반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
옵저버빌리티 향상을 위한 제니우스 대표 기능들
[행사] 1주년 맞이한 BB데이
최순정
2023.04.27
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
신입 개발자의 브레인즈컴퍼니 합류 여정
BB데이가 1주년을 맞이했습니다.
(
그 동안의 BB데이 보러가기
)
지난해 4월 처음 발을 내딛었던 BB데이는 1년 간 빠짐없이 이어져 오며, 매달 브레인저 간 소통의 장을 만들어왔습니다.
BB데이에서는 신규 직원을 소개하기도 하고, 다른 층에 근무해 평소 이야기 나눌 기회가 없는 팀과 교류할
기회도 가질 수 있었습니다.
또, 개발자와 일반 직군 사이의 벽도 허물며 지난달
해외 워크숍
에서 여행 메이트가 되기도 했고, 업무적으로도 도움을 받을 수 있었습니다.
이번 4월 BB데이에서도 어김없이 신규 직원들이 참석해, 타 부서의 브레인저와 교류하며 함께 1주년을 축하하는 시간을 가졌습니다.
BB데이하면 빠질 수 없는 술과 음식! 항상 인기 많은 치킨
, 처음 시켜보는 마라샹궈와 궁합이 좋은 고량주
,
그리고 1주년을 축하하기 위해 성수 맛집 오복떡집에서 공수해 온 떡까지 알차게 준비해 봤어요.
1년 간 BB데이를 운영해 온 담당자가 촛불
을 불고, 브레인저들이 박수
로 답례해줬습니다.
이후 1주년 맞이 특별 행운권
뽑기 시간을 가졌습니다.
앞에서 아무도 행운을 가져가지 못하고, 마지막으로 인프라웹팀만이 남은 상태!
인프라웹팀은 뽑기 전 당첨자가 팀에 커피를 쏘기로 해, 행운이 벌칙으로 바뀌는 상황이 벌어졌습니다.
당첨자는 도영님과 예지님이었는데요. 이후에 동료들과 회사 앞 스타벅스
에 모여있는 걸 목격했습니다.
이번달에도 서로 웃고 즐기며 한 달을 기분좋게 마무리할 수 있었어요.
BB데이는 앞으로도 쭈~~~~~~욱 계속됩니다!
#브레인즈컴퍼니
#사내행사
#BB데이
최순정
경영기획팀(PR매니저)
브레인즈컴퍼니의 소식, 조직문화, 브레인저 이야기를 대내외에 전파하고 있습니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
앞선 글들을 통해서 NMS의 기본 개념, 구성요소와 기능, 정보 수집 프로토콜에 대해서 알아봤었는데요. 이번 글에서는 NMS의 역사와 진화 과정, 그리고 최근 트렌드에 대해서 자세히 알아보겠습니다. EMS, NPM, 그리고 AIOps에 이르기까지 네트워크의 빠른 변화에 발맞추어 진화하고 있는 NMS에 대해서 하나씩 하나씩 살펴보겠습니다. ㅣNMS의 역사와 진화 과정 우선 NMS의 전반적인 역사와 진화 과정을 살펴보겠습니다. [1] 초기 단계 (1980년대 이전) 초기에는 네트워크 관리가 수동적이었습니다. 네트워크 운영자들은 네트워크를 모니터링하고 문제를 해결하기 위해 로그 파일을 수동으로 분석하고 감독했습니다. [2] SNMP의 등장 (1988년) SNMP(Simple Network Management Protocol)의 등장으로 네트워크 장비에서 데이터를 수집하고 이를 중앙 집중식으로 관리하는 표준 프로토콜을 통해 네트워크 관리자들이 네트워크 장비의 상태를 실시간으로 모니터링하고 제어할 수 있게 됐습니다. [3] 네트워크 관리 플랫폼의 출현 (1990년대 중후반) 1990년대 후반부에는 상용 및 오픈 소스 기반의 통합된 네트워크 관리 플랫폼이 등장했습니다. 이러한 플랫폼들은 다양한 네트워크 장비와 프로토콜을 지원하고, 시각화된 대시보드와 경고 기능 등을 제공하여 네트워크 관리의 편의성을 높였습니다. [4] 웹 기반 NMS (2000년대 중반) 2000년대 중반에는 웹 기반의 NMS가 등장했습니다. 이러한 시스템은 사용자 친화적인 웹 인터페이스를 통해 네트워크 상태를 모니터링하고 관리할 수 있게 했습니다. [5] 클라우드 기반 NMS (2010년대 이후) 최근 몇 년간 클라우드 기반 NMS의 등장으로 네트워크 관리의 패러다임이 변화하고 있습니다. 