반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
[브레인저가 알려주는 IT#1] 네트워크 관리, SNMP가 뭔가요?
카프카를 통한 로그 관리 방법
김채욱
2023.09.19
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
메모리 누수 위험있는 FinalReference 참조 분석하기
안녕하세요! 저는 개발4그룹에서 제니우스(Zenius) SIEM의 로그 관리 기능 개발을 담당하고 있는 김채욱 입니다. 제가 하고 있는 일은 실시간으로 대용량 로그 데이터를 수집하여 분석 후, 사용자에게 가치 있는 정보를 시각화하여 보여주는 일입니다.
이번 글에서 다룰 내용은
1) 그동안 로그(Log)에 대해 조사한 것과 2) 최근에 CCDAK 카프카 자격증을 딴 기념으로, 카프카(Kafka)를 이용하여 어떻게 로그 관리를 하는지
에 대해 이야기해 보겠습니다.
PART1. 로그
1. 로그의 표면적 형태
로그(Log)는 기본적으로 시스템의 일련된 동작이나 사건의 기록입니다. 시스템의 일기장과도 같죠. 로그를 통해 특정 시간에 시스템에서 ‘어떤 일’이 일어났는지 파악할 수도 있습니다. 이렇게 로그는 시간에 따른 시스템의 동작을 기록하고, 정보는 순차적으로 저장됩니다.
이처럼
로그의 핵심 개념은 ‘시간’
입니다. 순차적으로 발생된 로그를 통해 시스템의 동작을 이해하며, 일종의 생활기록부 역할을 하죠. 시스템 내에서 어떤 행동이 발생하였고, 어떤 문제가 일어났으며, 유저와의 어떤 교류가 일어났는지 모두 알 수 있습니다.
만약 시간의 개념이 없다면 어떻게 될까요? 발생한 모든 일들이 뒤섞이며, 로그 해석을 하는데 어려움이 생기겠죠.
이처럼 로그를 통해 시스템은 과거의 변화를 추적합니다. 똑같은 상황이 주어지면 항상 같은 결과를 내놓는 ‘결정론적’인 동작을 보장할 수 있죠. 로그의 중요성, 이제 조금 이해가 되실까요?
2. 로그와 카프카의 관계
자, 그렇다면! 로그(Log)와 카프카(Kafka)는 어떤 관계일까요? 우선 카프카는 분산 스트리밍 플랫폼으로서, 실시간으로 대용량의 데이터를 처리하고 전송하는데 탁월한 성능을 자랑합니다. 그 중심에는 바로 ‘로그’라는 개념이 있는데요. 좀 더 자세히 짚고 넘어가 보겠습니다.
3. 카프카에서의 로그 시스템
카프카에서의 로그 시스템은, 단순히 시스템의 에러나 이벤트를 기록하는 것만이 아닙니다. 연속된 데이터 레코드들의 스트림을 의미하며, 이를 ‘토픽(Topic)’이라는 카테고리로 구분하죠. 각 토픽은 다시 *파티션(Partition)으로 나누어, 단일 혹은 여러 서버에 분산 저장됩니다. 이렇게 분산 저장되는 로그 데이터는, 높은 내구성과 가용성을 보장합니다.
*파티션(Partition): 하드디스크를 논리적으로 나눈 구역
4. 카프카가 로그를 사용하는 이유
로그의 순차적인 특성은 카프카의 ‘핵심 아키텍처’와 깊게 연결되어 있습니다. 로그를 사용하면,
데이터의 순서를 보장할 수 있어 대용량의 데이터 스트림을 효율적
으로 처리할 수 있기 때문이죠. 데이터를 ‘영구적’으로 저장할 수 있어,
데이터 손실 위험 또한 크게 줄어
듭니다.
로그를 사용하는 또 다른 이유는 ‘장애 복구’
입니다. 서버가 장애로 인해 중단되었다가 다시 시작되면, 저장된 로그를 이용하여 이전 상태로 복구할 수 있게 되죠. 이는 ‘카프카가 높은 가용성’을 보장하는 데 중요한 요소입니다.
∴
로그 요약
로그는 단순한 시스템 메시지를 넘어 ‘데이터 스트림’의 핵심 요소로 활용됩니다. 카프카와 같은 현대의 데이터 처리 시스템은
로그의 이러한 특성을 극대화하여, 대용량의 실시간 데이터 스트림을 효율적으로 처리
할 수 있는 거죠. 로그의 중요성을 다시 한번 깨닫게 되는 순간이네요!
PART2. 카프카
로그에 이어 에 대해 설명하겠습니다. 들어가기에 앞서 가볍게 ‘구조’부터 알아가 볼까요?
1. 카프카 구조
· 브로커(Broker)
브로커는 *클러스터(Cluster) 안에 구성된 여러 서버 중 각 서버를 의미합니다. 이러한 브로커들은, 레코드 형태인 메시지 데이터의 저장과 검색 및 컨슈머에게 전달하고 관리합니다.
*클러스터(Cluster): 여러 대의 컴퓨터들이 연결되어 하나의 시스템처럼 동작하는 컴퓨터들의 집합
데이터 분배와 중복성도 촉진합니다. 브로커에 문제가 발생하면, 데이터가 여러 브로커에 데이터가 복제되어 데이터 손실이 되지 않죠.
·
프로듀서(Producer)
프로듀서는 토픽에 레코드를 전송 또는 생성하는 *엔터티(Entity)입니다. 카프카 생태계에서 ‘데이터의 진입점’ 역할도 함께 하고 있죠. 레코드가 전송될 토픽 및 파티션도 결정할 수 있습니다.
*엔터티(Entity): 업무에 필요한 정보를 저장하고 관리하는 집합적인 것
·
컨슈머(Consumer)
컨슈머는 토픽에서 레코드를 읽습니다. 하나 이상의 토픽을 구독하고, 브로커로부터 레코드를 소비합니다. 데이터의 출구점을 나타내기도 하며, 프로듀서에 의해 전송된 메시지를 최종적으로 읽히고 처리되도록 합니다.
·
토픽(Topic)
토픽은 프로듀서로부터 전송된 레코드 카테고리입니다. 각 토픽은 파티션으로 나뉘며, 이 파티션은 브로커 간에 복제됩니다.
