반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
서버 모니터링 데이터의 3가지 활용 방법
[브레인즈 소식] ‘원격 서비스 응답 블로킹 대기 상태의 트랜잭션 제어 시스템 및 방법’ 특허 취득
오다인
2023.07.19
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
[Zenius Case#2] 서버관리, 서버가 왜 이렇게 느리지?
브레인즈컴퍼니는 지난 6월 27일, APM(Application Performance Management) 관련 특허를 취득했습니다. 2022년 12월에 출원 신청한 것으로, 명칭은 ‘원격 서비스 응답 블로킹 대기 상태의 트랜잭션 제어 시스템 및 방법’입니다.
이번에 출원한 특허는 기존 Zenius APM에서 트랜잭션을 추적하고, 처리 중인 트랜잭션을 종료시키는 기능을 고도화한 기술인데요. 특히 MSA(Micro Service Architecture) 환경에서 애플리케이션 성능을 모니터링하고 안정적인 서비스 운영 환경을 만들기 위해 개발되었습니다.
IT 서비스 구조가 Monolithic에서 MSA 형태로 변화함에 따라, IT 서비스를 구성하는 환경은 점점 복잡해지고 있습니다. 이전에는 단순히 하나의 큰 애플리케이션으로 서비스를 구성하고 있었다면, 현재는 여러 개의 작은 애플리케이션으로 서비스가 나뉘어 있고, 또 각각의 서비스들은 네트워크를 통해 복잡하게 연결되어 있는 형태죠. 이런 구조에서는 서비스 간 연계 구간에서의 지연이 전체 서비스의 장애를 유발할 가능성이 높아집니다.
APM에서는 웹 애플리케이션에서 병목을 일으키는 트랜잭션을 모니터링하고 제어할 수 있는 기능을 제공합니다. 하지만 WAS 영역보다 확장된 네트워크 측면에서의 응답 지연이 발생하는 경우에는 해당 트랜잭션을 중지시킬 수 없어 병목을 유발하고 전체 서비스의 성능 저하로 이어질 수 있죠.
이번에 취득한 특허 기술은 이런 이슈에 대한 즉각적인 병목 해소를 통해, 실질적인 서비스 품질을 향상시킬 수 있습니다. 또한, Micro Service Architecture 시대에 IT 서비스를 영위하는 기업에 더욱 효과적인 모니터링 환경을 제공하게 됩니다.
Zenius APM은 이번에 취득한 특허 기술을 통해 MSA 구조의 분산된 환경에서 최적화되어, 애플리케이션 품질을 향상시키고 IT 서비스 연속성을 확보해 고객 만족도가 높아질 것으로 기대됩니다. 브레인즈컴퍼니는 앞으로도 지속적인 기술 개발을 통해 레거시는 물론, 클라우드 네이티브 환경에서의 모니터링 툴 활용도를 극대화하고, IT 인프라 관리자의 고민을 덜 수 있는 서비스를 만들기 위해 끊임없이 노력하겠습니다.
#브레인즈컴퍼니
#APM
#제니우스
#Zenius
#MSA
#웹 애플리케이션
#트랜잭션
#WAS
오다인
프리세일즈팀
사업 수주를 위한 업무를 수행하며 Zenius의 위닝 포인트를 만들어 갑니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
시련이 많았던 경험자의 CI/CD 간략 소개
시련이 많았던 경험자의 CI/CD 간략 소개
과거에는 근로자 1명이 기획/설계/구현 테스트까지 진행이 가능했다고 합니다. 하지만 최근에는 근로자 1명이 기획부터 테스트까지 진행하는 일은 거의 드물다고 볼 수 있습니다. OLD SCHOOL 지금 이 시간에도 많은 회사 내의 개발자들은 자신에게 주어진 기능 구현을 훌륭하게 완수하기 위해서 모니터를 째려보고 있습니다. 모니터를 째려보다가 자신이 작성한 내용을 다른 팀원에게 공유하고자 혹은 반대로 다른 팀원이 작성한 내용을 공유받고자 '형상 관리 시스템'을 사용하고 있습니다. CVS와 SVN으로 대표되는 이 시스템은 최근들어 Git을 많이 사용하는 추세라고 합니다. 필자 역시 여러 프로젝트에서 해당 시스템을 사용도 해보았고, 연동하여 다른 시스템을 구현한 경험이 있습니다. 하지만 프로젝트 마다 해당 시스템 사용에 있어서 몇몇 시련이 있었습니다. "차주에 전체 기능 리뷰가 있습니다. 각 파트 별로 코드 커밋해주세요." 라고 PM(Project Manager) 또는 PL(Project Leader)이 요청을 하면, 각 하위 PL(Part Leader)은 파트(Part)에 돌아가 파트원들에게 이 내용을 공유하고, 개별 개발자들은 자신이 작성한 코드를 관리 시스템에 커밋하게 됩니다. 잠시 후 형상 관리 시스템에서 작성 코드를 내려 받은 PL(Part Leader)은 아래와 같은 상황에 직면하게 됩니다. - 동료의 작성 코드에는 관심 없이, 본인의 작성물만 커밋하는 경우 - 별도의 공지 없이 이미 작성된 파일 등을 삭제하여 커밋하는 경우 - 약속되지 않은 환경이나 lib으로 작성한 코드를 커밋하는 경우 프로젝트에 따라 기간이 길어지거나 다른 여러 상황이 발생하면 위의 문제보다 더 많은 문제를 경험하게 됩니다. 각 파트 단위로 위와 같은 문제가 해결되고 정상적으로 컴파일, 빌드까지 완료되면, PL(Part Leader)들은 파트별로 단위테스트를 완료하고 결과가 정상적이면 결과를 품질관리자에게 통보합니다. 각 파트별로 완료 통보를 받은 품질관리자는 다시 관리 시스템에서 전체 작성물을 수동으로 내려받아 통합테스트를 진행합니다. 