또한 빅데이터 기술과 인공지능(AI) 기술을 활용하여 네트워크 성능을 최적화하고, 향후 성능을 예측할 수 있는 성능 예측 기능까지 NMS에서 제공하고 있습니다. ㅣNMS에서 EMS로의 진화 네트워크 환경은 빠르게 변화하게 되고, 이에 따라서 NMS도 EMS로 진화하게 됩니다. NMS의 진화는 총 세 가지 세대로 나눌 수 있습니다. 1세대: 디바이스 관리 시스템 기존의 NMS는 외산 제조사에서 제공하는 전용 네트워크 솔루션이 주를 이루었습니다. CISCO의 시스코웍스(CiscoWorks), IBM의 넷뷰(NetView) HP의 네트워크 노드 매니저(Network Node Manager) 등 다양한 벤더들이 자사의 제품에 대한 모니터링 서비스를 제공하기 위해 특화된 디바이스 관리 솔루션을 내놓았죠. HP Network Node Manager 예시 화면(출처ⓒ omgfreeet.live) 물론 자사의 제품을 관리하기 위한 목적에서 출발한 솔루션이었기에, 대규모 이기종 IT 인프라 환경에 대한 모니터링 기능은 제공하지 못했습니다. 2세대: IT 인프라 관리 시스템 EMS의 등장 1세대의 NMS의 경우 빠르게 급변하는 네트워크 트렌드를 따라갈 수 없었습니다. 가상랜(VLAN), 클라이언트-서버 기술이 발달하게 되자, IP 네트워크 관계만으로 실제 토폴로지를 파악하기 어려웠습니다. 또한 네트워크장비 및 회선의 상태뿐 아니라, 서버 등의 이기종 IT 인프라 통합 모니터링에 대한 니즈와 함께 EMS(Enterprise Management System)의 시대가 시작됩니다. 이에 따라 서비스 관리 차원의 통합 관제 서비스가 등장합니다. 기존의 네트워크 모니터링뿐 아니라 서버, DBMS, WAS 등 IT 서비스를 이루고 있는 모든 인프라들에 대한 통합 모니터링에 대한 관심과 니즈가 증가했기 때문입니다. 3세대: 클라우드 네이티브 환경의 EMS 2010년 중 이후 서버, 네트워크 등 IT 인프라에 대한 클라우드 네이티브로의 전환이 가속화되었습니다. 기존의 레거시 환경에 대한 모니터링과 함께 퍼블릭, 프라이빗 클라우드에 대한 모니터링 니즈가 증가하면서 모든 환경에 대한 통합적인 가시성을 제공해 줄 수 있는 EMS가 필요하게 되었죠. 이외에도 AI의 발전을 통해 AIOps, Observability라는 이름으로 인프라에 대한 장애를 사전적으로 예측할 수 있는 기능이 필요하게 됐습니다. ㅣ네트워크 환경 변화(가상화)와 NMS의 변화 이번에는 네트워크 환경 변화에 따른 NMS의 변화에 대해서 알아보겠습니다. 네트워크 환경 변화(네트워크 가상화) 네트워크 구성 방식은 지속적으로 변화해왔습니다. 클라이언트-서버 모델부터 중앙 집중식 네트워크, MSA 환경에서의 네트워크 구성까지 이러한 변화는 기술 발전, 비즈니스 요구 사항, 보안 요구 사항 등 다양한 요인에 의해 영향을 받았는데요. 무엇보다 가장 중요한 변화는 전통적인 온 프레미스 네트워크 구조에서 네트워크 자원이 더 이상 물리적인 장비 기반의 구성이 아닌 가상화 환경에서 구성된다는 점입니다. ▪소프트웨어 정의 네트워킹(SDN, 2000년대 후반 - 현재): 네트워크 관리와 제어를 분리하고 소프트웨어로 정의하여 유연성과 자동화를 향상시키는 접근 방식입니다. SDN은 네트워크 관리의 복잡성을 줄이고 가상화, 클라우드 컴퓨팅 및 컨테이너화와 같은 새로운 기술의 통합을 촉진시켰습니다. ▪네트워크 가상화 (NFV, 현재): 기존 하드웨어 기반 전용 장비에서 수행되던 네트워크 기능을 소프트웨어로 가상화하여 하드웨어 의존성과 장비 벤더에 대한 종속성을 배제하고, 네트워크 오케스트레이션을 통해 네트워크 환경 변화에 민첩한 대응을 가능하게 합니다. ㅣ클라우드, AI 등의 등장에 따른 NMS의 방향 클라우드 네이티브가 가속화되고, AI를 통한 인프라 관리가 주요 화두로 급부상하면서 네트워크 구성과 이를 모니터링하는 NMS의 환경 역시 급변하고 있습니다. 