카프카로 들어오는 데이터를 조직화하고, 분류하는 방법을 제공하기도 합니다. 파티션으로 나눔으로써 카프카는 ‘수평 확장성과 장애 허용성’을 보장합니다.
·
주키퍼(ZooKeeper)
주키퍼는 브로커를 관리하고 조정하는 데 도움을 주는 ‘중앙 관리소’입니다. 클러스터 노드의 상태, 토픽 *메타데이터(Metadata) 등의 상태를 추적합니다.
*메타데이터(Metadata): 데이터에 관한 구조화된 데이터로, 다른 데이터를 설명해 주는 데이터
카프카는 분산 조정을 위해 주키퍼에 의존합니다. 주키퍼는 브로커에 문제가 발생하면, 다른 브로커에 알리고 클러스터 전체에 일관된 데이터를 보장하죠.
∴
카프카 구조 요약
요약한다면 카프카는
1) 복잡하지만 견고한 아키텍처 2) 대규모 스트림 데이터를 실시간으로 처리하는 데 있어 안정적이고 장애 허용성이 있음 3) 고도로 확장 가능한 플랫폼을 제공
으로 정리할 수 있습니다.
이처럼 카프카가 큰 데이터 환경에서 ‘어떻게’ 정보 흐름을 관리하고 최적화하는지 5가지의 구조를 통해 살펴보았습니다. 이제 카프카에 대해 조금 더 명확한 그림이 그려지지 않나요?
2. 컨슈머 그룹과 성능을 위한 탐색
카프카의 가장 주목할 만한 특징 중 하나는
‘컨슈머 그룹의 구현’
입니다. 이는 카프카의 확장성과 성능 잠재력을 이해하는 데 중심적인 개념이죠.
컨슈머 그룹 이해하기
카프카의 핵심은
‘메시지를 생산하고 소비’
하는 것입니다. 그런데 수백만, 심지어 수십억의 메시지가 흐르고 있을 때 어떻게 효율적으로 소비될까요?
여기서 컨슈머 그룹(Consumer Group)이 등장합니다. 컨슈머 그룹은, 하나 또는 그 이상의 컨슈머로 구성되어 하나 또는 여러 토픽에서 메시지를 소비하는데 협력합니다. 그렇다면 왜 효율적인지 알아보겠습니다.
·
로드 밸런싱:
하나의 컨슈머가 모든 메시지를 처리하는 대신, 그룹이 부하를 분산할 수 있습니다. 토픽의 각 파티션은 그룹 내에서 정확히 하나의 컨슈머에 의해 소비됩니다. 이는 메시지가 더 빠르고 효율적으로 처리된다는 것을 보장합니다.
·
장애 허용성:
컨슈머에 문제가 발생하면, 그룹 내의 다른 컨슈머가 그 파티션을 인수하여 메시지 처리에 차질이 없도록 합니다.
·
유연성:
데이터 흐름이 변함에 따라 그룹에서 컨슈머를 쉽게 추가하거나 제거합니다. 이에 따라 증가하거나 감소하는 부하를 처리할 수 있습니다.
여기까지는 최적의 성능을 위한 ‘카프카 튜닝 컨슈머 그룹의 기본 사항’을 다루었으니, 이와 관련된 ‘성능 튜닝 전략’에 대해 알아볼까요?
성능 튜닝 전략
·
파티션 전략:
토픽의 파티션 수는, 얼마나 많은 컨슈머가 활성화되어 메시지를 소비할 수 있는지 영향을 줍니다. 더 많은 파티션은 더 많은 컨슈머가 병렬로 작동할 수 있음을 의미하는 거죠. 그러나 너무 많은 파티션은 *오버헤드를 야기할 수 있습니다.
*오버헤드: 어떤 처리를 하기 위해 간접적인 처리 시간
·
컨슈머 구성:
*fetch.min.bytes 및 *fetch.max.wait.ms와 같은 매개변수를 조정합니다. 그다음 한 번에 얼마나 많은 데이터를 컨슈머가 가져오는지 제어합니다. 이러한 최적화를 통해 브로커에게 요청하는 횟수를 줄이고, 처리량을 높입니다.
*fetch.min.bytes: 한 번에 가져올 수 있는 최소 데이터 사이즈 *fetch.max.wait.ms: 데이터가 최소 크기가 될 때까지 기다릴 시간
·
메시지 배치:
프로듀서는 메시지를 함께 배치하여 처리량을 높일 수 있게 구성됩니다. *batch.size 및 *linger.ms와 같은 매개변수를 조정하여, 대기 시간과 처리량 사이의 균형을 찾을 수 있게 되죠.
*batch.size: 한 번에 모델이 학습하는 데이터 샘플의 개수 *linger.ms: 전송 대기 시간
·
압축:
카프카는 메시지 압축을 지원하여 전송 및 저장되는 데이터의 양을 줄입니다. 이로 인해 전송 속도가 빨라지고 전체 성능이 향상될 수 있습니다.
·
로그 정리 정책:
카프카 토픽은, 설정된 기간 또는 크기 동안 메시지를 유지할 수 있습니다. 보존 정책을 조정하면, 브로커가 저장 공간이 부족해지는 점과 성능이 저하되는 점을 방지할 수 있습니다.
3. 컨슈머 그룹과 성능을 위한 실제 코드 예시
다음 그림과 같은 코드를 보며 조금 더 자세히 살펴보겠습니다. NodeJS 코드 중 일부를 발췌했습니다. 카프카 설치 시에 사용되는 설정 파일 *server.properties에서 파티션의 개수를 CPU 코어 수와 같게 설정하는 코드입니다. 이에 대한 장점들을 쭉 살펴볼까요?
*server.properties: 마인크래프트 서버 옵션을 설정할 수 있는 파일
CPU 코어 수에 파티션 수를 맞추었을 때의 장점
·
최적화된 리소스 활용:
카프카에서는 각 파티션이 읽기와 쓰기를 위한 자체 *I/O(입출력) 스레드를 종종 운영합니다. 사용 가능한 CPU 코어 수와 파티션 수를 일치시키면, 각 코어가 특정 파티션의 I/O 작업을 처리합니다. 이 동시성은 리소스에서 최대의 성능을 추출하는 데 도움 됩니다.
