지하고 대응하는 기술입니다. XDR은 다양한 보안 도구와 데이터를 통합하여 상관관계를 분석함으로써, 보안 운영 팀이 위협을 보다 쉽게 이해하고 신속하게 대응할 수 있도록 지원하기 때문에 많은 주목을 받고 있습니다. XDR을 활용하려면 상당한 초기 비용이 들고 관리에 어려움이 있기 때문에 많은 기업들이 XDR 전문 관리 솔루션을 도입하고 있습니다. 이에 따라 네트워크 모니터링 시스템도 단순히 네트워크 트래픽을 모니터링하는 것에서 나아가, XDR 전문 관리 솔루션과의 긴밀한 협력을 통해 통합된 보안 운영과 모니터링을 서비스로 제공하는 방향으로 발전하고 있습니다. 예를 들어, 기업은 네트워크 모니터링 시스템을 통해 다양한 보안 데이터를 실시간으로 수집하고 분석하며, 이를 XDR 솔루션과 통합하여 종합적인 보안 상태를 한눈에 파악할 수 있습니다. 이로 인해 보안 위협에 대한 대응 속도를 높이고, 더욱 정교한 보안 전략을 구현할 수 있게 됩니다. 멀티 클라우드와 SDN, 엣지 컴퓨팅 환경에서 네트워크 모니터링은 가시성, 유연성, 그리고 자동화된 대응 능력을 갖춘 시스템으로 진화하고 있습니다. 특히 AI와 머신러닝 기술을 활용한 자동화된 분석은 네트워크 성능 저하나 장애를 사전에 예측하고 대응하는 데 중요한 역할을 합니다. 기술의 발전에 맞추어 발전하는 네트워크 모니터링 시스템의 사용을 통해 기업은 더욱 복잡해지는 네트워크 환경에서 잠재적 위협을 신속히 탐지하고 대응할 수 있습니다.
2024.09.23
기술이야기
서버 모니터링 솔루션의 필수조건과 최신 트렌드
기술이야기
서버 모니터링 솔루션의 필수조건과 최신 트렌드
안정적인 IT 서비스 운영을 위해서 서버 모니터링 솔루션을 도입, 운영하는 경우가 많습니다. 디지털 전환과 클라우드 컴퓨팅의 확산, IoT와 AI 기술의 발전으로 인해서 더욱 다양한 IT 서비스가 운용되고 그를 뒷받침할 서버 시스템의 수도 점증하면서 서버 모니터링 솔루션의 중요성은 더욱 높아질 것으로 예상됩니다. │서버 모니터링 솔루션이 갖춰야 할 필수조건은? 서버 모니터링 솔루션 활용의 가장 큰 목적은 서버의 성능, 안정성을 실시간으로 파악해서 이상 상황이나 장애를 사전에 예방하거나 빠르게 대응하는 것입니다. 그리고 이 목적을 이루기 위해서는 아래와 같은 조건을 반드시 갖추고 있어야 합니다. · 실시간 모니터링 서버의 성능, 가용성, 보안 상태를 실시간으로 모니터링할 수 있는 기능은 서버 모니터링 솔루션의 핵심 요소입니다. 실시간 모니터링을 통해 관리자는 서버의 현재 상태를 즉시 파악하고, 시스템에서 발생하는 문제를 조기에 발견할 수 있습니다. 예를 들어, CPU 사용률이 급격히 증가하거나 네트워크 트래픽이 비정상적으로 많아지는 경우, 실시간 모니터링을 통해 문제를 즉시 감지하고 대응할 수 있습니다. 이를 통해 다운타임을 최소화하고, 서비스를 중단없이 제공할 수 있습니다. · 광범위한 성능 데이터 수집 서버 모니터링 솔루션은 다양한 성능 지표를 수집할 수 있어야 합니다. 여기에는 CPU 사용률, 메모리 사용량, 디스크 I/O, 네트워크 트래픽 등의 하드웨어관련 데이터뿐만 아니라 애플리케이션과 관련한 데이터도 포함됩니다. 예를 들어, 데이터베이스 쿼리 응답 시간, 웹 서버의 요청 처리 시간 등 애플리케이션의 성능을 상세히 분석할 수 있는 데이터가 여기에 포함됩니다. 이러한 데이터를 통해 시스템의 전반적인 상태를 정확히 파악하고, 서버의 병목 현상을 식별하며 성능을 최적화할 수 있습니다. · 경고 및 알림 기능 서버 모니터링 솔루션은 설정된 임계 값을 초과하거나 이상 징후가 발견되었을 때 즉시 관리자에게 알림을 보내는 기능을 갖춰야 합니다. 이메일, SMS, 푸시 알림 등 다양한 경고 수단을 지원하여, 문제가 발생했을 때 신속하게 대응할 수 있도록 해야 합니다. 예를 들어, 서버의 디스크 사용량이 90%를 초과하거나 네트워크 지연 시간이 급격히 증가할 때, 서버 모니터링 시스템의 경고 알림을 통해 관리자는 즉시 문제를 인지하고 조치를 취할 수 있습니다. 이를 통해 심각한 장애로 발전하기 전에 문제를 해결할 수 있습니다. · 확장성과 유연성 기업의 성장에 따라 추가되는 서버와 애플리케이션을 신속히 모니터링할 수 있도록 확장성이 있어야 합니다. 이는 특히 클라우드 환경에서 중요합니다. 클라우드 인프라를 사용 중인 기업이 수시로 서버를 추가하거나 제거하는 상황이 빈번하게 발생하기 때문입니다. 또한, 대규모 환경에서도 안정적으로 작동하며, 여러 데이터 센터와 클라우드 리전에서 발생하는 데이터도 효율적으로 처리할 수 있어야 합니다. · 대시보드 및 시각화 도구 서버의 상태를 직관적으로 이해할 수 있도록 다양한 대시보드와 시각화 도구를 제공해야 합니다. 이는 관리자가 시스템 상태를 한눈에 파악하고, 문제의 원인과 영향을 빠르게 분석할 수 있게 합니다. 예를 들어, 실시간 대시보드를 통해 서버의 현재 상태를 모니터링하고, 트렌드 분석을 통해 장기적인 성능 변화를 파악할 수 있습니다. 세부적이고 다양한 차트와 그래프는 데이터를 시각적으로 표현하여, 복잡한 데이터를 쉽게 이해하고 분석할 수 있도록 도와줍니다. 대시보드 및 시각화도구 예시(Zenius SMS) · 로그 관리 및 분석 서버와 애플리케이션 로그를 수집하고 분석할 수 있는 기능은 문제의 근본 원인을 파악하고 보안 위협을 탐지하는 데 필수적입니다. 로그 데이터는 실시간 모니터링과 보완되어, 시스템 이벤트의 연속성과 이슈 발생의 맥락을 이해하는 데 도움을 줍니다. 예를 들어, 서버의 로그를 통해 특정 시간에 발생한 오류를 분석하고, 이를 통해 시스템의 취약점을 식별하고 개선할 수 있습니다. 또한, 로그 데이터를 기반으로 보안 위협을 탐지하고 대응할 수 있습니다. · 자동화된 대응 서버 모니터링 솔루션은 문제가 발생했을 때 자동으로 대응하는 기능을 제공해야 합니다. 예를 들어, 서버 재부팅, 서비스 재시작, 자원 확장 등의 자동화된 조치를 지원하여, 인적 오류를 줄이고 문제 해결 시간을 단축할 수 있습니다. 이러한 자동화된 대응은 설정된 조건에 따라 다양한 조치를 자동으로 수행하여, 관리자의 개입 없이도 문제를 해결할 수 있도록 합니다. 이는 시스템의 안정성과 신뢰성을 높이는 데 기여합니다. · 유연한 통합 서버 모니터링 솔루션은 다른 IT 관리 도구와 쉽게 통합할 수 있어야 합니다. 예를 들어, CI(지속적 통합)/CD(지속적 배포) 프로세스, ITSM(Information Technology Service Management), 클라우드나 마이크로 서비스 아키텍처 관리 솔루션 등과의 연동이 필요합니다. 이는 모니터링 데이터의 활용 범위를 넓히고, 전체 IT 환경의 효율성을 높이는 데 도움을 줍니다. 또한 서버 뿐 아니라 네트워크, DB, 애플리케이션 모니터링 툴과의 통합도 가능해야 합니다. · 보안 서버 모니터링 솔루션을 통해 비정상적인 활동을 실시간으로 감지하여 보안위협을 예방할 수 있어야 합니다. 이와 동시에 서버 모니터링 솔루션 자체의 보안도 중요합니다. 데이터 암호화, 접근 제어, 감사 로그 등의 보안 기능을 갖추고 있어야 합니다. 이를 통해 모니터링 시스템이 외부 위협으로 부터 안전하게 운영될 수 있습니다. 이와 더불어 각 사용자의 필요에 맞추어 세부적인 기능을 조정할 수 있는 기능과 지속적인 원활한 업그레이드와 기술 지원도 서버 모니터링 솔루션이 갖춰야할 중요한 조건입니다. │서버 모니터링 솔루션의 최신 트렌드는? 서버 모니터링 솔루션은 기술의 발전과 변화하는 비즈니스 요구에 발맞추어 빠르게 진화하고 있습니다. 대표적인 최근의 변화와 트렌드를 알아보겠습니다. · 클라우드 네이티브 기반 모니터링 클라우드 네이티브 기반의 서버 모니터링 솔루션은 클라우드 인프라의 복잡성과 변화하는 특성을 효과적으로 관리할 수 있습니다. 클라우드 서비스 제공업체의 API와 통합되어 인프라 상태를 실시간으로 파악하고 자동으로 조정할 수 있어, 서비스 중단을 최소화하고 사용자 경험을 높여주기 때문에, 많은 기업이 클라우드 네이티브 기반의 서버 모니터링 솔루션을 채택하고 있습니다. · 인공지능 및 머신러닝 기반 모니터링 인공지능과 머신러닝 기술이 서버 모니터링 솔루션에 적용되고 있습니다. 이를 통해 대용량 로그 데이터를 빠르게 분석하여 문제의 근본 원인을 빠르게 파악하고 자동으로 대응할 수 있습니다. 서버 모니터링 솔루션은 AI와 ML을 기반으로 정확하고 자동화된 예측과 분석, 대응이 가능한 효과적이고 신뢰도 높은 IT 인프라 관리 솔루션으로 발전하고 있습니다. · 마이크로서비스 아키텍처(MSA) 환경 모니터링 MSA 환경에서의 서버 모니터링 솔루션은 분산 시스템 내 각 마이크로서비스를 개별적으로 모니터링하고, 실시간 데이터 수집 및 분석을 통해 문제를 즉시 발견 및 대응하며, 자동화된 경고 시스템으로 빠른 문제 해결을 지원하고 있습니다. 또한 Docker와 Kubernetes 같은 컨테이너 및 오케스트레이션 도구와의 통합도 중요한 트렌드로 자리잡고 있습니다. · 자동화된 대응 및 자가 치유 문제가 발생했을 때 자동으로 대응하는 시스템이 도입되고 있습니다. 예를 들어, 서버가 과부하 상태일 때 자동으로 서버를 확장하거나, 특정 오류가 발생했을 때 자동으로 재부팅하는 등의 기능이 포함됩니다. 이러한 자동화된 대응은 시스템의 가용성과 안정성을 높이는 데 기여합니다. 또한 자가 치유 기능은 시스템이 자동으로 문제를 감지하고 수정하는 능력을 갖추게 하여, 관리자의 개입 없이도 안정적인 운영을 가능하게 합니다. · 통합 모니터링 다양한 모니터링 툴과 시스템을 통합하여 중앙 집중형 대시보드에서 모든 인프라와 애플리케이션을 모니터링하는 것이 중요해지고 있습니다. 따라서 통합된 뷰를 통한 모니터링의 효율성이 높아지고 있습니다. 예를 들어 관리자는 다양한 모니터링 솔루션에서 수집된 데이터를 통합된 대시보드에서 한눈에 확인할 수 있습니다. 이러한 대시보드는 문제 발생 시 원인을 신속히 파악하고, 적합한 조치를 취할 수 있도록 도와줍니다. · 비용 및 자원 최적화 비용 및 자원 최적화는 지속해서 서버 모니터링 솔루션의 핵심 요소로 꼽히고 있습니다. 따라서 서버 모니터링 솔루션은 서버 자원의 사용 패턴을 분석하고, 불필요한 자원 낭비를 줄이며, 자원을 효율적으로 배분할 수 있는 기능에 중점을 맞춰서 발전하고 있습니다. · 보안 중심 모니터링 보안 위협이 증가함에 따라 보안 중심의 모니터링이 중요해지고 있습니다. 따라서 서버 모니터링 솔루션 자체의 기능을 강화하거나, SIEM(Security Information and Event Management)과 같은 보안전문 솔루션과의 연동을 통해 보안 로그와 이벤트 데이터를 분석하여 잠재적인 보안 위협에 빠르게 대처하는 사례가 늘고 있습니다. 이와 같이 서버 모니터링 솔루션은 클라우드나 마이크로 시스템 아키텍처와 같은 시스템의 환경의 변화에 따라, 인공지능과 같은 기술적 진화에 따라, 또한 보안이나 비용절감과 같은 사용자들의 니즈의 변화에 따라 다양한 방향으로 진화, 발전하고 있습니다. 고객 서버 시스템 환경이나 서비스의 특성이나 고객의 특정 니즈에 따라 최신 트랜드를 잘 반영한 솔루션을 선택하여 서버 시스템의 운용 효율과, IT 서비스의 안정성을 제고하는 것이 IT 운용 부서의 주요 과제 중의 하나가 되고 있습니다.