클라우드 내의 네트워크: VPC VPC(Virtual Private Cloud)는 퍼블릭 클라우드 환경에서 사용할 수 있는 전용 사설 네트워크입니다. VPC 개념에 앞서 VPN에 대한 개념을 단단히 잡고 넘어가야 합니다. VPN(Virtual Private Network)은 가상사설망으로 '가상'이라는 단어에서 유추할 수 있듯이 실제 사설망이 아닌 가상의 사설망입니다. VPN을 통해 하나의 네트워크를 가상의 망으로 분리하여, 논리적으로 다른 네트워크인 것처럼 구성할 수 있습니다. VPC도 이와 마찬가지로 클라우드 환경을 퍼블릭과 프라이빗의 논리적인 독립된 네트워크 영역으로 분리할 수 있게 해줍니다. VPC가 등장한 후 클라우드 내에 있는 여러 리소스를 격리할 수 있게 되었는데요. 예를 들어 'IP 주소 간에는 중첩되는 부분이 없었는지', '클라우드 내에 네트워크 분리 방안' 등 다양한 문제들을 VPC를 통해 해결할 수 있었습니다. ▪서브넷(Subnet): 서브넷은 서브 네트워크(Subnetwork)의 줄임말로 IP 네트워크의 논리적인 영역을 부분적으로 나눈 하위망을 말합니다. AWS, Azure, KT클라우드, NHN 등 다양한 퍼블릭 클라우드의 VPC 서브넷을 통해 네트워크를 분리할 수 있습니다. ▪서브넷은 크게 퍼블릿 서브넷과 프라이빗 서브넷으로 나눌 수 있습니다. 말 그대로 외부 인터넷 구간과 직접적으로 통신할 수 있는 공공, 폐쇄적인 네트워크 망입니다. VPC를 이용하면 Public subnet, Private subnet, VPN only subnet 등 필요에 따라 다양한 서브넷을 생성할 수 있습니다. ▪가상 라우터와 라우트 테이블(routing table): VPC를 통해 가상의 라우터와 라우트 테이블이 생성됩니다. NPM(Network Performance Monitoring) 네트워크 퍼포먼스 모니터링(NPM)은 전통적인 네트워크 모니터링을 넘어 사용자가 경험하는 네트워크 서비스 품질을 측정, 진단, 최적화하는 프로세스입니다. NPM 솔루션은 다양한 유형의 네트워크 데이터(ex: packet, flow, metric, test result)를 결합하여 네트워크의 성능과 가용성, 그리고 사용자의 비즈니스와 연관된 네트워크 지표들을 분석합니다. 단순하게 네트워크 성능 데이터(Packet, SNMP, Flow 등)를 수집하는 수동적인 과거의 네트워크 모니터링과는 다릅니다. 우선 NPM은 네트워크 테스트(Synthetic test)를 통해 수집한 데이터까지 활용하여, 실제 네트워크 사용자가 경험하는 네트워킹 서비스 품질을 높이는데 그 목적이 있습니다. NPM 솔루션은 NPMD라는 이름으로 불리기도 합니다. Gartner는 네트워크 성능 모니터링 시장을 NPMD 시장으로 명명하고 다양한 데이터를 조합하여 활용하는 솔루션이라고 정의했습니다. 즉 기존의 ICMP, SNMP 활용 및 Flow 데이터 활용과 패킷 캡처(PCAP), 퍼블릭 클라우드에서 제공하는 네트워크 데이터 활용까지 모든 네트워크 데이터를 조합하는 것이 핵심이라 할 수 있습니다. AIOps: AI를 활용한 네트워크 모니터링 AI 모델을 활용한 IT 운영을 'AIOps'라고 부릅니다. 2014년 Gartner를 통해 처음으로 등장한 이 단어는 IT 인프라 운영에 머신러닝, 빅데이터 등 AI 모델을 활용하여 리소스 관리 및 성능에 대한 예측 관리를 실현하는 것을 말합니다. 가트너에서는 AIOps에 대한 이해를 위해 관제 서비스, 운영, 자동화라는 세 가지 영역으로 분류해서 설명하고 있습니다. ▪관제(Observe): AIOps는 장애 이벤트가 발생할 때 분석에 필요한 로그, 성능 메트릭 정보 및 기타 데이터를 자동으로 수집하여 모든 데이터를 통합하고 패턴을 식별할 수 있는 관제 단계가 필요합니다. ▪운영(Engine): 수집된 데이터를 분석하여 장애의 근본 원인을 판단하고 진단하는 단계로, 장애 해결을 위해 상황에 맞는 정보를 IT 운영 담당자에게 전달하여 반복적인 장애에 대한 조치 방안을 자동화하는 과정입니다. ▪자동화(Automation): 장애 발생 시 적절한 해결책을 제시하고 정상 복구할 수 있는 방안을 제시하여, 유사 상황에도 AIOps가 자동으로 조치할 수 있는 방안을 마련하는 단계입니다. 위의 세 단계를 거쳐 AIOps를 적용하면 IT 운영을 사전 예방의 성격으로 사용자가 이용하는 서비스, 애플리케이션, 그리고 인프라까지 전 구간의 사전 예방적 모니터링을 가능하게 합니다. 