통합테스트까지 완료되었다면 해당 내용을 릴리즈관리자에게 통보합니다. 릴리즈관리자는 바뀐 부분만 찾아서 변경하면 시간적으로 적용이 빠르겠지만 '바뀐 부분만 변경하면 될까?'라는 의심으로 전체 작성물을 수작업으로 전처리(컴파일 & 빌드)하고 다시 수작업으로 릴리즈하게 됩니다. 만약 진행상의 이슈가 없다면 이제 기능 리뷰 준비가 완료됩니다. 단계별로 문제 없이 진행되고 모든 기능을 확인하였다고 하지만 기능 리뷰 혹은 데모만하면 꼭! 오류가 발생하여 난처한 상황이 종종 발생하곤 합니다. 필자 역시 이런 경우가 많았으며 그때마다 문제 부분을 찾기 위해 많이 고생했습니다. 아래의 개념은 아마도 저 같은 경험을 하고 있는 많은 사람들을 위한 것이 아닌가 싶습니다. CI (Continuous Integration, 지속적인 통합) '지속적인 통합'이란 개발 과정에서 생산되는 코드의 관리와 코드의 문법적인 오류 확인 및 기능 점검(=테스트)을 특정한 일정에 진행하는 것이 아니라 날마다 혹은 특정 시간마다 진행하여 코드 및 기능에 대한 품질을 유지하는 개념이라고 말할 수 있을 것입니다. 앞에서 언급했던 과거 모습을 개선하는 노력은 CI 라는 개념이 나오기 이전부터 많은 개발사 혹은 팀에서 그들만의 문화나 관습으로 처리하는 경우가 있었을 것입니다. 하지만 문제는 새로운 구성원이 생겼을 때 입니다. 조직 문화를 새로이 접하는 이들에게는 이를 설명하고 이해시키는 일은 시간과 노력이 드는 일이니까요. 하지만 이젠 일반적인 Java 개발팀에서는 SVN(or GitHub)+Jenkins+Maven+JUnit으로 구성하는 개발 환경을 사용하고 있습니다. 다만, 프로젝트 목표나 목적되는 환경에 따라 약간씩 다른 환경을 구성하기도 합니다. 그러나 대부분의 경우 Open Source 기반으로 CI 개념을 구성하는 경우가 많습니다. 이는 일단 무료라는 큰 장점과 많은 레퍼런스가 있어 구성하기 편리하고 "우린 Open Source인 SVN과 Jenkins를 사용합니다. 일단 자세한 개념과 동작 원리는 너트뷰 선생님께..." 라고 하며 짧은 노력으로 교육을 끝낼 수 있어 그런 것이 아닌가 합니다. CI 개념을 활용하는 개발 프로젝트에서는 UI 메뉴 혹은 구현 단위 기준으로 구분하여 개발파트나 개발자를 할당하고는 합니다. 각각의 개발자는 할당받은 구현 범위에 대한 문제를 개별적으로 개발 도구를 활용하여 구현하고 구현 내용을 형상 관리 시스템에 커밋합니다. 이런 과정을 다른 개발자들도 같이 수행한 후에 빌드 자동화 환경에서 컴파일 및 빌드 스크립트에 맞춰서 문법적으로 확인된 결과물을 만들고 이를 다시 기능이 확인이 가능한 테스트 스크립트에 맞춰서 테스까지 진행합니다. 만약 테스트 과정에서 비정상적인 결과가 발생할 경우, 해당 내용 수정 후 위의 작업을 다시 진행하게 됩니다. 이런 일련의 절차는 일정 시간 준위 단위로 수행되어 구현하고 있는 기능을 주기적으로 확인하는 과정을 수행합니다. 올바른 진행을 위하여 개발자 개개인에게 분장되는 업무의 크기가 비슷해야 한다고 생각됩니다. 개발자별로 업무의 크기가 서로 다른 겨우, 결과물이 정상적이라고 볼 수 없게 될 것이고 그렇게 된다면 테스트 결과 역시 믿을 수 없는 경우가 발생할 것입니다. CD (Continuous Delivery/Deploy, 지속적 제공/배포) 지속적인 통합(CI)을 사용하던, 기존의 개발 환경을 사용하던, 결국 작성된 결과물은 최종적으로 운영환경에 적용되어 사용작 혹은 타 시스템과 연결되어야 합니다. 그래야 제품 개발 또는 프로젝트가 완료됩니다. CD는 결과물을 운영환경에 적용하는 방식을 나타내는 환경으로써 결과물 적용 여부를 판단하는 행위를 담당하는 주체가 누구냐에 따라, Continuous Delivery와 Continuous Deploy로 구분됩니다. Continuous Delivery는 CI 환경을 통하여 자동으로 컴파일 및 빌드가 되고, 테스트된 결과물에 대해서 릴리즈 관리자가 적용 시점마다 테스트 결과 및 서비스 영향도를 판단하여 수동으로 적용하는 방식이며, Continuous Deploy는 결과물은 항상 옳고 서비스 영향도는 없다고 미리 판단하여 자동으로 적용하는 방식입니다. 아마도 대부분의 개발 환경에서는 Continuous Delivery로 적용하고 있기에 CD라고 표기되는 경우 Continuous Delivery를 의미하는 경우가 많을 것입니다. 소프트웨어 솔루션을 제작하는 개발팀에서는 아마도 Continuous Delivery로 또한 MSA 기반의 서비스를 제공하는 개발팀에서는 Continuous Deploy를 사용하는 편이 여러 관계를 보았을 때 유리하다고 판단합니다. 하지만, 개발팀의 업무 성격과 제품 혹은 서비스의 출시 시기 등이 CD 방식을 결정하는 가장 중요한 요소가 될 것입니다. 지금까지 CI/CD 도입 배경과 내용을 필자의 경험을 바탕으로 간략하게 정리하였습니다. 개발자들이 자기가 맡은 기능 혹은 프로세스에만 전념할 수 있는 훌륭하고 편리한 개발 환경 및 적용 환경이 언제 어떻게 나타나게 될지 궁금합니다. 가능하다면, 많이 바꿔서 따라가기 귀찮은 시니어들과 새롭게 따라가야하는 주니어 개발자 모두에게 즐거운 환경이 등장했으면 합니다. 감사합니다.