2024.08.05
기술이야기
하이브리드 클라우드 모니터링, 왜 필요한가?
기술이야기
하이브리드 클라우드 모니터링, 왜 필요한가?
최근 하이브리드 클라우드가 점점 더 중요한 역할을 하고 있습니다. 하이브리드 클라우드(Hybrid Cloud)는 온프레미스 환경과 프라이빗 클라우드, 퍼블릭 클라우드를 결합한 클라우드 환경을 의미하는데요. 쉽게 말해 필요에 따라 자체 인프라와 외부 클라우드 서비스를 동시에 사용할 수 있는 클라우드 환경입니다. 2024년까지 하이브리드 클라우드 시장은 연평균 22% 성장하여 약 3조 원 규모에 이를 것으로 예상될 정도로 각광받고 있습니다. 그렇다면 하이브리드 클라우드가 점점 더 주목을 받는 이유는 무엇일까요? │하이브리드 클라우드가 각광받는 이유 하이브리드 클라우드가 점점 더 주목을 받는 이유는 유연함 때문입니다. 기업들은 중요한 데이터를 프라이빗 클라우드에 저장하고, 일시적으로 많은 자원이 필요한 작업은 퍼블릭 클라우드를 사용하여 두 가지 클라우드의 장점을 모두 누릴 수 있습니다. 보안과 성능을 유지하면서도 필요한 만큼 자원을 사용할 수 있는 것이죠. 즉 프라이빗 클라우드의 퍼블릭 클라우드를 잘 조화하면 기업은 최적의 IT 환경을 구축할 수 있습니다. 하이브리드 클라우드의 이러한 장점은, 기업들이 경쟁력을 유지하고 빠르게 변화하는 시장 환경에 대응하는 데 큰 도움이 됩니다. 특히 클라우드 서비스 제공업체(CSP)의 다양한 서비스와 솔루션을 활용하면, 하이브리드 클라우드를 더욱 효과적으로 운영할 수 있는데요. 다음 내용을 통해 주요 클라우드 서비스 제공업체에 대해 좀 더 자세히 알아보겠습니다. │주요 클라우드 서비스 제공업체(CSP) 특징 클라우드 서비스 제공업체(CSP)으로 대표적으로 AWS(Amazon Web Services)와 마이크로소프트(Microsoft Azure)가 있습니다. 다음 내용을 통해 각각의 주요 특징을 살펴보겠습니다. Amazon Web Services (AWS) AWS는 서버, 스토리지, 데이터베이스, 네트워크 등 다양한 IT 인프라 서비스를 제공하는 아마존의 클라우드 플랫폼입니다. "AWS의 서버가 먹통이 되면, 시장에 혼돈이 온다."는 말이 있을 정도로 많은 기업이 AWS를 사용하고 있죠. AWS의 주요 특징은 아래와 같이 정리해 볼 수 있는데요. AWS의 주요 특징 1. AWS의 글로벌 인프라 AWS는 CSP 중 전 세계에서 가장 많은 리전을 보유하고 있습니다. 31개의 리전과 99개의 가용 영역을 운영하여, 사용자가 원하는 리전을 선택해 지연 시간을 단축할 수 있습니다. 다양한 지역에서 리전을 운영하는 만큼, 서비스 제공 범위가 넓고 안정성도 높습니다. 또한 엣지 로케이션을 통해 콘텐츠를 빠르게 전달하여 사용자 경험을 개선합니다. AWS는 CSP의 선두주자로서 AWS는 IaaS(인프라 서비스) 영역에서 시장 점유율이 가장 높고 안정적인 서비스를 제공합니다. 2. API 기반 서비스 AWS의 모든 서비스는 API를 통해 제어할 수 있으며, 다양한 프로그래밍 언어에서 사용 가능한 코드를 제공하여 다른 서비스를 연동할 수 있습니다. API Gateway라는 서비스를 통해 외부 애플리케이션과의 통신을 안전하게 관리할 수도 있죠. 3. 다채로운 서비스 AWS는 단순히 서버와 저장소를 제공하는 것을 넘어 S3(객체 스토리지), EC2(가상 서버), Lambda(서버리스 컴퓨팅), RDS(관계형 데이터베이스) 등 다양한 주요 서비스를 지원합니다. 최근에는 머신러닝과 AI 서비스까지 제공하고 있습니다. Microsoft Azure Microsoft Azure는 마이크로소프트가 제공하는 클라우드 컴퓨팅 플랫폼으로, AWS 다음으로 많은 기업들이 사용하고 있습니다. 애저라고도 많이 불리죠. 특히 PaaS(Platform as a Service)와 SaaS(Software as a Service) 분야에서 1위를 달리는 퍼블릭 클라우드라고 할 수 있습니다. Azure의 주요 특징은 다음과 같은데요. Microsoft Azure 주요 특징 1. Microsoft 제품과의 통합성 Azure의 가장 큰 장점은 Microsoft 제품과 쉽게 연동된다는 점입니다. 예를 들어 Office 365와 통합되며, 최근에는 생성형 AI 서비스인 Copilot 과의 통합으로 주목받고 있습니다. Microsoft 제품을 많이 사용하는 기업들에게 매우 유용하죠. 2. 웹 서비스에 집중 Azure는 특히 웹 서비스에 강점을 가지고 있습니다. 인프라(IaaS)에서는 다양한 유형을 수용하면서도, 애플리케이션 플랫폼(PaaS) 측면에서는 웹 서비스에 집중하고 있는데요. PC 웹, 모바일, API 등 모든 접속 유형을 하나의 앱 서비스에서 지원하며 가상 머신, 컨테이너, 서버리스 등 다양한 구성 방식을 제공합니다. 이처럼 AWS와 Microsoft Azure는 각각 고유한 강점을 가지고 있으며, 기업의 필요에 따라 적절한 서비스를 선택하여 사용할 수 있는데요. 하지만 이러한 다양한 클라우드 서비스의 특징과 이점을 제대로 활용하기 위해서는 클라우드 서비스 모니터링이 필수적입니다. 클라우드 인프라는 자원 사용량과 트래픽이 시시각각 변동되므로, 실시간 모니터링 없이는 문제를 사전에 발견하고 대응하기 어렵기 때문인데요. 다음 내용을 통해 어떤 솔루션이 필요한지 살펴보도록 하겠습니다. │하이브리드 클라우드 모니터링이 필요한 이유 앞서 언급한 내용처럼 AWS, Azure, GCP 등 다양한 퍼블릭 클라우드의 서비스 상태와 성능 지표를 확인하기 위해서는, 클라우드 서비스 모니터링 솔루션이 필요합니다. 물론 AWS의 *CloudWatch1처럼 자체적인 퍼블릭 클라우드 모니터링 도구들도 있는데요. * CloudWatch1 : AWS 클라우드 리소스를 모니터링하고 관리하는 서비스 통합적인 IT 환경에서 발생할 수 있는 다양한 문제를 예방하고 효율적으로 관리하기 위해서는, 퍼블릭 클라우드나 프라이빗 클라우드뿐만 아니라 온프레미스 인프라까지 함께 모니터링할 수 있는지 살펴보아야 합니다. 대표적인 사례로 Zenius CMS 솔루션을 통해, 어떤 방식으로 클라우드 서비스를 모니터링할 수 있는지 살펴보겠습니다. 하이브리드 클라우드의 통합 모니터링 Zenius CMS는 물리적인 서버, 네트워크 장비, DB와 같은 온프레미스 인프라와 퍼블릭 클라우드를 통합적으로 모니터링합니다. 사용자는 한 플랫폼 안에서 전체 인프라의 상태를 종합적으로 신속하게 장애를 파악할 수 있기 때문에, 다양한 환경에서 발생하는 성능 저하와 장애를 빠르게 식별하고 그 원인을 정확히 분석할 수 있죠. CloudWatch와 Alert History를 사용한 데이터 수집 Zenius CMS는 AWS의 CloudWatch나 Azure의 Alert History 같은 API를 사용해서 다양한 모니터링 데이터를 제공합니다. 예를 들어 CloudWatch가 기본적으로 제공하는 성능 지표뿐만 아니라 특정 서비스에 관심이 있다면, 그 서비스만 타겟으로 설정해서 모니터링할 수 있습니다. 이렇게 하면 사용하는 지역의 주요 서비스들만 선택해서 볼 수 있어, 필요한 정보를 더욱 쉽게 확인할 수 있는 장점이 있습니다. Billing(과금) 서비스 정보 제공 Zenius CMS를 통해 클라우드 자원의 사용량을 실시간으로 확인하여 예산을 더 잘 관리하고, 예상치 못한 과금이 발생하는 것을 막을 수 있습니다. 또한 비용이 어떻게 발생하는지 투명하게 파악할 수 있어 필요할 때 적절히 조정할 수 있죠. 자동 경고 기능을 통해 특정 비용 한도를 초과할 때 즉시 알림을 받아 효율적으로 관리할 수 있습니다. 이번 시간에는 하이브리드 클라우드 모니터링이 왜 중요해지고 있는지 중점적으로 알아보았습니다. 특히 클라우드 인프라는 자원 사용량이 수시로 변하기 때문에 실시간 모니터링이 중요합니다. 더불어 다양한 인프라를 통합 관리할 수 있는 온프레미스 환경도 함께 구축되어 있어야, 클라우드 인프라에 문제가 발생했을 때 빠르고 정확하게 대응할 수 있죠. 이제 하이브리드 클라우드 통합 관리와 온프레미스 환경 관제가 모두 가능한 Zenius CMS로, 클라우드 서비스를 더욱 효율적으로 관리해 보세요!
2024.07.29
기술이야기
WAS(웹 애플리케이션 서버) 성능, APM을 통해 최적화하는 법
기술이야기
WAS(웹 애플리케이션 서버) 성능, APM을 통해 최적화하는 법
WAS(Web Application Server)는 현대 기업들이 운영하는 다양한 웹 애플리케이션이 원활하고 안정적으로 작동하도록 돕는 핵심 인프라입니다. 온라인 쇼핑몰, 인터넷 뱅킹, 병원 정보 시스템 등, 일상생활에서 자주 접할 수 있는 부분에서 WAS의 역할이 두드러지게 나타나죠. 대표적으로 온라인 쇼핑몰을 예를 들어 볼까요? 블랙프라이데이와 같은 쇼핑 성수기에는 많은 사람들이 동시에 웹사이트에 접속하기 때문에, 서버에 큰 부담이 생깁니다. 이때 WAS는 부하 분산 기능과 세션 관리를 통해 이런 부담을 효과적으로 나누어 처리하고, 각 사용자의 접속 상태를 잘 관리하여 웹사이트가 원활하게 작동하도록 돕는데요. 만약 WAS가 제대로 작동하지 않으면 웹사이트가 느려지거나 접속이 되지 않아 고객들이 불편을 겪고, 결국 매출 손실로 이어질 수도 있습니다. 이러한 이유들로 인해 WAS를 안정적으로 운영하기 위해서는 APM(Application Performance Management)이 필요합니다. APM은 애플리케이션 성능을 실시간으로 모니터링하고, 최적화하며, 성능 저하나 장애를 사전에 예방할 수 있도록 도와주는 시스템을 의미하는데요. 그렇다면 APM을 통해 어떤 방식으로 WAS를 관리할 수 있을까요? │APM으로 WAS(Web Application Server)를 관리하는 방법 우선 첫 번째로는, WAS에서 실행 중인 애플리케이션을 실시간으로 모니터링할 수 있습니다. 즉 WAS에서 실행 중인 애플리케이션이 제대로 작동하는지 실시간으로 확인할 수 있어, 문제가 발생해도 신속하게 해결할 수 있도록 도와주죠. [그림] Zenius APM : 실시간 모니터링 상황판 Zenius APM을 통해 자세히 살펴볼게요. Zenius APM은 한 화면에서 전체 또는 인스턴스 별로 수행되고 있는 트랜잭션의 처리 현황을 종합적으로 파악할 수 있는데요. 서버의 상태와 애플리케이션 성능이 정상적으로 작동하는지 한눈에 확인할 수 있고, 문제가 발생할 경우 빠르게 대응할 수 있습니다. • • • • • • 두 번째로는, 애플리케이션의 서비스가 지연되는 현황을 확인할 수 있습니다. 사용자 웹 페이지가 느려지면, 지연 원인을 빠르게 파악하고 조치해야 하기 때문에 이러한 문제를 직관적으로 파악할 수 있어야 합니다. [그림] Zenius APM : 액티브 서비스 모니터링 Zenius APM을 통해 살펴보면 액티브 서비스 처리 현황을 확인할 수 있습니다. 이 현황을 통해 스피드 메타 차트를 통해 전체 실시간 트랜잭션 유입량과 처리 상태, 그리고 서비스 지연 여부를 확인할 수 있는데요. 사용자의 웹 페이지가 느려질 경우 위 그림처럼 빨간 표기로 지연된 부분을 파악할 수 있습니다. [그림] Zenius APM : 액티브 서비스 현황 모니터링 만약 처리가 지연되고 있다면 인스턴스, 액티브 서비스 현황 차트를 통해 보다 명확하게 확인할 수 있습니다. 위 그림과 같이 이퀄라이저 차트에서 주황색 또는 붉은색으로 표시된 부분을 통해, 인스턴스에서 발생한 잠재적인 문제를 확인할 수 있죠. 이렇게 지연된 서비스가 발견된 인스턴스에서 처리 중인 트랜잭션 목록을 확인할 수 있습니다. 또한 지연된 트랜잭션이 어느 단계에서 멈춰 있는지도 파악할 수 있습니다. [그림] Zenius APM : 서비스 응답 분포 및 트랜잭션 상세 모니터링 처리 완료된 트랜잭션의 지연 구간은 서비스 응답 분포를 통해 확인할 수 있으며, 이슈 정보를 통해 좀 더 상세한 지연 위치를 알 수 있습니다. • • • • • • 세 번째는, 과거 장애 시점에 대한 정밀한 장애 원인을 분석할 수 있습니다. 이 기능은 장애 재발을 막고 시스템의 안정성을 높이기 위해 중요한 부분인데요. [그림] Zenius APM : 스냅샷 분석 예시를 통해 자세히 알아보겠습니다. Zenius APM과 같은 APM 솔루션은 장애 시점에 대한 정보를 스냅샷을 통해 과거 실시간 상황을 동일하게 재현하여, 당시의 시스템 상태와 성능을 정확히 파악할 수 있게 도와줍니다. 또한 모든 세부 정보를 포함한 Raw 데이터를 기반으로 하는데요. 과거 시점에 장애 원인 분석을 보다 정밀하게 파악할 수 있어, 장애 재발을 방지하고 시스템 안정성을 확보할 수 있습니다. • • • • • • 지금까지 APM을 통해 어떻게 WAS를 관리하는지 살펴보았습니다. 하지만 여기서 한 가지 더 알아야 할 것은, 애플리케이션 성능 저하가 WAS만의 문제는 아니라는 점입니다. CPU, 메모리, 디스크 I/O 등 서버 자원의 부족이나 데이터베이스 쿼리 성능 저하 등 다양한 원인에 의해 발생할 수도 있죠. 따라서 이러한 모든 요소들을 종합적으로 모니터링하는 것이 중요한데요. 이러한 요구를 해결하기 위해 Zenius APM은 서버와 데이터베이스를 자동으로 매핑하여 연관 관계를 시각적으로 확인할 수 있는 '토폴로지 맵'을 제공합니다. 이를 통해 애플리케이션 성능 저하가 서버 자원의 부족 때문인지, 데이터베이스 쿼리 성능 저하 때문인지 명확히 파악할 수 있습니다. 이번 시간에는 APM으로 WAS를 어떻게 관리하는지 알아보았습니다. 결론적으로 기업에서 안정적이고 신뢰할 수 있는 웹 애플리케이션 환경을 구축하기 위해서는, APM은 더 이상 선택이 아닌 필수입니다. 이제 Zenius APM을 통해 WAS 관리를 효과적으로 관리하여, 최적의 웹 애플리케이션 성능을 유지해 보세요! 🔍더보기 Zenius APM으로 WAS 관리하기 📝함께 읽으면 더 좋아요 • APM에서 꼭 관리해야 할 주요 지표는? • APM의 핵심요소와 주요기능은? • 옵저버빌리티 vs APM, 우리 기업에 맞는 솔루션은? • 오픈소스 APM만으로 완벽한 웹 애플리케이션 관리, 가능할까?
