반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
데브옵스(DevOps)에 대한 오해, 그리고 진실은?!
잘파세대(Z세대 + 알파 세대)에 대한 모든 것
차정환
2024.02.19
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
SMS를 통한 서버관리는 꼭 이렇게 해야만 한다?!
IT 기술의 빠른 발전 못지않게, 각 세대별 특성도 빠르게 변화하고 있습니다.
특히 몇 해 전부터 'MZ 세대'와 관련한 이슈들이 크게 부각되었습니다. 유튜브나 TV 예능에서의 소재뿐 아니라, 사회 전체적으로도 모두가 관심을 가진 그야말로 '핫'한 주제가 되었죠.
MZ 세대와 관련한 다양한 도서들(출처: 교보문고)
MZ 세대에 대해 이해하고 함께 어울려보려고 노력해서 이제 조금 익숙해져가는 와중에... 이제 'MZ 세대' 보다 중요한 세대가 등장했습니다. 바로 '잘파세대'!
잘파세대는 Z세대와 알파 세대를 합친 말인데요, 소비자로서 그리고 직장의 구성원으로서 정말 중요한 부분을 차지하고 있고 영향력이 더 커질 잘파세대에 대해서 지금부터 자세히 알아보겠습니다.
│ 세대는 어떻게 구분되는가?!
본격적으로 이야기를 시작하기 전에 한 가지 분명히 해야 할 것이 있습니다. 지금부터 알아볼 특징들이 전체를 대표하는 경향이 있긴 하지만, 같은 세대 안에서도 개인차가 있으므로 모든 사람에게 동일하게 적용될 수는 없다는 것이죠.
하지만 이와 동시에 각 세대별 차이는 분명히 존재하기 때문에, 각 세대의 특징과 경향을 앎으로써 서로 더 가까워지기 위한 목적을 가지고 본격적으로 들여다보도록 하겠습니다.
조금씩의 차이는 있지만, 가장 나이가 많은 베이비부머 세대부터 알파 세대에 이르기까지 총 다섯 개의 분류로 세대를 구분하는 것이 일반적입니다. 세대별 구분 기준과 특징은 아래와 같이 정리할 수 있습니다.
베이비부머부터 X세대 초반(1975년생)까지는 그동안의 한국 사회의 가파른 성장을 이끌어온, 이른바 '기성세대'라고 볼 수 있습니다.
한편 그동안 'MZ세대(밀레니얼세대 + Z세대)'로 묶여왔던 밀레니얼 세대는 대세에서 멀어지고, 알파 세대가 새롭게 떠오르며 Z세대와 대세를 이루게 됐습니다.
밀레니얼 세대는 회사 내에서 '주니어급'에서 '중간관리자' 급으로 성장했죠. 따라서 위로는 베이비부머와 X세대를 모셔야 하고, 아래로는 잘파세대를 관리해야 함에 따른 밀레니얼 세대의 고충도 커지고 있습니다
(이 이슈는 나중에 따로 자세히 살펴보도록 하죠)
.
회사 내에서의 세대별 차이에서 오는 에피소드를 극대화한 MZ 오피스 (출처: 쿠팡플레이)
현재 대부분의 회사에서는 X세대 이상의 임원과, 차~부장급 팀장이 된 밀레니얼 세대, 그리고 주니어에서 갓 벗어나 과장급 실무자가 됐거나 주니어급인 Z세대가 어울려 있습니다. 그리고 이들이 알파 세대 고객을 만나 고생하기도 하고요.
그리고 가정에서는 은퇴한 베이비부머 세대를 둔 X세대 후반 ~ 밀레니얼 세대가 결혼해서 알파 세대를 낳은 후 고군분투하고 있고, Z세대는 그런 밀레니얼 시대를 보면서 결혼에 대해 심각하게 고민하는 모습을 흔치않게 볼 수 있습니다.
직장과 가정 모두에서 각 세대가 서로를 이해하며 오래오래 행복하게 살면 좋겠지만, 현실은 그렇지 않죠. 앞에도 언급했듯이 이제 주류가 된 잘파세대를 제대로 알고 함께 어울리기 위한 방법은 무엇일까요?
│ 소비자로서의 잘파세대, 그리고 대응 방안
본격적으로 잘파세대에 대해서 알아보겠습니다. 먼저 그들에게 우리 서비스와 제품을 잘 알리기 위해 '소비자로서의' 잘파세대의 특성을 살펴보죠. 세부적으로 Z세대와 알파 세대의 특성이 차이가 있기 때문에 나눠서 살펴보겠습니다.
Z세대(14세~28세)
Z세대는 소비자로서 세 가지 특성이 있습니다.
▪
디지털 네이티브:
인터넷, 스마트폰, 소셜미디어와 함께 성장한 이들은 소비에 있어서도 다양한 온라인 플랫폼을 적극 활용합니다. 특히 온라인 리뷰와 소셜미디어 추천을 매우 중요하게 여깁니다.
▪
가치 중심의 소비:
제품이나 브랜드가 대표하는 가치와 사회적 책임을 중시합니다. 지속 가능성, 윤리적 생산, 다양성 존중 등이 소비에 있어서 중요한 결정 요소가 됩니다.
▪
개인화된 경험 선호:
Z세대는 자신들의 취향과 관심사에 맞춤화된 제품이나 서비스를 선호합니다.
따라서 기업의 입장에선 우선 콘텐츠 마케팅/인플루언스 마케팅/자체 소셜미디어 운영 등을 통해서 Z세대와의 접점을 최대한 늘려야 합니다. 그리고 철저한 데이터 분석을 통해, 소비자의 취향과 선호를 파악하고 맞춤형 제품과 경험을 제공해야 하죠.
더불어서 기업의 사회적 책임과 지속 가능성 목표를 명확히 하고, 이를 적극적으로 알려야 합니다. 다만, 이때 주의해야 할 것은 '바르게 잘 하고 있는 척' 만 하는 것이 아니라, '실제로 바르게 말하고 행동'해야 합니다. 말과 행동이 다른 기업이나 서비스는 Z세대에게 바로 외면받을 수밖에 없기 때문이죠.
환경 보호를 직접 실천하며 꾸준한 사랑을 받고 있는 Patagonia
Z세대를 대상으로 성공적인 마케팅을 펼친 사례를 간단히 정리해 보면,
▪
나이키:
나이키는 AR(증강현실)을 이용한 신발 피팅 기술과, 소비자가 자신만의 디자인을 할 수 있는 커스터마이징 옵션을 제공하여 좋은 반응을 얻고 있습니다.
▪
Spotify:
Z세대의 음악 취향을 분석하여 개인화된 플레이리스트를 제공하는 것을 통해 많은 사용자를 유지하고 있습니다.
