반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
2023년을 이끌어 갈 10대 전략 기술 트렌드
'대한민국 SW기업경쟁력 대상' 우수상 수상
최순정
2023.02.23
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
[행사] 2023년 2월 BB데이
브레인즈컴퍼니가 22일 서울 역삼동 삼정호텔에서 열린 '제22회 대한민국 SW기업 경쟁력 대상 시상식'에서 우수상을 수상했습니다.
대한민국 SW기업 경쟁력 대상은 인적자원·기술력·시장가치국제화 등 다각적으로 기업 역량을 평가해,
국내 SW산업 수준을 향상시킨 우수 SW기업에 수여하는 상입니다.
브레인즈컴퍼니는 IT솔루션 부분에서 자사 제품인
Zenius(제니우스)
의 기술력을 인정받아 우수상을 수상했습니다.
Zenius는 다양한 이기종 IT 인프라에 대한 통합관리 시스
템
Zenius EMS
,
웹 애플리케이션 실시간 성능 관리 시스템
Zenius APM
,
분산된 대용량 로그에 대한 통합관리 시스템
Zenius LogManager
등으로 구성된 소프트웨어입니다.
이번 행사는
전자신문·한국소프트웨어산업협회·연세대 기업정보화연구센터·소프트웨어공제조합이 공동주최하고
과학기술정보통신부가 후원하며,
연세대 기업정보화연구센터가 개발한 SW기업 전문평가시스템을 적용해 수상자를 선발했습니다.
#브레인즈컴퍼니
#SW기업경쟁력대상
#IT솔루션
#Zenius
#제니우스
#Zenius EMS
#Zenius APM
#Zenius LogManager
최순정
경영기획실(PR매니저)
브레인즈컴퍼니의 소식, 조직문화, 브레인저 이야기를 대내외에 전파하고 있습니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
앞선 글들을 통해서 NMS의 기본 개념, 구성요소와 기능, 정보 수집 프로토콜에 대해서 알아봤었는데요. 이번 글에서는 NMS의 역사와 진화 과정, 그리고 최근 트렌드에 대해서 자세히 알아보겠습니다. EMS, NPM, 그리고 AIOps에 이르기까지 네트워크의 빠른 변화에 발맞추어 진화하고 있는 NMS에 대해서 하나씩 하나씩 살펴보겠습니다. ㅣNMS의 역사와 진화 과정 우선 NMS의 전반적인 역사와 진화 과정을 살펴보겠습니다. [1] 초기 단계 (1980년대 이전) 초기에는 네트워크 관리가 수동적이었습니다. 네트워크 운영자들은 네트워크를 모니터링하고 문제를 해결하기 위해 로그 파일을 수동으로 분석하고 감독했습니다. [2] SNMP의 등장 (1988년) SNMP(Simple Network Management Protocol)의 등장으로 네트워크 장비에서 데이터를 수집하고 이를 중앙 집중식으로 관리하는 표준 프로토콜을 통해 네트워크 관리자들이 네트워크 장비의 상태를 실시간으로 모니터링하고 제어할 수 있게 됐습니다. [3] 네트워크 관리 플랫폼의 출현 (1990년대 중후반) 1990년대 후반부에는 상용 및 오픈 소스 기반의 통합된 네트워크 관리 플랫폼이 등장했습니다. 이러한 플랫폼들은 다양한 네트워크 장비와 프로토콜을 지원하고, 시각화된 대시보드와 경고 기능 등을 제공하여 네트워크 관리의 편의성을 높였습니다. [4] 웹 기반 NMS (2000년대 중반) 2000년대 중반에는 웹 기반의 NMS가 등장했습니다. 