2024.07.29
기술이야기
SIEM을 도입해야 하는 5가지 이유
기술이야기
SIEM을 도입해야 하는 5가지 이유
IT 산업의 발전에 따라 다양한 장비와 시스템에서 매일 엄청난 양의 로그가 만들어지고 있습니다. 보안 장비, 서버, 미들웨어 등에서 생성되는 로그들이 대표적입니다. 이러한 로그들을 모두 취합하여 관리하게 되면, 1년 동안 저장되는 데이터는 테라바이트(TB) 단위의 디스크 용량이 필요한데요. 이는 인프라 관리에 있어 큰 부담이 될 수 있겠죠. 이때 통합 로그 관리 시스템인 SIEM(Security Information and Event Management)이 해결책이 될 수 있습니다. 그렇다면 SIEM은 무엇일까요? SIEM은 보안 정보 관리(SIM, Security Information Management)와 보안 이벤트 관리(SEM, Security Event Management)의 이점을 결합한 로그 관리 도구입니다. 즉 수집한 로그를 통해 정보를 분석하여 보안상 위협이 되는 이벤트를 실시간으로 감지하는 솔루션이라고 할 수 있죠. 그래서 이번 시간에는 SIEM이 왜 필요한지, 그리고 어떤 특장점이 있는지 알아보도록 하겠습니다. │SIEM, 왜 필요할까? SIEM이 필요한 가장 큰 이유는 빅데이터 처리와 보안적 측면에서 설명할 수 있습니다. 빅데이터 로그는 보안 사고가 발생한 근거를 찾아내는 중요한 증거 자료로 활용됩니다. 예를 들어 대형 온라인 쇼핑몰에서는 수많은 거래가 이루어지며 해커의 침입 시도가 발생할 수 있는데요. 이러한 기록이나 비정상적인 접근을 실시간으로 감지하여 문제가 생기기 전에 미리 대응할 수 있습니다. 이처럼 보안 위협에 효과적으로 대응하려면, 수집한 로그 데이터에 대한 체계적인 분석이 필요합니다. 관리되지 않은 로그는 IT 시스템의 장애나 문제 발생 시 원인을 찾아내기 어렵기 때문이죠. 따라서 로그 분석을 위해 로그를 정규화하여 저장하고, 효율적으로 관리하기 위한 로그 압축 보관 툴이 필요합니다. 또한 시스템 로그와 애플리케이션 로그 등 각 IT 인프라에서 발생하는 수많은 로그들은 빅데이터의 영역에 속합니다. 따라서 이를 중앙집중적으로 처리하여 효과적으로 분석하고 관리하는 도구가 필요하죠. │SIEM의 주요구성 SIEM은 네트워크 범위의 로그를 수집하고, 저장하며, 분석하는 기능을 갖고 있는데요. SIEM의 구성도 그림을 통해 좀 더 자세히 살펴보겠습니다. 로그 수집 SIEM은 서버, 네트워크, 보안장비, 클라우드 등 다양한 IT 인프라에서 발생하는 로그 데이터를 Syslog나 SNMP 등을 이용해 로그와 이벤트를 모아 Collector에 수집합니다. 이를 위해 직접 대상 장비에 Agent/Agentless 방식을 활용하거나, 클라우드의 경우 API 연동을 통해 다양한 방식으로 로그를 수집하죠. 실시간으로 발생되는 로그 수집은 물론, 방화벽/IDS/IPS 등 다양한 보안 장비에 대한 로그 데이터 수집이 필요합니다. 로그 저장 로그 수집뿐만 아니라 로그 저장 역시 중요합니다. 주로 ELK Stack을 활용하거나 수집 로그에 대한 분산 처리/저장 엔진을 활용하여, 로그를 저장하게 되는데요. 주로 관계형 데이터베이스에 자제적으로 저장하는 경우가 많습니다. 인덱싱 속도와 효율을 높이기 위해 ELK Stack을 활용하여, 로그를 저장하는 것 역시 좋은 대안이 될 수 있죠. 로그 분석 로그를 수집하고 저장한 다음 단계는 로그를 분석하는 것입니다. 이때 중요한 과정이 '파싱(Parsing)'입니다. 파싱은 비정형 로그 데이터를 쿼리가 가능한 구조화된 형태로 변환하는 과정입니다. 쉽게 말해, 파싱은 비정형 로그 데이터를 자르고 인덱스를 추가하여(key-value 형식으로) 보다 쉽게 식별할 수 있습니다. 이처럼 파싱을 통해 로그를 유형별로 분류하고, 정규화 및 표준화 작업을 거쳐, 분석에 필요한 정제된 로그를 추출합니다. 이렇나 정제된 로그는 분석 과정에서 매우 유용하게 사용됩니다. 시각화 및 리포팅 수집된 로그의 핵심 지표와 요약 이벤트를 설정하여, 시각화해서 볼 수 있습니다. 또한 사용자 정의 기반의 대시보드를 통해, 다양한 컴포넌트를 활용한 로그 데이터의 시각화와 리포팅 기능 역시 제공해야 합니다. │SIEM 도입 시 얻을 수 있는 5가지 앞에서도 SIEM에 대한 이점을 잠깐 언급했지만, 사실 이밖에도 여러 특장점이 있는데요. 그 중 대표적으로 5가지를 소개해 드릴게요. 첫째, 보안 수준의 강화 기존의 ESM(Enterprise Security Management)과는 다르게 SIEM은, 많은 양의 로그 데이터를 상관 분석하여 보안 위협을 찾아낼 수 있습니다. 기업 내 정보시스템의 보안 이벤트를 관리해서, 내부와 외부를 가리지 않고 기업 전반의 통합 보안 관리가 가능해지죠. 둘째, 통합 로그 관리 [그림] Zenius SIEM : 요약뷰 다양한 레거시 인프라와 클라우드에서 발생하는 로그를 하나의 플랫폼으로 일원화하여, 로그 관리가 훨씬 쉬워집니다. 장기간 데이터를 저장하고 모든 인프라에서 발생하는 로그를 파싱하여 관리하면, 관리 포인트를 한 곳으로 모을 수 있어 기업에서는 비용과 시간을 크게 절약할 수 있습니다. 셋째, 인덱싱을 통한 로그 검색 [그림] Zenius SIEM : 호스트 및 로그유형 트리 검색 기능 호스트 및 로그 유형 별로 검색어와 조건을 설정해서 로그를 검색할 수 있습니다. 특정 시간대나 특정 검색어를 통해, 대용량의 로그 중 일부만을 추출하여 분석할 수 있어 로그 분석이 훨씬 용이해집니다. 넷째, 보안 감시 설정 및 상관 분석 [그림] Zenius SIEM : 상관분석 감시설정 수집된 다양한 로그들의 상관관계를 분석하면 더 가치 있고 유의미한 이벤트를 확인할 수 있습니다. 예를 들어 방화벽 접속 로그에서 유해 IP나 등록되지 않은 IP로의 접근을 이벤트로 설정하면, 유해 IP를 실시간으로 확인할 수 있습니다. 또한 보안 위협 상황과 거래 이상 탐지 등 시나리오 기반으로 이벤트를 정의하고 자동으로 탐지할 수 있는 상관 분석 기능도 사용할 수 있습니다. 다섯째, 컴플라이언스 준수를 위한 측면 최근 몇 년간 기업들이 고객의 개인정보를 더 잘 보호하도록 법이 강화되었습니다. 특히 해킹과 개인정보 침해 사건이 늘어나면서 기업들이 보안을 철저히 해야 할 필요성이 커졌는데요. SIEM을 이용하면 이러한 보안 요구사항을 충족하는 데 큰 도움이 됩니다. KISA에서 권고하는 정보보호 및 개인정보보호 관리체계(ISMS-P)에서는 서버, 보안 시스템 등에 대한 사용자 접속 기록과 시스템 로그를 6개월 이상 저장하고, 이를 안전하게 관리해야 한다고 명시하고 있습니다. 또한 개인정보보호법과 정보통신망법에 따르면 로그는 1년 이상 보관해야 하고, 위조나 변조를 막기 위해 물리적인 서버에 저장하고 정기적으로 백업을 해야 하죠. 하지만 SIEM 시스템을 도입하면 이러한 법적 요구사항을 쉽게 준수할 수 있습니다. 따라서, 기업은 고객의 개인정보를 안전하게 보호하고, 침해사고 발생 시 빠르게 대응할 수 있습니다. 이번 시간에는 SIEM이 왜 중요하고, 어떤 특장점이 있는지 자세히 알아보았습니다. 요즘 기업에서는 보안 관련 요소들을 각각 관리하는 것이 쉽지 않습니다. 특히 규모가 큰 기업이나 보안이 중요한 공공기관의 경우에는 통합 관리 시스템이 꼭 필요하죠. 따라서, Zenius SIEM과 같은 솔루션을 통해 로그 관리를 안정적이고 효율적으로 해보는 건 어떨까요? 🔍더보기 Zenius SIEM으로 로그 관리하기
2024.07.29
기술이야기
Fluentd vs Logstash vs Filebeat, 어떤 로그 수집기를 선택할까?
기술이야기
Fluentd vs Logstash vs Filebeat, 어떤 로그 수집기를 선택할까?