▪
Patagonia:
환경 보호를 중시하는 아웃도어 의류 브랜드로, 지속 가능한 제품 제조 방식과 환경 보호 캠페인을 펼치며 Z세대로부터 큰 지지를 받고 있습니다. 2023년에는 주식 전체를 환경보호 단체에 기부하며 큰 화제가 되기도 했죠.
▪
Beyond Meat:
식물로 만든 대체 육류 제품을 제공하여, 지속 가능한 소비와 동물 복지, 환경 보호에 앞장섬으로써 많은 사랑을 받고 있습니다.
식물로 만든 다양한 육류 제품으로 인기를 끌고 있는 Beyond Meat
Z세대를 위한 마케팅은 다음과 같은 한 마디로 정의할 수 있습니다.
'정말 좋은 목적을 가지고 만든 고객 맞춤형 제품과 서비스를, 소셜미디어를 통해 활발하게 알린다!'
알파 세대(~13세)
알파 세대는 Z세대와 비슷하지만 조금은 다른 특성을 가지고 있습니다.
▪
기술과의 완전한 통합:
알파 세대는 태어난 직후부터 스마트 기기와 AI와 함께 자랐습니다. 따라서 이들에게 최신 기술은 일상의 일부죠
(실제 미국에서 많은 아기들이 처음으로 발음한 것이 '엄마'가 아닌, '알렉사(구글의 AI 서비스)'여서 큰 화제가 되기도 했습니다)
.
▪
교육적 콘텐츠 소비:
아직 성장단계에 있고, 부모의 영향도 있기 때문에 교육적 가치가 있는 콘텐츠를 주로 많이 소비합니다.
▪
가족 구매 결정에 영향:
아직 어린 나이에도 불구하고, 알파 세대가 가족의 구매 결정에 영향을 미치는 경우가 꽤 많습니다.
디지털 기기와 매우 친숙한 알파 세대
알파 세대를 대상으로 성공적인 마케팅과 서비스를 제공하고 있는 사례를 살펴보면,
▪
Duolingo:
언어 학습 앱으로 게임 기능을 통해 교육적 가치와 재미를 동시에 제공하고 있습니다.
▪
Roblox:
아이들이 자신만의 게임을 만들고 다른 사람들과 공유할 수 있는 플랫폼으로, 창의력과 코딩 기술을 향상시킬 수 있어서 많은 사랑을 받고 있습니다.
▪
Amazone Echo Dot Kids Edition:
아이들을 위한 스마트 스피커로, 부모가 컨트롤할 수 있는 콘텐츠와 함께 다양한 교육 콘텐츠를 제공합니다.
▪
LEGO Super Mario:
레고와 닌텐도의 협업으로 만들어진 이 제품은, 게임과 실제 놀이의 결합을 통해 창의력과 문제 해결 능력을 발전시킬 수 있어서 좋은 반응을 얻고 있습니다.
알파 세대에게 큰 사랑을 받고 있는 Roblox (출처: The Irish Times)
결국 위에 살펴본 사례처럼 알파 세대에게 사랑받으려면, 교육적 가치가 있는 제품을 개발하고 가족 친화적 마케팅을 진행하면서 부모의 신뢰를 얻을 수 있는 안전한 디지털 환경을 제공해야 합니다
(유해 콘텐츠 방지, 개인정보 보호 등)
.
잘파세대인 소비자들에게 어떻게 다가갈지 조금 감이 잡히시나요? 함께 살펴본 내용은 극히 기본에 불과하지만, 이번 기회를 통해서 잘파세대 소비자들과 한 걸음이라도 가까워질 있게 되기를 바랍니다.
│ 직장인으로서의 잘파세대, 그리고 대응방안
자 이제, 소비자가 아닌 내 동료로서의 잘파세대를 알아보겠습니다. 단, 알파 세대는 아직 사회에 진출하기 전이 때문에 Z세대를 중심으로 하나씩 살펴보도록 하죠.
2020년대 초반부터 본격적으로 직장 생활을 시작한 Z세대는, 그들만의 독특한 특성과 가치관을 가지고 있습니다. 사실 'MZ 세대'에 특성으로 꼽히는 부분 중에 기성세대가 많이 새로워하고 놀란 특성들 대부분이 'Z세대'의 특성이라고 볼 수 있죠.
직장인으로서의 Z세대 특성은 다섯 가지로 정리할 수 있습니다.
Z세대가 즐겨 사용하는 업무 도구인 Slack
기술에 대한 높은 숙련도
디지털 네이티브인 Z세대는 다양한 기술과 플랫폼을 자연스럽게 사용합니다. Slack이나 Notion 등 효율적인 업무 도구와 소프트웨어를 활용하여 업무를 진행하는 것을 선호하죠
(반면에 전화나 대면 미팅을 꺼리는 경향도 있습니다)
.
자율성과 유연성에 대한 강한 욕구
자율적인 업무 환경과 일과 생활의 균형을 매우 중요시합니다. 유연한 근무시간과 재택근무 옵션을 높은 연봉보다 선호할 정도입니다.
다양성과 포용성에 대한 강조
Z세대는 다양성, 평등, 포용성에 대한 가치를 중요하게 여깁니다. 다양한 배경과 경험을 가진 사람들과의 협업을 중시하며, 모두가 존중받는 직장 문화를 원합니다.
목적과 가치에 대한 추구
단순히 급여를 받는 것에 그치지 않고, 자신이 하는 일이 사회적으로 선하고 긍정적인 영향을 미치는지를 중요하게 여깁니다. 따라서 회사를 선택할 때도 회사의 사회적 책임과 가치에 공감할 수 있는지를 진지하게 고민합니다.
피드백과 성장 기회에 대한 욕구
지속적인 피드백과 자신의 역량을 개발할 수 있는 기회를 중요하게 생각합니다. 특히 본인의 업무 성과에 대한 구체적이고 명확한 피드백을 원하죠. 불투명한 평가절차 및 결과로 인한 Z세대의 퇴사가 늘고 있는 이유입니다.
따라서 Z세대를 회사의 구성원으로 잘 적응시키기 위해서는, 유연한 근무 환경을 제공하고 개인의 성장과 개발을 지원하는 프로그램을 갖추는 것이 중요합니다.
이와 동시에 회사의 사회적 책임에 대해서 어필하고, 다양성과 포용성을 증진할 수 있는 실질적인 실천도 뒷받침되어야 하죠. 그리고 무엇보다 이들의 성과를 정확히 평가하고, 구체적이고, 투명하게 피드백을 줄 수 있는 시스템도 갖춰야 합니다.