이러한 시스템은 사용자 친화적인 웹 인터페이스를 통해 네트워크 상태를 모니터링하고 관리할 수 있게 했습니다. [5] 클라우드 기반 NMS (2010년대 이후) 최근 몇 년간 클라우드 기반 NMS의 등장으로 네트워크 관리의 패러다임이 변화하고 있습니다. 또한 빅데이터 기술과 인공지능(AI) 기술을 활용하여 네트워크 성능을 최적화하고, 향후 성능을 예측할 수 있는 성능 예측 기능까지 NMS에서 제공하고 있습니다. ㅣNMS에서 EMS로의 진화 네트워크 환경은 빠르게 변화하게 되고, 이에 따라서 NMS도 EMS로 진화하게 됩니다. NMS의 진화는 총 세 가지 세대로 나눌 수 있습니다. 1세대: 디바이스 관리 시스템 기존의 NMS는 외산 제조사에서 제공하는 전용 네트워크 솔루션이 주를 이루었습니다. CISCO의 시스코웍스(CiscoWorks), IBM의 넷뷰(NetView) HP의 네트워크 노드 매니저(Network Node Manager) 등 다양한 벤더들이 자사의 제품에 대한 모니터링 서비스를 제공하기 위해 특화된 디바이스 관리 솔루션을 내놓았죠. HP Network Node Manager 예시 화면(출처ⓒ omgfreeet.live) 물론 자사의 제품을 관리하기 위한 목적에서 출발한 솔루션이었기에, 대규모 이기종 IT 인프라 환경에 대한 모니터링 기능은 제공하지 못했습니다. 2세대: IT 인프라 관리 시스템 EMS의 등장 1세대의 NMS의 경우 빠르게 급변하는 네트워크 트렌드를 따라갈 수 없었습니다. 가상랜(VLAN), 클라이언트-서버 기술이 발달하게 되자, IP 네트워크 관계만으로 실제 토폴로지를 파악하기 어려웠습니다. 또한 네트워크장비 및 회선의 상태뿐 아니라, 서버 등의 이기종 IT 인프라 통합 모니터링에 대한 니즈와 함께 EMS(Enterprise Management System)의 시대가 시작됩니다. 이에 따라 서비스 관리 차원의 통합 관제 서비스가 등장합니다. 기존의 네트워크 모니터링뿐 아니라 서버, DBMS, WAS 등 IT 서비스를 이루고 있는 모든 인프라들에 대한 통합 모니터링에 대한 관심과 니즈가 증가했기 때문입니다. 3세대: 클라우드 네이티브 환경의 EMS 2010년 중 이후 서버, 네트워크 등 IT 인프라에 대한 클라우드 네이티브로의 전환이 가속화되었습니다. 기존의 레거시 환경에 대한 모니터링과 함께 퍼블릭, 프라이빗 클라우드에 대한 모니터링 니즈가 증가하면서 모든 환경에 대한 통합적인 가시성을 제공해 줄 수 있는 EMS가 필요하게 되었죠. 이외에도 AI의 발전을 통해 AIOps, Observability라는 이름으로 인프라에 대한 장애를 사전적으로 예측할 수 있는 기능이 필요하게 됐습니다. ㅣ네트워크 환경 변화(가상화)와 NMS의 변화 이번에는 네트워크 환경 변화에 따른 NMS의 변화에 대해서 알아보겠습니다. 네트워크 환경 변화(네트워크 가상화) 네트워크 구성 방식은 지속적으로 변화해왔습니다. 클라이언트-서버 모델부터 중앙 집중식 네트워크, MSA 환경에서의 네트워크 구성까지 이러한 변화는 기술 발전, 비즈니스 요구 사항, 보안 요구 사항 등 다양한 요인에 의해 영향을 받았는데요. 