·
최대 병렬 처리:
카프카의 설계 철학은 ‘병렬 데이터 처리’를 중심으로 합니다. 코어 수와 파티션 수 사이의 일치는, 동시에 처리되어 처리량을 높일 수 있습니다.
·
간소화된 용량 계획:
이 접근 방식은, 리소스 계획에 대한 명확한 기준을 제공합니다. 성능 병목이 발생하면 CPU에 *바인딩(Binding)되어 있는지 명확하게 알 수 있습니다. 인프라를 정확하게 조정할 수도 있게 되죠.
*바인딩(Binding): 두 프로그래밍 언어를 이어주는 래퍼 라이브러리
·
오버헤드 감소:
병렬 처리와 오버헤드 사이의 균형은 미묘합니다. 파티션 증가는 병렬 처리를 촉진할 수 있습니다. 하지만 더 많은 주키퍼 부하, 브로커 시작 시간 연장, 리더 선거 빈도 증가와 같은 오버헤드도 가져올 수도 있습니다. 파티션을 CPU 코어에 맞추는 것은 균형을 이룰 수 있게 합니다.
다음은 프로세스 수를 CPU 코어 수만큼 생성하여, 토픽의 파티션 개수와 일치시킨 코드에 대한 장점입니다.
파티션 수와 컨슈머 프로세스 수 일치의 장점
·
최적의 병렬 처리:
카프카 파티션의 각각은 동시에 처리될 수 있습니다. 컨슈머 수가 파티션 수와 일치하면, 각 컨슈머는 특정 파티션에서 메시지를 독립적으로 소비할 수 있게 되죠. 따라서 병렬 처리가 향상됩니다.
·
리소스 효율성:
파티션 수와 컨슈머 수가 일치하면, 각 컨슈머가 처리하는 데이터의 양이 균등하게 분배됩니다. 이로 인해 전체 시스템의 리소스 사용이 균형을 이루게 되죠.
·
탄력성과 확장성:
트래픽이 증가하면, 추가적인 컨슈머를 컨슈머 그룹에 추가하여 처리 능력을 증가시킵니다. 동일한 방식으로 트래픽이 감소하면 컨슈머를 줄여 리소스를 절약할 수 있습니다.
·
고가용성과 오류 회복:
컨슈머 중 하나가 실패하면, 해당 컨슈머가 처리하던 파티션은 다른 컨슈머에게 자동 재분배됩니다. 이를 통해 시스템 내의 다른 컨슈머가 실패한 컨슈머의 작업을 빠르게 인수하여, 메시지 처리가 중단되지 않습니다.
마지막으로 각 프로세스별 컨슈머를 생성해서 토픽에 구독 후, 소비하는 과정을 나타낸 소스코드입니다.
∴
컨슈머 그룹 요약
컨슈머 그룹은 높은 처리량과 장애 허용성 있는 메시지 소비를 제공하는 능력이 핵심입니다. 카프카가 어떤 식으로 운영되는지에 대한 상세한 부분을 이해하고 다양한 매개변수를 신중하게 조정한다면, 어떠한 상황에서도 카프카의 최대 성능을 이끌어낼 수 있습니다!
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
©
참고 자료
· Jay Kreps, “I Hearts Logs”, Confluent
· 위키피디아, “Logging(computing)”
· Confluent, “https://docs.confluent.io/kafka/overview.html”
· Neha Narkhede, Gwen Shapira, Todd Palino, “Kafka: The Definitive Guide”
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
#LOG
#로그
#카프카
#컨슈머
#KAFKA
#SIEM
#제니우스
김채욱
개발4그룹
실시간 대용량 로그 데이터의 수집 및 가공에 관심을 가지고 있습니다. 함께 발전해 나가는 개발을 추구합니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
네트워크 모니터링의 4가지 최신 트렌드
네트워크 모니터링의 4가지 최신 트렌드
클라우드와 엣지 컴퓨팅의 확산, 동영상/음악/게임 분야의 스트리밍 서비스의 성장 등으로 인해 네트워크 인프라는 점점 더 복잡해지고 있으며, 데이터 트래픽 또한 폭발적으로 증가하고 있습니다. 또한 DDoS(Distributed Denial of Service)나 스니핑(Sniffing) 공격과 같은 보안 위협도 확산되고 있습니다. 따라서 네트워크 성능을 안정적으로 유지하고 잠재적인 위협에 빠르게 대응하기 위한 네트워크 모니터링의 중요성이 더욱 커지고 있습니다. 한 조사에 따르면 네트워크 모니터링 시장 규모가 올해 29억 1천만 달러에 이른 후, 4년간 연평균 성장률(CARG) 9.7%를 기록하며 2028년에는 42억 1천만 달러까지 확대될 전망입니다. IT 기술과 서비스의 발전에 따라서 네트워크 모니터링은 구체적으로 어떻게 변화하고 있는지 네 가지로 나눠서 살펴보겠습니다. [1] 멀티 클라우드 환경에서의 네트워크 모니터링 벤더 종속성을 피하고 비용을 줄이며, 서비스의 성능을 높이기 위해 멀티 클라우드 전략이 많이 채택되고 있습니다. 하지만 멀티 클라우드를 구성하는 각 클라우드 서비스마다 네트워크 아키텍처와 성능이 다르기 때문에 안정적으로 네트워크를 관리하는 데에는 많은 어려움이 따르는 것도 사실입니다. 이러한 어려움을 극복하고, 멀티 클라우드의 운영 효율을 최대한 높이기 위한 네트워크 모니터링의 최근의 추세를 살펴보겠습니다. 가시성 높은 통합 대시보드를 통한 관리 복잡한 멀티 클라우드 환경에서 네트워크를 효율적으로 관리하기 위한 가시성 높은 통합 대시보드의 활용이 증가하고 있습니다. 