이전 시간에는 Fluentd라는 로그 수집기에 대해 자세히 알아보았습니다(이전 글 보기). 이와 더불어 Logstash, Filebeat가 로그 데이터를 수집하고 처리하는 도구로 많이 쓰이고 있는데요. 이번 시간에는 이 세 가지 도구가 어떤 점에서 비슷하고, 어떤 점에서 다른지 살펴보겠습니다. │Fluentd vs Logstash, Filebeat 로그 데이터 수집 및 처리 Fluentd, Logstash, Filebeat는 모두 다양한 소스에서 로그 데이터를 수집하고 처리하는데요. 파일, 데이터베이스, 네트워크 프로토콜, 메세지 큐 등 다양한 입력 소스를 지원합니다. 수집된 로그 데이터를 분석하기 좋은 형태로 변환하고 필터링해주죠. 처리된 로그 데이터는 Elasticsearch, Kafka, HDFS, S3 같은 다양한 저장소와 분석 시스템으로 전송할 수 있습니다. ▷ Fluentd는 JSON 형식을 주로 사용해서 데이터를 처리합니다. 다양한 소스에서 데이터를 수집하고 변환할 수 있으며, 특히 쿠버네티스 같은 클라우드 네이티브 환경에서 최적화되어 있습니다. 또한 다양한 컨테이너와 마이크로서비스로부터 로그를 모아서 중앙에서 관리하죠. ▷ Logstash는 Elashtic Stack에서 로그 데이터를 수집, 변환, 전송하는데 주로 사용됩니다. 복잡한 데이터 변환과 필터링을 위한 강력한 기능을 제공하고 다양한형식으로 로그 데이터를 변환할 수 있죠. Elasticsearch와 Kibana와의 통합 덕분에 강력한 검색과 시각화 기능을 사용할 수 있습니다. ▷ Filebeat는 경량의 로그 수집기로 설계되어 있고, 주로 로그 파일을 모니터링하고 수집하는 데 최적화되어 있습니다. 서버 리소스를 거의 사용하지 않으면서도 효율적으로 로그 데이터를 수집할 수 있죠. 주로 Logstash나 Elasticsearch로 데이터를 전송해서 중앙에서 분석할 수 있게 해줍니다. 플러그인 시스템 Fluentd와 Logstash는 플러그인 시스템을 통해 기능을 확장할 수 있는데요. 다양한 입력, 필터, 출력, 플러그인을 제공해서 필요에 따라 시스템을 유연하게 구성할 수 있습니다. ▷ Fluentd는 500개 이상의 플러그인을 통해 다양한 데이터 소스와 목적지에 대한 통합을 지원합니다. 그래서 사용자는 다양한 요구에 맞춰 시스템을 쉽게 구성할 수 있죠. ▷ Logstash도 200개 이상의 플러그인을 통해, 다양한 입력 소스와 출력 목적지에 맞춤형 데이터 파이프라인을 구성할 수 있는데요. 복잡한 데이터 처리와 분석 요구 사항을 충족할 수 있습니다. ▷ Filebeat는 모듈 기반 아키텍처를 통해 특정 로그 파일 형식에 맞춘 구성을 제공합니다. 설정이 간단하고 빠르게 배포할 수 있는 것이 장점이죠. 플러그인 대신 모듈을 통해 다양한 로그 형식에 대응할 수 있습니다. 실시간 데이터 처리 세 도구 모두 실시간으로 로그 데이터를 수집하고 처리할 수 있습니다. 이는 급변하는 환경에서 로그 데이터를 즉시 분석하고 대응하는 데 매우 중요하죠. ▷ Fluentd와 Logstash는 실시간으로 수집된 데이터를 변환하고 필터링해서, 필요한 데이터를 즉시 사용할 수 있는 형태로 만들어줍니다. 이를 통해 실시간 모니터링 시스템에서 발생하는 로그 데이터를 빠르게 처리하고 문제를 신속히 해결할 수 있습니다. ▷ Filebeat는 경량화된 설계 덕분에 실시간 로그 수집에 최적화되어 있는데요. 서버 리소스를 최소화하면서도 안정적으로 데이터를 전송할 수 있습니다. 어떤 로그 수집기를 선택하면 좋을까요? 그렇다면 Fluentd, Logstash, Filebeat 중 우리 기업에 맞는 로그 수집기는 무엇인지 핵심만 정리한다면 다음과 같습니다. Fluentd ✔️ 다양한 소스에서 데이터를 수집하고 통합하는 경우 ✔️ 특히 클라우드 네이티브 환경에서 운영되는 경우 ✔️ 유연성과 확장성이 중요하고, 다양한 플러그인을 통해 쉽게 확장할 수 있는 도구가 필요한 경우 ✔️ 쿠버네티스와 같은 컨테이너화된 환경에서 로그를 수집하는 경우 Logstash ✔️ Elastic Stack을 사용해서 강력한 검색 및 시각화 기능을 필요한 경우 ✔️ 복잡한 데이터 변환과 필터링이 필요한 환경에서 로그 데이터를 처리하는 경우 ✔️ 다양한 입력 소스와 출력 목적지에 맞춤형 데이터 파이프라인을 구성하는 경우 Filebeat ✔️ 경량의 로그 수집기가 필요한 경우 ✔️ 서버 리소스를 최소화하면서 로그 데이터를 수집하고 전송해야 하는 경우 ✔️ 설치와 설정이 간단하고 빠르게 배포할 수 있는 도구가 필요한 경우 ✔️ 주로 로그 파일을 모니터링하고 수집하는 작업이 주된 경우 이처럼 각 도구는 기업 또는 사용자의 환경과 요구 사항에 맞춰, 적절한 도구를 선택하는 것이 중요한데요. 브레인즈컴퍼니의 경우는 높은 성능과 유연한 로그 데이처 처리를 위해 Logstash와 Filebeat를 사용하고 있습니다. 이번 시간에 살펴본 내용처럼 Fluentd와 Logstash, Filebeat는 모두 로그 데이터를 효과적으로 수집하는 강력한 도구입니다. 하지만 로그는 수집에서 끝나는 것이 아닌, 어떻게 안정적으로 관리하느냐도 중요합니다. 이때 로그를 수집부터 관리까지 할 수 있는 통합로그관리가 필요한데요. Zenius SIEM과 같은 솔루션을 통해 로그를 수집부터 관리까지 할 수 있고, 보안 위협에 대비하는 것이 정말 중요합니다. 데이터의 중요성이 더욱더 커지는 상황에서, 효과적인 로그 수집 및 관리를 통해 비즈니스 경쟁력을 높이시길 바랍니다. 🔍더보기 Zenius SIEM 더 자세히 보기 📝함께 읽으면 더 좋아요 • 로그 수집기 Fluentd에 대해 알아야 할 5가지!
2024.07.28
기술이야기
로그 수집기 Fluentd에 대해 알아야 할 5가지!
기술이야기
로그 수집기 Fluentd에 대해 알아야 할 5가지!
IT 환경의 변화가 점점 빨라지면서 기업들은 매일 쏟아지는 데이터를 관리해야 합니다. 특히 로그 데이터는 시스템 상태를 모니터링하고 문제를 사전에 발견하는 데 필수적이죠. 이때 다양한 장치와 프로그램에서 생성되는 로그를 제대로 수집하지 못하면 혼란이 커질 수 있습니다. 따라서 로그 관리를 위한 도구들이 주목을 받고 있는데요, 그 중 하나가 오늘 살펴 볼 Fluentd입니다. Fluentd는 여러 소스에서 발생할 수 있는 로그 데이터를 한 곳에 모아, 일관된 형식으로 변환하고 중앙에서 효율적으로 수집해주는 오픈소스 데이터 수집기인데요. 이번 시간에는 Fluentd가 어떤 방식으로 로그 수집을 하고 효율성을 높이는지, 함께 자세히 살펴보겠습니다. │Fluentd란 무엇일까요? Treasure Data가 게작하고 후원 한, Fluentd는 다양한 소스에서 발생하는 로그 데이터를 한 곳에 모아 수집합니다. 강력한 플러그인 시스템을 갖추어 있어 여러 상황에 유연하게 대처할 수 있죠. Fluentd는 데이터를 주로 *JSON 형식으로 처리하여 기계가 쉽게 읽고 분석할 수 있도록 하는데요. 주로 *Ruby로 개발되었고, 일부 성능 향상을 위해 C언어로 작성된 컴포넌트도 포함되어 있습니다. 대규모 환경에서도 잘 작동하여, 현재는 5만 개 이상의 시스템에서 로그를 수집하고 있는 사용자도 있죠. *JSON: JavaScript Object Notaion 약어로, 데이터를 교환하기 위한 경량 데이터 형식 *Ruby: 간결한 문법을 가진 객체 지향 프로그래밍 언어 이러한 성능과 효율성 덕분에 라인(Line), 아틀라시안(Atlassian), 아마존 웹서비스(AWS) 등과 같은 주요 기업들이 Fluentd를 사용하고 있습니다. │Fluentd가 필요해진 이유 앞에서도 간략히 설명했지만, Fluentd가 필요한 대표적인 이유는 다음과 같은데요. 데이터 통합과 관리의 필요성 증가 첫 번째 이유는 데이터 통합과 관리의 필요성이 증가하고 있다는 점입니다. 디지털 전환이 가속화되면서 기업들은 다양한 소스에서 엄청난 양의 데이터를 수집하고 관리해야 합니다. 이 과정에서 로그 데이터의 통합과 처리가 중요한 과제가 되었는데요. Fluentd가 다양한 로그 데이터를 중앙에서 효율적으로 수집하고 통합하는 데 최적화해 줍니다. 또한 데이터를 일관된 형식으로 변환하여, 다양한 시스템과 쉽게 연동할 수 있게 도와주죠. 클라우드 네이티브 환경에서의 유연한 확장성 두 번째 이유는 클라우드 네이티브 환경에서 쉽게 확장할 수 있다는 점입니다. 클라우드 네이티브 환경이 표준이 되면서, 애플리케이션과 서비스들이 분산된 환경에서 운영되고 있는데요. 이런 환경에서는 로그 수집과 관리가 더욱 까다로워집니다. Fluentd는 가볍과 확장 가능한 구조를 가지고 있어, 클라우드 환경에 최적화되어 있습니다. 특히 쿠버네티스(K8s, Kubernetes)와 같은 오케스트레이션 플랫폼과 잘 통합되어, 로그 데이터를 효율적으로 수집하고 처리할 수 있죠. 이러한 유연한 확장성과 클라우드 친화적인 특성 덕분에 Fluentd가 꾸준히 활용되고 있습니다. │Fluentd의 5가지 특징 Fluentd는 다양한 환경에서 효율적이고 안정적으로 로그 데이터를 수집할 수 있는데요. 대표적인 특장점을 살펴본다면 다음과 같습니다. 다양한 플러그인 지원 500개가 넘는 커뮤니티에서 만든 플러그인을 통해, 다양한 데이터 소스와 출력을 연결할 수 있습니다. 특정 로그 형식을 처리하거나 여러 데이터베이스와 연동할 수 있도록, 필요한 플러그인을 쉽게 추하여 기능을 확장할 수 있죠. 이 덕분에 사용자는 다양한 요구에 맞춰 시스템을 유연하게 구성할 수 있습니다. 효율적인 자원 사용 메모리 사용량이 적고(30-40mb) 높은 성능을 발휘합니다. 이는 시스템 리소스를 절약하면서도 많은 양의 로그 데이터를 빠르게 처리할 수 있게 하죠. 또한 대규모 서버 환경에서도 원활하게 동작하며, 리소스를 효율적으로 운영할 수 있습니다. 안정적인 로그 수집 Fluentd의 메모리와 파일 기반의 버퍼링 옵션을 제공하여, 데이터 손실을 방지합니다. 네트워크 장애가 발생해도 로그 데이터가 손실되지 않도록 보장하죠. 또한 장애 조치 구성과 고가용성(HA, High Availability) 설정을 통해 안정적으로 로그를 수집하고 처리할 수 있습니다. 클라우드 네이티브 친화성 Fluentd는 쿠버네티스와 같은 클라우드 네이티브 환경에서 원활하게 동작하도록 최적화되어 있는데요. 이러한 최적화는 현대적인 인프라에서 로그 수집을 용이하게 하며, 클라우드 기반 애플리케이션의 로그를 효과적으로 전송하고 관리할 수 있습니다. │Fluentd의 주요 구성요소 Fluentd는 로그 데이터를 효율적으로 수집하고 처리할 수 있도록, 8가지 주요 구성 요소로 이루어져 있습니다. 아래 내용을 통해 좀 더 자세히 살펴볼게요. Input Plugins : 로그를 수집 우선 서버나 애플리케이션에서 발생하는 다양한 형식의 데이터를 수집합니다. 대표적인 플러그인으로 tail, forward, http 등이 있는데요. 예를 들어 tail 플러그인은 리눅스의 tail 명령어처럼 파일의 끝부분을 지속적으로 읽습니다. 상황에 맞는 플러그인을 선택하여, 데이터를 중앙에서 효율적으로 수집할 수 있죠. Parser : 로그를 이해할 수 있는 형식으로 변환 Input 플러그인을 통해 들어온 여러 형태의 로그 데이터를 표준화된 형식으로 변환합니다. JSON, 정규 표현식, *Apache 로그 형식 등 다양한 포맷을 지원하여 로그 데이터를 구조화하고 분석에 적합한 형태로 바꿀 수 있습니다. 이를 통해 로그 데이터를 일관성 있게 처리할 수 있죠. *Apache 로그 형식: 웹 서버에서 생성하는 로그 파일의 형식으로, 주로 정보를 기록하는 구조화된 로그 형식 Engine : 로그 처리의 중심 Fluentd의 중앙 처리 장치입니다. Input에서 수집한 데이터를 처리하고, Filter와 Formatter를 거쳐 Output으로 전송합니다. 사용자 설정에 따라 Parser, Buffer, Filter, Formatter를 추가하거나 제외할 수도 있죠. 이를 통해 데이터 흐름을 유연하게 관리하고, 다양한 요구사항에 맞게 로그 처리를 최적화할 수 있습니다. Filter Plugins : 로그 필터링 로그 데이터를 변환하거나 특정 조건에 따라 필터링합니다. 불필요한 데이터를 제거하고 필요한 데이터만 추출할 수 있습니다. 예를 들어 특정 키워드가 포함된 로그만을 추출하거나, 민감한 정보를 마스킹하여 보안성을 높일 수 있습니다. 어렇게 하면 로그 데이터의 품질이 향상되고, 분석과 저장 효율성이 개선됩니다. Buffering : 로그 임시 저장 Input 플러그인에서 들어온 데이터를 바로 Output으로 보내지 않고, 중간에 Buffer에 임시 저장합니다. 데이터를 임시 저장하기 때문에 안정적으로 전달하고, 손실을 최소화하며, 로그 트래픽을 조절할 수 있습니다. Output Plugins : 로그 저장 수집한 로그 데이터를 최종 목적지로 전달하는 플러그인입니다. HDFS, AWS S3, Elasticsearch(엘라스틱서치)와 같은 다양한 저장소뿐만 아니라, Kafka와 같은 대규모 데이터 스트리밍 플랫폼에도 로그 데이터를 효율적으로 보낼 수 있습니다. 이를 통해 여러 저장소와 분석 도구에 로그 데이터를 통합하고, 실시간으로 처리하거나, 일정 시간마다 모아서 한꺼번에 처리하는 방식으로 워크플로우를 구성할 수 있죠. Formatter : 로그를 최종 형식으로 변환 데이터를 목적지에 맞는 형식으로 변환하는 플러그인입니다. 이를 통해 최종목적지에서 데이터를 쉽게 처리할 수 있도록 도와줍니다. 예를 들어 JSON 형식으로 변환해서 Elasticsearch에 저장하면, Elasticsearch가 데이터를 쉽게 검색하고 분석할 수 있습니다. 또는 데이터를 *CSV 형식으로 변환해서 데이터 분석 도구에 전달할 수도 있습니다. *CSV: 쉼표로 구분된 값들로 이루어진 간단한 텍스트 파일 형식 Routing and Tagging : 로그 데이터의 흐름 제어 로그를 수집하고 처리하는 과정에서 각 데이터의 태그를 붙여 분류합니다. 이 태그를 이용해 로그 데이터를 특정 조건에 따라 다양한 목적지로 보냅니다. 이렇게 하면 로그 데이터를 효율적으로 관리하고, 분석 및 모니터링 요구사항에 맞게 데이터를 나눌 수 있습니다. 예를 들어 에러 로그는 즉시 실시간 모니터링 시스템으로 보내고, 일반 정보 로그는 장기 저장소에 보관하는 등 다양한 방식으로 데이터를 처리할 수 있죠. 이렇게 Fluentd는 주요 구성을 통해 로그 수집과 전송 과정을 효과적으로 처리할 수 있습니다. 이 덕분에 로그 관리가 한결 쉬워지고, 수집된 로그 데이터는 다양한 분석 작업에 유용하게 활용될 수 있습니다. 이번 시간에는 Fluentd가 왜 필요해졌는지, 주요 특징과 어떤 주요 구성 요소로 이루어져 있는지 자세히 알아보았습니다. 내용에서도 살펴보았듯이 데이터 통합과 관리의 필요성이 증가하면서 다양한 소스에서 발생하는 로그 데이터를 중앙에서 효율적으로 수집하고 일관된 형식으로 변환할 수 있는, Fluentd의 중요성이 더욱 커지고 있습니다. 특히, 클라우드 네이티브 환경에 최적화된 유연한 확장성과 다양한 플러그인 지원, 안정적인 로그 수집, 효율적인 자원 사용 등으로 AWS, Atlassian 등 주요 기업들이 Fluentd를 채택하고 있죠. 다음 시간에는 Fluentd와 유사한 로그 수집기인 Logstash와 Filebeat에 대해 살펴보겠습니다.