Z세대가 선호하는 직장으로 꼽히는 곳들은 대부분 구글과 같이 유연한 근무 환경/자율성 존중/개인의 성장과 개발에 대한 강력한 지원을 하거나, Salesforce나 에어비앤비처럼 사회적 가치와 미션에 대해서 강조하고 직원들과 투명한 커뮤니케이션을 진행하고 있습니다.
신입/주니어급이던 Z세대가 실무의 핵심으로 자리 잡고 있는 가운데, 본인의 이상과 실제에 거리감에 회의를 느낀 Z세대의 이직이나 퇴사도 늘고 있습니다.
또한 퇴사는 하지 않아도 일을 잘하려는 의지 없이 최소한의 업무만 하는 이른바 '조용한 퇴사'도 늘고 있는데요. 조용한 퇴사로 인한 기업의 손실이 약 2,500조에 이른다는 갤럽의 분석도 있습니다.
따라서 모든 기업이 Z세대의 마음을 사로잡고, 그들의 업무 효율을 높이기 위한 빠른 노력이 꼭 필요합니다. 이제 곧 Z세대가 기업 실무진행의 핵심으로 자리 잡을 시기가 오기 때문이죠.
│ 글을 마치며
"요즘 젊은이들은 버릇이 없다."
기원전 1700년에 만들어진 수메르 시대 점토판 문자에 이렇게 쓰여있다고 하죠. 기존 세대와 새로운 세대의 갈등은 오래전부터 존재해왔습니다.
하지만 기술의 발달과 넘치는 정보로 인해서 상황이 옛날과 많이 바뀌었습니다. 앞서 살펴본 대로 잘파세대는 소비자로서도 중요한 위치에 오르고 있고, 회사 내에서도 잘파세대의 역할이 점점 더 중요해지고 있기 때문입니다.
특히 기업을 운영할 때 '기성세대의 노하우를 전수하는 것'보다, '신기술을 빠르게 터득하고 활용하는 것'이 더 중요해졌기 때문에 새로운 세대와 효과적으로 함께 하기 위한 노력이 빠르게 필요합니다.
점심회식을 통해 세대간 어울리기 위한 노력을 이어가고 있는 브레인즈컴퍼니
어려워 보이고 갈 길이 멀어 보일 수도 있지만, 오늘부터 잘파세대를 이해하기 위한 하나씩 실천해 보는 건 어떨까요?
(그렇다고 잘파세대 후배 불러서 저녁회식 같은거 하시면 안 됩니다...)
#잘파세대
#Z세대
#알파세대
#MZ세대
#브레인즈컴퍼니
차정환
온/오프라인 마케팅 브랜딩, 그리고 홍보를 총괄하고 있습니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
앞선 글들을 통해서 NMS의 기본 개념, 구성요소와 기능, 정보 수집 프로토콜에 대해서 알아봤었는데요. 이번 글에서는 NMS의 역사와 진화 과정, 그리고 최근 트렌드에 대해서 자세히 알아보겠습니다. EMS, NPM, 그리고 AIOps에 이르기까지 네트워크의 빠른 변화에 발맞추어 진화하고 있는 NMS에 대해서 하나씩 하나씩 살펴보겠습니다. ㅣNMS의 역사와 진화 과정 우선 NMS의 전반적인 역사와 진화 과정을 살펴보겠습니다. [1] 초기 단계 (1980년대 이전) 초기에는 네트워크 관리가 수동적이었습니다. 네트워크 운영자들은 네트워크를 모니터링하고 문제를 해결하기 위해 로그 파일을 수동으로 분석하고 감독했습니다. [2] SNMP의 등장 (1988년) SNMP(Simple Network Management Protocol)의 등장으로 네트워크 장비에서 데이터를 수집하고 이를 중앙 집중식으로 관리하는 표준 프로토콜을 통해 네트워크 관리자들이 네트워크 장비의 상태를 실시간으로 모니터링하고 제어할 수 있게 됐습니다. [3] 네트워크 관리 플랫폼의 출현 (1990년대 중후반) 1990년대 후반부에는 상용 및 오픈 소스 기반의 통합된 네트워크 관리 플랫폼이 등장했습니다. 이러한 플랫폼들은 다양한 네트워크 장비와 프로토콜을 지원하고, 시각화된 대시보드와 경고 기능 등을 제공하여 네트워크 관리의 편의성을 높였습니다. [4] 웹 기반 NMS (2000년대 중반) 2000년대 중반에는 웹 기반의 NMS가 등장했습니다. 이러한 시스템은 사용자 친화적인 웹 인터페이스를 통해 네트워크 상태를 모니터링하고 관리할 수 있게 했습니다. [5] 클라우드 기반 NMS (2010년대 이후) 최근 몇 년간 클라우드 기반 NMS의 등장으로 네트워크 관리의 패러다임이 변화하고 있습니다. 또한 빅데이터 기술과 인공지능(AI) 기술을 활용하여 네트워크 성능을 최적화하고, 향후 성능을 예측할 수 있는 성능 예측 기능까지 NMS에서 제공하고 있습니다. ㅣNMS에서 EMS로의 진화 네트워크 환경은 빠르게 변화하게 되고, 이에 따라서 NMS도 EMS로 진화하게 됩니다. NMS의 진화는 총 세 가지 세대로 나눌 수 있습니다. 1세대: 디바이스 관리 시스템 기존의 NMS는 외산 제조사에서 제공하는 전용 네트워크 솔루션이 주를 이루었습니다. CISCO의 시스코웍스(CiscoWorks), IBM의 넷뷰(NetView) HP의 네트워크 노드 매니저(Network Node Manager) 등 다양한 벤더들이 자사의 제품에 대한 모니터링 서비스를 제공하기 위해 특화된 디바이스 관리 솔루션을 내놓았죠. HP Network Node Manager 예시 화면(출처ⓒ omgfreeet.live) 물론 자사의 제품을 관리하기 위한 목적에서 출발한 솔루션이었기에, 대규모 이기종 IT 인프라 환경에 대한 모니터링 기능은 제공하지 못했습니다. 2세대: IT 인프라 관리 시스템 EMS의 등장 1세대의 NMS의 경우 빠르게 급변하는 네트워크 트렌드를 따라갈 수 없었습니다. 가상랜(VLAN), 클라이언트-서버 기술이 발달하게 되자, IP 네트워크 관계만으로 실제 토폴로지를 파악하기 어려웠습니다. 또한 네트워크장비 및 회선의 상태뿐 아니라, 서버 등의 이기종 IT 인프라 통합 모니터링에 대한 니즈와 함께 EMS(Enterprise Management System)의 시대가 시작됩니다. 이에 따라 서비스 관리 차원의 통합 관제 서비스가 등장합니다. 