반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
[행사] 2023년 3월 BB데이
제23기 정기주주총회 개최
최순정
2023.03.31
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
클라우드 송환(Cloud Repatriation): 클라우드에서 다시 온프레미스로
제23기 정기 주주총회가 3월 31일 브레인즈컴퍼니 8층 라운지에서 열렸습니다.
바쁘신 와중에도 여러 주주분들이 참석해주셨습니다!
이번 주주총회에서는
먼저 영업, 감사, 내부회계관리제도 운영실태에 대해 보고했습니다.
다음으로
재무제표 승인, 이사 및 감사 선임, 주식매수선택권 부여, 이사보수한도 승인, 감사보수한도 승인 등
사항에 대해 결의했습니다.
위 안건들은 모두 원안대로 가결됐습니다!
앞으로도 브레인즈컴퍼니는
기업 및 주주가치를 제고하기 위해
임직원 모두 최선을 다하겠습니다.
감사합니다.
#브레인즈컴퍼니
#주주총회
최순정
경영기획실(PR매니저)
브레인즈컴퍼니의 소식, 조직문화, 브레인저 이야기를 대내외에 전파하고 있습니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
머신러닝 기반 메트릭 데이터 이상탐지
머신러닝 기반 메트릭 데이터 이상탐지
개요 이상탐지(Anomaly Detection)는 시계열 데이터에서 과거 또는 비슷한 시점의 다른 데이터의 보편적인 패턴에서 벗어나거나, 벗어나려는 징후가 있는 드문 패턴이나 사실, 대상 개체를 찾아내는 데이터 분석의 한 분야입니다. 시계열이 아닌 것 중에 이상한 것을 찾는 것은 대부분 아웃라이어 탐지에서 다루고 있으나, 아웃라이어 탐지와 이상탐지를 구분하지 않고 넓은 의미에서 이상탐지로 취급합니다. 기존에는 이상탐지를 위해 통계학 기술을 많이 사용해 왔으나, 최근에는 머신러닝 기술을 이상탐지에 적용하는 사례가 늘어가고 있습니다. 당사의 ITIM 제품인 Zenius EMS는 과거 성능 패턴에 대해서 통계 기반의 상∙하한 동적임계치를 구한 뒤, 임계치를 벗어날 가능성이 있는 성능치에 대한 장애 발생가능성을 선제적으로 통보해주는 Proactive(사전장애예측-이상탐지) 기능이 이미 구현돼 있습니다. 필자는 최근에 주목받고 있는 AI 기술을 접목해 단일 성능치가 아닌 메트릭 데이터 셋에 대한 이상탐지 기능을 구현하기 위한 연구를 진행했고 그 결과에 대해 기술하고자 합니다. 이상탐지와 머신러닝 머신러닝으로 이상탐지를 구현하는 학습법은 ▲지도학습 ▲비지도학습 ▲반지도학습으로 구분할 수 있습니다. 지도학습 기반으로 머신러닝을 구현하기 위해서는 기존에 수집된 데이터 중 정상적인 데이터 셋과 이상한 것으로 판별된 데이터 셋을 적절히 섞어서 학습데이터 셋을 만들어야 합니다. 그러나 실제 수집되는 데이터에서 이상 사례로 판별된 학습 데이터를 확보화는 것은 상당히 어렵습니다. 소량의 정답데이터를 이용해서 비슷한 것을 찾아 내거나 학습데이터를 확장시키는 반지도학습을 고려할 수도 있지만, 이 경우도 고객사에 제품을 납품한 이후 일정 시간동안 이상사례에 대한 학습 데이터를 수집해야 하고, 좋은 모델을 만드는데 시간이 너무 오래 소요됩니다. 따라서, 고객사에 제품 납품 후 머신러닝을 빠르게 적용할 수 있도록 비지도학습을 통해 이상탐지를 구현할 수 있는 방법을 중점적으로 고려하게 됐습니다. 비지도학습 이상탐지 ITIM 제품인 Zenius EMS가 수집하는 메트릭 데이터는 대부분 정상 데이터이므로 수집된 데이터 중 일부 비정상 데이터(감시설정에 의해 이벤트가 발생된 데이터)를 자동으로 제거해서 비지도학습을 수행했습니다. 학습에 사용되는 데이터는 모두 정상 데이터이므로 PCA(Principal Component Analysis)를 이용해 차원을 축소하고 복원하는 과정을 통해 비정상 데이터를 검출할 수도 있으나 이번 연구에서는 Neural Network의 Autoencoder 기반의 머신러닝 기법을 사용했습니다. Autoencoder는 입력을 Latent Variable로 압축하는 Encoding과, 이를 다시 원본에 가깝게 복원해내는 Decoding 과정으로 진행되며 이를 통해 데이터의 중요한 정보들만 압축적으로 학습할 수 있습니다. <그림 설명: Autoencoder 개요> 위 그림은 Autoencoder의 기본적인 원리를 나타내고 있습니다. 정상 데이터셋을 통해 학습된 Autoencoder에 정상 샘플을 입력하게 되면 Decoder를 통해 나온 출력이 정상 샘플과 유사하게 잘 복원되지만 비정상적인 샘플을 입력하게 되면, 입력과 출력 값의 차이가 도드라지게 발생하게 되므로 비정상 샘플을 검출할 수 있습니다. 