2024.07.28
기술이야기
오픈소스 APM만으로 완벽한 웹 애플리케이션 관리, 가능할까?
기술이야기
오픈소스 APM만으로 완벽한 웹 애플리케이션 관리, 가능할까?
지난 글을 통해 옵저버빌리티(Observability) 중요성과 APM 차이점을 자세히 살펴보았습니다(자세히 보기). 옵저버빌리티는 APM 한계성을 극복하는 방법은 맞지만, 어느 하나가 더 나은 방법이라기 보단 조직이나 사용자 상황에 따라 적합한 선택해야 하는 것이 주요 포인트였습니다. 하지만 상용 APM 제품은 다소 높은 구매 비용으로 인해, 규모가 작은 기업의 경우 부담이 될 수 있는데요. 이 때 오픈소스 APM 솔루션이 효과적인 대안이 될 수 있는데요. 따라서 이번 시간에는 주요 오픈소스 APM 알아보고, APM 상용 제품과는 어떤 차이점이 있는지 살펴보겠습니다. │오픈소스(Open Source) 소프트웨어란? 오픈소스(Open Source)란 개발 핵심 소스 코드를 공개하여 누구나 접근하고, 수정하여, 배포할 수 있는 소프트웨어를 말합니다. 얼핏 자유 소프트웨어와 비슷하게 느껴질 수 있지만 조금 다른 의미를 가지는데요. 자유 소프트웨어는 사용자의 '자유'를 강조하지만, 오픈소스는 소스 코드의 '접근성과 협업'을 중시합니다. 대표적으로 관계형 데이터베이스인 MySQL, 웹 브라우저인 Firefox, 컨테이너 가상화 플랫폼인 Docker가 대표적인 오픈소스 소프트웨어라고 할 수 있습니다. 현재 국내 디지털플랫폼 정부 구축 정책 기조에 따르면, 오픈소스 소프트웨어는 여러가지 장점을 갖고 있는데요. 오픈소스 장점 오픈소스의 첫번 째 장점은 진입 비용이 낮다는 점입니다. 공개된 소스를 기반으로 수정과 배포가 가능하기 때문에 새로운 기반 기술을 만들어 갈 경우, 비용을 줄일 수 있습니다. 두 번째 장점은 MSA 아키텍처의 기술적 토대가 오픈소스에 기반한다는 점입니다. 최근 소프트웨어 개발 환경은 오픈소스 의존도가 높아지고 있는데요. 이는 오픈소스가 특정 벤더에 종속되지 않아 독립성을 보장한다는 점에서, 오픈소스의 가장 큰 장점이라고 할 수 있습니다. 그에 반해 오픈소스 단점도 명확한데요. 오픈소스 단점 첫 번째 단점은 상용 소프트웨어와 비교해 매뉴얼이 빈약한 경우가 많다는 점입니다. 이에 따라 실제 개발 단계에서 운영이 지연될 가능성이 높아지죠. 두 번째 단점으로는 기술 지원 체계는 오픈소스 커뮤니티에 의존하고 있기 때문에, 유지보수에 큰 어려움이 따른다는 점입니다. 물론 특정 벤더에 종속되지 않는 독립성을 취할 수 있지만, 지속적인 기술지원은 어렵죠. 그렇다면 현재 국내에서 가장 많이 사용하는 오픈소스 APM 소프트웨어는 무엇인지, 자세히 살펴보겠습니다. │오픈소스 APM 종류 오픈소스 APM 종류는 다양하지만 대표적으로 Scouter, Pinpoint, Prometheus & Grafana에 대해 알아보겠습니다. 1. Scouter 첫 번째로 소개해 드릴 오픈소스 APM은 스카우터(Scouter)입니다. 스카우터는 LG CNS에서 만든 오픈소스 APM 소프트웨어로, 자바를 사용하는 애플리케이션과 컴퓨터 시스템 성능을 모니터링합니다. 이 소프트웨어는 Window, Linux, Mac 등 다양한 운영체제(OS)에서 사용할 수 있으며, 주로 이클립스 플랫폼에서 개발되었습니다. 즉 여러 환경에서 자바 애플리케이션 데이터를 수집하고, 성능 상태를 효과적으로 할 수 있다는 점이 스카우터의 주요 기능입니다. 1-1. Scouter 아키텍처 Scouter는 주로 네 가지 주요 컴포넌트로 구성되어 있는데요. 자세히 살펴보도록 하겠습니다. Java Agent Java 기반의 웹 애플리케이션(예: Tomcat, JBoss, Resin)과 스탠드얼론 Java 애플리케이션을 모니터링하는 모듈입니다. 이 에이전트는 웹 애플리케이션 서버(WAS)에 설치되어 애플리케이션 성능 정보(예: 메소드 실행 시간, 사용자 요청 처리 시간 등)를 수집하고 Scouter 서버로 전송합니다. Host Agent 이 에이전트는 운영 체제(예: Linux, Unix, Windows 등)에 설치되어 시스템 하드웨어 리소스 사용 상태를 모니터링합니다. CPU 사용률, 메모리 사용량, 디스크 I/O와 같은 정보를 수집하여 Scouter Server로 보내주는 역할을 합니다. Scouter Server(Collector) 이 서버는 Java Agent와 Host Agent로부터 데이터를 수집해 저장합니다. 사용자는 클라이언트를 통해 이 데이터에 접근할 수 있으며, 이를 통해 애플리케이션의 성능을 모니터링하고 분석할 수 있습니다. Scouter Client 사용자는 Scouter Client를 통해 서버에 접속하여, 서버로부터 수집된 데이터를 조회할 수 있습니다. 이 클라이언트는 다양한 성능 지표를 기반으로 한 시각적인 대시보드를 제공하여, 애플리케이션과 시스템 성능 상태를 효과적으로 모니터링할 수 있게 도와줍니다. 1-2. Scouter 주요기능 출처ⓒ tistory_chanchan-father Scouter의 주요기능 중 하나는 'XLog'인데요. 이 기능은 트랜잭션 응답 시간을 시각적으로 표현하여 시스템 성능을 모니터링하는 데 유용합니다. 액티브 서비스가 종료될 때마다 XLog 차트에 점으로 나타나기 때문에, 개발자는 트랜잭션 처리 시간을 간편하게 확인할 수 있습니다. 각 점을 클릭하여 관련 트랜잭션의 자세한 정보를 얻을 수 있으며, 시스템 분석과 성능 개선 작업에도 도움을 줍니다. 2. Pinpoint 두 번째로 소개해 드릴 오픈소스 APM는 '핀포인트(Pinpoint)'입니다. 핀포인트는 네이버에서 2012년 7월부터 개발을 시작해, 15년 초에 배포한 오픈소스 APM 솔루션입니다. 핀포인트는 MSA를 위한 국산 오픈소스 APM으로 각광 받아왔습니다. 2-1. Pinpoint 아키텍처 핀포인트 아키텍처는 다음과 같은 네 가지 주요 구성요소는 이루어져 있는데요. 아래 내용을 통해 자세히 살펴보겠습니다. Agent 핀포인트의 에이전트는 애플리케이션 서버에 java-agent 형태로 추가되어, 애플리케이션 성능 데이터를 실시간으로 수집합니다. 이 에이전트는 수집한 데이터를 Collector로 전송하며, 이 과정을 통해 성능 모니터링과 문제 해결에 필요한 중요 정보를 제공합니다. Collector Agent로부터 받은 프로파일링 데이터를 수집하고 처리하는 역할을 합니다. Collector는 이 데이터를 구조화하여 빅데이터 데이터베이스인 HBase로 전송합니다. 이를 통해 데이터가 안정하게 저장되고 필요할 때 쉽게 접근할 수 있습니다. HBase Hbase는 분산 데이터베이스로서, 핀포인트 시스템에서 성능 데이터를 저장하고 검색하는 중심적인 역할을 합니다. 대규모 데이터 볼륨을 효율적으로 처리할 수 있는 구조로 설계되어 있으며, 수집된 데이터의 신속한 처리와 안정적인 저장을 보장합니다. Web UI 웹 인터페이스를 통해 사용자에게 데이터를 시각적으로 제공하는 구성 요소입니다. 이 데이터는 핀포인트 에이전트가 애플리케이션 서버에서 수집한 정보를 기반으로 생성됩니다. 이렇게 수집된 데이터는 서버를 통해 Web UI로 전송되면, 사용자는 UI를 통해 다양한 형태의 성능 지표를 조회하고 분석할 수 있습니다. 이러한 구성을 통해 네이버 핀포인트는 애플리케이션 성능 문제를 진단하고 해결하는 데 필요한 정보를 제공합니다. 2-2. Pinpoint 주요기능 그 다음으로 핀포인트의 대표적인 주요 기능에 대해 자세히 알아보겠습니다. 서버맵 이 기능은 분산 환경에서 각 노드 간의 트랜잭션 흐름을 시각적으로 표현하여, 트랜잭션 성공/실패와 응답 시간 분포를 실시간으로 모니터링할 수 있습니다. 이를 통해 시스템 부하 상태와 성능 병목 지점을 식별할 수 있죠. 콜스택 콜스택(Call Stack) 기능은 트랜잭션의 세부 실행 과정을 추적하여, 성능 문제 원인을 분석하고, 코드 최적화를 지원합니다. 이 기능은 각 콜스택에서 소요되는 시간과 발생하는 예외 상황까지 자세히 보여주어, 성능 병목 현상 진단에 도움을 줍니다. 트랜잭션 필터 사용자는 트랜잭션 필터 기능을 이용해 응답 시간이 긴 트랜잭션, 특정 사용자나 IP 주소에서 발생한 트랜잭션 등을 세부적으로 필터링하여 분석할 수 있습니다. 이는 특정 조건에 따른 트랜잭션의 세부 사항을 더 깊이 이해하는 데 유용합니다. Application Inspector 이 기능은 애플리케이션 성능 지표를 시간별/일별로 분석하며 CPU 사용률, 메모리 사용량, JVM 상태 등을 체계적으로 관리하는 기능을 제공합니다. 이를 통해 애플리케이션의 전반적인 성능 관리가 가능합니다. 3. Prometheus 세 번째로 소개해 드릴 오픈소스 APM는 '프로메테우스(Prometheus)'입니다. 프로메테우스는 관제 대상으로부터 모니터링 메트릭 데이터를 저장하고, 검색할 수 있는 시스템인데요. 무엇보다 CNCF 재단으로부터 '클라우드 네이티브에 적합한 오픈소스 모니터링'으로 각광 받아 쿠버네티스(Kubernetes, K8s) 이후 두번째로 졸업한 프로젝트입니다. 프로메테우스는 CNCF 졸업 인증서를 받은 이후 시장에서 많은 주목을 받았습니다. 구조가 간단해서 운영이 쉽고, 다양한 모니터링 시스템과 연계할 수 있는 여러 플러그인을 보유하고 있기 때문이죠. 이러한 장점은 클라우드 네이티브를 위한 기초적인 오픈소스로 각광 받게 되었습니다. 3-1. Prometheus 아키텍처 프로메테우스에서 가장 큰 특징은 에이전트(Agent)가 아닌, 메트릭(Metric)을 통해 데이터를 수집한다는 점입니다. 메트릭이란 이전 시간에도 살펴봤듯이, 현재 상태를 보기 위한 시계열 데이터를 의미합니다. 프로메테우스는 이러한 메트릭 수집을 위해 다양한 수집 도구를 사용하는데요. 