또한 구축한 데이터를 기반으로 AI 알고리즘 및 머신 러닝을 활용하여 그 어떠한 장애에 대한 신속한 조치와 대응도 자동으로 가능하게 합니다. Zenius를 통한 클라우드 네트워크 모니터링 참고로 Zenius를 통해 각 퍼블릭 클라우드 별 VPC 모니터링이 가능합니다. VPC의 상태 정보와 라우팅 테이블, 서브넷 목록 및 서브넷 별 상세 정보 (Subnet ID, Available IP, Availability Zone 등)에 대한 모니터링 할 수 있습니다. Zenius-CMS를 통한 AWS VPC 모니터링 이외에도 각 클라우드 서비스에 대한 상세 모니터링을 통해 클라우드 모니터링 및 온 프레미스를 하나의 화면에서 모니터링하실 수 있습니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼, 네트워크의 변화에 따라서 NMS는 계속해서 진화하고 있습니다. 현재의 네트워크 환경과 변화할 환경을 모두 완벽하게 관리할 수 있는 NMS 솔루션을 통해 안정적으로 서비스를 운영하시기 바랍니다.
2024.04.03
금융권에서 꾸준히 각광받는 제니우스(Zenius)
금융권에서 꾸준히 각광받는 제니우스(Zenius)
지난해 10월 일본의 은행 간 결제 시스템이 이틀간 '먹통'이 된 사태가 발생했었습니다. 그리고 한 달 후에는 카드 결제 데이터를 처리하는 일본 카드 네트워크의 시스템 오류로 인해 일본 각지에서 7시간 넘게 시민들이 카드 사용을 못 하는 불편이 발생하기도 했죠. 일본의 사례와 같이 은행이나 카드회사 등의 금융회사에서 네트워크/서버의 장애가 발생할 경우 궁극적으로 이익과 신뢰도의 급감으로 이어질 수 있습니다. 그렇기 때문에 '사고 없는' IT 인프라 환경 운영을 위한 노력을 이어가는 가운데, 브레인즈컴퍼니의 제니우스(Zenius)을 활용하는 금융기관이 꾸준히 증가하고 있습니다. ㅣ제니우스, 금융기관에서 꾸준히 각광받다 앞서 언급한 대로, 제니우스를 도입하고 활용하는 금융기관이 꾸준히 늘고 있습니다. 최근 수협중앙회는 '통합관제 및 운영 자동화'를 위해, 그리고 새마을금고는 '빅데이터 플랫폼 고도화'를 위해 제니우스를 도입했습니다. 또한 한국수출입은행과 한국 주택금융공사도 서버와 네트워크 관리를 위해 제니우스를 활용하고 있습니다. 이 밖에도 NH 뱅크, 신협중앙회, 광주은행, IBK 투자증권, DB손해보험 등에서도 꾸준히 제니우스를 활용하고 있습니다. 그렇다면 금융기관에서 제니우스를 꾸준히 사용하고 있는 이유는 무엇일까요? ㅣ제니우스의 네 가지 강점 금융기관에서 꾸준히 각광받는 제니우스는 크게 네 가지의 강점이 있습니다. [1] IT 인프라에 대한 통합 관리 제니우스는 금융기관의 복잡한 IT 환경을 통합 관리할 수 있는 기능들을 제공합니다. 이를 통해 IT 인프라의 성능 및 장애 정보를 빠르게 파악할 수 있어서, 운영 효율성과 안정성을 크게 높을 수 있습니다. [2] 보안 강화 금융기관에 필수적인 높은 수준의 보안을 유지할 수 있도록 제니우스는 통합 로그 관리, 보안 취약점 점검 등의 보안 기능을 제공합니다. 이를 통해 보안 위협에 대응하고 사전에 예방할 수 있습니다. [그림] 제니우스(Zenius) 오버뷰 예시화면 [3] 장애 대응 및 예방 실시간 모니터링과 자동 장애 복구 기능으로 시스템 장애에 대한 신속한 예방과 대응이 가능합니다. 이를 통해 서비스 중단을 최소화하고, 고객 만족도를 높일 수 있습니다. [4] 클라우드 서비스 지원 쿠버네티스 활용을 비롯한 클라우드 환경으로의 전환은 금융기관의 중요한 이슈로 떠오르고 있습니다. 제니우스는 모든 클라우드 환경(퍼블릭, 프라이빗, 하이브리드)에 대한 모니터링이 가능하여, 클라우드 서비스 안정성과 효율성을 크게 높여줍니다. 제니우스(Zenius)는 앞서 살펴 본 금융기관뿐 아니라, 공공기관과 기업을 포함한 1,000곳 이상에서 활발히 활용되고 있습니다. CSAP 인증과 GS 인증 1등급도 획득한 제니우스를 통해 성공적인 IT 인프라를 관리하시기 바랍니다.