통합 대시보드는 여러 클라우드에 걸쳐 발생하는 트래픽 흐름, 대역폭 사용량, 그리고 네트워크 성능 지표를 한 눈에 보기 쉽게 제공합니다. 이를 통해 관리자가 각 클라우드 서비스 간의 네트워크 상태를 실시간으로 쉽게 파악하고 문제에 빠르게 대응할 수 있게 돕고 있습니다. 특히, 통합 대시보드는 네트워크 토폴로지 맵과 성능 히트맵과 같은 세부적인 기능을 통해, 복잡하게 얽힌 클라우드 간의 트래픽 흐름을 직관적으로 분석할 수 있도록 지원하고 있습니다. 이를 통해 멀티 클라우드의 각 경로에서 발생할 수 있는 트래픽 불균형이나 병목 현상을 신속하게 감지하고 조정할 수 있습니다. 이와 더불어서 관리자가 자신이 중점적으로 모니터링해야 하는 지표들을 쉽게 확인할 수 있도록, 통합 대시보드의 관리자별 맞춤 설정 기능도 강화되고 있습니다. 이를 통해 관리자는 복잡한 멀티 클라우드 환경에서도 하나의 화면에서 리전별 트래픽, 네트워크 지연시간, 패킷 손실율 등 본인이 원하는 부분에 초점을 맞춰서 효율적으로 네트워크를 모니터링 할 수 있습니다. AI와 머신러닝을 통한 자동화된 분석 및 대응 AI와 머신러닝 기술이 적용된 네트워크 모니터링 시스템도 멀티 클라우드 운영 효율을 높이는데 크게 기여하고 있습니다. 우선 멀티 클라우드 환경의 네트워크는 멀티 클라우드 환경은 다양한 변수로 인해 네트워크 문제가 예측 불가능한 경우가 많습니다. 따라서 AI와 머신러닝 기술은 클라우드 간의 네트워크 상관관계, 트래픽 패턴, 대역폭 사용량, 성능 지표를 등을 학습하여 성능 저하나 장애의 잠재적 원인을 탐지하고 빠르게 알리고 있습니다. 또한 AI를 통해 실시간 트래픽 경로 분석하여 병목 현상이 발생하거나 리소스가 과도하게 사용될 경우 동적으로 VLAN 설정을 변경하거나, 트래픽을 다른 클라우드 인스턴스로 우회시키는 등의 자동화된 대응도 강화되고 있습니다. 이와 함께 네트워크 트래픽의 실시간 변화에 맞춰 QoS(서비스 품질) 정책을 자동으로 조정하여 중요한 애플리케이션에 우선순위를 부여하고, 비정상적인 트래픽을 즉시 차단하거나 제한하는 등의 대응도 자동으로 수행할 수 있습니다. 이 같은 자동화된 조치는 네트워크의 가용성을 높이고, 관리자의 개입 없이도 실시간으로 문제를 해결할 수 있어, 멀티 클라우드 환경에서의 네트워크 성능과 안정성을 높이고 있습니다. 시스템의 확장성 및 유연성 강화 멀티 클라우드 환경에서는 클라우드 리소스가 추가되거나 기존 리소스가 제거되면서, 네트워크의 구성과 요구사항이 빠르게 변동됩니다. 따라서 높은 유연성을 바탕으로 빠르게 변화하는 네트워크 환경에 신속하게 대응하는 것이 네트워크 모니터링 시스템의 중요한 요소로 자리잡았습니다. 구체적으로, 네트워크 모니터링 시스템을 통해 멀티 클라우드 인프라 내에서 새롭게 배포되는 서버나 애플리케이션을 자동으로 감지하고 이를 실시간으로 모니터링할 수 있는 것이 중요해지고 있습니다. 또한, 동적인 멀티 클라우드 환경에서 관리자가 특정 클라우드 서비스나 리소스에 맞춤형 모니터링 설정을 유연하게 적용할 수 있는 기능이 중요해지고 있습니다. 예를 들어, 새로운 클라우드 환경의 네트워크를 모니터링할 때, 해당 환경에 맞춘 모니터링 템플릿을 유연하게 구성하고 배포할 수 있는 기능이 점점 더 중요해지고 있습니다. 이러한 유연한 모니터링 시스템은 멀티 클라우드 인프라의 복잡성을 효과적으로 관리하고 운영 효율성을 높이는 데 중요한 역할을 하고 있습니다. 규정 준수 및 거버넌스 모니터링 멀티 클라우드 환경에서는 다양한 국가와 지역의 규제를 준수해야 합니다. 따라서 네트워크 모니터링 시스템은 네트워크 트래픽, 접근 로그, 보안 이벤트 등을 실시간으로 모니터링하여 잠재적인 규정 위반을 탐지하고 사전에 인지할 수 있도록 지원하고 있습니다. 특히 규정 준수(Compliance) 모니터링은 멀티 클라우드 환경에서 필수적입니다. 예를 들어, 한 클라우드가 유럽에 위치하고 있어 GDPR(유럽 일반 데이터 보호 규정)을 준수해야 하고, 다른 클라우드는 미국의 규제에 따라야 할 때, 네트워크 모니터링 시스템을 통해 각 클라우드에서 발생하는 네트워크 트래픽, 보안 이벤트와 접근 로그를 추적하고, 잠재적인 규정 위반을 사전에 탐지할 수 있도록 지원하고 있습니다. 또한, 거버넌스 모니터링 측면에서는 클라우드 간의 데이터 관리와 접근 통제 정책이 일관되게 적용되도록 지원합니다. 멀티 클라우드 환경에서는 다양한 클라우드 제공자 간에 민감한 데이터가 이동할 수 있기 때문에, 데이터 접근 권한을 관리하고 비인가된 접근 시도를 실시간으로 감시하는 기능이 필수적입니다. 이를 통해 기업은 데이터 유출 위험을 줄이고, 여러 규제와 거버넌스 요구 사항을 준수할 수 있습니다. [2] SDN(소프트웨어 정의 네트워킹) 모니터링 SDN(Software-Defined Networking)은 네트워크를 더 쉽게 관리할 수 있도록 설계된 기술입니다. 