반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
[브레인저가 알려주는 IT#1] 네트워크 관리, SNMP가 뭔가요?
카프카를 통한 로그 관리 방법
김채욱
2023.09.19
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
메모리 누수 위험있는 FinalReference 참조 분석하기
안녕하세요! 저는 개발4그룹에서 제니우스(Zenius) SIEM의 로그 관리 기능 개발을 담당하고 있는 김채욱 입니다. 제가 하고 있는 일은 실시간으로 대용량 로그 데이터를 수집하여 분석 후, 사용자에게 가치 있는 정보를 시각화하여 보여주는 일입니다.
이번 글에서 다룰 내용은
1) 그동안 로그(Log)에 대해 조사한 것과 2) 최근에 CCDAK 카프카 자격증을 딴 기념으로, 카프카(Kafka)를 이용하여 어떻게 로그 관리를 하는지
에 대해 이야기해 보겠습니다.
PART1. 로그
1. 로그의 표면적 형태
로그(Log)는 기본적으로 시스템의 일련된 동작이나 사건의 기록입니다. 시스템의 일기장과도 같죠. 로그를 통해 특정 시간에 시스템에서 ‘어떤 일’이 일어났는지 파악할 수도 있습니다. 이렇게 로그는 시간에 따른 시스템의 동작을 기록하고, 정보는 순차적으로 저장됩니다.
이처럼
로그의 핵심 개념은 ‘시간’
입니다. 순차적으로 발생된 로그를 통해 시스템의 동작을 이해하며, 일종의 생활기록부 역할을 하죠. 시스템 내에서 어떤 행동이 발생하였고, 어떤 문제가 일어났으며, 유저와의 어떤 교류가 일어났는지 모두 알 수 있습니다.
만약 시간의 개념이 없다면 어떻게 될까요? 발생한 모든 일들이 뒤섞이며, 로그 해석을 하는데 어려움이 생기겠죠.
이처럼 로그를 통해 시스템은 과거의 변화를 추적합니다. 똑같은 상황이 주어지면 항상 같은 결과를 내놓는 ‘결정론적’인 동작을 보장할 수 있죠. 로그의 중요성, 이제 조금 이해가 되실까요?
2. 로그와 카프카의 관계
자, 그렇다면! 로그(Log)와 카프카(Kafka)는 어떤 관계일까요? 우선 카프카는 분산 스트리밍 플랫폼으로서, 실시간으로 대용량의 데이터를 처리하고 전송하는데 탁월한 성능을 자랑합니다. 그 중심에는 바로 ‘로그’라는 개념이 있는데요. 좀 더 자세히 짚고 넘어가 보겠습니다.
3. 카프카에서의 로그 시스템
카프카에서의 로그 시스템은, 단순히 시스템의 에러나 이벤트를 기록하는 것만이 아닙니다. 연속된 데이터 레코드들의 스트림을 의미하며, 이를 ‘토픽(Topic)’이라는 카테고리로 구분하죠. 각 토픽은 다시 *파티션(Partition)으로 나누어, 단일 혹은 여러 서버에 분산 저장됩니다. 이렇게 분산 저장되는 로그 데이터는, 높은 내구성과 가용성을 보장합니다.
*파티션(Partition): 하드디스크를 논리적으로 나눈 구역
4. 카프카가 로그를 사용하는 이유
로그의 순차적인 특성은 카프카의 ‘핵심 아키텍처’와 깊게 연결되어 있습니다. 로그를 사용하면,
데이터의 순서를 보장할 수 있어 대용량의 데이터 스트림을 효율적
으로 처리할 수 있기 때문이죠. 데이터를 ‘영구적’으로 저장할 수 있어,
데이터 손실 위험 또한 크게 줄어
듭니다.
로그를 사용하는 또 다른 이유는 ‘장애 복구’
입니다. 서버가 장애로 인해 중단되었다가 다시 시작되면, 저장된 로그를 이용하여 이전 상태로 복구할 수 있게 되죠. 이는 ‘카프카가 높은 가용성’을 보장하는 데 중요한 요소입니다.
∴
로그 요약
로그는 단순한 시스템 메시지를 넘어 ‘데이터 스트림’의 핵심 요소로 활용됩니다. 카프카와 같은 현대의 데이터 처리 시스템은
로그의 이러한 특성을 극대화하여, 대용량의 실시간 데이터 스트림을 효율적으로 처리
할 수 있는 거죠. 로그의 중요성을 다시 한번 깨닫게 되는 순간이네요!