2024.04.16
제니우스 SIEM(통합로그관리 시스템), 클라우드 서비스 확산 사업 서비스로 선정
제니우스 SIEM(통합로그관리 시스템), 클라우드 서비스 확산 사업 서비스로 선정
브레인즈컴퍼니의 IT 인프라 통합로그관리 시스템인 '제니우스 SIEM'이 과기부와 정보통신산업진흥원이 주관하는 '2024년 중소기업 클라우드 서비스 보급 확산 사업'의 공급 서비스로 선정됐습니다! ㅣ중소기업 클라우드 서비스 보급 확산 사업이란? 이 사업은 국내 중소기업들이 클라우드 기반의 디지털 서비스를 더 활발하게 사용하게 되는 것이 가장 큰 목적입니다. 위 이미지 상의 '수요기업'이 공급 서비스를 선택하여 이용 신청을 하면, 운영 기관에서 수요기업의 환경(산업 분야, 기업 규모 등)를 고려하여 도입 컨설팅 및 이용료를 지원합니다. 지원은 크게 두 가지 부문으로 일반지원과 집중 지원으로 나누어 진행되는데요. 일반지원으로 신청하여 최종 선정되면 최대 1,550만 원을, 집중 지원은 최대 5,000만 원을 지원받을 수 있습니다. (단, 자부담금은 20%) 브레인즈컴퍼니는 이번 사업에서 재무 건정성과, 통합로그관리 시장에서의 Zenius(제니우스) SIEM의 영향도를 높이 평가받아 제공기업으로 선정될 수 있었습니다. ㅣ제니우스(Zenius) SIEM은? 이번 사업의 공급 서비스로 등록된 제니우스 SIEM은, 이기종의 다양한 장비에서 발생되는 로그(Log)를 수집 및 분석하고 모니터링할 수 있는 솔루션입니다. AI 기술을 기반으로 한 SIEM을 통해 효율적인 실시간 모니터링과 컴플라이언스 준수, 그리고 보안 위협에 대한 대응 체계를 수립할 수 있어 시장에서 좋은 평가를 받고 있습니다. [그림] 제니우스 SIEM 예시 화면 높은 기술력과 품질을 인정받아 2023년에 CC 인증과 GS 인증 1등급을 획득하기도 한 SIEM은, 현재 인천공항공사를 비롯한 다수의 공공기관 및 기업에서 도입 후 사용 중에 있습니다. 제니우스 SIEM의 주요 특정점은 빠른 인덱싱 및 검색 속도, 무중단 스테일 아웃, 복합 이벤트 처리(CEP), 그리고 사용자 상황에 맞춘 사용자 정의 대시보드, 강력한 통계 분석 기능 등이 있습니다. 결과적으로 제니우스 SIEM을 통해 대용량 로그에 대한 통합 관리, 사이버 침해 위협에 대한 보안 대응 체계 마련, 컴플라이언스 준수 등의 목적을 이룰 수 있습니다. 다양한 기능을 탑재한 제니우스 SIEM을 통해, 대용량 로그에 대한 실시간 통합 모니터링 체계 구축하고 보안 위협에도 효과적으로 대응하시기 바랍니다.
2024.04.16
SDN(소프트웨어 정의 네트워크)의 주요 특징과 성공사례는?!
SDN(소프트웨어 정의 네트워크)의 주요 특징과 성공사례는?!