좀 더 자세히 살펴보도록 하겠습니다. Application 위 아키텍처에서 수집하고자 하는 대상은, 애플리케이션으로 표현됩니다. 주로 MySQL DB과 Tomcat과 같은 웹 서버까지 다양한 서버와 WAS가 모니터링 대상이 됩니다. 프로메테우스는 이를 주로 Target System으로 표현하고 있습니다. Pulling 프로메테우스에서는 각 Target System에 대한 메트릭 데이터 수집을 풀링(Pulling) 방식을 통해 데이터를 수집합니다. 프로메테우스는 앞서 언급했듯 별도의 에이전트로 데이터를 수집하지 않습니다. Prometheus Server에서 자체적인 Exporter를 통해 메트릭 읽는 방식을 사용하죠. 보통 모니터링 시스템 에이전트는, 모니터링 시스템으로 메트릭을 보내는 푸쉬(Push) 방식을 사용합니다. 특히 푸쉬 방식은 서비스가 오토 스케일링 등과 같이 환경이 가변적일 경우 유리한데요. 풀링 방식의 경우 모니터링 대상이 가변적으로 변경될 경우, 모니터링 대상의 IP 주소를 알 수 없기 때문에 정확한 데이터 수집이 어려워집니다. Service Discovery 이처럼 정확한 데이터 수집을 해결하기 위한 방안이 서비스 디스커버리(Service Discovery) 방식입니다. 서비스 디스커버리는 현재 운영 중인 대상 목록과 IP 주소를 동적으로 수집하는 프로세스입니다. 예를 들어 file_sd, http_sd 방식부터 디스커버리 전용 솔루션인 Consul을 사용하죠. Exporter Exporter는 모니터링 대상 시스템에서 데이터를 수집하는 역할을 합니다. 별도의 에이전트는 아니지만, 에이전트와 비슷하게 데이터를 수집하는 역할을 합니다. HTTP 통신을 통해 메트릭 데이터를 수집하며, Exporter를 사용하기 어려울 경우 별도 Push gateway를 사용합니다. Prometheus Server 프로메테우스 서버는 데이터 수집, 저장, 쿼리를 담당하는 중앙 구성 요소입니다. HTTP 프로토콜을 사용하는 것이 특징이며, Exporter가 제공하는 HTTP 엔드포인트에 접속해 메트릭 데이터를 수집합니다. Alert Manager 사용자에게 알람을 주는 역할을 담당합니다. Prometheus는 타 오픈소스 모니터링 솔루션과 달리 Alert Manager UI 기능을 제공하여 일부 제한된 데이터를 시각화할 수 있습니다. 하지만 시각화 기능이 제한적이므로, 보통 Grafana라는 오픈소스 대시보드 툴을 사용하여 UI를 보완합니다. 3-2. Grafana '그라파나(Grafana)'에 좀 더 자세히 설명한다면, 데이터 분석을 시각화하기 위한 오픈소스 대시보드 도구입니다. 다양한 플러그인을 이용해 프로메테우스와 같은 모니터링 툴과 *그라파이트(Graphite)1, *엘라스틱서치(Elasticsearch)2, *인플럭스DB(InfluxDB)3 와 같은 데이터베이스와 연동하여 사용자 맞춤형 UI를 제공합니다. 특히 방대한 데이터를 활용해 맞춤형 대시보드를 쉽게 만들 수 있는 것이 그라파나의 큰 장점이죠. *1. Graphite: 시계열 데이터를 수집하고 저장하며, 이를 그래프로 시각화하는 모니터링 도구 *2. Elasticsearch: 다양한 유형의 문서 데이터를 실시간으로 검색하고 분석하는 분산형 검색 엔진 *3. InfluxDB: 시계열 데이터의 저장과 조회에 특화된 고성능 데이터베이스 그라파나의 주요 특징은 플러그인 확장을 통한 데이터 시각화와 템플릿 지원으로, 다른 사용자 대시보드 템플릿을 쉽게 가져와 사용할 수 있다는 점입니다. 이처럼 Promeheus 장점은 Exporter를 통한 다양한 메트릭 데이터 수집과 3rd Party 솔루션과 연계가 수월하다는 점입니다. 오픈소스로 IT 인프라를 구성하는 기업의 경우 Prometheus와 Grafana를 연계하여, 서비스 운영현황을 모니터링 할 수 있습니다. 지금까지 오픈소스 APM가 무엇이고, 각각의 아키텍처와 주요 기능은 무엇인지 살펴보았는데요. 그렇다면 상용 APM 제품과, 오픈소스 APM는 어떤 차이점이 있을까요? │상용 APM 제품 vs 오픈소스 APM 제품 앞에서 소개해 드린 오픈소스 APM 중, 대표적으로 프로메테우스와 핀포인트를 상용 APM 제품과 비교해 보겠습니다. Prometheus vs 상용 APM 제품 우선 프로메테우스를 대표하는 장점은 유연한 통합성입니다. 마이크로서비스가 대세 기술로 자리 잡으면서, 인스턴스를 자주 확장하거나 축소하는 것이 자유로운 요즘인데요. 만약 이 작업을 수동으로 관리한다면 매우 어려울 수 있습니다. 하지만 프로메테우스를 사용하면 이런 문제를 해결할 수 있죠. 프로메테우스는 쿠버네티스와 같은 여러 서비스 디스커버리 시스템과 통합되어, 쿠버네티스 클러스터 내의 모든 노드와 파드에 발생하는 매트릭을 자동으로 수집할 수 있습니다. 이러한 기능은 마이크로서비스 환경에서 효율적으로 모니터링 할 수 있습니다. 하지만 한계점도 있는데요. 바로 실시간 데이터 확인이 어렵다는 점입니다. 프로메테우스는 풀링(Pulling) 주기를 기반으로 메트릭 데이터를 수집하기 때문에, 순간적인 스냅샷 기능이 없습니다. 수집된 데이터는 풀링하는 순간 스냅샷 데이터라고 볼 수 있죠. 이러한 단점은 APM에서 일반적으로 지원하는 실시간성 트랜잭션 데이터를 대체하기 어렵습니다. 반면에 상용 APM 제품은 어떨까요? 대표적으로 Zenius APM 사례를 통해 살펴보겠습니다. Zenius APM은 에이전트가 자동으로 메트릭을 수집하여 서버로 전송하여, 데이터를 실시간으로 처리할 수 있습니다. 또한 에이전트가 푸쉬(Push) 방식이기 때문에, 데이터의 지연이 풀링 방식에 비해 적고 데이터가 더 정확하게 수집되죠. 또한 Raw Data 기반의 실시간 과거 데이터를 통해 정밀한 장애 원인 분석이 가능합니다. 과거 시점 스냅샷 기능도 있어 문제 발생 시점을 정확히 파악하여, 문제 해결 시간을 단축시킬 수 있죠. Pinpoint 장단점 vs 상용 APM 제품 그 다음으로는 핀포인트를 대표하는 장점에 대해 알아 보겠습니다. 핀포인트 장점으로는 클라우드 환경에서 뛰어난 가시성을 보여준다는 점입니다. 클라우드에서의 웹 애플리케이션 서버(WAS)는 유연성과 확장성이 뛰어나지만, 복잡한 시스템 구조로 인해 모니터링이 어려울 수 있는데요. 핀포인트는 이러한 환경에서, 각 가상 서버의 성능을 실시간으로 파악하고 문제를 신속하게 진단하는데 큰 도움을 줍니다. 그에 반해 핀포인트에 단점은 다양한 기능이 부족합니다. 핀포인트는 JVM 기반 데이터의 모니터링이 일부 제한되는데요. 대시보드의 'Inspector'와 같은 일부 기능이 지원되지 않아, 이용에 어려움이 있습니다. 또한 다수 트랜잭션이 동시에 실행될 때 특정 트랜잭션이 오래 걸리거나 에러가 발생할 경우, 그 원인을 파악하기 어렵습니다. 이는 세부적인 콜백 정보를 충분히 제공하지 않았기 때문이죠. 그렇다면 상용 APM 제품은 어떨까요? 이번에도 Zenius APM를 통해 자세히 살펴보겠습니다. Zenius APM은 다양한 트랜잭션 모니터링 기능을 제공하는데요. 이를 통해 사용자는 트랜잭션 성능을 실시간으로 파악하고, 잠재적 문제를 빠르게 진단할 수 있습니다. 또한 이 시스템은 대량으로 동시 접속자를 대량으로 관리할 수 있어, 피크 타임에 발생할 수 있는 성능 저하를 사전에 감지하고 대응할 수 있도록 지원합니다. 비교표 구분 Zenius APM Prometheus Pinpoint Scouter 기술지원 벤더 지원을 통한 빠른 초기 설정, 기술지원 용이 오픈소스 기반의 기술지원 불가로 초기 학습 필요 오픈소스 기반의 기술 지원 불가로 초기 학습 필요 오픈소스 기반의 기술 지원 불가로 초기 학습 필요 사용자 인터페이스 실시간 트랜잭션 처리, 액티브 서비스 모니터링, 동시 접속 사용자 수 등, 사용자 정의 실시간 모니터링 상황판 구성 Grafana 플러그인 연계로 다양한 컴포넌트 모니터링 가능 토폴로지 일부 모니터링 불가, 제한적으로 사용자 동시 접속자 수 모니터링 가능, 사용자 정의 기반 모니터링 불가 기능 제한에 따른 간소화된 UI 제공, 사용자 정의 기반 모니터링 불가 컨테이너 모니터링 가능 가능 가능 불가 쿠버네티스 모니터링 가능 가능 불가 불가 연관 인프라 정보 모니터링 연관된 WAS 서버, DB서버, DB확인, 해당 인프라 상세 정보 제공 불가 재한적으로 연관 인프라 모니터링 제공 불가 Raw Data 과거 시점 재현 초 단위 데이터를 기준으로 장애 발생시점 등 과거 상황을 그대로 재현함 불가 불가 불가 리포팅 사용자 정의 기반 리포팅 서비스 제공 써드 파티를 이용한 제한적인 리포팅 기능 제공 불가 불가 이번 시간에는 주요 오픈소스 APM와 상용 APM 차이점을 살펴보았습니다. 각 솔루션은 분명한 장단점을 갖고 있으며, 모든 상황에 완벽한 솔루션은 없습니다. 그러나 여기서 주목해야 할 것은, APM의 핵심이 '트랜잭션을 얼마나 효과적으로 모니터링할 수 있는가'라는 점입니다. 이 측면에서 오픈소스 APM은 한계가 있으나, 상용 APM 제품은 이를 효과적으로 수행할 수 있습니다. 물론 비용 면에서 오픈소스 APM와 비교해, 상용 APM 제품이 부담스러울 순 있습니다. 하지만 트랜잭션 모니터링 관리의 중요성을 고려한다면, 이러한 투자는 가치가 있습니다. 더 나아가 심층적인 실시간 데이터 모니터링, 신속한 데이터 처리, 전문적인 기술적인 기술 지원, 보다 복잡한 시스템 환경에서 효과적인 트랜잭션 관리를 우선시 한다면 Zenius APM 제품이 더더욱 적합할 것입니다. 🔍더보기 Zenius APM 더 자세히 보기 📝함께 읽으면 더 좋아요 • APM에서 꼭 관리해야 할 주요 지표는? • APM의 핵심요소와 주요기능은? • 옵저버빌리티 vs APM, 우리 기업에 맞는 솔루션은?