기존의 네트워크 모니터링뿐 아니라 서버, DBMS, WAS 등 IT 서비스를 이루고 있는 모든 인프라들에 대한 통합 모니터링에 대한 관심과 니즈가 증가했기 때문입니다. 3세대: 클라우드 네이티브 환경의 EMS 2010년 중 이후 서버, 네트워크 등 IT 인프라에 대한 클라우드 네이티브로의 전환이 가속화되었습니다. 기존의 레거시 환경에 대한 모니터링과 함께 퍼블릭, 프라이빗 클라우드에 대한 모니터링 니즈가 증가하면서 모든 환경에 대한 통합적인 가시성을 제공해 줄 수 있는 EMS가 필요하게 되었죠. 이외에도 AI의 발전을 통해 AIOps, Observability라는 이름으로 인프라에 대한 장애를 사전적으로 예측할 수 있는 기능이 필요하게 됐습니다. ㅣ네트워크 환경 변화(가상화)와 NMS의 변화 이번에는 네트워크 환경 변화에 따른 NMS의 변화에 대해서 알아보겠습니다. 네트워크 환경 변화(네트워크 가상화) 네트워크 구성 방식은 지속적으로 변화해왔습니다. 클라이언트-서버 모델부터 중앙 집중식 네트워크, MSA 환경에서의 네트워크 구성까지 이러한 변화는 기술 발전, 비즈니스 요구 사항, 보안 요구 사항 등 다양한 요인에 의해 영향을 받았는데요. 무엇보다 가장 중요한 변화는 전통적인 온 프레미스 네트워크 구조에서 네트워크 자원이 더 이상 물리적인 장비 기반의 구성이 아닌 가상화 환경에서 구성된다는 점입니다. ▪소프트웨어 정의 네트워킹(SDN, 2000년대 후반 - 현재): 네트워크 관리와 제어를 분리하고 소프트웨어로 정의하여 유연성과 자동화를 향상시키는 접근 방식입니다. SDN은 네트워크 관리의 복잡성을 줄이고 가상화, 클라우드 컴퓨팅 및 컨테이너화와 같은 새로운 기술의 통합을 촉진시켰습니다. ▪네트워크 가상화 (NFV, 현재): 기존 하드웨어 기반 전용 장비에서 수행되던 네트워크 기능을 소프트웨어로 가상화하여 하드웨어 의존성과 장비 벤더에 대한 종속성을 배제하고, 네트워크 오케스트레이션을 통해 네트워크 환경 변화에 민첩한 대응을 가능하게 합니다. ㅣ클라우드, AI 등의 등장에 따른 NMS의 방향 클라우드 네이티브가 가속화되고, AI를 통한 인프라 관리가 주요 화두로 급부상하면서 네트워크 구성과 이를 모니터링하는 NMS의 환경 역시 급변하고 있습니다. 클라우드 내의 네트워크: VPC VPC(Virtual Private Cloud)는 퍼블릭 클라우드 환경에서 사용할 수 있는 전용 사설 네트워크입니다. VPC 개념에 앞서 VPN에 대한 개념을 단단히 잡고 넘어가야 합니다. VPN(Virtual Private Network)은 가상사설망으로 '가상'이라는 단어에서 유추할 수 있듯이 실제 사설망이 아닌 가상의 사설망입니다. VPN을 통해 하나의 네트워크를 가상의 망으로 분리하여, 논리적으로 다른 네트워크인 것처럼 구성할 수 있습니다. VPC도 이와 마찬가지로 클라우드 환경을 퍼블릭과 프라이빗의 논리적인 독립된 네트워크 영역으로 분리할 수 있게 해줍니다. VPC가 등장한 후 클라우드 내에 있는 여러 리소스를 격리할 수 있게 되었는데요. 예를 들어 'IP 주소 간에는 중첩되는 부분이 없었는지', '클라우드 내에 네트워크 분리 방안' 등 다양한 문제들을 VPC를 통해 해결할 수 있었습니다. ▪서브넷(Subnet): 서브넷은 서브 네트워크(Subnetwork)의 줄임말로 IP 네트워크의 논리적인 영역을 부분적으로 나눈 하위망을 말합니다. AWS, Azure, KT클라우드, NHN 등 다양한 퍼블릭 클라우드의 VPC 서브넷을 통해 네트워크를 분리할 수 있습니다. ▪서브넷은 크게 퍼블릿 서브넷과 프라이빗 서브넷으로 나눌 수 있습니다. 말 그대로 외부 인터넷 구간과 직접적으로 통신할 수 있는 공공, 폐쇄적인 네트워크 망입니다. VPC를 이용하면 Public subnet, Private subnet, VPN only subnet 등 필요에 따라 다양한 서브넷을 생성할 수 있습니다. ▪가상 라우터와 라우트 테이블(routing table): VPC를 통해 가상의 라우터와 라우트 테이블이 생성됩니다. NPM(Network Performance Monitoring) 네트워크 퍼포먼스 모니터링(NPM)은 전통적인 네트워크 모니터링을 넘어 사용자가 경험하는 네트워크 서비스 품질을 측정, 진단, 최적화하는 프로세스입니다. NPM 솔루션은 다양한 유형의 네트워크 데이터(ex: packet, flow, metric, test result)를 결합하여 네트워크의 성능과 가용성, 그리고 사용자의 비즈니스와 연관된 네트워크 지표들을 분석합니다. 단순하게 네트워크 성능 데이터(Packet, SNMP, Flow 등)를 수집하는 수동적인 과거의 네트워크 모니터링과는 다릅니다. 우선 NPM은 네트워크 테스트(Synthetic test)를 통해 수집한 데이터까지 활용하여, 실제 네트워크 사용자가 경험하는 네트워킹 서비스 품질을 높이는데 그 목적이 있습니다. NPM 솔루션은 NPMD라는 이름으로 불리기도 합니다. Gartner는 네트워크 성능 모니터링 시장을 NPMD 시장으로 명명하고 다양한 데이터를 조합하여 활용하는 솔루션이라고 정의했습니다. 즉 기존의 ICMP, SNMP 활용 및 Flow 데이터 활용과 패킷 캡처(PCAP), 퍼블릭 클라우드에서 제공하는 네트워크 데이터 활용까지 모든 네트워크 데이터를 조합하는 것이 핵심이라 할 수 있습니다. AIOps: AI를 활용한 네트워크 모니터링 AI 모델을 활용한 IT 운영을 'AIOps'라고 부릅니다. 2014년 Gartner를 통해 처음으로 등장한 이 단어는 IT 인프라 운영에 머신러닝, 빅데이터 등 AI 모델을 활용하여 리소스 관리 및 성능에 대한 예측 관리를 실현하는 것을 말합니다. 