다만, Autoencoder의 Code Size(Latent Variable의 Dimension) 같은 Hyper-Parameter에 따라 전반적인 복원 성능이 좌우되기 때문에 판정 정확도가 지도학습에 비해 다소 불안정하다는 단점이 존재합니다. 또, Autoencoder의 입력과 출력의 차이를 어떻게 정의할 것인지, 어떤 Loss Function을 사용해서 Autoencoder를 학습시킬지 등 여러가지 요인에 따라 성능이 크게 달라질 수 있습니다. 이를 보완하기 위해 ICLE 2018 Conference에서 발표된 Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection을 이용했습니다. (https://iclr.cc/Conferences/2018/Schedule?showEvent=126) DAGMM DAGMM은 축소된 차원과 복원 오차에 대한 특성을 유지하여 입력 값의 중요 정보를 저차원상에서도 보존합니다. DAGMM에서는 차원 축소를 위한 Compression Network에 Autoencoder를 사용해 저차원상의 자료와 축소된 저차원상에서 original data 공간으로의 복원 에러에 대한 특성 정보를 계산할 수 있습니다. DAGMM은 학습된 저차원 공간에서 GMM(Gaussian Mixture Model)을 활용해 복잡한 구조를 가진 입력 자료에 대한 밀도 함수 추정을 수행합니다. 차원 축소와 밀도 함수 추정을 동시에 최적화하기 위해, DAGMM은 저차원 입력을 계산한 뒤, 혼합 밀도 함수를 추정하는 Estimation Network를 사용하고, 입력 자료를 저차원으로 축소시킨 뒤 에너지/가능도 평가 가능하게 해 GMM의 모수를 직접 추정합니다. <그림 설명: DAGMM 개요> DAGMM은 위 그림과 같이 두개의 주요 요소인 Compression Network와 Estimation Network로 구성돼 있습니다. Compression Network는 Deep Autoencoder를 사용해 입력 자료의 차원을 축소하고, Estimation Network는 차원이 축소된 자료를 입력 값으로 해, GMM의 가능도/에너지를 예측합니다. DAGMM에 대한 자세한 내용을 원하시는 경우, ICLR 2018 Conference 홈페이지의 논문 및 자료를 참조해 주십시오. DAGMM 기반 이상탐지 ITIM 제품인 Zenius EMS의 이상탐지를 위해 입력 데이터 셋은 메트릭 데이터로 구성합니다. 연관관계가 있다고 판단되는 메트릭 데이터 중 CPU Usage, Memory Usage, Disk Busy Rate, Network In bps 값을 4차원 데이터셋으로 구성한 후, DAGMM의 Compression Network를 통해 차원 축소를 진행하고 Estimation Network를 통해 가능도 및 에너지 예측을 진행했습니다. 입력 데이터셋은 실제 장비의 메트릭 데이터 중 최근 1000개의 데이터를 사용해 구성했으며, 모델의 정확성을 확인하기 위해 2개의 이상치 데이터를 혼합했습니다. 입력 데이터셋으로 사용된 4차원 데이터를 도식화하기 위해 3차원 Scatter 차트를 사용해서 데이터를 출력하면 아래와 같습니다. <그림 설명: 입력 데이터셋(1)> 위의 그림으로 CPU Usage, Memory Usage, Disk Busy Rate의 관계를 확인할 수 있으며, 이상치 데이터는 붉은 점으로 표시됐습니다. <그림 설명: 입력 데이터셋(2)> 위의 그림으로 CPU Usage, Memory Usage, Network Input bps의 관계를 확인할 수 있으며, 이상치 데이터는 역시 붉은 점으로 표시됐습니다. 입력 데이터셋에 대해 DAGMM epoch 횟수를 1000번으로 학습하여 모델을 생성할 경우 아래와 같은 Energy 밀도와 값을 얻을 수 있습니다. <그림 설명: DAGMM Energy 밀도(1)> <그림 설명: DAGMM Energy 밀도(2)> 생성될 모델에 대해 Energy 값의 99%를 초과할 경우를 이상치 데이터 셋으로 정의할 경우 아래와 같이 입력 데이터셋에서 이상치 데이터로 입력한 값들에 대해 정확하게 이상 징후를 탐지합니다. 이상과 같이 ITIM 제품인 Zenius EMS의 메트릭 데이터에 대한 이상 징후 탐지를 수행하는 방법에 대한 개괄적인 내용을 설명했으며, 이 모델은 당사의 Zenius EMS 시스템의 실시간 이상징후 탐지에 적용할 예정입니다.