무엇보다 가장 중요한 변화는 전통적인 온 프레미스 네트워크 구조에서 네트워크 자원이 더 이상 물리적인 장비 기반의 구성이 아닌 가상화 환경에서 구성된다는 점입니다. ▪소프트웨어 정의 네트워킹(SDN, 2000년대 후반 - 현재): 네트워크 관리와 제어를 분리하고 소프트웨어로 정의하여 유연성과 자동화를 향상시키는 접근 방식입니다. SDN은 네트워크 관리의 복잡성을 줄이고 가상화, 클라우드 컴퓨팅 및 컨테이너화와 같은 새로운 기술의 통합을 촉진시켰습니다. ▪네트워크 가상화 (NFV, 현재): 기존 하드웨어 기반 전용 장비에서 수행되던 네트워크 기능을 소프트웨어로 가상화하여 하드웨어 의존성과 장비 벤더에 대한 종속성을 배제하고, 네트워크 오케스트레이션을 통해 네트워크 환경 변화에 민첩한 대응을 가능하게 합니다. ㅣ클라우드, AI 등의 등장에 따른 NMS의 방향 클라우드 네이티브가 가속화되고, AI를 통한 인프라 관리가 주요 화두로 급부상하면서 네트워크 구성과 이를 모니터링하는 NMS의 환경 역시 급변하고 있습니다. 클라우드 내의 네트워크: VPC VPC(Virtual Private Cloud)는 퍼블릭 클라우드 환경에서 사용할 수 있는 전용 사설 네트워크입니다. VPC 개념에 앞서 VPN에 대한 개념을 단단히 잡고 넘어가야 합니다. VPN(Virtual Private Network)은 가상사설망으로 '가상'이라는 단어에서 유추할 수 있듯이 실제 사설망이 아닌 가상의 사설망입니다. VPN을 통해 하나의 네트워크를 가상의 망으로 분리하여, 논리적으로 다른 네트워크인 것처럼 구성할 수 있습니다. VPC도 이와 마찬가지로 클라우드 환경을 퍼블릭과 프라이빗의 논리적인 독립된 네트워크 영역으로 분리할 수 있게 해줍니다. VPC가 등장한 후 클라우드 내에 있는 여러 리소스를 격리할 수 있게 되었는데요. 예를 들어 'IP 주소 간에는 중첩되는 부분이 없었는지', '클라우드 내에 네트워크 분리 방안' 등 다양한 문제들을 VPC를 통해 해결할 수 있었습니다. ▪서브넷(Subnet): 서브넷은 서브 네트워크(Subnetwork)의 줄임말로 IP 네트워크의 논리적인 영역을 부분적으로 나눈 하위망을 말합니다. AWS, Azure, KT클라우드, NHN 등 다양한 퍼블릭 클라우드의 VPC 서브넷을 통해 네트워크를 분리할 수 있습니다. ▪서브넷은 크게 퍼블릿 서브넷과 프라이빗 서브넷으로 나눌 수 있습니다. 말 그대로 외부 인터넷 구간과 직접적으로 통신할 수 있는 공공, 폐쇄적인 네트워크 망입니다. VPC를 이용하면 Public subnet, Private subnet, VPN only subnet 등 필요에 따라 다양한 서브넷을 생성할 수 있습니다. ▪가상 라우터와 라우트 테이블(routing table): VPC를 통해 가상의 라우터와 라우트 테이블이 생성됩니다. NPM(Network Performance Monitoring) 네트워크 퍼포먼스 모니터링(NPM)은 전통적인 네트워크 모니터링을 넘어 사용자가 경험하는 네트워크 서비스 품질을 측정, 진단, 최적화하는 프로세스입니다. NPM 솔루션은 다양한 유형의 네트워크 데이터(ex: packet, flow, metric, test result)를 결합하여 네트워크의 성능과 가용성, 그리고 사용자의 비즈니스와 연관된 네트워크 지표들을 분석합니다. 단순하게 네트워크 성능 데이터(Packet, SNMP, Flow 등)를 수집하는 수동적인 과거의 네트워크 모니터링과는 다릅니다. 