PART2. 카프카
로그에 이어 에 대해 설명하겠습니다. 들어가기에 앞서 가볍게 ‘구조’부터 알아가 볼까요?
1. 카프카 구조
· 브로커(Broker)
브로커는 *클러스터(Cluster) 안에 구성된 여러 서버 중 각 서버를 의미합니다. 이러한 브로커들은, 레코드 형태인 메시지 데이터의 저장과 검색 및 컨슈머에게 전달하고 관리합니다.
*클러스터(Cluster): 여러 대의 컴퓨터들이 연결되어 하나의 시스템처럼 동작하는 컴퓨터들의 집합
데이터 분배와 중복성도 촉진합니다. 브로커에 문제가 발생하면, 데이터가 여러 브로커에 데이터가 복제되어 데이터 손실이 되지 않죠.
·
프로듀서(Producer)
프로듀서는 토픽에 레코드를 전송 또는 생성하는 *엔터티(Entity)입니다. 카프카 생태계에서 ‘데이터의 진입점’ 역할도 함께 하고 있죠. 레코드가 전송될 토픽 및 파티션도 결정할 수 있습니다.
*엔터티(Entity): 업무에 필요한 정보를 저장하고 관리하는 집합적인 것
·
컨슈머(Consumer)
컨슈머는 토픽에서 레코드를 읽습니다. 하나 이상의 토픽을 구독하고, 브로커로부터 레코드를 소비합니다. 데이터의 출구점을 나타내기도 하며, 프로듀서에 의해 전송된 메시지를 최종적으로 읽히고 처리되도록 합니다.
·
토픽(Topic)
토픽은 프로듀서로부터 전송된 레코드 카테고리입니다. 각 토픽은 파티션으로 나뉘며, 이 파티션은 브로커 간에 복제됩니다.
카프카로 들어오는 데이터를 조직화하고, 분류하는 방법을 제공하기도 합니다. 파티션으로 나눔으로써 카프카는 ‘수평 확장성과 장애 허용성’을 보장합니다.
·
주키퍼(ZooKeeper)
주키퍼는 브로커를 관리하고 조정하는 데 도움을 주는 ‘중앙 관리소’입니다. 클러스터 노드의 상태, 토픽 *메타데이터(Metadata) 등의 상태를 추적합니다.
*메타데이터(Metadata): 데이터에 관한 구조화된 데이터로, 다른 데이터를 설명해 주는 데이터
카프카는 분산 조정을 위해 주키퍼에 의존합니다. 주키퍼는 브로커에 문제가 발생하면, 다른 브로커에 알리고 클러스터 전체에 일관된 데이터를 보장하죠.
∴
카프카 구조 요약
요약한다면 카프카는
1) 복잡하지만 견고한 아키텍처 2) 대규모 스트림 데이터를 실시간으로 처리하는 데 있어 안정적이고 장애 허용성이 있음 3) 고도로 확장 가능한 플랫폼을 제공
으로 정리할 수 있습니다.
이처럼 카프카가 큰 데이터 환경에서 ‘어떻게’ 정보 흐름을 관리하고 최적화하는지 5가지의 구조를 통해 살펴보았습니다. 이제 카프카에 대해 조금 더 명확한 그림이 그려지지 않나요?
2. 컨슈머 그룹과 성능을 위한 탐색
카프카의 가장 주목할 만한 특징 중 하나는
‘컨슈머 그룹의 구현’
입니다. 이는 카프카의 확장성과 성능 잠재력을 이해하는 데 중심적인 개념이죠.
컨슈머 그룹 이해하기
카프카의 핵심은
‘메시지를 생산하고 소비’
하는 것입니다. 그런데 수백만, 심지어 수십억의 메시지가 흐르고 있을 때 어떻게 효율적으로 소비될까요?
여기서 컨슈머 그룹(Consumer Group)이 등장합니다. 컨슈머 그룹은, 하나 또는 그 이상의 컨슈머로 구성되어 하나 또는 여러 토픽에서 메시지를 소비하는데 협력합니다. 그렇다면 왜 효율적인지 알아보겠습니다.
·
로드 밸런싱:
하나의 컨슈머가 모든 메시지를 처리하는 대신, 그룹이 부하를 분산할 수 있습니다. 토픽의 각 파티션은 그룹 내에서 정확히 하나의 컨슈머에 의해 소비됩니다. 이는 메시지가 더 빠르고 효율적으로 처리된다는 것을 보장합니다.