2022.08.04
IT 인프라 모니터링 트렌드
IT 인프라 모니터링 트렌드
EMS란? EMS는 Enterprise Management System의 약자로, 여러 기업과 기관의 IT서비스를 이루는 다양한 IT Infrastructure를 통합적으로 모니터링하는 시스템을 의미합니다. 해외에서는 일반적으로 ITIM(IT Infra Management)이라는 용어로 많이 사용되고 있지만, 국내에서는 EMS라는 용어로 통용되고 있습니다. EMS는 IT인프라의 데이터를 실시간으로 수집 및 분석할 뿐만 아니라, 수집된 데이터를 활용해 비즈니스의 가치를 창출할 수 있습니다. 글로벌 IT분야 연구자문 기업인 “가트너(Gartner)”에서는 ITIM, 즉 EMS를 데이터센터, Edge, IaaS(Infrastructure as a Service), PaaS(Platform as a Service) 등에 존재하는 IT인프라 구성요소의 상태와 리소스 사용률을 수집하는 도구로 정의하며, 컨테이너, 가상화시스템, 서버, 스토리지, 데이터베이스, 라우터, 네트워크 스위치 등에 대한 실시간 모니터링이 가능해야 한다고 서술합니다. <사진 설명: 가트너의 ITIM 정의를 도식화한 그림> 이러한 EMS는 초기에는 기업 전산실에 물리적인 형태로 존재하는 서버, 네트워크의 리소스관리를 중심으로 모니터링해 왔습니다. 서버의 CPU, Memory 등의 리소스 정보를 수집하거나, 네트워크 장비의 트래픽 정보를 모니터링하고 임계치를 기반으로 이벤트 감지하는 역할이 대부분이었으며, 이 정도 수준에서도 충분한 IT 인프라 관리가 이뤄질 수 있었습니다. 그러나 가상화(Virtualization)라는 개념이 생겨나고 다양한 IT 인프라들이 기업 전산실에서 클라우드(Cloud) 환경으로 전환됨에 따라, EMS의 모니터링 분야도 조금씩 바뀌어 가고 있습니다. 많은 기업들이 효율적인 리소스 사용과 비용 절감을 목표로 VMware와 같은 가상화 시스템을 도입해 운영하게 됐으며, 모니터링 부문도 이에 대응하기 위해 가상화 리소스에 대한 관리 영역으로 확장됐습니다. 가상화 환경을 이루는 하이퍼바이저(Hypervisor)와 가상머신(Virtual Machine)의 연관성을 추적하고, 각 가상머신들이 사용하고 있는 리소스를 실시간으로 분석해 효율적인 자원 배분, 즉 프로비저닝(Provisioning)을 위한 근거 데이터를 제공할 수 있도록 하고 있습니다. 더 나아가 VMware, Hyper-V 등의 다양한 가상화 플랫폼에서 가상머신을 생성하고 삭제하고, 실제로 가상머신에 CPU, Memory 등과 같은 리소스를 할당해 줄 수 있는 컨트롤 영역까지 제공하는 제품을 개발하는 벤더사들이 많아지고 있습니다. 이러한 가상화 기술을 기반으로 현대에는 IT 인프라들이 대부분 클라우드 환경으로 전환하고 있는 추세입니다. 클라우드 환경으로의 전환 클라우드(Cloud)란, 언제 어디서나 필요한 컴퓨팅 자원을 필요한 시간만큼 인터넷을 통해 활용할 수 있는 컴퓨팅 방식으로, 최근 기업들은 각자의 목적과 상황에 맞게 AWS, MS Azure와 같은 Public Cloud 및 OpenStack, Nutanix 등을 활용한 Private Cloud 등의 환경으로 기업의 전산설비들을 마이그레이션 하고 있습니다. 