전통적인 네트워크는 스위치나 라우터 같은 네트워크 하드웨어 장치가 데이터의 전달 경로와 방식을 스스로 결정했습니다. 하지만 각 장비가 독립적으로 작동하다 보니 네트워크 설정을 변경하는 데 시간이 많이 걸렸고, 특히 대규모 네트워크를 통합적으로 관리하는 데 어려움이 있었습니다. 반면, SDN에서는 소프트웨어 기반의 중앙 컨트롤러(제어 평면, Control Plane)가 데이터의 전달 경로와 방식을 통합하여 결정하고 하드웨어 장치들은 이 결정에 따라 데이터를 전송하는 역할만 수행합니다. 따라서 네트워크 구성을 변경하거나 최적화하기가 쉽고, 대규모 네트워크도 효율적으로 관리할 수 있는 장점이 있습니다. 하지만 동시에 중앙 컨트롤러에 장애가 발생하거나 해킹을 당할 경우 네트워크 전체가 마비될 수 있는 위험이 있으며, 실시간으로 네트워크 상태를 모니터링하고 분석하는 것이 어려운 단점도 존재합니다. 따라서 네트워크 모니터링 시스템은 SDN의 단점을 보완하고 장점을 강화하는 방향으로 발전하고 있습니다. 실시간 데이터 수집 및 분석 실시간 데이터 분석은 네트워크 환경이 계속해서 변화하는 SDN의 특성상 매우 중요합니다. 특히 SDN에서는 스위치, 라우터, 케이블 등 네트워크 하드웨어 장치들이 정상적으로 작동하고 연결된 상태를 나타내는 '물리적 상태'와, 중앙 컨트롤러가 설정한 네트워크 경로와 적용된 정책을 의미하는 '논리적 상태'를 모두 실시간으로 정확하게 모니터링해야 합니다. 네트워크 모니터링 시스템은 이러한 물리적 상태와 논리적 상태를 추적하기 위해, 네트워크 지연 시간, 트래픽 흐름, 패킷 손실, 대역폭 사용량, 링크 상태와 같은 다양한 성능 지표를 실시간으로 수집하고 분석하는 기능을 강화하고 있습니다. 이러한 분석을 통해 네트워크 관리자가 잠재적인 문제나 성능 저하를 조기에 감지하여, 심각한 문제가 발생하기 전에 조치할 수 있도록 돕고 있습니다. 빠르고 자동화된 대응 지원 네트워크 모니터링 시스템은 네트워크 주요 데이터에 대한 수집과 분석에서 그치지 않고, SDN의 컨트롤러와 연계하여 빠르고 자동화된 대응을 지원하고 있습니다. 예를 들어, 특정 시간대에 트래픽이 과도하게 증가하면, 모니터링 시스템이 이를 실시간으로 탐지하고 SDN 컨트롤러를 통해 특정 트래픽을 다른 경로로 자동 분산시킵니다. 링크 장애가 발생하면 모니터링 시스템은 즉시 대체 경로를 설정하여 트래픽이 끊기지 않도록 조치하며, 문제가 해결되면 다시 원래의 경로로 트래픽을 재배치하는 자동 복구 기능을 수행합니다. 이처럼 네트워크 모니터링 시스템과 SDN 컨트롤러와의 연계를 통해 네트워크 운영자의 개입 없이도 스스로 문제를 해결하는 능력이 더욱 진화할 것으로 기대되고 있습니다. 보안이 강화된 모니터링 앞서 살펴본대로 SDN은 네트워크 제어를 중앙집중식으로 처리하는 구조적 특성을 가지고 있기 때문에, 중앙 컨트롤러의 보안이 매우 중요합니다. 따라서 SDN 환경에서 네트워크 모니터링 시스템은 다양한 잠재적인 보안 위협을 사전에 감지하고, 신속하게 대응할 수 있는 강화된 보안 기능을 필수적으로 갖춰가고 있습니다. 예를 들어 네트워크 상에서 발생하는 다양한 이벤트를 실시간으로 감시하고 분석하여, 비정상적인 트래픽 흐름, 의심스러운 로그인 시도, 네트워크 장치 간의 비정상적인 통신 행위 등에 대한 탐지가 가능합니다. 또한 보안을 강화하기 위해서 네트워크 모니터링 시스템과 SIEM(보안 정보 및 이벤트 관리 시스템), IPS(침입 방지 시스템), IDS(침입 탐지 시스템)의 통합이나 연계도 활발하게 이루어지고 있습니다. 분산형 SDN 컨트롤러 모니터링 SDN 환경에서 중앙 컨트롤러 하나에 의존하는 방식의 리스크를 줄이기 위해, 많은 네트워크 운영자들이 분산형 SDN 컨트롤러 아키텍처를 채택하고 있습니다. 분산형 컨트롤러는 각기 독립적으로 운영되면서도 상호 간에 정보와 상태를 동기화하여 안정적인 네트워크 운영이 가능합니다. 따라서 최근 네트워크 모니터링 시스템은 각 컨트롤러의 상태와 성능을 실시간으로 추적하고, 컨트롤러 간 협력 상태를 감시하여 과부하나 장애 발생 시 즉시 다른 컨트롤러로 트래픽을 자동 분산하거나 대체 컨트롤러를 할당하는 기능을 지원하고 있습니다. 또한, 분산된 컨트롤러 간의 상태 동기화 여부를 실시간으로 확인하여, 동기화 문제로 인한 비효율적인 경로 설정이나 보안 취약점을 방지하고, 문제 발생 시 즉각적인 경고 및 자동 수정 기능을 제공합니다. 장애 복구와 복원 기능 또한 필수적으로 강화되어, 장애 발생 시 대체 컨트롤러가 즉각적으로 운영을 이어받고, 문제가 해결된 후에는 트래픽을 원래 컨트롤러로 복원하는 기능도 제공하고 있습니다. [3] 엣지컴퓨팅 환경의 네트워크 모니터링 엣지 컴퓨팅(Edge Computing)은 데이터를 중앙의 대형 데이터센터나 클라우드 서버에서 처리하는 기존 방식과 달리, 데이터를 생성하는 디바이스나 그와 가까운 위치에서 처리하는 기술입니다. 예를 들어 스마트폰, IoT 기기, 자율주행차, 또는 공장 내의 다양한 장비들이 데이터를 스스로 처리하고, 필요한 경우에만 중앙 서버나 클라우드로 데이터를 전송하는 방식입니다. 