우선 NPM은 네트워크 테스트(Synthetic test)를 통해 수집한 데이터까지 활용하여, 실제 네트워크 사용자가 경험하는 네트워킹 서비스 품질을 높이는데 그 목적이 있습니다. NPM 솔루션은 NPMD라는 이름으로 불리기도 합니다. Gartner는 네트워크 성능 모니터링 시장을 NPMD 시장으로 명명하고 다양한 데이터를 조합하여 활용하는 솔루션이라고 정의했습니다. 즉 기존의 ICMP, SNMP 활용 및 Flow 데이터 활용과 패킷 캡처(PCAP), 퍼블릭 클라우드에서 제공하는 네트워크 데이터 활용까지 모든 네트워크 데이터를 조합하는 것이 핵심이라 할 수 있습니다. AIOps: AI를 활용한 네트워크 모니터링 AI 모델을 활용한 IT 운영을 'AIOps'라고 부릅니다. 2014년 Gartner를 통해 처음으로 등장한 이 단어는 IT 인프라 운영에 머신러닝, 빅데이터 등 AI 모델을 활용하여 리소스 관리 및 성능에 대한 예측 관리를 실현하는 것을 말합니다. 가트너에서는 AIOps에 대한 이해를 위해 관제 서비스, 운영, 자동화라는 세 가지 영역으로 분류해서 설명하고 있습니다. ▪관제(Observe): AIOps는 장애 이벤트가 발생할 때 분석에 필요한 로그, 성능 메트릭 정보 및 기타 데이터를 자동으로 수집하여 모든 데이터를 통합하고 패턴을 식별할 수 있는 관제 단계가 필요합니다. ▪운영(Engine): 수집된 데이터를 분석하여 장애의 근본 원인을 판단하고 진단하는 단계로, 장애 해결을 위해 상황에 맞는 정보를 IT 운영 담당자에게 전달하여 반복적인 장애에 대한 조치 방안을 자동화하는 과정입니다. ▪자동화(Automation): 장애 발생 시 적절한 해결책을 제시하고 정상 복구할 수 있는 방안을 제시하여, 유사 상황에도 AIOps가 자동으로 조치할 수 있는 방안을 마련하는 단계입니다. 위의 세 단계를 거쳐 AIOps를 적용하면 IT 운영을 사전 예방의 성격으로 사용자가 이용하는 서비스, 애플리케이션, 그리고 인프라까지 전 구간의 사전 예방적 모니터링을 가능하게 합니다. 또한 구축한 데이터를 기반으로 AI 알고리즘 및 머신 러닝을 활용하여 그 어떠한 장애에 대한 신속한 조치와 대응도 자동으로 가능하게 합니다. Zenius를 통한 클라우드 네트워크 모니터링 참고로 Zenius를 통해 각 퍼블릭 클라우드 별 VPC 모니터링이 가능합니다. VPC의 상태 정보와 라우팅 테이블, 서브넷 목록 및 서브넷 별 상세 정보 (Subnet ID, Available IP, Availability Zone 등)에 대한 모니터링 할 수 있습니다. Zenius-CMS를 통한 AWS VPC 모니터링 이외에도 각 클라우드 서비스에 대한 상세 모니터링을 통해 클라우드 모니터링 및 온 프레미스를 하나의 화면에서 모니터링하실 수 있습니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼, 네트워크의 변화에 따라서 NMS는 계속해서 진화하고 있습니다. 현재의 네트워크 환경과 변화할 환경을 모두 완벽하게 관리할 수 있는 NMS 솔루션을 통해 안정적으로 서비스를 운영하시기 바랍니다.
2024.04.03
기획부터 설계, 개발, 유지보수까지, 다재다능한 인재를 찾고 있어요!
기획부터 설계, 개발, 유지보수까지, 다재다능한 인재를 찾고 있어요!