클라우드로의 전환과 기술의 발전에 따라, EMS의 IT 인프라 모니터링은 더 이상 *On-Premise 환경에서의 접근이 아닌, Cloud 환경, 특히 MSA(Micro Service Architecture)를 기반으로 하는 클라우드 네이티브(Cloud Native) 관점에서의 IT 운영 관리라는 새로운 접근이 필요하게 됐습니다. (*On-Premise : 기업이 서버를 클라우드 환경이 아닌 자체 설비로 보유하고 운영하는 형태) 클라우드 네이티브란, 클라우드 기반 구성요소를 클라우드 환경에 최적화된 방식으로 조립하기 위한 아키텍처로서, 마이크로서비스 기반의 개발환경, 그리고 컨테이너 중심의 애플리케이션 구동환경 위주의 클라우드를 의미합니다. 클라우드 네이티브는 IT비즈니스의 신속성을 위해 도커(Docker)와 같은 컨테이너를 기반으로 애플리케이션이 운영되므로, EMS는 컨테이너의 성능, 로그, 프로세스 및 파일시스템 등 세부적인 관찰과 이상징후를 판단할 수 있는 기능들이 요구되고 있습니다. 자사 제품인 Zenius SMS에서는 이러한 변화에 따라 Docker에 대한 모니터링 기능을 기본적으로 제공하고 있습니다. Docker 컨테이너가 생성되면 자동으로 관리대상으로 등록되며, Up/Down 뿐만 아니라, CPU, Memory, Network 및 Process의 정보를 실시간으로 모니터링하고 발생되는 로그들을 통합관리 할 수 있도록 합니다. <사진 설명: Zenius-SMS에서 제공하고 있는 Docker 컨테이너 모니터링 기능> 또, 복원력과 탄력성을 위해 쿠버네티스와 같은 오케스트레이션 도구를 활용해 컨테이너를 스핀업하고, 예상되는 성능에 맞게 효율적으로 리소스를 맵핑하고 있으며, 이러한 기술에 대응하기 위해 EMS는 쿠버네티스(Kubernetes), 도커스웜(Docker Swarm) 등의 오케스트레이터들의 동작여부를 직관적으로 관찰하는 제품들이 지속적으로 출시되고 있는 상황입니다. 이와 더불어 컨테이너, 오케스트레이터의 동적 연결관계를 실시간으로 모니터링하고, 파드(POD), 클러스터, 호스트 및 애플리케이션의 관계를 표현하는 역할의 중요성이 점차 커져가고 있습니다. 통합 모니터링(Monitoring) EMS 모니터링의 또 다른 변화로는 통합(Integration)의 역할이 더더욱 강해지고 있다는 것입니다. IT 서비스가 복잡해지고 다양해짐에 따라 IT 인프라의 관리 범위도 점차 증가하면서, 다양한 IT 인프라들을 융합하고 관리하기 위한 노력들이 관찰되고 있습니다. 데이터독(Datadog), 스플렁크(SPLUNK)와 같은 장비 관점의 모니터링 벤더들은 APM과 같은 애플리케이션 모니터링 시장으로, 앱다이나믹스(AppDynamics), 다이나트레이스(Dynatrace), 뉴렐릭(NewRelic)과 같은 애플리케이션 모니터링 시장의 강자들은 인프라 장비 관점의 모니터링 시장으로의 융합이 확인되고 있습니다. 자사 제품인 Zenius 역시 서버, 네트워크 중심의 관리에서 애플리케이션, 데이터베이스 등의 시장으로 관리 범위를 확장해 나가고 있는 추세입니다. IT 서비스의 영속성을 유지하기 위해서는 IT 서비스를 구성하는 다양한 요소들을 실시간으로 모니터링하고 연관관계를 추적해 문제 원인을 찾아내는 것이 중요하기 때문에 다양한 IT 요소들을 통합적으로 모니터링하는 것 뿐만 아니라, 상호 연관관계를 표현하고 추적할 수 있는 기능들이 지속적으로 요구되고 있습니다. 