네트워크 대역폭을 절약할 수 있고, 빠른 서비스 제공이 가능해서 다양한 분야에서 활용이 증가하고 있습니다. 엣지 디바이스들이 데이터를 처리하는 위치가 분산되어 있고, 시스템이 유연하게 확장될 수 있기 때문에, 이러한 환경에 맞춰 각 디바이스와 네트워크의 상태를 실시간으로 모니터링할 수 있는 엣지컴퓨팅 맞춤형 네트워크 모니터링이 필요합니다. 엣지 노드별 모니터링 엣지 컴퓨팅 환경에서는 엣지 노드에서 발생하는 데이터를 실시간으로 정확하게 감지하고 관리해야 합니다. 따라서 네트워크 모니터링 시스템은 각 엣지 노드에 경량화된 에이전트를 배치하거나 에이전트리스 모니터링 방식 등을 활용하여 모니터링을 진행합니다. 이를 통해 엣지 노드의 주요 상태(네트워크 대역폭 소비, 지연 시간 등)를 정확히 분석하고, 비정상적인 상태를 감지하면 중앙 서버에 즉시 알림을 보내고 있습니다. 이때 엣지 노드에서 생성되는 모든 데이터를 중앙 서버로 전송하는 것은 네트워크 대역폭에 큰 부담을 줄 수 있습니다. 따라서 네트워크 모니터링 시스템은 데이터 샘플링을 통해 필수적인 데이터를 효율적으로 선택하고, 데이터 필터링을 통해 불필요한 데이터를 제거하고 전체 네트워크의 부하를 줄이면서 성능을 최적화할 수 있도록 돕고 있습니다. AI/ML 기반의 자동화된 대응 엣지 컴퓨팅의 특성상 문제 발생 시 네트워크 운영자가 모든 노드에 직접 접근해 수동으로 대응하는 것이 현실적으로 어렵습니다. 따라서 운영자의 개입 없이도 엣지 디바이스가 문제를 자율적으로 감지하고 해결할 수 있는 자동화된 대응 시스템이 중요합니다. 네트워크 모니터링 시스템에도 자동화된 대응 기능이 강화되고 있습니다. 자동화된 대응 시스템은 네트워크 모니터링과 관리의 자동화를 통해 분산된 엣지 노드에서 발생하는 문제를 실시간으로 감지하고, 즉각적인 대응을 가능하게 합니다. 특히 AI 및 ML 기술이 이러한 자동화된 대응 시스템의 핵심 기술로 작용하고 있습니다. 예를 들어 정상적인 트래픽 흐름과 비정상적인 트래픽 흐름을 구분하기 위해 각 노드의 트래픽 데이터를 분석하여, 평상시 패턴과 다른 변화를 신속히 감지하고, 이때 이상 징후가 발견되면 트래픽 차단, 리소스 재분배, 또는 네트워크 경로 변경 등의 대응 조치를 자동으로 실행함으로써 네트워크 전체의 안정성을 높이고 있습니다. 확장에 대한 원활한 지원 5G 네트워크의 확산과 IoT 디바이스의 확산등으로 엣지 노드의 수가 폭발적으로 증가하면서 각 노드에서 생성되는 데이터의 양도 기하급수적으로 늘어나고 있습니다. 이러한 환경에서 네트워크 모니터링 시스템은 더 많은 노드를 빠르고 효율적으로 처리할 수 있는 능력을 가져야 하며, 노드 간 상호 연결성을 포함해 분산된 네트워크 전반에 걸쳐 일관된 성능을 유지해야 합니다. 이를 위해 네트워크 모니터링 시스템은 새로운 엣지 노드가 네트워크에 추가될 때마다 별도의 수작업 설정 없이 자동으로 노드를 인식하고, 모니터링을 즉시 시작할 수 있도록 기능이 강화되고 있습니다. 또한 자동 스케일링 기능을 통해 엣지 노드가 증가하면 모니터링 시스템의 리소스를 동적으로 확장하여, 성능 저하 없이 모든 노드를 관리하고 모니터링할 수 있도록 지원하고 있습니다. [4] 네트워크 보안 강화 네트워크 모니터링 분야에서 '보안'은 항상 중요한 주제였지만, 최근 IT 기술의 발전과 빈번한 보안사고 등으로 인해 그 중요성이 더 커지고 있습니다. 네트워크 보안 강화와 관련한 주요 이슈들을 살펴보겠습니다. 제로 트러스트(Zero Trust) 보안 모델의 확산 "절대 신뢰하지 말고, 항상 검증하라"는 원칙에 기반한 제로 트러스트 보안 모델은 내부와 외부를 구분하지 않고, 모든 사용자와 장치의 접근을 철저히 검증하는 접근법입니다. 클라우드 서비스의 확산으로 인해 기업 네트워크의 경계가 모호해지면서 더욱 중요해지고 있습니다. 제로 트러스트 모델을 올바르게 구현하기 위해서는 네트워크의 모든 트래픽을 실시간으로 모니터링하고 비정상적인 활동을 자동으로 탐지하고 즉각적으로 대응할 수 있는 시스템이 필요합니다. 이는 기존 보안 시스템이 단순히 알려진 위협을 차단하는 것에 그쳤다면, 제로 트러스트 모델에서는 잠재적인 위협까지도 감지하고 대응할 수 있어야 한다는 것을 의미합니다. 이를 위해, 최근 네트워크 모니터링 시스템은 AI 기술을 활용하여 자동으로 이상 징후를 탐지하고, 보안 위협에 신속하게 대응하는 능력을 강화하고 있습니다. 