·
장애 허용성:
컨슈머에 문제가 발생하면, 그룹 내의 다른 컨슈머가 그 파티션을 인수하여 메시지 처리에 차질이 없도록 합니다.
·
유연성:
데이터 흐름이 변함에 따라 그룹에서 컨슈머를 쉽게 추가하거나 제거합니다. 이에 따라 증가하거나 감소하는 부하를 처리할 수 있습니다.
여기까지는 최적의 성능을 위한 ‘카프카 튜닝 컨슈머 그룹의 기본 사항’을 다루었으니, 이와 관련된 ‘성능 튜닝 전략’에 대해 알아볼까요?
성능 튜닝 전략
·
파티션 전략:
토픽의 파티션 수는, 얼마나 많은 컨슈머가 활성화되어 메시지를 소비할 수 있는지 영향을 줍니다. 더 많은 파티션은 더 많은 컨슈머가 병렬로 작동할 수 있음을 의미하는 거죠. 그러나 너무 많은 파티션은 *오버헤드를 야기할 수 있습니다.
*오버헤드: 어떤 처리를 하기 위해 간접적인 처리 시간
·
컨슈머 구성:
*fetch.min.bytes 및 *fetch.max.wait.ms와 같은 매개변수를 조정합니다. 그다음 한 번에 얼마나 많은 데이터를 컨슈머가 가져오는지 제어합니다. 이러한 최적화를 통해 브로커에게 요청하는 횟수를 줄이고, 처리량을 높입니다.
*fetch.min.bytes: 한 번에 가져올 수 있는 최소 데이터 사이즈 *fetch.max.wait.ms: 데이터가 최소 크기가 될 때까지 기다릴 시간
·
메시지 배치:
프로듀서는 메시지를 함께 배치하여 처리량을 높일 수 있게 구성됩니다. *batch.size 및 *linger.ms와 같은 매개변수를 조정하여, 대기 시간과 처리량 사이의 균형을 찾을 수 있게 되죠.
*batch.size: 한 번에 모델이 학습하는 데이터 샘플의 개수 *linger.ms: 전송 대기 시간
·
압축:
카프카는 메시지 압축을 지원하여 전송 및 저장되는 데이터의 양을 줄입니다. 이로 인해 전송 속도가 빨라지고 전체 성능이 향상될 수 있습니다.
·
로그 정리 정책:
카프카 토픽은, 설정된 기간 또는 크기 동안 메시지를 유지할 수 있습니다. 보존 정책을 조정하면, 브로커가 저장 공간이 부족해지는 점과 성능이 저하되는 점을 방지할 수 있습니다.
3. 컨슈머 그룹과 성능을 위한 실제 코드 예시
다음 그림과 같은 코드를 보며 조금 더 자세히 살펴보겠습니다. NodeJS 코드 중 일부를 발췌했습니다. 카프카 설치 시에 사용되는 설정 파일 *server.properties에서 파티션의 개수를 CPU 코어 수와 같게 설정하는 코드입니다. 이에 대한 장점들을 쭉 살펴볼까요?
*server.properties: 마인크래프트 서버 옵션을 설정할 수 있는 파일
CPU 코어 수에 파티션 수를 맞추었을 때의 장점
·
최적화된 리소스 활용:
카프카에서는 각 파티션이 읽기와 쓰기를 위한 자체 *I/O(입출력) 스레드를 종종 운영합니다. 사용 가능한 CPU 코어 수와 파티션 수를 일치시키면, 각 코어가 특정 파티션의 I/O 작업을 처리합니다. 이 동시성은 리소스에서 최대의 성능을 추출하는 데 도움 됩니다.
·
최대 병렬 처리:
카프카의 설계 철학은 ‘병렬 데이터 처리’를 중심으로 합니다. 코어 수와 파티션 수 사이의 일치는, 동시에 처리되어 처리량을 높일 수 있습니다.
·
간소화된 용량 계획:
이 접근 방식은, 리소스 계획에 대한 명확한 기준을 제공합니다. 성능 병목이 발생하면 CPU에 *바인딩(Binding)되어 있는지 명확하게 알 수 있습니다. 인프라를 정확하게 조정할 수도 있게 되죠.
*바인딩(Binding): 두 프로그래밍 언어를 이어주는 래퍼 라이브러리
·
오버헤드 감소:
병렬 처리와 오버헤드 사이의 균형은 미묘합니다. 파티션 증가는 병렬 처리를 촉진할 수 있습니다. 하지만 더 많은 주키퍼 부하, 브로커 시작 시간 연장, 리더 선거 빈도 증가와 같은 오버헤드도 가져올 수도 있습니다. 파티션을 CPU 코어에 맞추는 것은 균형을 이룰 수 있게 합니다.