가트너에서는 AIOps에 대한 이해를 위해 관제 서비스, 운영, 자동화라는 세 가지 영역으로 분류해서 설명하고 있습니다. ▪관제(Observe): AIOps는 장애 이벤트가 발생할 때 분석에 필요한 로그, 성능 메트릭 정보 및 기타 데이터를 자동으로 수집하여 모든 데이터를 통합하고 패턴을 식별할 수 있는 관제 단계가 필요합니다. ▪운영(Engine): 수집된 데이터를 분석하여 장애의 근본 원인을 판단하고 진단하는 단계로, 장애 해결을 위해 상황에 맞는 정보를 IT 운영 담당자에게 전달하여 반복적인 장애에 대한 조치 방안을 자동화하는 과정입니다. ▪자동화(Automation): 장애 발생 시 적절한 해결책을 제시하고 정상 복구할 수 있는 방안을 제시하여, 유사 상황에도 AIOps가 자동으로 조치할 수 있는 방안을 마련하는 단계입니다. 위의 세 단계를 거쳐 AIOps를 적용하면 IT 운영을 사전 예방의 성격으로 사용자가 이용하는 서비스, 애플리케이션, 그리고 인프라까지 전 구간의 사전 예방적 모니터링을 가능하게 합니다. 또한 구축한 데이터를 기반으로 AI 알고리즘 및 머신 러닝을 활용하여 그 어떠한 장애에 대한 신속한 조치와 대응도 자동으로 가능하게 합니다. Zenius를 통한 클라우드 네트워크 모니터링 참고로 Zenius를 통해 각 퍼블릭 클라우드 별 VPC 모니터링이 가능합니다. VPC의 상태 정보와 라우팅 테이블, 서브넷 목록 및 서브넷 별 상세 정보 (Subnet ID, Available IP, Availability Zone 등)에 대한 모니터링 할 수 있습니다. Zenius-CMS를 통한 AWS VPC 모니터링 이외에도 각 클라우드 서비스에 대한 상세 모니터링을 통해 클라우드 모니터링 및 온 프레미스를 하나의 화면에서 모니터링하실 수 있습니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼, 네트워크의 변화에 따라서 NMS는 계속해서 진화하고 있습니다. 현재의 네트워크 환경과 변화할 환경을 모두 완벽하게 관리할 수 있는 NMS 솔루션을 통해 안정적으로 서비스를 운영하시기 바랍니다.
2024.04.03
IT 인프라 모니터링 트렌드
IT 인프라 모니터링 트렌드
EMS란? EMS는 Enterprise Management System의 약자로, 여러 기업과 기관의 IT서비스를 이루는 다양한 IT Infrastructure를 통합적으로 모니터링하는 시스템을 의미합니다. 해외에서는 일반적으로 ITIM(IT Infra Management)이라는 용어로 많이 사용되고 있지만, 국내에서는 EMS라는 용어로 통용되고 있습니다. EMS는 IT인프라의 데이터를 실시간으로 수집 및 분석할 뿐만 아니라, 수집된 데이터를 활용해 비즈니스의 가치를 창출할 수 있습니다. 글로벌 IT분야 연구자문 기업인 “가트너(Gartner)”에서는 ITIM, 즉 EMS를 데이터센터, Edge, IaaS(Infrastructure as a Service), PaaS(Platform as a Service) 등에 존재하는 IT인프라 구성요소의 상태와 리소스 사용률을 수집하는 도구로 정의하며, 컨테이너, 가상화시스템, 서버, 스토리지, 데이터베이스, 라우터, 네트워크 스위치 등에 대한 실시간 모니터링이 가능해야 한다고 서술합니다. <사진 설명: 가트너의 ITIM 정의를 도식화한 그림> 이러한 EMS는 초기에는 기업 전산실에 물리적인 형태로 존재하는 서버, 네트워크의 리소스관리를 중심으로 모니터링해 왔습니다. 서버의 CPU, Memory 등의 리소스 정보를 수집하거나, 네트워크 장비의 트래픽 정보를 모니터링하고 임계치를 기반으로 이벤트 감지하는 역할이 대부분이었으며, 이 정도 수준에서도 충분한 IT 인프라 관리가 이뤄질 수 있었습니다. 그러나 가상화(Virtualization)라는 개념이 생겨나고 다양한 IT 인프라들이 기업 전산실에서 클라우드(Cloud) 환경으로 전환됨에 따라, EMS의 모니터링 분야도 조금씩 바뀌어 가고 있습니다. 많은 기업들이 효율적인 리소스 사용과 비용 절감을 목표로 VMware와 같은 가상화 시스템을 도입해 운영하게 됐으며, 모니터링 부문도 이에 대응하기 위해 가상화 리소스에 대한 관리 영역으로 확장됐습니다. 가상화 환경을 이루는 하이퍼바이저(Hypervisor)와 가상머신(Virtual Machine)의 연관성을 추적하고, 각 가상머신들이 사용하고 있는 리소스를 실시간으로 분석해 효율적인 자원 배분, 즉 프로비저닝(Provisioning)을 위한 근거 데이터를 제공할 수 있도록 하고 있습니다. 더 나아가 VMware, Hyper-V 등의 다양한 가상화 플랫폼에서 가상머신을 생성하고 삭제하고, 실제로 가상머신에 CPU, Memory 등과 같은 리소스를 할당해 줄 수 있는 컨트롤 영역까지 제공하는 제품을 개발하는 벤더사들이 많아지고 있습니다. 이러한 가상화 기술을 기반으로 현대에는 IT 인프라들이 대부분 클라우드 환경으로 전환하고 있는 추세입니다. 클라우드 환경으로의 전환 클라우드(Cloud)란, 언제 어디서나 필요한 컴퓨팅 자원을 필요한 시간만큼 인터넷을 통해 활용할 수 있는 컴퓨팅 방식으로, 최근 기업들은 각자의 목적과 상황에 맞게 AWS, MS Azure와 같은 Public Cloud 및 OpenStack, Nutanix 등을 활용한 Private Cloud 등의 환경으로 기업의 전산설비들을 마이그레이션 하고 있습니다. 