브레인즈컴퍼니 조직에는 ‘솔루션 사업’을 책임지는 팀이 있습니다. 다소 낯선 이 팀은 고객이 원하는 가치를 제공하기 위해 끊임없이 솔루션을 분석하고, 직접 발로 뛰며 인사이트를 도출해내고 있다는데요. 이번 인터뷰에서는 솔루션 사업팀이 하는 일, 일하는 방식, 원하는 동료상 등에 대해 들어봤습니다. PM으로서 다양한 경험과 넓은 스펙트럼을 보유하고 싶은 분이라면 주목해주세요! ---------------------------------------------------------------------------- Q. 안녕하세요, 종혁님. 먼저 자기소개 부탁드립니다. 안녕하세요, 원종혁입니다. 저는 대학원에서 컴퓨터구조를 전공해 자연스럽게 IT회사에 입사하게 됐고, XML-EDI 솔루션 개발을 시작으로 수많은 프로젝트에서 개발, PL, 설계, PM 역할을 했어요. 현재는 전략사업본부 솔루션사업팀에서 IT인프라 솔루션 사업을 책임지고 있어요. 고객이 원하는 솔루션을 찾아서 제안하는 업무의 특성상 다양한 영역에서 개발했던 경험이 많은 도움이 되고 있습니다. Q. 브레인즈컴퍼니에 합류하게 된 계기나 동기가 궁금합니다. 2000년 초반, 당시만해도 SW업계는 매일 야근의 연속이었는데 브레인즈컴퍼니는 야근 수당을 준다고 해서 "좋다구나!"하고 입사를 했죠. 그리고 사실 집과 사무실이 너무 가까워서 좋았어요. (웃음) 진행하던 프로젝트를 기다리는 고객을 위해, 또 같이 개발하는 동료와 의리를 위해 계속 다니다 보니 벌써 16년이라는 시간이 흘렸네요. Q. ‘솔루션 사업’이라는 직무가 흔한 직무는 아닌 것 같은데요. 직무와 함께 현재 맡고 있는 업무에 대해 구체적으로 설명해주세요. 솔루션 사업팀은 일반적인 IT 기업에서 말하는 ‘PMO (Project Management Office)’ 혹은 ‘공공사업팀’, ‘kt사업팀’ 정도로 이해해 주시면 좋을 것 같아요. 구체적으로는 제니우스(Zenius) 패키지를 기반으로 고객 요구에 맞는 새로운 솔루션을 기획/분석/설계/개발/검수/유지보수를 담당하는 부서입니다. 그리고 새로운 솔루션이란 Infra에 기능을 추가하는 사업이 아니라, 새로운 Infra 추가 혹은 서로 다른 Infra를 결합하는 수준입니다. 예를 들어, 고객 요구사항이 고객의 유저 사이트에 위치한 네트워크 장비를 모니터링 하는 것일 때, 고객과 유저는 파이어월로 단전돼 기존의 제니우스로는 구현할 수가 없습니다. 새로운 솔루션은 유저 사이트에 NMS 콜렉터를 새로 개발해 NMS 매니저와 데이터를 주고받는 것입니다. 그리고 솔루션사업팀의 또 다른 역할은 Product Discovery부터 Product Delivery까지 전 과정에서 발생하는 문제를 스마트하게 해결할 수 있어야 하고 기획 단계에서 전체를 볼 수 있어야 합니다. 시급한 일 위주로 처리하다 보면 기업 자원 낭비가 심해지기 때문이죠. Q. 이번 기회를 빌려 제니우스(Zenius)에 대해 자랑해본다면? 관제 솔루션은 많이 있습니다. 이 시간에도 새롭게 출시되고 있겠죠. 하지만 20년 이상 IT인프라 환경 변화에 발 맞춰 관제솔루션을 발전시킨 제품은 거의 없죠. 제니우스(Zenius)는 계속 진화하고 있다는 것이 큰 자랑거리입니다. 그리고 제가 직접 기획하고 도입했던 솔루션도 제니우스(Zenius)의 발전에 기여했다는 성취감을 느낍니다. Q. 솔루션사업팀의 일하는 방식은 무엇인가요? 