지메일, 유튜브, 구글맵스, 구글 클라우드까지.. 구글은 자사의 다양한 서비스들이 어디에서나 원활하게 돌아갈 수 있도록, 전 세계 곳곳의 수많은 데이터 센터를 운영하고 있습니다. 구글의 한 데이터 센터 전경(출처ⓒ google.com) 그리고 이 데이터 센터간의 효율적이고 안정적인 '네트워크' 구축을 위해, 다양한 노력을 펼치고 있습니다. 사용자에게 빠른 서비스를 제공하기 위해선 데이터 센터간의 높은 연결성과 효율성이 필수조건이기 때문이죠. 구글의 네트워크 운영은 2012년에 큰 전환점을 맞이합니다. 이 변화의 중심에는 SDN(Software Defined Network, 소프트웨어 정의 네트워크)이란 기술이 있는데요. 구글의 네트워크 운영 효율과 안정성을 극적으로 개선시킨 SDN은 과연 무엇일까요? 우선 SDN의 주요 특징부터 살펴보겠습니다. ㅣSDN의 두 가지 핵심특징 SDN은 네트워크 관리를 간소화하고 네트워크 구성의 유연성을 높이기 위해 고안된 기술입니다. SDN에는 두 가지 핵심적인 특징이 있는데요. 첫 번째 특징, 컨트롤 플레인과 데이터 플레인의 분리 SDN을 대표하는 첫 번째 특징은, 네트워크 장비의 전반적인 데이터를 중앙 집중적으로 관리할 수 있는 컨트롤 플레인(Control Plane)과, 트래픽 전송 역할을 하는 데이터 플레인(Data Plane)이 분리된 것입니다. 이러한 분리에 따른 두 가지 효과를 살펴보겠습니다. (1) 최적의 로드밸런싱이 가능해짐 기존에는 라우터와 스위치 등의 네트워크 장비가 경로를 결정했었습니다. 이 장비들은 주로 최단 경로 알고리즘을 통해 패킷을 전달하기 때문에, 네트워크 관리자가 특정 경로를 원하는대로 설정하기엔 어려움이 있었습니다. 즉 '로드밸런싱'이 어려웠었죠. 하지만 SDN은 이러한 상황의 변화를 가져왔습니다. [그림] SDN 로드밸런싱 예를 들어 보겠습니다. 기존에는 경로 정보가 있을 때 U에서 나가는 트래픽을 V와 X에 각각 분산시키고 싶을 경우, 기존의 최단 알고리즘을 통하면 항상 최단의 경로로만 라우팅할 수 있었습니다. 하지만 위 [그림]처럼 SDN을 사용하면 네트워크 관리자는 전체 네트워크의 상태를 실시간으로 파악하고, 트래픽을 V와 X로 균등하게 분산시키는 등 세밀한 조정을 할 수 있습니다. 이를 통해 네트워크의 효율성을 극대화하고, 트래픽 과부하나 장애 발생 시 빠르게 대응할 수 있게 되었죠. (2) 비용 절감과 효율성 증대 SDN을 통해 기업들은 고가의 전용 네트워크 장비를 사용하지 않고도, 필요한 네트워크 기능을 구현할 수 있게 되었습니다. 이에 따라서 초기 장비 투자 비용(CapEx)과 네트워크의 운영 비용(OpEx)을 모두 줄일 수 있습니다. 또한 네트워크 관리의 자동화와 최적화로 운영의 효율성을 높여주며, 장기적으로는 인적 자원에 대한 비용 절감으로도 이어집니다. 두 번째 특징, 중앙 집중식 관리 시스템 SDN을 대표하는 또다른 특징은 소프트웨어(SDN 컨트롤러)가 중앙에서 제어한다는 것입니다. 이 소프트웨어가 네트워크의 '두뇌' 역할을 하며, 네트워크의 각 기능이 어떻게 동작할지 지시합니다. 이러한 특징으로 인한 대표적인 효과를 살펴보겠습니다. (1) 유연성과 신속한 대응 기존 네트워크 시스템은 하드웨어 중심으로 돌아가기 때문에, 이 변화에 적응하기 위해선 실제 장비를 교체하거나 수동으로 설정을 변경해야 했습니다. 하지만 SDN에서는 모든 제어 기능이 '중앙'에서 소프트웨어로 이루어지기 때문에, 변경 사항이나 새로운 요구 사항이 발생했을 경우 관리자는 물리적 장비에 접근하거나 개별 설정을 조정할 필요없이 소프트웨어를 통해 네트워크를 즉시 업데이트할 수 있게 되었습니다. 이 덕분에 기존에 며칠이나 몇 주가 걸리던 네트워크 변경 작업을 몇 분 안에 할 수 있게 됐습니다. (2) 보안과 성능 최적화 기존의 전통적인 네트워크 관리 방식에서는, 네트워크의 각 부분에 대해서 심층적으로 들여다 보는 것이 어려웠습니다. 