클라우드로의 전환과 기술의 발전에 따라, EMS의 IT 인프라 모니터링은 더 이상 *On-Premise 환경에서의 접근이 아닌, Cloud 환경, 특히 MSA(Micro Service Architecture)를 기반으로 하는 클라우드 네이티브(Cloud Native) 관점에서의 IT 운영 관리라는 새로운 접근이 필요하게 됐습니다. (*On-Premise : 기업이 서버를 클라우드 환경이 아닌 자체 설비로 보유하고 운영하는 형태) 클라우드 네이티브란, 클라우드 기반 구성요소를 클라우드 환경에 최적화된 방식으로 조립하기 위한 아키텍처로서, 마이크로서비스 기반의 개발환경, 그리고 컨테이너 중심의 애플리케이션 구동환경 위주의 클라우드를 의미합니다. 클라우드 네이티브는 IT비즈니스의 신속성을 위해 도커(Docker)와 같은 컨테이너를 기반으로 애플리케이션이 운영되므로, EMS는 컨테이너의 성능, 로그, 프로세스 및 파일시스템 등 세부적인 관찰과 이상징후를 판단할 수 있는 기능들이 요구되고 있습니다. 자사 제품인 Zenius SMS에서는 이러한 변화에 따라 Docker에 대한 모니터링 기능을 기본적으로 제공하고 있습니다. Docker 컨테이너가 생성되면 자동으로 관리대상으로 등록되며, Up/Down 뿐만 아니라, CPU, Memory, Network 및 Process의 정보를 실시간으로 모니터링하고 발생되는 로그들을 통합관리 할 수 있도록 합니다. <사진 설명: Zenius-SMS에서 제공하고 있는 Docker 컨테이너 모니터링 기능> 또, 복원력과 탄력성을 위해 쿠버네티스와 같은 오케스트레이션 도구를 활용해 컨테이너를 스핀업하고, 예상되는 성능에 맞게 효율적으로 리소스를 맵핑하고 있으며, 이러한 기술에 대응하기 위해 EMS는 쿠버네티스(Kubernetes), 도커스웜(Docker Swarm) 등의 오케스트레이터들의 동작여부를 직관적으로 관찰하는 제품들이 지속적으로 출시되고 있는 상황입니다. 이와 더불어 컨테이너, 오케스트레이터의 동적 연결관계를 실시간으로 모니터링하고, 파드(POD), 클러스터, 호스트 및 애플리케이션의 관계를 표현하는 역할의 중요성이 점차 커져가고 있습니다. 통합 모니터링(Monitoring) EMS 모니터링의 또 다른 변화로는 통합(Integration)의 역할이 더더욱 강해지고 있다는 것입니다. IT 서비스가 복잡해지고 다양해짐에 따라 IT 인프라의 관리 범위도 점차 증가하면서, 다양한 IT 인프라들을 융합하고 관리하기 위한 노력들이 관찰되고 있습니다. 데이터독(Datadog), 스플렁크(SPLUNK)와 같은 장비 관점의 모니터링 벤더들은 APM과 같은 애플리케이션 모니터링 시장으로, 앱다이나믹스(AppDynamics), 다이나트레이스(Dynatrace), 뉴렐릭(NewRelic)과 같은 애플리케이션 모니터링 시장의 강자들은 인프라 장비 관점의 모니터링 시장으로의 융합이 확인되고 있습니다. 자사 제품인 Zenius 역시 서버, 네트워크 중심의 관리에서 애플리케이션, 데이터베이스 등의 시장으로 관리 범위를 확장해 나가고 있는 추세입니다. IT 서비스의 영속성을 유지하기 위해서는 IT 서비스를 구성하는 다양한 요소들을 실시간으로 모니터링하고 연관관계를 추적해 문제 원인을 찾아내는 것이 중요하기 때문에 다양한 IT 요소들을 통합적으로 모니터링하는 것 뿐만 아니라, 상호 연관관계를 표현하고 추적할 수 있는 기능들이 지속적으로 요구되고 있습니다. 모니터링의 트렌드는 서버, 네트워크 등의 독립적인 개체에 대한 모니터링 아닌 IT 서비스를 중심으로 기반 요소들을 모두 통합적으로 모니터링하고, 각 상호간의 의존성과 영향도를 파악해 RCA(Root Cause Analysis) 분석을 가능하게 하고 이를 통해 IT 서비스의 연속성을 보장할 수 있는 통찰력을 확보하게끔 하는 방향으로 흘러가고 있습니다. Zenius는 서버, 네트워크, 애플리케이션, 데이터베이스 및 각종 로그들의 정보를 시각적으로 통합 모니터링할 수 있는 오버뷰(Overview) 도구와 IT 서비스 레벨에서 인프라들의 연관관계를 정의하고 다양한 조건(Rule)에 따라 서비스 이상유무와 원인분석이 가능한 서비스 맵(Service Map) 도구를 기본적으로 제공하고 있습니다. <사진 설명: Zenius 오버뷰 화면> <사진 설명: Zenius 서비스맵 화면> 앞서 언급했듯이, 클라우드 환경으로 전환함에 따라 통합적 관리 요구는 더욱 높아지고 있습니다. IT 인프라에 대한 통합 뿐만 아니라, AD(Active Directory), SAP 및 AWS, Azure, GCP 등의 다양한 서비스의 주요 지표까지 연계하고 하나의 시스템으로 통합 모니터링하기 위한 노력들이 관찰되고 있습니다. 데이터독(Datadog)의 경우, 500개 이상의 시스템, 애플리케이션 및 서비스들의 지표들을 손쉽게 통합 관리할 수 있다고 돼있습니다. <사진 설명: 데이터독 홈페이지 캡처> 이처럼 IT 서비스의 복잡성과 다양화에 따라 관리해야 될 서비스와 지표들은 점점 늘어나고 있으며, 기업의 현황에 맞게 컴포넌트 기반으로 손쉽게 지표들을 통합할 수 있는 기능과 도구들이 요구되고 있습니다. AI 기반의 예측&자동화 모니터링의 세번째 변화로는 ’AI 기반의 예측과 자동화’입니다. IT 인프라 및 서비스의 주요 지표를 모니터링하는 것도 중요하지만, 축적된 데이터를 기반으로 미래의 상황을 예측 및 이상탐지해 사전에 대비할 수 있는 체계를 갖추는 일은 모니터링 시장에서 중요한 이슈로 자리잡고 있습니다. 현재의 AIOps(AI for IT Operations)를 표방하는 모니터링 기술들은 서버, 네트워크, 애플리케이션, 데이터베이스 등의 주요 지표들을 실시간으로 수집하고, 저장된 데이터를 기반으로 AI 알고리즘 또는 통계기법을 통해 미래데이터를 예측하며 장애 발생가능성을 제공하고 있습니다. 