2023.08.22
클라우드 네이티브의 핵심! CNCF의 세 가지 핵심가치
클라우드 네이티브의 핵심! CNCF의 세 가지 핵심가치
최근 디지털 트랜스포매이션(Digital Transformation)이 IT 트렌드로 자리 잡았습니다. 기업과 조직은 빠르게 변화하는 환경에 대응하고 경쟁에서 앞서기 위해 '클라우드 네이티브 컴퓨팅' 기술을 채택하고 있는데요. 여기서 클라우드 네이티브 컴퓨팅 기술을 연구 및 발전시키고, 생태계를 촉진하는데 중추적인 역할을 하는 커뮤니티가 바로 'CNCF(Cloud Native Computing Foundation)'입니다. 현재 CNCF에서는 Google, Intel, Azure 등 700여 곳 이상의 회원사들이 활동에 참가하고 있습니다. 이번 시간에는 CNCF가 정확히 무엇이고, 추구하는 핵심가치와 주요 프로젝트에 대해 자세히 알아보겠습니다. 。。。。。。。。。。。。 CNCF(Cloud Native Computing Foundation)란 CNCF는 2015년 12월에 리눅스 재단에 의해서 출범된 비영리 단체로, 네이티브 컴퓨팅 기술의 채택을 촉진하는 오픈소스 소프트웨어 재단입니다. CNCF는 클라우드 네이티브 컴퓨팅 플랫폼에서 사용하며, 확장 가능한 애플리케이션을 개발하는데요. 이와 관련된 기술인 컨테이너, 마이크로서비스, 서비스 메쉬 등의 발전을 촉진하여 이러한 기술 패턴을 누구나 이해하고 활용할 수 있도록 하는 것이 목표입니다. ▲총 24개의 CNCF Platinum Members 이러한 클라우드 네이티브 컴퓨팅 환경을 대중화하기 위해 Google Cloud, AWS, MS Azure, Cisco, IBM, Apple, Oracle, Red Hat, VMware, SAP 등 유수의 기업들이 플래티넘 회원사로 참여하여 뜻을 같이 하고 있습니다. CNCF의 세 가지 핵심 가치 CNCF의 핵심가치는 1) 클라우드 네이티브 기술의 촉진 2) 오픈소스 프로젝트 생태계 육성 3) 기술의 표준화 수립으로 정리할 수 있습니다. 이 세 가지 핵심 가치를 더 자세하게 살펴볼까요? CNCF 핵심가치1 : 클라우드 네이티브 기술의 촉진 CNCF는 현대적이고 미래 지향적인 '클라우드 네이티브 기술의 촉진'을 중요한 핵심 가치로 규정하고 있는데요. 이는 CNCF가 오늘날의 IT 생태계의 중심에 서서, 클라우드 네이티브 기술을 지속적으로 연구 및 개발하여 새로운 디지털 전환의 시대를 선도하고자 하는 의지가 담겨 있다고 볼 수 있습니다. CNCF는 기존 온 프레미스(On-Premise) 환경, 그리고 모놀리식(Monolithic)한 개발 환경에서 탈피한 컨테이너, 마이크로서비스, 서비스 메시, 서버리스 등. 보다 혁신적이고 미래지향적인 기술 영역을 보급하고 대중화하기 위한 노력과 지원을 아끼지 않습니다. ▲기존 모놀리식 아키텍처와 마이크로서비스 아키텍처 비교 또한 디지털 트랜스포메이션 과정에서 클라우드 환경으로의 전환이 더욱 효율적으로 이루어질 수 있도록, 클라우드 네이티브 기술과 기업들의 서비스 모델을 재구성하기 위한 방법들을 안내하고 있습니다. 이렇게 새로운 서비스 모델 구축을 통해 민첩성과 효율성을 강화하여, 빠르게 변화하는 IT서비스의 수요에 기민하게 대응하고 고객 요구에 부응할 수 있도록 지원합니다. 여기서 계속 언급되고 있는 '클라우드 네이티브'는 정확히 무엇을 뜻할까요? CNCF의 활동에 대한 이해도를 높이기 위해, 클라우드 네이티브의 의미를 짚어보겠습니다! 📑클라우드 네이티브(Cloud Native)란? 클라우드 네이티브는, 클라우드 컴퓨팅 환경에서 현대적 애플리케이션을 구축·배포·관리할 때의 소프트웨어 접근 방식입니다. 기업과 조직은 고객의 요구를 충족하기 위해 신속하게 업데이트할 수 있는 확장성과 유연성, 그리고 복원력이 뛰어난 애플리케이션을 구축하고자 합니다. 이를 위해 클라우드 네이티브에서 사용되는 기술들은, IT 서비스에 영향을 미치지 않고 애플리케이션을 신속하게 변경합니다. 또한 리소스를 효율적으로 활용하여 빠르게 변화에 대응할 수 있도록 지원하고 있습니다. 위의 개념을 '클라우드 컴퓨팅'과 비교한다면 보다 더 쉽게 이해할 수 있는데요. 클라우드 컴퓨팅은, 클라우드 서비스 제공 업체가 단순히 리소스와 인프라를 클라우드 형태로 제공하는 방식입니다. 여기서 서비스 제공 방식은 기존 '모놀리식' 방식과 크게 다르지 않습니다. ▲클라우드 네이티브의 핵심요소 ⓒPivotal 클라우드 네이티브는 마이크로서비스 아키텍처(MSA)와 컨테이너를 기반으로, IT 서비스의 확장·변경 등에 대응이 용이한 환경입니다. 예를 들어 Ex1) 서비스 수요가 폭증하거나 장애가 생겼을 경우 Ex2) 자동적으로 애플리케이션을 확장하거나 장애가 발생했을 경우에는 대체 가능한 모델을 바로 적용하여 Fail-Over가 손쉽게 이루어질 수 있도록 합니다. CNCF에서는 위 그림과 같이 클라우드 네이티브의 핵심 요소를 마이크로서비스, 컨테이너, 애플리케이션의 개발·통합·배포의 의미를 내포하는 DevOps, CI/CD의 개발 방법론을 포함하여 설명하고 있습니다. CNCF 핵심가치2 : 오픈소스 프로젝트 생태계 육성 CNCF는 다양하고 혁신적인 '오픈소스 프로젝트'를 개발·공급·대중화하여, 클라우드 네이티브 생태계를 활성화하는데 큰 기여를 하고 있습니다. 또한 클라우드 네이티브 컴퓨팅 환경을 구성하고 효율적으로 운영하기 위해, 다양한 오픈소스를 개발하고 있는데요. 누구나 이와 같은 기술들을 이용할 수 있도록 지원합니다. 가장 성공적인 프로젝트는 2018년 8월에 컨테이너 오케스레이션 플랫폼인 'Kubernetes' 프로젝트이며, 컨테이너 생성·실행·종료 등의 역할을 하는 'Containerd', 시스템 모니터링 및 경고 역할을 하는 'Prometheus' 그리고 여러 시스템의 트래픽을 균등하게 분배하여 로드밸런싱을 제공하는 'Envoy' 등이 있습니다. 이처럼 클라우드 네이티브 생태계 활성화를 위한 다양한 프로젝트를 실행하며 배포하고 있습니다. ▲CNCF 개발 완료된 프로젝트 이외에도 클라우드 네이티브 커뮤니티인 이벤트·웨비나·워크샵 등을 활성화하여, 온오프라인 영역에서 개발자들 간의 교류를 원활하게 합니다. 개발자들이 오픈소스 프로젝트를 효과적으로 활용할 수 있도록, 사용법에 대한 교육과 튜토리얼을 제공하기도 합니다. 이를 통해 많은 기업과 이용자들이 클라우드 네이티브 환경에 손쉽게 접근할 수 있도록 지원하고 있습니다. CNCF 핵심가치3 : 기술의 표준화 수립 CNCF는 클라우드 네이티브 관련 기술의 무분별한 확장과 사용으로 인한 혼란을 방지하고자, 기술의 표준화를 촉진하고 정책의 일관성을 확보하는 노력 또한 지속하고 있는데요. 기술의 안정성과 품질 확보를 위해 재단 자체적으로 테스트와 벤치마킹 등을 수행하고, Best Practice를 공유하여, 기술의 표준화와 성숙도를 유지합니다. 이 외에도 CNCF는 새로운 기술의 적용 가능성과 성숙도를 평가하고, 클라우드 관련 기술을 보유한 회원사 및 파트너와의 협력을 촉진합니다. 이처럼 다양한 형태로 클라우드 네이티브 생태계의 지속적인 발전을 지원하고 있습니다. 。。。。。。。。。。。。 이번 시간에는 CNCF의 정의와 핵심가치를 알아보았는데요. CNCF는 앞에서 소개해 드린 내용처럼, 클라우드 네이티브 생태계 활성화를 위해 다양한 노력을 기울이고 있습니다. 브레인즈컴퍼니 역시 클라우드 네이티브 모니터링을 위한 다양한 제품과 기능들을 속속 출시하고 있으니, 많은 관심 부탁드립니다. 다음 시간에는 [CNCF의 핵심 프로젝트] 주제로 돌아오겠습니다!