예를 들어, AI 기반 모니터링 시스템은 평소와 다른 사용자 행동 패턴을 감지하고, 이를 바탕으로 잠재적인 보안 위협을 조기에 차단하고 있습니다. SASE(Secure Access Service Edge)의 부상 SASE는 네트워크와 보안 기능을 통합하여 클라우드 환경에서 제공하는 혁신적인 보안 모델입니다. VPN, 방화벽, 침입 탐지 시스템, 데이터 손실 방지 등을 하나의 통합 솔루션으로 제공하며, 특히 외부에서 중앙 데이터센터로의 안전한 접근을 보장하는 데 최적화되어 있습니다. SASE는 전통적인 네트워크 보안 솔루션이 클라우드 환경에서 가지는 한계를 극복하고, 어디서든 동일한 보안 수준을 유지할 수 있게 하는 장점이 있습니다. SASE의 핵심은 네트워킹과 보안 기능을 통합하여, 기업이 네트워크와 보안을 하나의 솔루션으로 관리할 수 있도록 하는 것입니다. SASE를 도입하면 방화벽, 클라우드 접근 보안 브로커(CASB), 보안 웹 게이트웨이(SWG) 등 다양한 보안 기능을 단일 플랫폼에서 통합 관리할 수 있어, IT 팀이 더 효율적이고 일관된 보안 정책을 실행할 수 있습니다. 또한, SASE는 네트워크 모니터링 시스템을 진화시켜, 다양한 보안 기능(예: 방화벽, CASB, 보안 웹 게이트웨이 등)을 실시간으로 모니터링하고 관리할 수 있게 합니다. 이를 통해 네트워크 가시성을 높이고, 비정상적인 활동에 대한 즉각적인 대응이 가능해지며, 궁극적으로 조직의 보안을 강화하고 있습니다. XDR(Extended Detection and Response) 도입 XDR은 전통적인 EDR(Endpoint Detection and Response)을 확장하여, 네트워크, 엔드포인트, 서버, 클라우드 환경 등에서 발생하는 보안 위협을 통합적으로 탐지하고 대응하는 기술입니다. XDR은 다양한 보안 도구와 데이터를 통합하여 상관관계를 분석함으로써, 보안 운영 팀이 위협을 보다 쉽게 이해하고 신속하게 대응할 수 있도록 지원하기 때문에 많은 주목을 받고 있습니다. XDR을 활용하려면 상당한 초기 비용이 들고 관리에 어려움이 있기 때문에 많은 기업들이 XDR 전문 관리 솔루션을 도입하고 있습니다. 이에 따라 네트워크 모니터링 시스템도 단순히 네트워크 트래픽을 모니터링하는 것에서 나아가, XDR 전문 관리 솔루션과의 긴밀한 협력을 통해 통합된 보안 운영과 모니터링을 서비스로 제공하는 방향으로 발전하고 있습니다. 예를 들어, 기업은 네트워크 모니터링 시스템을 통해 다양한 보안 데이터를 실시간으로 수집하고 분석하며, 이를 XDR 솔루션과 통합하여 종합적인 보안 상태를 한눈에 파악할 수 있습니다. 이로 인해 보안 위협에 대한 대응 속도를 높이고, 더욱 정교한 보안 전략을 구현할 수 있게 됩니다. 멀티 클라우드와 SDN, 엣지 컴퓨팅 환경에서 네트워크 모니터링은 가시성, 유연성, 그리고 자동화된 대응 능력을 갖춘 시스템으로 진화하고 있습니다. 특히 AI와 머신러닝 기술을 활용한 자동화된 분석은 네트워크 성능 저하나 장애를 사전에 예측하고 대응하는 데 중요한 역할을 합니다. 기술의 발전에 맞추어 발전하는 네트워크 모니터링 시스템의 사용을 통해 기업은 더욱 복잡해지는 네트워크 환경에서 잠재적 위협을 신속히 탐지하고 대응할 수 있습니다.
2024.09.23
하이브리드 클라우드 환경에서 네트워크 모니터링 솔루션 도입 시 고려사항 5가지
하이브리드 클라우드 환경에서 네트워크 모니터링 솔루션 도입 시 고려사항 5가지
반드시 하나 이상의 퍼블릭 클라우드와 프라이빗 클라우드(또는 온프레미스 인프라)를 함께 사용하는 하이브리드 클라우드는, 유연한 확장성과 높은 보안성을 동시에 활용할 수 있어서 다양한 비즈니스 환경에서 사용되고 있습니다. 그러나 하이브리드 클라우드는 서로 다른 네트워크 구성과 보완 요구사항을 통합해야 하기 때문에, 전체 상태를 효과적으로 모니터링하지 않으면 성능 저하나 보안 문제가 발생할 수 있습니다. 그렇다면 하이브리드 클라우드 환경에서 네트워크 모니터링 솔루션을 도입할 때, 필수적으로 고려해야 할 요소는 무엇인지 자세히 살펴보겠습니다. 1. 이기종 네트워크 환경 간 통합 가시성 하이브리드 클라우드 환경에서 프라이빗 클라우드와 퍼블릭 클라우드(AWS, Azure 등) 간 네트워크는 서로 다른 프로토콜(TCP, UDP, HTTP 등)과 장비로 구성되기 때문에 관리가 복잡해집니다. 따라서 네트워크 모니터링 솔루션은 각기 다른 네트워크 요소를 실시간으로 통합하여 한눈에 확인할 수 있는 가시성을 갖춰야 합니다. 구체적으로 네트워크 모니터링 솔루션은 각 클라우드의 네트워크 트래픽을 실시간으로 모니터링하여 패킷 손실이나 지연, 비정상적인 트래픽이 발생하는 순간 이를 빠르게 감지하고 문제의 위치를 파악해 정확히 대응할 수 있어야 합니다. 예를 들어 퍼블릭 클라우드 데이터베이스가 프라이빗 클라우드의 애플리케이션과 연결될 때 특정 구간에서 지연이 발생하는 경우, 해당 구간의 원인을 분석하여 즉각적인 대응 방안을 제시해야 합니다. 또한 API 연동을 통해 각 클라우드의 모니터링 데이터를 하나의 대시보드에 통합하여, 클라우드 전체의 트래픽 흐름을 실시간으로 파악하고 성능을 최적화할 수 있어야 합니다. 2. 네트워크 지연 문제와 트래픽 최적화 하이브리드 클라우드 환경에서는 프라이빗 클라우드와 퍼블릭 클라우드 간 물리적 거리와, 여러 네트워크 장치를 거치는 특성상 지연 문제가 발생할 수 있습니다. 