모니터링의 트렌드는 서버, 네트워크 등의 독립적인 개체에 대한 모니터링 아닌 IT 서비스를 중심으로 기반 요소들을 모두 통합적으로 모니터링하고, 각 상호간의 의존성과 영향도를 파악해 RCA(Root Cause Analysis) 분석을 가능하게 하고 이를 통해 IT 서비스의 연속성을 보장할 수 있는 통찰력을 확보하게끔 하는 방향으로 흘러가고 있습니다. Zenius는 서버, 네트워크, 애플리케이션, 데이터베이스 및 각종 로그들의 정보를 시각적으로 통합 모니터링할 수 있는 오버뷰(Overview) 도구와 IT 서비스 레벨에서 인프라들의 연관관계를 정의하고 다양한 조건(Rule)에 따라 서비스 이상유무와 원인분석이 가능한 서비스 맵(Service Map) 도구를 기본적으로 제공하고 있습니다. <사진 설명: Zenius 오버뷰 화면> <사진 설명: Zenius 서비스맵 화면> 앞서 언급했듯이, 클라우드 환경으로 전환함에 따라 통합적 관리 요구는 더욱 높아지고 있습니다. IT 인프라에 대한 통합 뿐만 아니라, AD(Active Directory), SAP 및 AWS, Azure, GCP 등의 다양한 서비스의 주요 지표까지 연계하고 하나의 시스템으로 통합 모니터링하기 위한 노력들이 관찰되고 있습니다. 데이터독(Datadog)의 경우, 500개 이상의 시스템, 애플리케이션 및 서비스들의 지표들을 손쉽게 통합 관리할 수 있다고 돼있습니다. <사진 설명: 데이터독 홈페이지 캡처> 이처럼 IT 서비스의 복잡성과 다양화에 따라 관리해야 될 서비스와 지표들은 점점 늘어나고 있으며, 기업의 현황에 맞게 컴포넌트 기반으로 손쉽게 지표들을 통합할 수 있는 기능과 도구들이 요구되고 있습니다. AI 기반의 예측&자동화 모니터링의 세번째 변화로는 ’AI 기반의 예측과 자동화’입니다. IT 인프라 및 서비스의 주요 지표를 모니터링하는 것도 중요하지만, 축적된 데이터를 기반으로 미래의 상황을 예측 및 이상탐지해 사전에 대비할 수 있는 체계를 갖추는 일은 모니터링 시장에서 중요한 이슈로 자리잡고 있습니다. 현재의 AIOps(AI for IT Operations)를 표방하는 모니터링 기술들은 서버, 네트워크, 애플리케이션, 데이터베이스 등의 주요 지표들을 실시간으로 수집하고, 저장된 데이터를 기반으로 AI 알고리즘 또는 통계기법을 통해 미래데이터를 예측하며 장애 발생가능성을 제공하고 있습니다. 이와 같은 기술을 통해 미래 성능 값을 예측해 IT 인프라의 증설 필요성 등을 판단하고, 장애 예측으로 크리티컬한 문제가 발생되기 전에 미리 조치를 취할 수 있도록 해 효율적인 의사결정을 할 수 있도록 합니다. Zenius도 4차 산업혁명 및 디지털 뉴딜시대가 도래함에 따라 미래예측 기능을 최신 버전에 탑재했으며, 이를 통해 IT운영자가 미래 상황에 유연하고 선제적으로 대응할 수 있도록 합니다. Zenius에서는 서버, 네트워크, 애플리케이션 등 다양한 IT 인프라의 미래 성능 값, 패턴 범위, 이상 범위 등을 예측해 IT 운영자에게 제시합니다. <사진 설명: 인공지능(AI) 기반 미래데이터 예측 화면> 다만, 인공지능 기술을 통해 장애 발생 가능성을 탐지하는 기능 외에, 어디에 문제가 발생됐는지 알려주는 기능은 모니터링 시장에 과제로 남아있고, 이를 제공하기 위한 여러 업체들의 노력이 보이고 있습니다. 이제는 EMS에서 보편적인 것이 됐지만, 모바일 기기를 통해 시∙공간적 제약 없는 모니터링이 이뤄지고 있습니다. 다양한 기종의 스마트폰, 태블릿PC 등을 이용해 운영콘솔(Console) 뿐만 아니라, 회의 등 시간을 잠시 비우더라도 IT 인프라에 대한 연속적인 모니터링이 모바일기기를 통해 가능해졌습니다. <사진 설명: 다양한 기기를 통한 모니터링>