2023.12.27
데브옵스(DevOps)에 대한 오해, 그리고 진실은?!
데브옵스(DevOps)에 대한 오해, 그리고 진실은?!
2000년 대 후반 IT 분야에서 데브옵스(DevOps)라는 움직임이 시작된 후, 꾸준하게 관심이 이어지고 있습니다. 데브옵스와 관련된 전 세계 시장의 규모는 2023년 기준 약 15조 원으로 추산되며, 올해부터는 연평균 25.5%씩 성장하여 2032년에 118조 원에 이를 것으로 예상됩니다(*출처: Grand View Research). 우리나라의 경우 네이버, 카카오, 우아한 형제들, 토스 등과 같은 국내 대기업부터 스타트업까지 데브옵스 팀을 구축하여 적극적으로 활용하고 있기도 한데요. 이처럼 많은 기업들이 말하는 데브옵스란 과연 무엇일까요? 그리고 어떻게 하면 데브옵스를 성공적으로 도입하고 활용할 수 있을까요? │ 데브옵스(DevOps)란 무엇인가? [그림 1] DevOps 개념 ⓒdevopedia 우선 데브옵스가 무엇인지부터 살펴봅시다. 검색 사이트에서 '데브옵스 혹은 DevOps'라고 검색하면 위 [그림1]과 같은 결과를 찾을 수 있는데요. [그림 2] DevOps에 대한 필자의 첫인상 하지만 처음 데브옵스라는 단어를 접할 경우 [그림 2]처럼 오버랩되는 건, 필자만 그런 것은 아니라고 생각합니다. 위 그림처럼 "개발자 보러 운영까지 하라는 거야? 아니면 운영자에게 개발까지 하라는 거야?"라는 질문을 던질 수 있겠죠. 데브옵스(DevOps)는 소프트웨어의 개발(Developmnet)과 + 운영(Operations)의 합성어이다. 이는 소프트웨어 개발자와 정보기술 전문가 간의 소통, 협업 및 통합을 강조하는 개발 환경이나 문화를 말한다. 데브옵스는 소프트웨어 개발조직과 운영조직 간의 상호 의존적 대응이며, 조직이 소프트웨어 제품과 서비스를 빠른 시간에 개발 및 배포하는 것을 목적으로 한다. ⓒ위키백과 위 내용에도 언급되었듯이, 데브옵스라는 것은 결국 단순한 기술이 아닌 환경 또는 사람들 간에 관계라고 할 수 있습니다. 그렇다면 데브옵스는 어떤 이유로 주목받을 수 있었을까요? │ 데브옵스(DevOps)가 주목받게 된 배경은? 데브옵스가 주목받은 이유는 여러 가지 있을 수 있지만, 주요한 이유 중 몇 가지를 설명하면 다음과 같습니다. 클라우드 컴퓨팅 기술의 발전 IT 산업의 발전에 따라 빠른 개발과 빠른 배포, 그리고 고객의 요구에 신속하게 대응하는 능력이 중요해졌습니다. 특히 클라우드 컴퓨팅(Cloud Computing) 기술의 발전으로 데브옵스의 필요성이 더 대두되었는데요. 클라우드 자원의 가상화 기술과 빠른 프로비저닝*1을 통해 기존의 개발과 운영 간의 경계가 허물어지며, 서로 간의 협력이 필수적으로 요구되었기 때문입니다. 실제로 데브옵스만으로는 52%, 클라우드 단독 사용으로는 53%의 성능 향상을 얻었지만, 데브옵스와 클라우드가 결합된 환경에서는 평균 81%의 성능을 향상시킬 수 있다는 조사 결과도 있습니다. *1 프로비저닝(Provisioning): 사용자가 요청한 IT 자원을 사용할 수 있는 상태로 준비하는 것 MSA의 등장 [그림 4] 모놀리식 구조 예시(왼) [그림 5] MSA 구조 예시(오) 지금까지 운영 중인 시스템 혹은 서비스는, 하나의 큰 덩어리로 구성된 [그림 4] 모놀리식(Monolithic) 구조를 많이 사용하고 있습니다. 안정성을 확보하고 기능 추가를 편리하게 할 수 있었기 때문이죠. 하지만 한 부분의 변경이 전체 시스템에 영향을 미칠 수 있어, 유지보수가 어렵다는 한계점이 있습니다. 예를 든다면 특정 기능이 수정이 필요한 경우에도, 전체 시스템을 수정해야 해서 번거롭고 비효율적인 부분이 있습니다. 이러한 모놀리식 구조의 한계점으로 소프트웨어의 구조가 서서히 [그림 5] MSA(Micro Service Architecture)로 변화되고 있습니다. MSA는 통합된 하나의 덩어리를 관리하는 것이 아닌, 작은 단위로 쪼개어 관리하는 방식인데요. 관리하기도 효율적이고, 소프트웨어 품질개선과 요구사항 반영이 비교적 편리해졌습니다. 각 서비스가 독립적으로 배포되고 운영되기 때문에, 특정 기능을 수정할 때 전체 기능을 수정하거나 다시 배포할 필요가 없어진 거죠. 하지만 이러한 변화는 기존의 개발 환경과 조직 문화로 대응하기엔 어려움이 있었습니다. 이때 '데브옵스(DevOps)'가 좋은 솔루션으로 등장한 것이죠! 데브옵스가 지속적인 통합(CI)1과 지속적인 배포(CD)2를 통해 빠른 개발 주기를 실현하고 배포할 수 있을 뿐만 아니라, 다수의 독립적인 서비스가 상호작용할 수 있도록 원활한 협업과 통합을 가능하게 했기 때문입니다. *1 지속적인 통합(Continuous Integration, CI) 개발자가 코드를 변경할 때마다 자동으로 통합하고 빌드 하여, 소프트웨어의 품질을 빠르게 확인하는 과정 *2 지속적인 배포(Continuous Delivery, CD) 통합된 코드를 자동으로 테스트하고, 안정적으로 통과한 경우에는 자동으로 프로덕션 환경에 소프트웨어를 배포하는 것. 