다음은 프로세스 수를 CPU 코어 수만큼 생성하여, 토픽의 파티션 개수와 일치시킨 코드에 대한 장점입니다.
파티션 수와 컨슈머 프로세스 수 일치의 장점
·
최적의 병렬 처리:
카프카 파티션의 각각은 동시에 처리될 수 있습니다. 컨슈머 수가 파티션 수와 일치하면, 각 컨슈머는 특정 파티션에서 메시지를 독립적으로 소비할 수 있게 되죠. 따라서 병렬 처리가 향상됩니다.
·
리소스 효율성:
파티션 수와 컨슈머 수가 일치하면, 각 컨슈머가 처리하는 데이터의 양이 균등하게 분배됩니다. 이로 인해 전체 시스템의 리소스 사용이 균형을 이루게 되죠.
·
탄력성과 확장성:
트래픽이 증가하면, 추가적인 컨슈머를 컨슈머 그룹에 추가하여 처리 능력을 증가시킵니다. 동일한 방식으로 트래픽이 감소하면 컨슈머를 줄여 리소스를 절약할 수 있습니다.
·
고가용성과 오류 회복:
컨슈머 중 하나가 실패하면, 해당 컨슈머가 처리하던 파티션은 다른 컨슈머에게 자동 재분배됩니다. 이를 통해 시스템 내의 다른 컨슈머가 실패한 컨슈머의 작업을 빠르게 인수하여, 메시지 처리가 중단되지 않습니다.
마지막으로 각 프로세스별 컨슈머를 생성해서 토픽에 구독 후, 소비하는 과정을 나타낸 소스코드입니다.
∴
컨슈머 그룹 요약
컨슈머 그룹은 높은 처리량과 장애 허용성 있는 메시지 소비를 제공하는 능력이 핵심입니다. 카프카가 어떤 식으로 운영되는지에 대한 상세한 부분을 이해하고 다양한 매개변수를 신중하게 조정한다면, 어떠한 상황에서도 카프카의 최대 성능을 이끌어낼 수 있습니다!
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
©
참고 자료
· Jay Kreps, “I Hearts Logs”, Confluent
· 위키피디아, “Logging(computing)”
· Confluent, “https://docs.confluent.io/kafka/overview.html”
· Neha Narkhede, Gwen Shapira, Todd Palino, “Kafka: The Definitive Guide”
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
#LOG
#로그
#카프카
#컨슈머
#KAFKA
#SIEM
#제니우스
김채욱
개발4그룹
실시간 대용량 로그 데이터의 수집 및 가공에 관심을 가지고 있습니다. 함께 발전해 나가는 개발을 추구합니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
AWS KMS 특징과 장점, 기본 암호화 활용 예시(단일 암호화 vs 봉투 암호화)
AWS KMS 특징과 장점, 기본 암호화 활용 예시(단일 암호화 vs 봉투 암호화)
AWS KMS(Key Management Service)는 데이터 암호화에 사용되는 키를 생성하고 안전하게 관리할 수 있도록 지원하는 AWS의 관리형 서비스입니다. 클라우드 환경에서는 데이터가 외부 인프라에 저장되기 때문에 온프레미스와 달리 직접적인 통제가 어렵고, 그만큼 보안의 중요성이 커집니다. 암호화는 민감한 정보가 노출되는 것을 막는 가장 기본적인 보호 방식이지만, 암호화에 사용된 키가 유출되면 암호화 자체가 무력화되어 심각한 보안 위협으로 이어질 수 있습니다. AWS KMS는 이러한 위험을 줄이기 위해 암호화 키의 생성, 보관, 사용을 AWS가 책임지고 관리하는 보안 중심의 관리형 서비스를 제공합니다. 이를 통해 암호화 키 자체의 안전성을 확보하며, 서비스 전반의 기밀성과 안정성을 강화할 수 있습니다. 그렇다면 AWS KMS의 주요 특징과 장점, 그리고 기본 암호화 활용 방법을 구체적인 예시를 통해 살펴보겠습니다. AWS KMS 특징과 장점 AWS KMS는 데이터를 암호화하는 key를 암호화하여 보안 인증 장치인 HSM(물리적 공간)에 보관합니다. AWS KMS를 통해서만 HSM 내부에 저장된 Root Key에 접근 가능합니다. 