네트워크 장비와 시스템이 서로 다른 플랫폼과 프로토콜을 사용했기 때문에, 전체적인 네트워크 상태의 모니터링이 사실상 불가능했었죠. 하지만 SDN은 소프트웨어를 통한 중앙집중식 관리 시스템으로 이루어져 있기에, 네트워크의 모든 부분에 대한 실시간 통합 관리가 가능합니다. 이를 통해서 보안 위협을 빠르게 식별하고 대응할 수 있게 되었죠. 또한 트래픽 패턴을 정밀하게 분석하여 재분배하고, 트래픽 병목 현상을 예방하여 전반적인 네트워크 성능도 개선할 수 있게 됐습니다. SDN의 두 가지 특징과 그로 인한 효과를 알아봤는데요. 이제 SDN의 아키텍처와 구현 방식에 대해서도 한번 살펴보겠습니다. ㅣSDN의 아키텍처와 구현 방식 SDN 아키텍처: 세 가지 주요 계층 SDN은 네트워크 관리를 더 유연하고 효율적으로 만들기 위해, '세 가지' 주요 계층으로 구성되어 있습니다. 세 가지 계층은 앞서 언급했던 Control Plane(컨트롤 플레인)과 Data Plane(데이터 플레인), 그리고 Application Plane(응용 프로그램 계층)입니다. 각 계층은 네트워크를 관리하고 운영하는데 있어 중요한 역할을 하는데요. 각 계층별 역할과 연관성에 대해서 알아보겠습니다. 우선 아래 [그림]에 가장 하단에 위치한 Data Plane(데이터 플레인)은 Control Plane(컨트롤 플레인)이 내린 결정에 따라 실제 데이터 패킷(Data packet)을 전송하는 역할을 합니다. 데이터 플레인은 스위치, 라우터 같은 물리적 장비를 통해 구현되며, 이들 장비는 데이터 패킷을 처리하고 전달하죠. [그림] SDN 아키텍처 중간에 위치한 Control Plane(컨트롤 플레인)은 네트워크에서 어떤 데이터가 어디로 가야 하는지 결정하는 역할을 합니다. 즉 Control Plane(컨트롤 플레인)은 네트워크 트래픽을 어디로 보낼지 결정하는 역할을 합니다. 가장 위에 위치한 Application Plane(응용 프로그램 계층)은 사용자에게 서비스를 제공하는 소프트웨어 애플리케이션을 말합니다. 이 계층은 SDN의 나머지 두 계층 위에 있으며, 네트워크의 다양한 리소스를 활용해 실제 사용자에게 서비스를 제공합니다. 클라우드 스토리지 서비스나 스트리밍 서비스 같은 것이 여기에 해당됩니다. 이 서비스들은 Control Plane(컨트롤 플레인)과 Data Plane(데이터 플레인)을 통해 데이터를 주고 받으며, 사용자에게 콘텐츠를 제공하죠. 이처럼 세 계층은 서로 밀접하게 연결되어 있습니다. 다시 말해 Control Plane(컨트롤 플레인)이 네트워크의 전반적인 관리와 결정을 담당하면, Data Plane(데이터 플레인)은 그 결정을 바탕으로 실제 데이터를 전송하죠. 그리고 Application Plane(응용 프로그램 계층)은 이 모든 네트워크 인프라 위에서 동작하며, 최종 사용자에게 서비스를 제공합니다. SDN의 구현 방식 위에서 살펴본 것 처럼 SDN은 세 개의 층으로 이루어져 있는데요. 이 각각의 층이 '제대로' 역할을 수행하기 위해서 꼭 필요한 것이 SDN Controller, OpenFlow 프로토콜입니다. OpenFlow 프로토콜은 SDN 컨트롤러와 네트워크 장비 사이에서 동작하는 프로토콜입니다. 컨트롤 플레인과 데이터 플레인 사이의 소통을 담당하고 있죠. OpenFlow 프로토콜은 컨트롤 플레인이 네트워크 장비에 구체적인 지시를 내리고, 그 지시에 따라 트래픽을 어디로 보낼지 결정할 수 있게 해줍니다. [그림] SDN 컨트롤러, OpenFlow 프로토콜 SDN 컨트롤러는 이 모든 과정을 조율하는 '중앙 집중식 지휘소'라 할 수 있는데요. 컨트롤러는 네트워크의 전반적인 상황을 파악하고, 데이터 플로우를 최적화하기 위한 결정을 내리며, OpenFlow를 통해 그 결정을 네트워크 장비에 전달합니다. 