이에 따라 사용자에게 새로운 기능이나 수정 사항을 신속히 제공하는 과정 │ 데브옵스(DevOps) 도입 성공사례는? 이처럼 데브옵스의 정의와 주목받게 된 배경을 살펴봤는데요. 이번에는 데브옵스를 실제로 기업에 적용해 보고 성공한 사례를 자세히 살펴볼까요? 넷플릭스 넷플릭스(Netflix)는 데브옵스를 성공의 핵심요소로 삼아, 지속적으로 새로운 기능과 업데이트를 제공했습니다. 자동화된 유연한 인프라로 사용자 경험을 향상시켰죠. 이를 통해 빠르게 변화하는 스트리밍 산업에서 앞서 나갈 수 있게 되었고, 많은 비즈니스 이점을 얻게 되었습니다. 사실 넷플릭스는 2008년 큰 장애를 겪은 후, 클라우드로 이전되면서 인프라를 혁신적으로 개편했습니다. 이로써 기존의 수직적 단일 장애 지점에서 벗어나, 수평적으로 확장 가능한 분산 시스템을 구축할 수 있었습니다. 아마존 아마존(Amazon)은 데브옵스 원칙을 초기에 채택하여, 개발과 운영팀 간의 협력을 강화했습니다. 자동화와 지속적인 통합을 강조함에 따라, 빠른 배포 주기와 개선된 확장성을 달성할 수 있었죠. 이러한 아마존의 데브옵스 접근 방식은, 시장에서 경쟁 우위를 유지하는데 중요한 역할을 했습니다. 아마존 창립자인 제프 베이조스는 아마존의 데브옵스에 대해 '고객에게 집중하고, 혁신을 포용하며, 실험할 용기'를 강조했습니다. 베이조스는 혁신을 위해, 오해를 받고 비판받을 의향이 있어야 한다고 말했던 것이죠. 페이스북 페이스북(Facebook)은 "빠르게 움직이고 물건을 부수라"는 문화에 뿌리를 둔 데브옵스 관행을 택했습니다. 실험, 민첩성, 위험 감수를 중시하는 접근 방식을 포함해서 말이죠. 이처럼 페이스북은 지속적인 통합과 배포, 자동화된 테스팅, 모니터링을 사용하여 사용자에게 더 빠르고 높은 품질의 새로운 기능과 업데이트를 제공하고 있습니다. 월마트 2011년부터 데브옵스를 도입한 월마트(Walmart)는 자동화와 협업 그리고 지속적인 배포에 중점을 두었습니다. 애자일(Agile) 방법론과 클라우드 기반의 인프라 및 데브옵스 툴체인을 활용하여, 하루에 최대 100번까지 코드를 배포할 수 있게 된 것이죠. 이를 통해 디지털 변환을 가속화하고, 전자상거래 플랫폼을 개선하며, 고객 경험을 향상시킬 수 있었습니다. 위 기업들은 데브옵스라는 도구를 효과적으로 활용하여 비즈니스 성과를 창출하고, 경쟁 우위를 확보할 수 있었습니다. 그렇다면 데브옵스를 도입하기만 하면 무조건 성공할 수 있을까요? │ 데브옵스(DevOps)의 오해와 한계 앞선 질문에 대한 대답은 아쉽게도 NO입니다. 데브옵스는 개발 환경과 문화를 전부 해결해 줄 수 있는 '만능책'은 아니라는 것이죠. 데브옵스가 도입된 이후 새로운 한계점이 발견되었고, 실패할 사례들도 적지 않게 나왔습니다. 이러한 결과는 아래와 같은 오해들에서 비롯될 확률이 높은데요. 대표적으로 3가지만 살펴봅시다. [그림 6] DevOps 구현을 위한 도구 ⓒMedium_Ajesh Martin 오해 1. 데브옵스는 일종의 단순한 도구일 뿐이다? 데브옵스를 '일종의 도구'로만 보는 것은 잘못된 판단입니다. 물론 여러 팀에서 보다 더 나은 환경과 문화를 위해 슬랙(Slack), 젠킨즈(Jenkins), 도커(Docker) 등 여러 도구를 사용하는 것은 좋습니다. 하지만 데브옵스는 이보다 더 광범위한 접근 방식을 담고 있습니다. 즉 개발과 운영팀 간의 협력과 더 빠른 소프트웨어 개발과 배포를 가능하게 하는 방법론을 포함한다는 것이죠. 다시 말해 데브옵스라는 '도구'를 이용하기 이전에, 문화적 그리고 기술적 접근 방식이 바탕이 되어야 데브옵스라는 툴이 도움 될 수 있습니다. 오해 2. 데브옵스는 모든 조직에 적합하다? 만약 '다른 회사에 데브옵스라는 팀이 있으니, 우리도 데브옵스 팀을 만들자'라는 식으로 접근한다면, [그림 2]와 같은 모습이 될 것으로 예상됩니다. 즉 데브옵스의 조직 체계를 구성한다고 해서 데브옵스가 실현될 순 없습니다. 서로 다른 입장과 상황이 있는 개발자-팀-회사, 운영자-팀-회사 간에 상당한 노력을 통해 만들어 내는 것이 더 중요한 것이죠. 이와 비슷한 사례로 애자일(Agile) 문화가 있습니다. 2000년대 초반 '애자일 소프트웨어 선언문'으로 다양한 애자일 방법론이 주목을 받았었죠. 개발에서 빠르고 유연한 방법을 강조하며, 이후 많은 기업들이 애자일 방법론을 도입하게 되며 유행처럼 번져갔습니다. [그림 7] Agile 프로세스 여기서 애자일 문화를 도입한 많은 기업들이 간과했던 사실은, 애자일 문화 도입 자체가 '해결책'이라고 생각했다는 점입니다. 이보다 기존의 조직 문화에서 애자일 문화를 도입하는 것이 적합한 상황인지, 기존의 프로세스보다 효과를 발휘할 수 있는지, 팀 구성원들이 충분히 적응할 수 있는 문화인지 등을 우선적으로 고려하는 것이 더 중요합니다. 