이와 같은 기술을 통해 미래 성능 값을 예측해 IT 인프라의 증설 필요성 등을 판단하고, 장애 예측으로 크리티컬한 문제가 발생되기 전에 미리 조치를 취할 수 있도록 해 효율적인 의사결정을 할 수 있도록 합니다. Zenius도 4차 산업혁명 및 디지털 뉴딜시대가 도래함에 따라 미래예측 기능을 최신 버전에 탑재했으며, 이를 통해 IT운영자가 미래 상황에 유연하고 선제적으로 대응할 수 있도록 합니다. Zenius에서는 서버, 네트워크, 애플리케이션 등 다양한 IT 인프라의 미래 성능 값, 패턴 범위, 이상 범위 등을 예측해 IT 운영자에게 제시합니다. <사진 설명: 인공지능(AI) 기반 미래데이터 예측 화면> 다만, 인공지능 기술을 통해 장애 발생 가능성을 탐지하는 기능 외에, 어디에 문제가 발생됐는지 알려주는 기능은 모니터링 시장에 과제로 남아있고, 이를 제공하기 위한 여러 업체들의 노력이 보이고 있습니다. 이제는 EMS에서 보편적인 것이 됐지만, 모바일 기기를 통해 시∙공간적 제약 없는 모니터링이 이뤄지고 있습니다. 다양한 기종의 스마트폰, 태블릿PC 등을 이용해 운영콘솔(Console) 뿐만 아니라, 회의 등 시간을 잠시 비우더라도 IT 인프라에 대한 연속적인 모니터링이 모바일기기를 통해 가능해졌습니다. <사진 설명: 다양한 기기를 통한 모니터링>
2022.09.05
서버 모니터링 트렌드 살펴보기
서버 모니터링 트렌드 살펴보기
기업이나 조직의 IT 인프라 모니터링은 서버 모니터링에서 출발합니다. 통상적으로 서버 모니터링부터 네트워크, 데이터베이스, 웹애플리케이션, 전산설비 등으로 모니터링의 범위를 확장해 나가는 것이 일반적입니다. 서버는 초창기 메인 프레임부터 유닉스 서버, 리눅스 서버를 거쳐 최근의 가상화 서버에 이르기까지 물리적 및 논리적으로 그 성격이 변화해 왔습니다. 그에 따라 서버 모니터링의 관점도 많이 변모해 왔습니다. 기껏해야 1~2대 규모로 운영하던 메인 프레임의 시대와 수천, 수만대의 서버팜을 관리해야 하는 시대의 모니터링 개념은 달라야 합니다. 또, 가상화 시대를 맞아 물리적 서버 개념보다는 논리적 서버 개념이 중요해지고, 서버 1~2대의 장애 상황보다는 서버팜이 이루고 있는 서비스의 영속성이 중요해졌습니다. 이처럼 서버라는 인프라가 기술 발전에 따라 변모하고 있고, 그에 대응해 모니터링 콘셉트나 방법도 변화하고 있습니다. 이번 블로그에서는 서버 관련 새로운 인프라 개념 및 기술들이 대두되면서 변화하는 서버 모니터링의 새로운 트렌드에 관해 논의해 보고자 합니다. 1. 클라우드 네이티브 모니터링 더 많은 기업이나 조직이 전통적인 레거시 시스템에서 클라우드로 이동함에 따라 클라우드 모니터링의 필요성이 급격히 증가했습니다. 클라우드 네이티브 모니터링 도구는 Amazon Web Services(AWS), Microsoft Azure, Google Cloud Platform(GCP)과 같은 클라우드 환경에서 애플리케이션과 클라우드 인프라를 모니터링하도록 설계됐습니다. 또, 클라우드 인프라의 성능, 가용성 및 보안에 대한 실시간 인사이트를 제공해, IT운영부서가 문제를 신속하게 발견하고 해결할 수 있도록 지원합니다. 일반적인 클라우드 모니터링은 메트릭과 로그를 사용해 클라우드 인프라 및 애플리케이션 성능을 하나의 통합된 화면에 제공합니다. 또한 통합 IT 환경 측면에서는 컨테이너 오케스트레이션 플랫폼 및 서버리스 컴퓨팅과 같은 다른 클라우드 환경과 통합해 모니터링할 수도 있습니다. 클라우드 기반 모니터링의 최신 추세는 하이브리드 모니터링입니다. 조직은 하이브리드 모니터링을 통해 클라우드와 온프레미스에서 각각 실행 중인 서버 및 애플리케이션 모두를 단일 플랫폼에서 모니터링할 수 있습니다. 2. 인공지능과 머신러닝 서버 모니터링의 또 다른 트렌드는 인공 지능(AI)과 머신 러닝(ML)을 사용해 모니터링 과정을 자동화하는 것입니다. AI 및 ML 알고리즘은 모니터링 과정에서 생성된 방대한 양의 데이터를 분석하고 패턴을 식별해 이상 징후를 감지할 수 있습니다. 이는 실시간으로 수행될 수 있으므로 운영관리자는 발생하는 모든 문제에 신속하게 대응할 수 있습니다. ML 알고리즘은 과거 데이터를 분석해 트래픽이 가장 많은 시기나 잠재적 장애와 같은 미래 추세를 예측할 수 있습니다. 이를 위해 서버의 성능과 관련된 대규모 데이터 세트에서 ML 알고리즘을 교육해야 합니다. 이 데이터는 서버 로그, 시스템 메트릭, 애플리케이션 로그 및 기타 관련 정보가 해당됩니다. 다음으로 알고리즘을 학습해 다양한 메트릭 간의 패턴과 상관 관계를 식별하고 이상 징후와 잠재적 문제를 감지합니다. 머신 러닝 모델이 훈련되면 서버를 실시간으로 모니터링하도록 배포할 수 있으며, 모델은 지속적으로 서버 메트릭을 분석하고 이를 학습한 패턴과 비교합니다. 편차나 이상을 감지하면 문제를 해결하기 위해 경고 또는 자동화된 작업을 트리거할 수 있습니다. 예를 들어, 트래픽이 갑자기 증가하는 경우 리소스를 자동으로 Scaling 하거나 다운 타임을 방지하기 위해 다른 조치를 취할 수 있습니다. 전반적으로 인공 지능과 머신 러닝을 사용해 서버 모니터링을 자동화하면, 문제해결에 시간을 절약하고 인적 오류의 위험을 줄일 수 있습니다. 또, 심각한 문제로 번지기 전에 잠재적 문제를 식별해 서버 인프라의 전반적인 안정성과 가용성을 향상할 수 있습니다. 3. 컨테이너 모니터링 컨테이너가 애플리케이션 배포에 점점 더 많이 사용되면서, 컨테이너 모니터링은 서버 모니터링의 중요한 측면이 됐습니다. 컨테이너란 애플리케이션을 모든 인프라에서 실행하는데 필요한 모든 파일 및 라이브러리와 함께 번들로 제공하는 소프트웨어 배포 도구입니다. 컨테이너를 사용하면 모든 유형의 디바이스 및 운영 체제에서 실행되는 단일 소프트웨어 패키지를 만들 수 있습니다. 뿐만 아니라, 단일 시스템에서 한 컨테이너는 다른 컨테이너의 작업을 방해하지 않으므로 확장성이 뛰어나고, 결함이 있는 서비스가 다른 서비스에 영향을 주지 않아 애플리케이션의 복원력과 가용성이 향상되는 장점이 있습니다. 