2022.09.05
옵저버빌리티 향상을 위한 제니우스 대표 기능들
옵저버빌리티 향상을 위한 제니우스 대표 기능들
이번 블로그에서는 지난 블로그에서 다루었던 옵저버빌리티를 구현하기 위한 오픈 소스들은 어떤 것들이 있는지 간략히 알아보고, 제니우스(Zenius-EMS)에서는 옵저버빌리티 향상을 위해서 어떤 제품들을 제공하고 있는 지 살펴보겠습니다. 옵저버빌리티 구현을 위해 널리 활용되는 대표적인 오픈소스로는 아래 네 가지 정도를 들 수 있습니다. l Prometheus: 메트릭 수집 및 저장을 전문으로 하는 도구입니다. Prometheus는 강력한 쿼리 기능을 가지고 있으며, 다양한 기본 메트릭을 제공하며 데이터 시각화를 위해 Grafana와 같은 도구와 통합될 수 있습니다. 또한 이메일, Slack 및 PagerDuty와 같은 다양한 채널을 통해 알림을 보낼 수 있습니다. l OpenTelemetry: 에이전트 추가 없이 원격으로 클라우드 기반의 애플리케이션이나 인프라에서 측정한 데이터, 트레이스와 로그를 백엔드에 전달하는 기술을 제공합니다. Java, Go, Python 및 .NET을 포함한 다양한 언어를 지원하며 추적 및 로그에 대한 통합 API를 제공합니다. l Jaeger: 분산 서비스 환경에서는 한번의 요청으로 서로 다른 마이크로서비스가 실행될 수 있습니다. Jaeger는 서비스 간 트랜잭션을 추적하는 기능을 가지고 있는 오픈 소스 소프트웨어입니다. 이 기능을 통해 애플리케이션 속도를 저해하는 병목지점을 찾을 수 있으며 동작에 문제가 있는 애플리케이션에서 문제의 시작점을 찾는데 유용합니다. l Grafana: 시계열 메트릭 데이터를 시각화 하는데 필요한 도구를 제공하는 툴킷입니다. 다양한 DB를 연결하여 데이터를 가져와 시각화 할 수 있으며, 그래프를 그릴 수도 있습니다. 시각화한 그래프에서 특정 수치 이상일 때 알람 기능을 제공하며 다양한 플러그인으로 기능확장이 가능합니다. ------------------------------------------------- 오픈 기술을 이용해 Do It Yourself 방식으로 옵저버빌리티를 구현한다면 어떨까요? 직접 옵저버빌리티를 구현하기 위해서는 먼저 필요한 데이터를 수집해야 합니다. 필요한 데이터가 무엇인지, 어떤 방식으로 수집할지 결정하고 Prometheus, OpenTelemetry 같은 도구들을 이용해 설치 및 설정합니다. 이 단계는 시간이 가장 오래 걸리고, 나중에 잘못된 구성이나 누락이 발견되기도 합니다. 다음 단계는 데이터 저장입니다. 이 단계에서 주의할 점은 예전처럼 여러 소스에서 수집한 데이터를 단순하게 저장하는 것이 아니라, 전체적인 관점에서 어떤 이벤트가 일어나는지를 추적이 가능하도록 데이터 간의 연결과 선후 관계를 설정하는 것입니다. 어려운 점은 새로운 클라우드 기술을 도입하거나 기존의 인프라나 애플리케이션에서 변경이 발생할 때마다 데이터를 계속해서 정리를 해야 하는데, 이를 위해 플랫폼을 지속적으로 수정하고 구성을 추가해야 한다는 것입니다. 마지막으로 부정확한 경고들은 제거해야 합니다. 비즈니스 상황과 데이터는 계속해서 변화하기 때문에 이에 맞게 베이스 라인을 지속적으로 확인하고, 임계치를 조정해서 불필요한 알람이나 노이즈 데이터가 생기는 것을 방지해야 합니다. 