데브옵스 역시 마찬가지로 기존의 조직 규모, 문화, 프로젝트의 특성에 대한 명확한 이해가 먼저 선행되어야 합니다. 데브옵스 도입 전에 조직의 현재 상황과 목표를 면밀히 평가한 후, 점진적으로 도입하는 것이 중요하죠. 대기업이나 캐시카우가 있는 기업들이 데브옵스를 실행했다고 해서, 또는 단지 트렌드라는 이유만으로 도입하는 것은 위험할 수 있습니다. 오해 3. 데브옵스는 빠른 소프트웨어 배포만을 목표로 한다? 데브옵스는 속도만 중시하고 품질이나 안정성을 소홀히 한다는 인식이 있습니다. 하지만 데브옵스는 소프트웨어의 빠른 배포뿐만 아니라, 품질과 안정성 그리고 보안을 동시에 추구해야 합니다. 이에 따라 지속적인 통합과 배포(CI/CD), 자동화된 테스트, 모니터링 등을 통해 이러한 목표를 달성하려고 노력해야 하죠. 이처럼 데브옵스라는 도구를 도입하고 데브옵스 팀을 구성했다고 해서, 데브옵스가 즉각적으로 실현되는 것은 아닙니다. │ 데브옵스(DevOps) 보다 선행되어야 하는 '이것' 진정한 데브옵스를 실현하기 위한 방법을 한 문장으로 표현한다면 다음과 같습니다. "싸우지 말고 함께 소프트웨어 시스템 혹은 서비스를 만들어봐요" 힘 빠지는 결론일 수도 있습니다. 하지만 데브옵스를 도입하기 이전에 더 선행되어야 할 것은 각각 다른 업무의 조직원들끼리 서로를 이해하고, 협력하며, 보다 안정적인 시스템과 서비스를 제공하는 '문화'를 만드는 것이 더 현실적인 행동이라고 생각합니다. 물론 데브(Dev)와 옵스(Ops)는 우선순위가 동일하지 않고, 동일한 언어를 사용하지 않을 수 있으며, 매우 다른 관점에서 문제 해결될 가능성이 높습니다. 이처럼 팀을 하나로 모으기 위해서는 상당한 시간과 지속적인 노력이 필요한 것이죠. 그렇다면 어떤 방식으로 팀 협업 문화를 만들어야, 데브옵스를 보다 성공적으로 도입할 수 있을까요? │ 데브옵스(DevOps) 성공을 위한 첫걸음 먼저 조직 내의 문화를 이해한 다음, 조직 내 교육과 커뮤니케이션을 강화하는 것이 중요한데요. 구체적인 방안을 제안한다면 다음과 같습니다. 로테이션 프로그램 도입 진정한 데브옵스를 실현하려면, 무엇보다 각 부서의 업무적인 이해가 중요합니다. 가장 직관적인 방법으로는 다른 부서의 업무를 '직접 체험'해 보는 것입니다. 예를 든다면 개발자가 운영팀의 업무를 수행하거나, 보안 팀이 개발 업무에 참여하는 등, 다양한 부서 간의 경험을 쌓아 보는 것이죠. 이를 통해 서로의 업무 환경과 각 부서 간의 역할을 이해하는 데 큰 도움을 받을 수 있습니다. 지식 공유 플랫폼 구축 내부 플랫폼이나 문서화된 지식 공유 시스템을 구축하는 방법도 있습니다. 각 부서의 업무와 프로세스에 대한 정보를 쉽게 접근할 수 있도록 하는 것이죠. 예를 들면 데브옵스 문화나 기술적인 도구, 프로세스 등을 포함하여 다양한 지식을 공유합니다. 이를 통해 각 부서의 업무 특성을 명확히 이해할 수 있고, 협업을 원활하게 진행할 수 있겠죠. 정기적인 교육 세션 빠르게 변화하는 기술에 대응하기 위해, 팀원들이 지속적으로 학습하고 발전해야 합니다. 정기적인 교육은 이러한 학습을 지원하는 데 중요한 역할을 하는데요. 예를 든다면 새로 도입된 CI/CD 도구에 대한 워크숍을 개최하여, 팀원들이 해당 도구의 사용법과 이점을 학습할 수 있도록 합니다. 또한 현재 사용 중인 프로세스 개선점에 대한 세션을 주기적으로 열어, 팀원들이 학습한 내용을 바탕으로 업무에 효율적으로 적용할 수 있습니다. 만약 특정 분야에 강점을 가진 팀원이 있어 주기적으로 자신의 경험과 성과를 공유한다면, 팀 전체에게 영감을 주고 학습 기회를 제공할 수도 있겠죠. 스탠드 업 미팅 활성화 매일 정해진 시간에 각 팀원이 자신의 진행 상황이나 이슈, 계획을 간결하게 공유합니다. 정해진 시간을 지키고 효율적인 미팅 진행을 위해, 공유하는 팀원들의 말에 집중하되 '총 15분'을 초과하지 않도록 노력하는 것이 중요합니다. 이를 통해 짧은 시간 동안 팀 전체가 빠르게 현재 상황을 파악하고, 실시간으로 정보를 공유하며, 신속하게 문제를 해결할 수 있습니다. 이처럼 위와 같은 방법들을 통해 구성원들이 효과적으로 협력할 수 있는 환경을 조성하는 노력들이 필요합니다. 。。。。。。。。。。。。 많은 기업들이 경쟁에서 지지 않기 위해 도입하고 있는 데브옵스(DevOps). 하지만 진정한 데브옵스를 실현하기 위해서는 "싸우지 말고 소프트웨어 시스템 혹은 서비스를 만들어 봐요"라는 문장처럼 각각 다른 업무의 조직원들끼리 서로 이해하고, 협력하는 문화가 선행되는 것이 매우 중요합니다. 즉 너희 팀 vs 우리 팀 업무를 구분하지 않고 함께 협력하여, 아이디어를 생산하고, 가치를 창출해야 하는 것이죠. 혹시 아직 데브옵스를 도입하기 전이거나, 도입 이후에 올바르게 활용되고 있는지 궁금하시다면, 오늘 이 글을 통해 심도 있게 생각해 보시는 건 어떨까요?