2024.07.26
기술이야기
좋은 대시보드(Dashboard) 설계를 위한 4가지 핵심 가이드
기술이야기
좋은 대시보드(Dashboard) 설계를 위한 4가지 핵심 가이드
급변하는 IT 환경에서 우리는 많은 데이터를 접하고 있습니다. 이러한 방대한 데이터를 효율적으로 관리하고 시각화하기 위해 '대시보드'가 등장한 후 널리 활용되고 있습니다. 대시보드(Dashboard)는 필요한 데이터를 통합하여 시각화하는 화면으로, 사용자에게 중요한 정보를 한눈에 보여주는 도구입니다. 2023년 가트너(Gartner) 연구에 따르면, 전 세계 기업 72%가 데이터 시각화 도구를 사용하고 있기도 합니다. 데이터 시각화 도구를 활용한 기업이 비활용 기업에 비해 의사 결정 속도가 5배 빠르다는 연구 결과도 나왔죠. 그렇다면 기업운영에 있어 대시보드가 왜 중요한지, 좀 더 자세히 살펴보겠습니다. │대시보드(Dashboard), 왜 중요할까요? 대시보드가 중요한 이유는 여러 가지 있지만, 그중에서도 가장 핵심적인 이유는 다음과 같습니다. 첫째, 대시보드는 빠르고 정확한 의사 결정을 가능하게 합니다. 대시보드는 실시간으로 데이터를 시각화하고 중요한 정보를 즉각적으로 제공하여, 빠르고 정확한 의사 결정을 가능하게 합니다. 예를 들어 서버의 성능 문제나 네트워크 장애를 실시간으로 감지하고 즉각적으로 대응할 수 있습니다. 이는 기업이 비즈니스 연속성을 유지하고, 예기치 않은 문제로 인한 손실을 최소화할 수 있게 도와주죠. 둘째, 대시보드는 전체적인 상황을 한눈에 파악할 수 있게 합니다. 여러 출처에서 수집된 데이터를 하나의 화면에 통합하여 보여주기 때문에, 전체적인 상황을 한눈에 파악할 수 있습니다. 이를 통해 데이터 간의 관계를 쉽게 분석하고, 복잡한 문제를 효율적으로 해결할 수 있죠. 이는 전략적 계획 수립과 운영 효율성을 높이는 데 매우 중요한 역할을 합니다. 위에서 살펴본 두 가지 핵심 이유로 인해서 대시보드는, 기업의 비즈니스 경쟁력 확보를 위한 핵심 도구로 자리 잡고 있습니다. │어떤 종류의 대시보드가 있을까요? 대시보드 종류는 매우 다양한데요. IT 인프라 통합 관리 대시보드 기준에서, 대표적으로 세 가지 대시보드 유형을 살펴보겠습니다. 서비스형 대시보드 [그림] Zenius 서비스형 대시보드 일반적으로 많이 사용하는 서비스형 대시보드는 IT 서비스 성능 상태를 실시간으로 모니터링할 수 있게 도와줍니다. CPU, 메모리 사용량, 디스크 I/O, 네트워크 트래픽 등을 한눈에 확인할 수 있죠. 이를 통해 성능 저하나 장애가 발생하면 즉각 알림을 받아 빠르게 대응할 수 있습니다. 또한 클라우드와 온 프레미스 환경 모두 사용 가능해 유연성이 뛰어납니다. 지도형 대시보드 [그림] Zenius 지도형 대시보드 지도형 대시보드는 여러 지역에 분산된 IT 인프라를 한 지도에서 통합적으로 보여줍니다. 서버, 데이터 센터, 네트워크 장비 위치와 상태를 지도 위에 표시해 한눈에 파악할 수 있죠. 이때 특정 지역에서 문제가 발생하면 즉시 감지하고 대응할 수 있습니다. 또한 지리적 데이터를 바탕으로 장애 패턴을 분석하여 효율적인 관리가 가능하며, 실제 지리 정보 시스템(GIS)와 연동해 정교한 위치 기반 관리도 가능합니다. 이러한 기능 덕분에 이 대시보드는, 특히 글로벌 기업이나 여러 지사와 데이터 센터를 운영하는 조직에서 유용하게 사용됩니다. 구성도형 대시보드 [그림] Zenius 구성형 대시보드 구성도형 대시보드는 네트워크 자원의 상태와 관계를 시각적으로 표현해 줍니다. 이를 통해 네트워크 장비 간의 트래픽 흐름을 실시간으로 모니터링하고, 병목 지점이나 장애 발생 지점을 쉽게 찾아낼 수 있습니다. 또한 각 장비의 상태, 성능 지표, 로그 데이터를 시각적으로 제공해 문제를 조기에 발견하고 해결할 수 있도록 도와줍니다. 더 나아가 네트워크 트래픽을 분석해 최적화 방안을 도출할 수 있으며, 다양한 네트워크 인프라를 지원해 유연한 관리가 가능합니다. 하지만 이러한 대시보드는 '어떻게 구현하고 설계했느냐'에 따라서 좋은 대시보드가 될 수도, 그렇지 못할 수도 있는데요. 그렇다면 좋은 대시보드를 만들기 위해 어떤 점을 고려해야 할까요? 다음 내용을 통해 자세히 살펴보겠습니다. │좋은 대시보드를 만들기 위한 고려사항 핵심 데이터 우선 제공 우선 좋은 대시보드를 만들기 위해 가장 먼저 고려해야 할 점은, 시각화할 대상과 데이터를 명확히 파악해야 한다는 것입니다. 어떤 데이터가 가장 중요한지, 결정하는 것이 우선이죠. 반대로 너무 많은 데이터를 시각화하지 않도록 주의해야 합니다. 과도한 데이터 시각화는 사용자가 중요한 정보를 파악하는 데 어려울 수 있습니다. 따라서 핵심 데이터를 선별하여 우선적으로 표시해야 합니다. 좀 더 구체적인 사례를 통해 살펴볼게요. 대시보드는 서버, 네트워크, DB 등 기본 인프라 데이터를 수집하고 시각화해야 하는데요. 이 데이터는 CPU, 메모리, bps, 스토리지, 데이터 파일 등과 같이 시스템 성능과 운영 상태를 파악하는 필수적인 핵심 지표들입니다. 이러한 핵심 데이터를 명확하게 정의하고 제공하는 것은 대시보드 설계의 첫 번째 단계에서 중요한 요소이죠. [그림] Zenius 서비스형 대시보드 Zenius 대시보드는 이러한 기본 인프라 데이터를 우선적으로 수집하고 시각화하여, 사용자가 가장 중요한 정보를 빠르게 파악할 수 있도록 합니다. 사용자가 어떤 데이터를 가장 먼저 확인해야 하는지, 즉 우선순위를 명확히 하여 중요한 정보를 놓치지 않도록 도와주죠. 효율적이고 직관적인 정보 전달 좋은 대시보드를 만들기 위해 두 번째로 고려해야 할 점은, 사용자가 필요한 정보를 쉽고 빠르게 확인할 수 있도록 설계되어야 합니다. 데이터의 가독성을 높이는 색상과 그래픽 요소를 적절히 사용하여, 사용자 인터페이스가 직관적이고 사용하기 쉬워야 합니다. 여기서 유의할 점은 시각적 요소에 너무 몰두하지 않도록 주의해야 합니다. 디자인에만 집중하면 필요한 정보가 제대로 전달되지 않을 위험이 있기 때문이죠. 따라서 실용성과 사용성을 중시하여 사용자 중심의 인터페이스를 설계해야 합니다. 이번에도 대시보드 사례를 통해 구체적으로 살펴볼게요. Zenius는 '사용자 맞춤형 대시보드'를 제공하고 있는데요. 사용자의 모니터링 환경에 맞게 자유롭게 편집할 수 있습니다. 관리 대상이 많아지거나, 관리 목표를 변경해도 컴포넌트와 디스플레이 항목을 손쉽게 편집할 수 있습니다. 또한 Zenius의 직관적이고 유연한 편집 기능을 통해, 사용자에게 필요에 따라 색상이나 차트 유형을 쉽게 변경할 수 있도록 설계했습니다. 데이터를 가독성 있게 시각화하여 사용자가 인터페이스 직관적이고 사용하기 쉽도록 구성했죠. 외부 데이터 통합 좋은 대시보드를 만들기 위해 세 번째로 고려해야 할 점은, 기업 내 여러 솔루션의 핵심 지표를 한 화면에서 확인할 수 있도록 구성해야 합니다. 외부 데이터와의 연동으로 여러 시스템의 데이터를 통합하면, 전체 상황을 한눈에 파악할 수 있는데요. 이를 통해 분석과 의사결정을 용이하게 해줍니다. Zenius 사례를 통해 다시 한번 살펴보겠습니다. Zenius 대시보드는 3rd Party 시스템 연동을 통해, 외부 데이터를 통합하여 한 화면에서 핵심 지표를 확인할 수 있도록 설계했습니다. 이를 통해 사용자가 기업 내 다양한 솔루션 지표를 한눈에 파악할 수 있죠. 비즈니스 전반의 통합 관제 좋은 대시보드를 만들기 위해 네 번째로 고려해야 할 점은, 비즈니스 관점에서 모니터링과 이상 상황을 감지할 수 있도록 설계되어야 합니다. 조직의 전반적인 운영 상태를 실시간으로 파악하고, 문제 발생 시 신속하게 대응해야 하기 때문이죠. 또한 서비스 단위로 인프라를 구성하여, 비즈니스 문제 여부를 즉각적으로 파악할 수 있도록 해야 합니다. 다시 Zenius 사례를 통해 살펴볼게요. Zenius 대시보드는 수집된 다양한 정보를 바탕으로, 최상위 레벨에서 비즈니스 관점 모니터링과 이상 상황을 감지할 수 있는 화면을 제공합니다. 다양한 컴포넌트와 차트, 다이나믹한 요소들을 적용하여 시각적인 효과를 극대화할 수 있죠. 이번 시간에는 대시보드가 왜 필요한지, 좋은 대시보드를 구현하기 위해서는 어떠한 점들을 고려해야 하는지 알아보았습니다. 하지만 이러한 좋은 대시보드를 성공적으로 구현하기 위해서는, 전문가의 도움이 필요합니다. 데이터를 시각화하여 구성하는 것은 보는 이에 따라 관점이 다르고 다양하여, 하나부터 열까지 구성하는 것이 어려울 수 있기 때문이죠. 또한 조직 상황이나 사용자 관점마다 중요한 데이터가 다르고 시각화해야 하는 방식도 다를 수 있습니다. 따라서 제니우스(Zenius)와 같이 수많은 구축 노하우를 보유하고 있고, 고객의 상황에 따라 최적화된 대시보드 구현이 가능한 솔루션 활용을 통해 비즈니스 경쟁력을 확보하시기 바랍니다. 🔍더보기 Zenius Dashboard 더 자세히 보기
2024.07.26
기술이야기
엣지 컴퓨팅을 위한 CNCF 프로젝트, KubeEdge 활용법
기술이야기
엣지 컴퓨팅을 위한 CNCF 프로젝트, KubeEdge 활용법
최근 몇 년 간 IT 분야는 급속한 발전을 거듭하고 있습니다. 특히 2010년대 중반부터 데이터를 온라인에 저장하는 기존 방식을 넘어서, 보다 진보된 컴퓨팅 기술이 등장하며 클라우드 컴퓨팅이 중요한 역할을 하게 되었습니다. 아마존 웹 서비스(AWS), 마이크로소프트(Microsoft), 구글(Google) 등의 대형 기업들이 클라우드 서비스를 주도해 나갔죠. 하지만 점점 IT 산업이 커지고 사물인터넷(IoT) 기술이 발전하면서 IT 장비에서 생성되는 데이터양이 기하급수적으로 많아졌습니다. IDC의 2018년 자료에 따르면, 2025년에는 전 세계에서 생성되는 데이터가 175ZB(*제타바이트1)에 도달할 예정이라고 합니다. 이처럼 수많은 데이터가 생성되고 중앙 서버에 저장/연산이 될 경우, 서버에 부하가 증가하는 문제가 발생하게 됩니다. *1. 1 ZB = 1021 bytes = 1,000,000,000,000,000,000,000 bytes 이를 해결하기 위해 2020년부터 중앙 서버에만 저장하지 않고, 클라우드 하위개념인 '클라우드렛'을 통해 데이터를 분산 처리하는 새로운 기술이 등장했는데요. 그 기술이 바로 엣지 컴퓨팅(Edge Computing)입니다. │엣지 컴퓨팅(Edge Computing)이란? 엣지 컴퓨팅은 데이터를 중앙 집중형 데이터 센터나 클라우드 대신, 데이터가 생성되는 가장 가까운 곳에서 처리하는 기술입니다. 쉽게 말해 중앙 서버가 아닌 데이터가 발생하는 '엣지(가장자리)'에서 직접 처리하는 것을 의미하죠. 엣지 컴퓨팅의 목적은 데이터 처리 응답 지연을 없애고, 실시간 성능을 개선하는 것입니다. 따라서 엣지 컴퓨팅의 가장 큰 특징이 '분산 처리 기능'이기도 합니다. 즉 가까운 곳에서 데이터를 처리하여, 부하를 분산하고, 통신 지역을 최소화하는 것이 엣지 컴퓨팅의 주목적입니다. │Edge Computing 필요성 그렇다면 엣지 컴퓨팅은 왜 점점 중요해지고 있을까요? 앞에서 언급했던 것처럼, IoT 시대가 도래하면서 다양한 디바이스에서 처리하는 데이터의 양이 폭발적으로 증가하고 있습니다. 이에 따라 요구되는 처리 속도와 응답 속도도 높아지고 있죠. 방대한 양의 데이터를 처리하기 위해서는 대규모 데이터 센터가 필요하지만, 각 위치에 데이터 센터를 두는 것보다 한 곳에서 중앙 집중식으로 처리하는 것이 더 효율적입니다. 이것이 클라우드 컴퓨팅이 대중화된 이유 중 하나입니다. 그러나 인터넷을 통해 클라우드로 데이터를 전송하고 처리한 후 반환할 때, 약간의 시간 지연이 발생합니다. 