일하는 방식은 직접 사람을 만나는 것입니다. 먼저 고객을 만나 요구사항을 듣습니다. 그 다음, 필요한 부분이 무엇인지 끊임없이 분석하고 솔루션을 도출하기 위해 많은 사람을 만나고, 질문하고 답하고, 결정을 내립니다. 그리고 의사결정을 위해 경영진, 담당 부서 관계자 등 다양한 이해관계자를 적절한 논리로 설득합니다. 다시 말해, 발로 뛰고 사람을 만나고 공부를 하고, 다시 발로 뛰고 사람과 얘기하고… 인사이트를 도출할 때까지 계속 반복합니다. Q. 현재 솔루션사업팀 프로젝트 리더를 채용 중인데요. 어떤 동료가 합류했으면 하나요? 고객의 요구사항에 대한 분석능력과 연구소와 원활한 소통을 위해서 개발 경력이 필요합니다. 자바 등 최소 개발 경력 2년 이상이 요구되고, 내/외부 프로젝트에 PL 또는 PM 역할을 할 수 있어야 합니다. 그리고 동료에게 필요한 지식을 전파하고 협업을 즐기는 분이면 좋겠습니다. Q. 새로운 동료가 합류한다면, 어떤 업무를 하게 되나요? (개발) 경험에 따라 다소 차이가 있지만, 브레인즈컴퍼니의 제품 분석이 업무의 시작이 될 것으로 보입니다. 제품 분석이 완료된다면 앞서 이야기했던 방식으로 업무에 투입될 것입니다. 물론 “제품 분석 끝났으니, 내일 ○○사이트 출동!”은 아닙니다. Q. 서류와 면접에서 각각 어떤 점을 중점적으로 살펴보세요? 지원자들에게 합격할 수 있는 꿀팁을 알려주세요! 먼저 서류에서는 참여한 제품 및 프로젝트에서의 역할에 대한 상세한 설명, IT 직군 종사자로서의 관심사, 희망하는 업무 분야 등이 기술돼 있었으면 합니다. 면접은 개발 참여 제품 및 수행한 프로젝트에 대한 이해도가 먼저입니다. “□□□ 제품 개발에 어떤 위치였나요?” 혹은 “OOO이 무슨 프로젝트였나요?”라는 질문에 “시키는 것만 했어요. 하지만 △△△은 잘합니다”라는 접근 방식으로는 좋은 결과가 어렵다고 봅니다. 본인이 수행했던 업무는 기본이고, 참여했던 제품 및 프로젝트에 대한 이해도 필요하다고 봅니다. Q. 솔루션사업팀에서 일하게 된다면, 어떤 성장을 기대할 수 있을까요? PO나 PM으로서 프로젝트의 기획/요구분석부터 검수까지 전반적인 영역에서 다양한 경험을 할 수 있으며, 개인 능력에 따라 달라지겠지만 다양한 경험을 토대로 보다 넓은 스펙트럼을 보유하리라 생각됩니다. 프로덕트 관점에서 기존 시장에서 포착하지 못한 새로운 가치를 발굴할 수 있는 능력을 키울 수 있습니다. Q. 브레인즈컴퍼니에서 가장 자랑하고 싶은 복지는 무엇인가요? 아침식사요. 10년 전 쿠킹 호일에 쌓여 검정 비닐에 담겨있던 김밥이 현재는 다양한 메뉴로 제공되면서 아침식사가 여전히 고픈 배를 달래주고 있어요. 그리고 좋은 동료가 최고의 복지라고 하죠. 어려운 일을 만나면 기꺼이 머리를 맞대고 방법을 찾아주고, 일이 아무리 많아도 중간에 커피도 마셔가면서 얘기 나눌 수 있는 동료들이 가장 자랑하고 싶은 복지입니다. Q. 마지막으로 지원자들에게 하고 싶은 이야기가 있다면, 자유롭게 기술해주세요. 고객에게 가치를 제공한다는 것, 쉬운 일이 아닙니다. 제니우스(Zenius) 공부도 해야 하고 고객이 무엇을 요구하는지 알아채는 능력도 필요하고 다른 팀과 스커드 팀을 통해 개발도 직접하기도 합니다. 개발과 설계 두 분야 다 경력이 있어야 새로운 솔루션을 찾을 수 있어요. 그래서 개발 잘하는 개발&설계자가 아니라 개발'도' 잘하는 개발&설계자가 되고 싶다면, 도전하세요!!!