2024.02.14
Helm과 Argo의 개념과 통합 활용법?!
Helm과 Argo의 개념과 통합 활용법?!
애플리케이션을 클라우드 네이티브 환경에서 효율적으로 관리하고 운영할 수 있는 플랫폼인 쿠버네티스(kubernetes)를 활용하는 기업들이 점점 더 늘어나고 있습니다. 이에 따라 효율적인 애플리케이션 관리를 통해 패키징 배포, 관리를 자동화하고 일관된 상태를 유지하는 것이 중요해지고 있습니다. 이번 글을 통해서는 애플리케이션 개발 및 도구 중 최근 많이 사용되는 Helm과 Argo에 대해서 자세히 알아보겠습니다. ㅣHelm의 등장 쿠버네티스를 활용한 애플리케이션 배포에 가장 기본이 되는 단위는 yaml 파일로, 주로 쿠버네티스 object(리소스)들을 정의하고 다루는데 활용됩니다. 쿠버네티스를 통해 애플리케이션을 배포하다 보면 비슷한 틀과 내용을 공유하고, 내부 값(configuration)만 일부 변경하는 작업을 하게 되는데요, 이 과정에서 애플리케이션마다 모두 yaml 파일을 만들어야 하나 보니 매우 번거로웠습니다. 위 이미지를 보면, A 애플리케이션은 정적 파일인 yaml을 오브젝트별(Service, Pod, ConfigMap)로 만들어서 생성하고 배포합니다. 그러다가 프로젝트의 확장에 따른 기능 추가로 인해 B와 C 애플리케이션으로 쪼개어 각각의 yaml 파일을 복사해서 사용합니다. 하지만, 팀 단위로 인프라가 확장될 경우는 어떻게 할까요? 개별 오브젝트에 대한 yaml 개별적으로 관리할 수 있을까요? 만약, 개별적으로 관리한다면 파일의 갯수와 코드량의 증가로 인해 개발자들은 매우 혼잡하게 될 것입니다. 이러한 문제점을 해결하기 위해, 쿠버네티스에서 애플리케이션을 배포하기 위해 사용되는 대표적인 패키징 툴인 Helm이 등장하게 됐습니다. Helm을 활용하면 컨테이너 배포뿐 아니라 애플리케이션을 배포하기 위해 필요한 쿠버네티스 리소스를Node의 npm, Ubuntu의 APT, Mac의 Homebrew처럼 모두 패키지 형태로 배포할 수 있습니다. ㅣHelm의 역사 Helm은 v1부터 v3에 이르기까지 아래와 같은 변화의 과정을 거쳐왔습니다. Helm v1 ◾ [2015년 11월] DEIS의 내부 프로젝트로 시작되어 KubeCon에서 발표 ◾ [2017년 04월] MS에서 DEIS를 인수 Helm v2 ◾ [2016년 01월] Google 프로젝트에 합류 ◾ [2016년 ~ 2018년] Helm v2 고도화, 2.15.0 릴리스 발표에서 v2 향후 계획 세부사항 공유 Helm v3 ◾ [2018년 06월] CNCF 프로젝트에 합류, MS, 삼성 SDS, IBM 및 Blood Orange의 구성원 등이 참여 ◾ [2019년 11월] 릴리스 발표 v2에서 v3로 고도화되면서 가장 눈에 띄는 변화는 Tiller(클러스터 내에서 Helm 패키지 및 배포 상태를 관리하는 서버 구성요소)의 제거입니다. Helm v2에서는 클러스터에 Tiller를 설치하여, API Server와 REST*1 통신을 하고, Client와 gRPC*2 통신을 진행했었는데요, Helm v3부터는 Tiller가 제거되면서 Client에서 바로 REST 통신을 통해 API Server로 요청하는 방식으로 변경되었습니다. 그 외에도 Helm v3으로 업그레이드되면서 보안 취약점이 줄어들었으며, 설치 및 관리 과정이 단순화되었습니다. 또한 사용자에게 보다 더 안전하고 효율적인 배포 및 관리 환경을 제공할 수 있게 되었습니다. *1 REST (Representational State Transfer) : 웹 기반 애플리케이션에서 자원을 관리하기 위한 아키텍처 스타일, 데이터를 고유한 URL로 표현하고 HTTP 메서드(GET, POST, PUT, DELETE 등)를 사용하여 해당 자원에 대한 행위를 정의함 *2 gRPC (google Remote Procedure Call) : 구글에서 개발한 오픈소스 프레임워크, 원격지에 있는 다른 시스템 또는 서버에 있는 함수를 호출하는 방식 ㅣHelm의 주요 개념 Helm은 애플리케이션을 배포해 주는 툴이라고 앞서 살펴봤는데요, Helm과 같이 사용되는 주요 개념들을 살펴보겠습니다. ◾ Helm Chart: 쿠버네티스 리소스를 하나로 묶은 패키지입니다. 이는 yaml 파일의 묶음(패키지)으로, 이 묶음 public 혹은 private registry에 push 해두고, helm 명령어를 통해 Helm Chart를 설치하여 쿠버네티스 리소스를 배포하는 역할을 합니다. ◾ Repository: Helm Chart 들의 저장소 ◾ Release: kubernetes Cluster에서 구동되는 차트 인스턴스이며, Chart는 여러 번 설치되고 새로운 인스턴스는 Release로 관리됩니다. ㅣHelm의 주요 기능 Helm의 두 가지 주요 기능을 살펴보겠습니다. [1] Helm Chart를 통한 손쉬운 배포 Helm을 사용하면 어떻게 되는지 그림으로 살펴보겠습니다. 개발 클러스터가 있고 앱 2개를 배포한다고 가정했을 때, Helm Chart Template을 만들면 변수 처리를 통해 yaml 파일을 하나하나 수정할 필요 없습니다. kubectl 명령어를 통해 yaml 파일의 동적 값을 치환하여 템플릿 형태로 편리하게 배포할 수 있다는 장점이 있습니다. [2] Helm Package를 이용한 오픈소스 설치 및 배포 Helm을 통해서 쿠버네티스에서 가동할 수 있는 아래와 같은 다양한 오픈소스들의 제품들을 쉽게 설치/배포할 수 있습니다. 위제품들 외에도 Helm Chart는 총 14,376개의 패키지와 281,373개의 릴리스를 오픈소스로 제공합니다. 이를 통해 사용자들은 자신의 요구에 맞는 가장 적합한 솔루션을 선택하여 개발할 수 있습니다. 