물론 로봇과 산업 장비의 센서 기술은 나날이 발전하고 있어, 어느 순간에도 상황을 정확하게 파악할 수 있게 되었습니다. 하지만 데이터 처리와 반응 사이에 시간 지연이 발생하면 정교한 *센싱 기술2 은 아직 어려운 편이죠. *2. 센싱 기술: 다양한 센서를 활용해 물리적 환경으로부터 데이터를 감지하고 수집하는 기술 이처럼 정밀하고 복잡한 동작을 수행하는 디바이스에는 고정밀 IoT가 필요한데요. 이를 위해서는 최대한 실시간에 가깝게 정보와 데이터를 주고받아야 하는데, 엣지 컴퓨팅가 이를 가능하게 합니다. 따라서 엣지 컴퓨팅은 IoT가 다음 단계로 나아가기 위해 필요한 기술로 주목받고 있죠. │Edge Computing 장점 엣지 컴퓨팅의 구체적인 이점은 무엇일까요? 엣지 컴퓨팅을 활용하면 얻을 수 있는 이점을 살펴보겠습니다. • 네트워크 트래픽 감소: 엣지 컴퓨팅은 데이터를 중앙 클라우드 서버로 보내지 않고 엣지(사용자 근처 단말기)에서 직접 처리하기 때문에, 네트워크 트래픽이 큰 폭으로 감소합니다. • 빠른 데이터 처리 응답시간: 데이터를 단말기에서 바로 처리하므로, 데이터 처리 응답 시간이 매우 빠릅니다. 실시간 응답이 중요한 애플리케이션에서는 큰 이점이죠. • 향상된 보안성: 개인정보 등 중요한 데이터를 중앙 데이터 센터로 전송하지 않아도 되므로 보안성이 높아집니다. 데이터가 로컬에서 처리되기 때문에 데이터 유출 위험이 줄어듭니다. • 장애 포인트 감소: 서버에 장애가 발생할 경우, 전체 서비스로 장애가 확대되는 클라우드 컴퓨팅과 달리 엣지 컴퓨팅은 개별 엣지의 장애가 다른 엣지로 전파되지 않게 합니다. 따라서 전체 시스템의 안정성이 향상되고 장애 포인트가 감소됩니다. │Edge Computing 활용 분야 엣지 컴퓨팅 활용분야는 다양하지만, 대표적인 엣지 컴퓨팅 적용사례로 스마트팩토리가 있습니다. 스마트 팩토리는 IoT, AI를 활용해 공정을 자동화하고 최적화하는 공장을 의미하는데요. 스마트팩토리에서는 제품 생산 과정에서 발생하는 모든 데이터를 중앙 클라우드 서버에 저장하면, 서버에 부하가 걸리기 쉽습니다. 이를 해결하기 위해 단순히 매일 반복되는 프로세스는 근처 엣지서버에 저장하고 데이터 연산 작업을 진행하죠. 반면 복잡하고 자주 처리되지 않는 데이터는 중앙 클라우드 서버에 저장합니다. 이렇게 하면 AI가 기기를 운영할 때 실시간 데이터 처리가 가능하여 지연 시간을 줄이고 효율성을 높일 수 있습니다. 여기서 엣지 서버는 지사 개념으로, 중앙 클라우드 서버는 본사 개념으로 이해할 수 있습니다. 엣지 컴퓨팅 활용 분야는 계속해서 확대되고 있습니다. 스마트팩토리 외에도 에너지 스트리밍, 게임, 헬스케어, 농업, 데이터센터, 자율주행, 스마트 시티 등 대규모 산업분야에 많이 사용되고 있습니다. │Edge Computing 도전 과제 하지만 엣지 컴퓨팅 기술에는 여러 도전과제가 있는데요, 대표적으로 애플리케이션 배포관리가 있습니다. 다양한 엣지 환경에서 애플리케이션을 배포하고 관리하는 것은, 생각만 해도 복잡한 프로세스이기 때문이죠. 이때 애플리케이션 버전 관리를 일관되게 하고 다양한 엣지 장치와 위치에서 호환성을 유지하려면, 효율적인 오케스트레이션 배포 시스템이 필요합니다. 이러한 과제를 해결하기 위해 여러 솔루션들이 연구되고 있는데요. 그중 하나가 쿠버네티스(Kubernetes, K8s)입니다. 쿠버네티스는 컨테이너화된 애플리케이션을 자동 배포하고, 확장하며, 관리하기 위한 오픈 소스 플랫폼입니다. 이때 쿠버네티스 기술에 + Edge를 접목한 것이 바로 KubeEdge입니다. 좀 더 자세히 알아볼까요? │KubeEdge란? KubeEdge는 쿠버네티스를 확장하여 엣지 컴퓨팅 환경을 지원하는 오픈 소스 플랫폼입니다. 엣지 컴퓨팅의 잠재력을 최대한 활용할 수 있는 플랫폼이죠. KubeEdge는 클라우드 컴퓨팅과 엣지 컴퓨팅의 경계를 허물기 위해 설계되었는데요. CNCF 재단에서 엣지 컴퓨팅 커뮤니티 구성원에 의해 개발되었고, 2018년 11월 상하이 KubeCon에서 처음 발표되었습니다. 쿠버네티스 기반으로 설계된 KubeEdge는, 2019년 3월에 첫 릴리즈 이후로 점차 안정화되고 있습니다. │KubeEdge 주요 기능 KubeEdge는 쿠버네티스를 사용해 클라우드와 엣지 리소스를 일관되게 관리할 수 있습니다. 또한 클라우드에서 운영하던 애플리케이션과 서비스를 동일한 방식으로 다룰 수 있죠. 이 밖에도 KubeEdge 주요 기능은 다음과 같습니다. • 엣지 클러스터 관리: KubeEdge는 엣지 환경에서도 쿠버네티스 클러스터를 효율적으로 관리할 수 있습니다. • 데이터 처리: 엣지에서 생성된 데이터를 로컬에서 처리하여, 네트워크 대역폭을 절약하고 응답 시간을 단축합니다. • 애플리케이션 오케스트레이션: 클라우드와 유사한 방식으로 엣지 애플리케이션을 배포하고 관리할 수 있습니다. • 보안: 엣지와 클라우드 간의 안전한 통신을 보장하여, 데이터 보안을 강화합니다. │KubeEdge 주요특징 KubeEdge 기능이 좀 더 원활하게 작업을 할 수 있도록 도와주는 주요 특징이 있는데요. 자세히 살펴보겠습니다. • 분산 아키텍처: KubeEdge는 클라우드와 엣지를 각각 포함하는 분산된 환경을 지원합니다. 클라우드에는 Kube-apiserver가 있으며, 엣지에는 실제 IoT 디바이스가 있습니다. 이를 통해 중앙 집중식 관리와 로컬 처리를 모두 가능하게 합니다. • 쿠버네티스 API 호환성: KubeEdge는 쿠버네티스 API와 호환됩니다. 이를 통해 기존에 쿠버네티스에 익숙한 사용자는 엣지 컴퓨팅 환경을 쉽게 관리할 수 있죠. • 리소스 제약 환경 지원: 엣지 디바이스는 일반적으로 제한된 컴퓨팅 자원을 가지고 있습니다. KubeEdge는 이러한 환경을 고려하여 설계되었기 때문에, 리소스가 제한된 환경에서도 효율적으로 작동합니다. • 오프라인 작동 지원: 엣지 노드는 네트워크에 연결되어 있지 않더라도, 일정 부분을 독립적으로 작동할 수 있습니다. 이는 인터넷 연결이 불안정한 환경에서 매우 유용합니다. • 경량화된 엣지 컴포넌트: KubeEdge는 엣지 측에 'EdgeCore'라는 경량화된 컴포넌트를 사용합니다. EdgeCore는 IoT 디바이스와의 통신/관리를 담당합니다. • 효율적인 통신: 클라우드와 엣지 사이의 통신은 *MQTT3와 같은 프로토콜을 사용하여 효율적으로 이루어집니다. 이는 데이터의 신속한 전송과 처리를 가능하게 합니다. *3. MQTT: Message Queuing Telementry Transport의 약자로 경량 메시지 전송 프로토콜 │KubeEdge 구성도 KubeEdge 구성도를 살펴보면 크게 Cloud, Edge, Device로 나누어져 있는데요. 각각 구성요소에 대한 설명은 아래와 같습니다. • Edged: Edge에서 컨테이너화된 애플리케이션을 관리합니다. 이는 엣지 디바이스에서 애플리케이션을 배포하고 실행하는 역할을 합니다. • EdgeHub: Edge에 위치한 통신 인터페이스 모듈로, 엣지 컴퓨팅을 위해 클라우드 서비스와 상호 작용하는 *웹 소켓4 클라이언트입니다. 클라우드와 실시간 데이터 통신을 담당합니다. • CloudHub: 클라우드에서의 통신 인터페이스 모듈입니다. 클라우드 측의 변경 사항을 감시하고, EdgeHub에 메시지를 캐싱하고 보내는 역할을 담당하는 웹 소켓 서버입니다. • Edge Controller: Edge 노드를 관리하는 모듈입니다. 이 모듈은 데이터를 특정 엣지 노드로 전달될 수 있도록, 엣지 노드와 포드 *메타데이터5를 관리합니다. 즉 Edge Controller는 쿠버네티스 컨트롤러 역할을 확장하여, 엣지 컴퓨팅 환경에서도 효율적인 노드 관리와 데이터 흐름을 가능하게 합니다. • EventBus: MQTT를 사용하여 내부 엣지 통신을 처리하는 모듈입니다. 이는 MQTT 서버와 상호 작용하여 다른 구성 요소에 게시와 구독 기능을 제공하는 MQTT 클라이언트 역할을 합니다. • Device Twin: 장치 메타 데이터를 처리하는 장치용 소프트웨어 미러입니다. 이 모듈은 장치 상태를 처리하고 이를 클라우드에 동기화하는 데 도움을 줍니다. 또한 경량 데이터베이스(SQLite)에 연결되어, 애플리케이션에 대한 쿼리 인터페이스도 제공합니다. • MetaManager: Edge 노드에서 메타데이터를 관리하는 모듈입니다. 이는 Edged와 EdgeHub 사이의 메세지 프로세서로, 경량 데이터베이스(SQLite)와의 메타데이터를 저장/검색하는 역할을 담당합니다. *4. 웹 소켓: 웹 브라우저와 서버 간의 실시간 양방향 통신을 가능하게 하는 프로토콜 *5. 포드 메타데이터: 파일 원본 데이터 외에 추가적인 속성이나 정보를 포함하는 메타데이터 이러한 각 구성 요소는 엣지와 클라우드 간의 원활한 통신, 애플리케이션 배포, 데이터 관리 등을 담당하여 엣지 컴퓨팅의 성능과 효율성을 극대화합니다. 이를 통해 실시간 데이터 처리와 안정적인 시스템 운영이 가능하죠. │엣지 컴퓨팅과 KubeEdge 미래 전망 그렇다면 엣지컴퓨팅과 KubeEdge 미래 전망은 어떨까요? 엣지 컴퓨팅과 KubeEdge의 결합은 데이터 생성 지점에서 즉시 처리를 가능하게 하여 지연 시간을 줄이고, 클라우드 네이티브 애플리케이션을 엣지 환경에서도 원활하게 실행할 수 있도록 지원합니다. 따라서 이러한 기술의 결합은 5g와 함께 자율주행차, 스마트 시티 등 다양한 분야에서 혁신을 이끌며, 향후 지속적인 성장이 예상됩니다. IDC에 따르면, 전 세계 엣지 컴퓨팅 지출은 2023년 2080억 달러에서 2026년까지 연평균 13.1%씩 성장하여 3170억 달러에 이를 것으로 예상됩니다. 이러한 성장은 디지털 전환 이니셔티브의 중요한 요소로 엣지 컴퓨팅의 역할이 확대되면서 더욱 가속화될 예정입니다. 국내에서도 엣지 컴퓨팅과 관련한 기술 발전과 시장 확장이 활발히 이루어지고 있습니다. 정부가 민간사업에게 5G 주파수를 할당하면서 이음 5G(5G 특화망) 서비스가 시작되었고, 이를 통해 자율 주행 로봇 등의 엣지 컴퓨팅 관련 서비스가 확대되고 있습니다. 결론적으로 엣지 컴퓨팅과 KubeEdge의 결합은, 미래의 디지털 트랜스 포메이션을 가속화할 핵심 기술로 자리 잡을 것으로 전망하고 있습니다. 이들의 발전은 다양한 산업 분야에서 새로운 비즈니스 모델과 기회를 창출하여, 우리의 생활 방식을 더욱 안전하고 편리하게 만들어 줄 것입니다. 📚참고 자료 • MichaelShirer, "New IDC Spending Guide Forecasts Edge Computing Investments Will Reach $232 Billion in 2024", IDC • GordonHaff, "Edge computing: 4 trends for 2023", enterprisersproject • ShirleyStark, "Future Of Edge Computing: Top 6 Trends 2023", justtotaltech • TonyFyler, "Edge computing trends in 2023", techhq • Bluefriday, "KubeEdge concept", tistory • Mansoor Ahmed, "Kubernetes Native Edge Computing Framework, KubeEdge", linkedin • "TDK의 고급 HDD 헤드 기술은 사회의 디지털 변혁을 가속화합니다", shunlongwei • 양대규기자, 엣지에서 AI와 시각적 처리가 증가하는 이유, aitimes
2024.07.26
1
2
3
4