이를 통해 키 구성요소를 안전하게 보호하고, 키가 물리적으로 격리되어 평문 형태로 외부로 유출되는 것을 원천적으로 차단합니다. 또한 AWS KMS는 키 정책을 활용해 암·복호화 권한을 세밀하게 제어할 수 있다는 장점이 있습니다. 동일한 키라 하더라도 사용자나 역할별로 서로 다른 권한을 부여할 수 있으며, 감사 로그를 통해 키 사용 이력을 추적하여 보안 관점에서의 모니터링과 통제가 가능합니다. AWS KMS 키 종류 AWS KMS 키는 관리 주체에 따라 AWS 관리형 키와 고객 관리형 키로 구분됩니다. AWS 관리형 키는 AWS 서비스가 자동으로 생성·관리하며, 사용자가 직접 생성하거나 수정·삭제할 수 없습니다. 주로 S3, RDS 등 서비스의 기본 암호화 기능에 사용되어 별도 설정 없이 간편하게 활용할 수 있습니다. 반면 고객 관리형 키는 사용자가 직접 생성하고 운영하는 키로, 키 정책을 통해 접근 권한과 사용 범위를 세밀하게 제어할 수 있습니다. 보안 요구사항에 따라 권한 설정이나 정책 변경을 자유롭게 구성할 수 있다는 점이 장점입니다 AWS KMS 의 키 순환(Key Rotation) AWS KMS의 주요 특징 중 하나는 키 순환(Key Rotation) 기능입니다. 키 순환은 일정 주기(기본 1년)에 따라 CMK(KMS 키)의 핵심 암호화 구성 요소(Key Material)를 자동으로 교체하여 키 유출 가능성을 낮추고 보안성을 강화하는 기능입니다. 키가 순환되면 이후 암호화 작업에는 새롭게 교체된 키 재료가 사용되지만, 순환 이전에 암호화된 데이터도 그대로 복호화할 수 있습니다. 이는 이전 버전의 Key Material이 KMS 내부에 안전하게 유지되어 복호화 요청 시 자동으로 참조되기 때문입니다. 또한 키 순환 시 ARN, 키 상태, 키 정책 등 키의 기본 정보는 변경되지 않고 암호화 재료만 새로워지므로, 애플리케이션 코드나 비즈니스 로직을 수정하지 않아도 기존과 동일한 방식으로 계속 사용할 수 있다는 장점이 있습니다. AWS KMS 키 정책 AWS KMS 키 정책을 통해 키 사용 주체, 범위 등을 정하는 방식으로 보안성을 강화합니다. 키 정책을 구성하는 요소는 크게 Version, Id, Statement가 있습니다. 이 요소 중 Statement를 통해 키 사용 규칙을 관리할 수 있습니다. Statement 구성 요소에 대해 살펴보겠습니다. Sid : 식별자(키 정책 설명) Effect : 결과(허용, 거부) Principal : 주체(누구에게 적용되는지) Action : 행위(무엇을 할수있는지) Resource : 대상(어떤 key에 적용되는지) Condition : 조건(ip, 시간 등 추가 조건) 위 키 정책은 Principal에 등록된 유저에게 해당 키로 Action에 나열된 행위를 허용하는 정책입니다. 추가로 이 키를 사용하기 위해서는 EncryptionContext를 포함해야하고 그 Context 내부에 key:value 형태로 “Purpose” : “KMSTEST” 를 가지고 있어야 합니다 이처럼 AWS KMS 사용자는 하나 이상의 Statement를 만들어 고객 관리형 키 사용 환경을 세부적으로 통제할 수 있습니다. 암·복호화 예시(Java): 단일 호출 암호화 vs 봉투 암호화 Java 환경에서 AWS KMS를 활용할 때는 KMS 키를 직접 사용해 암·복호화를 수행하는 방식과, 암호화에 사용할 데이터 키를 별도로 발급받아 사용하는 방식이 있습니다. 각각을 단일 호출 암호화와 봉투 암호화(Envelope Encryption)라고 합니다. 아래 예시는 이미 생성된 KMS 키를 기반으로 두 방식이 어떻게 동작하는지 보여줍니다. 