컨테이너 모니터링은 CPU 및 메모리 사용량과 같은 컨테이너 리소스 사용률에 대한 실시간 메트릭을 제공할 수 있습니다. 또, 애플리케이션이 의도한 대로 실행되고 있는지 확인하기 위해 Kubernetes(쿠버네티스)와 같은 컨테이너 오케스트레이션 플랫폼을 모니터링하고, 컨테이너 및 기본 인프라에 대한 실시간 가시성을 제공합니다. 4. 서버리스 모니터링 서버리스 컴퓨팅은 사용량에 따라 백엔드 서비스를 제공하는 방법으로, 개발자가 서버를 관리할 필요없이 애플리케이션을 빌드하고 실행하는 것을 가능하게 합니다. 서버리스 컴퓨팅은 벤더 종속성(Vendor lock-in), 콜드 스타드와 DB백업이나 영상 인코딩 등 단시간에 많은 컴퓨팅 용량이 필요한 경우, 효율적이지 않음에도 불구하고 최근 몇 년 동안 주목을 받아오며 서버리스 모니터링이 서버 모니터링의 새로운 트렌드가 됐습니다. 서버리스 모니터링은 CPU, 메모리, 디스크 사용량 등 리소스 사용률, 애플리케이션 성능, 호출 시간 및 오류율과 같은 기능 성능에 대한 실시간 인사이트를 제공합니다. 서버리스 모니터링은 데이터베이스 쿼리 성능과 같은 서버리스 함수의 종속성에 대한 인사이트도 제공합니다. 5. 마이크로서비스 모니터링 마이크로서비스는 하나의 큰 애플리케이션을 여러 개의 작은 기능으로 쪼개어 변경과 조합이 가능하도록 만든 아키텍처로, 각 서비스를 다른 서비스와 독립적으로 개발, 배포 및 확장할 수 있는 장점이 있습니다. 하지만 마이크로서비스는 일반적으로 분산된 환경에 배포되므로 성능을 추적하고 문제를 찾아내기가 어렵고, 독립적으로 설계됐으므로 호환성에 어떤 문제가 있는지 감지할 필요가 있어 마이크로서비스 모니터링이 필요합니다. 마이크로서비스 모니터링은 개별 마이크로서비스 및 전체 애플리케이션의 성능과 상태를 추적하는 프로세스로 로그, 메트릭 및 트레이스와 같은 다양한 소스에서 데이터를 수집하고 분석해 문제를 식별하고 성능을 최적화하는 작업입니다. 마이크로서비스 모니터링은 각 마이크로서비스 별 가용성, 응답 시간, 가동 시간, 지연 시간, 오류율을 포함합니다. CPU, 메모리, 디스크 사용량과 같은 리소스 사용률을 추적해 잠재적인 성능 병목 현상이나 리소스 제약을 식별할 수 있고, 마이크로서비스 간의 데이터 흐름을 추적하고 서비스 간의 종속성 추적을 모니터링합니다. 또, 마이크로서비스 모니터링은 애플리케이션 전체의 전반적인 상태와 성능뿐만 아니라 타사 서비스 및 API의 성능과 상태도 모니터링할 수 있습니다. ----------------------------------- 브레인즈컴퍼니는 꾸준히 연구개발에 매진해 상기와 같은 새로운 트렌드를 반영한 Zenius-EMS를 개발, 출시했습니다. Zenius-EMS는 고객들이 레거시 시스템에서부터 클라우드 네이티브 시스템에 이르기까지 다양한 관점의 서버모니터링을 할 수 있도록 지원합니다. *이미지 출처: Unsplash, flaction
2023.03.29
[브레인즈 소식] 브레인즈컴퍼니, ‘REST API 클라이언트 개발을 위한 가상 REST API 서비스 자동 생성 서버 및 방법’ 특허 취득
[브레인즈 소식] 브레인즈컴퍼니, ‘REST API 클라이언트 개발을 위한 가상 REST API 서비스 자동 생성 서버 및 방법’ 특허 취득
지난 6월에는 브레인즈컴퍼니가 '원격 서비스 응답 블로킹 대기 상태의 트랜잭션 제어 시스템 및 방법' 특허를 획득한 사실을 알려드렸습니다. 이번 7월 31일 'REST API 클라이언트 개발을 위한 가상 REST API 서비스 자동 생성 서버 및 방법' 특허도 취득했어요. 이번에 출원한 특허의 핵심은 AWS나 GCP와 같은 클라우드 서비스를 활용하는 개발 과정에서 가상 REST API 서비스를 자동으로 생성하는 소스 자동 제너레이션 기술입니다. 클라우드 환경을 이용한 개발 과정에서는 주로 REST API(Application Program Interface)를 주로 사용하는데, 이는 웹의 컴퓨터 시스템 간에 표준을 제공하여 시스템이 서로 쉽게 통신할 수 있도록 하는 아키텍처의 하나로, 현재는 공기업 및 사기업의 대부분이 API 서비스를 제공하고 있어, 웹 서비스의 표준 기술로 자리 잡고 있습니다. 클라이언트 개발자들은 개발 단계에서 REST API 서비스를 통해 데이터를 수시로 요청하고 테스트하는 과정을 필수적으로 거치게 되는데, 이 과정에서 서버 개발자들은 각 API에 대한 소스 파일을 일일이 작성하고 추가하는 등의 업무가 가중되고 있습니다. 브레인즈컴퍼니는 이러한 과정에서 특허 기술인 소스 자동 생성 기능을 적용하여, 개발 환경을 개선시키는 데 중점을 두었습니다. 소스 코드의 작성·빌드·배포 과정에서 반복되는 단순 작업들을 절감시키고, API를 이용하는 데 소요되는 비용을 최소화하여 결과적으로는 개발 경쟁력을 확보할 수 있기 때문입니다. 이번에 취득한 특허 기술은 클라우드 서비스 모니터링 시스템인 Zenius-CMS 개발 과정에서 이미 적용되어 성공적으로 검증되었습니다. 이번 특허 기술을 통해 클라우드 환경에서의 개발 속도를 높일 수 있었고, 브레인즈 개발자들은 더욱 효율적이게 업무에 몰두할 수 있는 환경이 마련된 상태입니다. 또한, 향후 REST API를 활용하는 프로젝트가 있을 때에도 신속하고 쉽게 개발이 이루어지고 효율적인 개발과 비용 부담 없는 테스트 과정을 거쳐 기능의 안정성을 확보할 것으로 전망하고 있습니다. 그리고 궁극적으로는 신규 기능을 빠르고 안정적으로 배포하여 고객 만족도가 향상될 것으로 기대하고 있습니다.
2023.08.28
다음 슬라이드 보기