또한 많은 사용자들이 검증하고 사용함에 따라 안정성 있는 운영도 가능하죠. 다양한 Helm Chart 패키지는 커스터마이징이 가능한 경우가 많은데요, 사용자는 필요에 따라 구성을 조정하고 수정해서 사용할 수 있는 장점이 있습니다. 다음으로는 Helm 못지않게 많이 활용되는 ArgoCD에 대해서 살펴보겠습니다. ㅣ ArgoCD란?! 기존의 kubernetes 애플리케이션을 배포하고 관리하는 방식은 수동적이었습니다. yaml 파일을 직접 편집하고, kubectl로 변경사항을 클러스터에 적용하는 수동 배포 방식은 실수를 많이 유발했죠. 또한 여러 개발자나 팀이 각자의 방식대로 배포 및 관리를 수행하는 경우, 클러스터 상태의 일관성이 저하되었는데요. 이로 인해 개발 및 운영팀 간의 협업이 어렵고 생산성이 감소되는 문제가 발생하기도 했습니다. 이러한 기존 접근 방식에 대한 대안으로 GitOps가 탄생했는데요, GitOps는 Git 저장소를 사용하는 소프트웨어 배포 접근 방식입니다. GitOps는 인프라와 소프트웨어를 함께 관리함으로써, Git 버전 관리 시스템과 운영환경 간의 일관성을 유지할 수 있도록 합니다. ArgoCD는 GitOps를 구현하기 위한 도구 중 하나로 kubernetes 애플리케이션의 자동 배포를 위한 오픈소스 도구입니다. kubernetes 클러스터에 배포된 애플리케이션의 CI/CD 파이프라인에서 CD 부분을 담당하며, Git 저장소에서 변경사항을 감지하여 자동으로 kubernetes 클러스터에 애플리케이션을 배포할 수 있습니다. kubernetes 애플리케이션 배포 과정을 살펴보겠습니다. ① 사용자가 개발한 내용을 Git 저장소에 Push(이때, kubernetes 배포 방식인 Helm 배포 방식의 구조로 Git 저장소에 Push 할 수 있습니다.) ② ArgoCD가 Git 저장소의 변경 상태를 감지 ③ Git 저장소의 변경된 내용을 kubernetes에 배포하여 반영 ㅣ ArgoCD의 주요 기능 ◾ 애플리케이션을 지정된 환경에 자동으로 배포 ◾ 멀티 클러스터 관리기능 제공 ◾ OCI, OAuth2, LDAP 등 SSO 연동 ◾ 멀티 테넌시와 자체적인 RBAC 정책 제공 ◾ 애플리케이션 리소스 상태 분석 ◾ 애플리케이션 자동 및 수동 동기화 기능 제공 ◾ Argo가 관리하고 있는 쿠버네티스 리소스 시각화 UI 제공 ◾ 자동화 및 CI 통합을 위한 CLI 제공 위 내용은 ArgoCD가 제공하는 주요 기능을 나열한 것인데요, 이 중에서도 대표적인 다섯 가지 기능에 대해서 자세히 살펴보겠습니다. ① 쿠버네티스 모니터링 ArgoCD는 쿠버네티스를 항상 추적하고 있다가 저장소의 변경사항이 감지되면, 자동으로 클러스터의 상태를 저장소의 상태와 동기화합니다. 또한 문제가 생기면 이전 상태로 롤백 할 수 있으며, 이를 통해 시스템 복구 및 문제 해결을 용이하게 합니다. ② 멀티 클러스터 관리 다중 클러스터 환경에서도 배포를 관리할 수 있어 복잡한 인프라 환경에서의 효율적인 작업을 가능하게 합니다. ③ ArgoCD 대시보드 Argo에서는 클러스터 상태를 효과적으로 관리하고 모니터링할 수 있는 대시보드를 제공합니다. ArgoCD 대시보드를 통해 애플리케이션의 실시간 상태와 동기화 상태와 같은 전체적인 배포 파이프라인을 자동화하여 시각적으로 확인할 수 있고, 롤백 및 이력 추적 기능도 동시에 제공하고 있습니다. ④ 안전한 인증 및 권한 관리 역할 기반 액세스 제어(RBAC) 및 권한 제어기능을 통해 민감한 정보에 대한 접근을 제어할 수 있습니다. ⑤ GitOps 지원 ArgoCD는 GitOps 방법론을 따르므로 애플리케이션의 배포를 Git Repository와 동기화할 수 있습니다. 이를 통해 코드와 인프라의 일관성을 유지하고 변경사항을 추적할 수 있습니다. ㅣ Helm과 ArgoCD의 통합 활용 프로세스 Helm과 Argo를 함께 사용하면 개발, 테스트, 배포 프로세스를 효과적으로 관리할 수 있습니다. Helm으로 애플리케이션을 패키징하고 버전을 관리하며, Argo를 활용하여 GitOps 워크플로우를 통해 지속적인 통합 및 배포를 자동화할 수 있습니다. ① develop: Helm을 사용하여 애플리케이션을 Helm Chart로 패키징 합니다. 이후 개발된 Helm Chart를 저장하기 위한 Git 저장소를 설정합니다. ArgoCD에서 저장한 저장소를 특정 배포 대상 Kubernetes 클러스터와 연결하여, Git 저장소의 변경사항을 감지하고 새로운 배포를 시작하여 클러스터에 적용합니다. ② git push: 개발자가 로컬 저장소 내용을 원격 저장소에 배포합니다. ③ Observe(GitOps): ArgoCD는 Git 저장소의 변경 사항을 감지하여, 변경사항이 발생하면 새로운 버전의 애플리케이션을 배포하여 자동화 및 일관성을 유지합니다. ④ 운영/테스트/개발 ㅣ마무리 오늘 함께 살펴본 Helm과 ArgoCD 두 가지 강력한 도구를 함께 이용한다면 CI/CD 통합, 버전 관리, 자동화 등의 이점을 활용해서 kubernetes 환경에서 애플리케이션을 더 효율적으로 관리할 수 있습니다. 한편 애플리케이션을 효과적으로 개발하는 것도 중요하지만, kubernetes 환경의 프로세스를 실시간 모니터링하고 추적하여 관리하는 것도 매우 중요합니다. 브레인즈컴퍼니의 kubernetes 모니터링 솔루션 Zenius-K8s는 다양한 CI/CD 도구를 이용하여 개발한 kubernetes 애플리케이션의 전체 클러스터 및 구성요소에 대한 상세 성능 정보를 모니터링하고, 리소스를 추적함으로써 시스템의 안정성과 성능을 높여주고 있습니다.
2024.03.08
다음 슬라이드 보기