이를 위해 먼저 KMS에 접근하기 위한 인증 정보를 설정하고, 암·복호화 요청을 처리할 KmsClient를 생성합니다. - accessKeyId: 사용자 액세스 키 - secretAccessKey: 비밀 액세스 키 단일 호출 암호화와 봉투 암호화가 각각 이제 떻게 구현되는지 코드를 통해 살펴보겠습니다. [1] 단일 호출 암호화 단일 호출 암호화시에는 kmsClient와 KMS 마스터 키를 활용해서 KMS 서비스 제공 Encrypt, Decrypt 객체 생성 후 암,복호화를 진행합니다. 단일 호출 암호화 방식은 크기가 작은 데이터(4KB 미만)를 암호화하는데 사용된다. 이 방식의 장점은 KMS 서비스를 통해 직접 암,복호화 하기 때문에 간단한 코드로 구현이 가능하다는 점입니다. 다만 암,복호화 시 데이터 개수에 따라 비용 및 KMS 통신량 증가 한다는 것이 단점입니다. 단일 호출 암호화 결과를 보면 암,복호화가 정상적으로 이루어진것을 확인할 수 있습니다. [2] 봉투 암호화 두번째 방식은 봉투 암호화입니다. 봉투 암호화의 핵심은 데이터를 암호화 하기 위해 사용되는 키를 암호화 한다는 것입니다. 봉투 암호화는 평문 암호화 키(encryptKey)를 이용하여 데이터를 암호화합니다. 이때 사용된 평문 암호화 키는 즉시 삭제하고 암호문을 저장합니다. 복호화시에는 암호문을 통해 평문 암호화 키를 조회하고 이 키를 이용하여 데이터를 복호화합니다. 잘못된 방식과 잘된 방식을 비교하여 살펴보겠습니다. 잘못된 방식을 보면 암호화 키(encryptKey)를 활용해 암호화 한 이후 동일한 변수를 이용하여 바로 복호화를 진행하고 있습니다. 이는 암호화 이후 평문 암호화 Key를 폐기하지 않고 재사용하기 때문에 평문 키를 HMS 외부에 보관하지 않는다는 KMS의 핵심 보안 원칙에 어긋납니다. 올바른 봉투 암호화는 복호화시 최초 암호화에 사용된 키(encryptKey)가 아니라 저장된 암호문(cipherTextBlob)을 이용하여 재조회한 평문 키(newPlaintextKey)를 활용하여 복호화합니다. 이를 통해 데이터 암호화에 사용된 평문 키를 외부에 노출시키지 않고 데이터 복호화가 가능합니다. 봉투 암호화 결과는 아래와 같습니다. 결과를 보면 최초 암호화에 사용된 평문키와 재조회한 평문키가 동일한것을 확인할 수 있습니다. 이 평문키는 사용시마다 암호문을 이용해 조회 후 사용하여야하며 사용 후 즉시 폐기하여야합니다. 봉투 암호화 방식은 사용자가 암호화 방식을 직접 정할 수 있어 단일 호출 암호화 방식에 비해 유연한 암호화 처리가 가능합니다. 또한 데이터가 아닌 데이터 암호화 를 암호화 하는 방식이기 때문에 데이터 개수에 영향을 적게 받는다는 장점이 있습니다. 봉투 암호화 과정을 요약 정리하면 아래와 같습니다. ① KMS를 통해 평문 암호화 키(encryptKey) 및 암호문(cipherTextBlob) 조회 ② encryptKey를 사용하여 데이터 암호화 후 폐기 ③ cipherTextBlob 및 암호화 데이터 저장 ④ cipherTextBlob를 사용하여 KMS에서 암호화 키 재조회(newPlaintextKey) ⑤ newPlaintextKey를 사용하여 데이터 복호화 두 방식 핵심 비교 지금까지 AWS KMS 기본 개념과 두가지 활용법에 대해 살펴보았습니다. KMS의 가장 큰 특징은 암호화 키를 안전하게 보호하는 서비스라는 점입니다. AWS KMS는 암호화 과정에서 가장 중요한 요소인 암호화 키를 사용자가 직접 관리하는 부담을 줄여줍니다. AWS KMS는 암호화 키를 최고 보안 수준으로 보호하기 때문에 사용자는 키 탈취 걱정없이 암호화 로직에 집중할 수 있습니다. 또한 AWS KMS 키 정책을 통해 복잡한 어플리케이션 코드 수정 없이 간편하게 암호화 키 접근 가능 사용자 및 행위를 통제할 수 있다는 장점이 있습니다. 이글을 통해서는 AWS KMS를 살펴보았는데 이 외에도 Google, Azure, NCP 등 여러 회사에서 제공하는 사용중인 KMS 서비스 중 사용중인 환경에 가장 적합한 KMS를 선택하여 활용하시기를 추천드립니다.
2025.11.20
다음 슬라이드 보기