이를 해결하기 위해 네트워크 모니터링 솔루션은 트래픽 경로와 성능 데이터를 실시간으로 수집하고 분석하여 지연의 원인을 파악하고, 최적화된 경로로 트래픽을 조정하는 기능이 필요합니다. 또한 Qos(Quality of Service) 정책을 통해 애플리케이션의 중요도에 따라 트래픽 우선순위를 설정하여, 중요한 애플리케이션의 대역폭을 확보할 수 있어야 합니다. 클라우드 리전 간 데이터 전송 시에는, AI 기반 라우팅 알고리즘을 통해 최적의 경로를 실시간으로 선택해 지연 시간을 줄여야 합니다. 이를 통해 예기치 못한 트래픽 증가나 장애 상황에서도 대체 경로를 자동으로 탐색하여, 서비스 연속성을 보장할 수 있어야 합니다. 3. 대규모 데이터 전송과 대역폭 관리 하이브리드 클라우드 환경에서는 대규모 데이터 전송이 빈번하게 이루어질 뿐만 아니라 데이터 복제, 동기화, 마이그레이션으로 인해 대역폭 사용량이 급증할 수 있습니다. 따라서 네트워크 모니터링 솔루션은 대역폭 사용 현황과 트래픽 패턴을 실시간으로 파악하여, 특정 시간대에 발생하는 과부하를 미리 예측하고 대응할 수 있는 기능이 필요합니다. 대역폭 관리 기능을 통해 데이터 전송이 몰리는 시간대에 대역폭을 자동으로 재할당하거나, 특정 시간대에 데이터 전송을 예약하여 네트워크 부하를 효과적으로 분산할 수 있어야 합니다. 또한 데이터 압축과 캐싱을 활용해, 불필요한 데이터 전송을 줄이고 전송 효율을 최적화하는 것도 중요합니다. 클라우드 서비스 제공 업체마다 데이터 전송 비용이 다를 수 있어, 비용 최적화를 위한 경로와 전송 시점을 조정하는 기능도 필요합니다. 예를 들어 비용이 낮은 시간대를 선택하거나 효율적인 경로를 자동 선택하여, 대규모 데이터 전송의 효율성과 비용 절감을 동시에 확보할 수 있어야 합니다. 4. 보안 및 규정 준수 강화 하이브리드 클라우드 환경에서 퍼블릭 및 프라이빗 클라우드 간 빈번한 데이터 이동은 네트워크의 취약성을 높일 수 있기 때문에, 보안 관리가 특히 중요합니다. 이를 위해 네트워크 모니터링 솔루션은 엔드-투-엔드 암호화 기능을 제공하여 이동중인 데이터가 제3자가 내용을 볼 수 없도록 보호하고, 데이터가 무단으로 수정되거나 유출될 경우 즉시 경고할 수 있어야 합니다. 또한 하이브리드 환경에서는 퍼블릭 및 프라이빗 네트워크 보안 표준이 각각 다릅니다. 따라서 통합 보안 정책 관리 기능을 통해 일관된 보안 정책 적용을 보장하고, 침입 탐지 시스템 (IDS)와 침입 방지 시스템 (IPS)와 연동하여 보안 위협을 실시간 분석하고 차단할 수 있어야 합니다. 규정 준수 또한 중요합니다. 특히 금융, 의료, 공공기관 등에서는 개인 데이터 보호와 같은 엄격한 규정을 요구하기 때문에, 모니터링 솔루션은 데이터 접근 및 사용 내역을 실시간으로 기록하고 컴플라이언스 상태를 자동으로 평가해 보고하는 기능을 갖춰야 합니다. 예를 들어 유럽의 데이터 보호 규정(GDPR)이나 미국의 의료 정보 보호법(HIPAA) 준수 여부를 실시간으로 모니터링하여, 규제 대응에 필요한 보고서를 제공할 수 있어야 합니다. 5. 네트워크 장애 대응 및 고가용성(HA)설계 하이브리드 클라우드 환경에서는 각 클라우드 인프라에서 예기치 못한 장애가 발생하더라도, 신속하게 복구하고 안정적으로 운영하기 위한 고가용성(HA) 설계가 필요합니다. 이를 위해 네트워크 모니터링 솔루션은 멀티패스 라우팅 기능을 제공하여 리전 내 특정 경로에 문제가 생기면, 자동으로 대체 경로를 선택해 트래픽을 우회하여 서비스 중단을 방지할 수 있어야 합니다. 또한 네트워크 상태를 실시간으로 모니터링하고 장애 가능성을 사전에 감지해 경고하는 예측 기반 모니터링 시스템도 필요합니다. 이 시스템은 장애 발생 시 자동으로 복구 절차를 실행해 서비스 중단 시간을 최소화할 수 있어야 합니다. 다중 리전 페일오버 기능도 지원해야 합니다. 리전 전체에 네트워크 장애가 발생하더라도, 즉시 다른 리전으로 트래픽을 전환하여 운영을 지속할 수 있어야 합니다. 특정 네트워크 장비의 장애 상황에서도 운영을 유지할 수 있도록 지리적 이중화 설계도 필요합니다. 마지막으로 장애 원인을 분석하고 재발을 방지하는 사후 보고 기능이 중요합니다. 장애 발생 시점과 원인, 영향을 상세히 기록하여 유사한 문제가 반복되지 않도록 해야 합니다. 하이브리드 클라우드 환경에서 네트워크 모니터링 솔루션을 도입할 때는, 앞서 언급한 5가지 요소를 충족하여 네트워크 상태를 체계적으로 관리할 수 있어야 합니다. 특히 모니터링 솔루션을 통해 클라우드 간 데이터 이동이나 대규모 트래픽 상황에서는 네트워크 상태를 실시간으로 모니터링하여, 즉각적으로 필요한 조치를 취해 성능과 안정성을 유지할 수 있습니다. 또한 보안 관리와 규정 준수를 지원하는 모니터링 기능은, 데이터 보호와 컴플라이언스 요건을 충족하여 서비스의 신뢰성을 높이는 데 도움을 줍니다. 이처럼 구체적이고 체계적인 모니터링 솔루션은 하이브리드 클라우드에서 발생할 수 있는 복잡한 문제를 효과적으로 관리하며, 안정적이면서도 효율적인 서비스를 지속하게 합니다.
2024.10.29
다음 슬라이드 보기