컨트롤러가 없다면 마치 중앙 교통 관리 시스템이 없이 각자의 판단에 따라 움직이는 차량들처럼 혼란스러워 지겠죠. 이처럼 SDN 컨트롤러와 OpenFlow 프로토콜을 통해 구현된 중앙 집중식 네트워크 관리는 효율적이고 유연한 트래픽 조정을 가능하게 합니다. 이제 마지막으로 맨 앞에서 잠시 살펴 본 구글(Google)의 사례를 자세히 들여다보겠습니다. ㅣ사례를 통해 보는 SDN: 구글의 G-Scale 구글의 'G-Scale SDN 프로젝트(2012)'는 SDN을 가장 효과적으로 활용한 대표적인 사례입니다. 이 프로젝트는 구글이 2010년부터 진행한 OpenFlow 프로젝트의 일환으로, 구글 데이터센터 백본(BackBone)1 구간을 SDN 기반으로 전환하는 대담한 시도였죠. 구글 이 프로젝트를 통해 성취한 결과는 인상적인 수준을 넘어, 네트워크 관리 방식에 혁신을 일으켰다고 평가받고 있습니다. 구글은 얻은 대표적인 세 가지 이득을 살펴보겠습니다. *1: 백본: 전산망 속에서 근간이 되는 네트워크를 연결시켜주는 대규모 전송회선 [그림] 구글 G-Scale 프로젝트를 통해 구축된 데이터 센터(2012) 1. 인프라 리소스의 최적 활용 구글은 OpenFlow를 기반으로 한 SDN을 적용해 기존에 40~50% 수준에 머물렀던 네트워크 인프라의 활용도를 거의 100% 가까이 끌어올렸습니다. 기존 네트워크 시스템에서는 다양한 벤더의 장비들이 서로 완벽하게 호환되지 않은 문제로 인해, 전체 네트워크 장비의 효율성이 제한되곤 했었죠. 하지만 구글의 SDN 구현은 이러한 한계를 넘어서, 네트워크 자원을 훨씬 유연하게 관리할 수 있는 방법을 제시할 수 있게 했습니다. 2. WAN 대역의 경로 최적화 WAN(Wide Area Network)에서의 데이터 전송 속도와 효율성은, 전 세계 사용자들에게 고품질의 서비스를 제공하는 데 핵심적인 요소인데요. 구글은 SDN을 통해 이러한 WAN 대역의 데이터 전송 경로를 최적화하여, 사용자 경험을 크게 향상시킬 수 있었습니다. 이는 전 세계 서비스를 제공하는 구글에게 있어 대단히 중요한 성과였죠. 3. 네트워크 구축 비용의 절감 구글은 SDN 컨트롤러와 화이트박스 스위치의 조합을 통해, 데이터센터 내 네트워크 구축 비용을 대폭 낮출 수 있었습니다. 화이트박스 스위치는 사용자가 네트워크 장비의 동작방식을 직접 결정할 수 있게 하는 개방형 장비로, 구글은 이를 통해 더 효율적이고 경제적인 네트워크 인프라를 구축할 수 있게 됐습니다. 또한 구축 비용의 절감 뿐 아니라 전반적인 서비스 품질의 향상 효과도 거둘 수 있었습니다. [그림] 구글의 다양한 SDN 기술 이처럼 구글의 'G-Scale SDN 프로젝트'는 단순히 기술적 성공을 넘어서, 전 세계 통신사와 네트워크 장비 제조사들이 SDN을 도입하고 네트워크 가상화에 뛰어들게 만든 결정적 계기가 되었습니다. 구글은 여기서 한 발자국 더 나아가 BGP, Espresso, B4, Andromeda, Jupiter 등 다양한 SDN 기술을 적극적으로 활용하고 있습니다. 이러한 노력은 네트워크의 효율성을 극대화하고, 비용을 최적화하여, 데이터 중심의 세계에서 경쟁력을 유지하고, 사용자에게 더 나은 서비스를 제공하는 성과를 만들어내고 있습니다. 구글의 G-Scale 프로젝트라는 큰 성공을 만들어낸 SDN도 '어떻게 하면 안정적으로 네트워크를 관리하고 운영할 수 있을까?'라는 고민에서 시작됐습니다. 네트워크 관리의 중요성은 더욱 더 커지고 있습니다. SDN이라는 혁신적인 기술을 바로 도입하는 것도 물론 좋지만, 그 전에 현재의 네트워크를 제대로 모니터링 하고 있는지 부터 점검해봐야 합니다. 여러분의 네트워크는 제대로 관리되고 있나요?
2024.05.09
다음 슬라이드 보기