결론적으로 직접 옵저버빌리티를 구현하는 것은 처음에는 쉬워 보여도 고급 인력과 많은 시간을 확보해야 하며, 별개로 시간이 지남에 따라서 효율성과 확장성이 떨어진다는 점을 감안하면 대부분의 기업은 감당하기 어렵다고 할 수 있습니다. 그렇다면, Zenius(제니우스) EMS는 옵저버빌리티를 어떻게 확보하고 있을까요? 옵저버빌리티 향상을 위한 가장 기본적인 기능은 토폴로지맵 또는 대시보드입니다. 다양한 인프라의 물리적 논리적 연결구조들을 한 눈에 시각적으로 파악할 수 있도록 해야 합니다. Zenius는 각 인프라별 상황을 한 눈에 볼 수 있는 오버뷰와 시스템 전체를 조망할 수 있는 토폴로지맵, 그리고 서비스 별 상황들을 감시할 수 있는 대시보드 등 크게 세가지의 뷰어(Viewer)를 제공합니다. 인프라의 구성 상황에 따라 다층적으로 구성되어 고객들이 인프라에서 일어나는 상황을 즉각 알 수 있도록 해 줍니다. 이러한 뷰어들은 기존 ‘모니터링’의 개념에서 ‘옵저버빌리티’ 개념으로 진화화면서 좀 더 다층적, 다양화되는 형태로 진화하고 있습니다. 또한, Zenius는 기존의 각 인프라별로 단순히 감시를 설정하는 방식이 아닌 다양한 인프라로부터의 로그와 메트릭 정보를 이용해 어떤 상관관계가 있는지 분석하는 ‘복합감시’라는 서비스가 기본적으로 탑재돼 있습니다. 복합감시를 대표 기능에는 ERMS(Event Relation Management System), 스냅샷 그리고 조치 자동화 등을 들 수 있습니다. l ERMS 기능은 로깅, 메트릭 정보와 장비의 상태를 이용해 새로운 감시 기준을 만들어, 의미있는 이벤트를 생성해 사용자에게 개별 장비 수준이 아닌 서비스 관점에서 정확한 상황 정 보를 제공합니다. l 스냅샷은 서비스 동작에서 이벤트가 발생했을 때, 당시 상황을 Rawdata 기반으로 그대로 재현하는 기능으로 SMS, DBMS, APM, NMS 등 모든 인프라를 동시에 볼 수 있습니다. l 조치 자동화는 ERMS를 자동운영시스템과 연동해, 특정 상황에서 자동으로 스크립트를 실행해 제어하는 기능입니다. 트레이싱 기능은 APM에서 제공하는 기능으로, WAS(Web Application Server)에 인입되고 처리되는 모든 트랜잭션들을 실시간으로 모니터링하고 지연되고 있는 상황을 토폴로지 뷰를 통해 가시적으로 분석할 수 있습니다. 사용자는 토폴로지 뷰를 통해 수행 중인 액티브 트랜잭션의 상세정보와 WAS와 연결된 DB, 네트워크 등 여러 노드들 간의 응답속도 및 시간들을 직관적으로 파악할 수 있습니다. 제니우스의 또 다른 옵저버빌리티는 인공지능 기반의 미래 예측 기능으로 미래 상황을 시각적으로 보여줍니다. 인프라 종류에 상관없이 인공신경망 등 다양한 알고리즘을 통해 미래 데이터를 생성하고, 장애발생 가능성을 빠르게 파악해 서비스 다운타임이 없도록 도와줍니다. 또한 이상 탐지 기능은 보안 침해 또는 기타 비정상적인 활동을 나타낼 수 있는 시스템 로그, 메트릭 및 네트워크 트래픽의 비정상적인 패턴을 식별할 수 있습니다. 이상탐지 알고리즘은 시간이 지남에 따라 시스템 동작의 변화에 적응하고 새로운 유형의 위협을 식별하는 방법을 학습할 수 있습니다. 이상과 같이 Zenius(제니우스) EMS는 최고의 옵저버빌리티를 제공하기 위해서 연구개발에 매진하고 있습니다. 옵저버빌리티 향상을 위한 다양한 기능/제품들은 고객의 시스템과 조직 상황에 맞게 선별적으로 사용될 수 있습니다.
2023.04.19
다음 슬라이드 보기