2022.10.14
Monitoring vs Observability, 모니터링과 옵저버빌리티 이해하기
Monitoring vs Observability, 모니터링과 옵저버빌리티 이해하기
옵저버빌리티는 "무슨 일이 일어났는가?", "왜 그런 일이 일어났는가?"와 같은 질문에 답하는 것을 목표로 합니다. 옵저버빌리티는 IT시스템 전체적인 관점에서 문제를 신속하게 식별하고 근본 원인을 분석할 수 있습니다. 최근 IT 인프라의 종류가 다양해지고, 수가 기하급수적으로 많아지고, 복잡도가 급격히 증가함에 따라 IT 인프라의 가용성을 보장하기 위해서 전통적으로 행해지던 모니터링의 범주를 넘어서는 옵저버빌리티라는 개념이 등장했습니다. 모니터링과 옵저버빌리티라는 두 용어들은 때로는 비슷한 개념으로 서로 바꿔서 사용되기도 하지만, 시스템 관리에 대한 다른 접근 방식을 나타냅니다. 이번 블로그에서는 모니터링과 옵저빌리티의 차이점을 알아보겠습니다. Monitoring이란? 모니터링은 IT 시스템에서 CPU 사용량, 메모리 사용량, 네트워크 트래픽과 같은 데이터를 수집하고 분석해 성능과 동작을 파악하는 것입니다. 모니터링의 목표는 시스템에 문제가 있는 것으로 추정되는 이상한 동작이나 조건을 감지하고 경고하는 것입니다. 모니터링은 종종 문제를 나타낼 수 있는 특정 메트릭이나 이벤트에 대한 알람 설정을 포함합니다. 이 접근 방식은 일반적으로 예측 가능한 개별 시스템에 사용합니다. 전통적인 모니터링 방법은 일정한 간격으로 수집되는 사전 정의된 메트릭이나 로그에 의존합니다. 예를 들어, 서버의 CPU 사용량을 1분마다 확인하고 사용량이 특정 임계값을 초과하면 알람을 보낼 수 있습니다. 이러한 방식은 특정 유형의 문제를 감지하는 데 효과적이지만, IT 시스템 동작을 전체적으로 파악하거나 근본 원인 분석에 대한 심층적인 인사이트는 제한적일 수 있습니다. Observability란? 옵저버빌리티는 IT 시스템 관리에 대한 새로운 접근 방식으로, 시스템의 내부 동작을 이해하는 것에 중점을 둡니다. 옵저버빌리티의 목표는 시스템의 동작을 깊이 이해하고 발생 가능한 모든 문제의 근본 원인을 파악하는 것입니다. 옵저버빌리티는 메트릭, 추적, 로그 등을 실시간으로 수집하고 분석하는 것을 포함합니다. 참고로 메트릭은 CPU 사용량, 메모리 사용량, 네트워크 트래픽과 같은 시스템 성능과 관련된 정량적 정보를, 추적은 요청의 호출 순서 및 응답 시간과 같은 시스템 동작에 대한 정보를, 로그는 사용자 작업 및 오류를 포함해 시스템 활동을 제공합니다. 옵저버빌리티가 필요한 이유 옵저버빌리티는 복잡하고 동적인 시스템에서는 문제를 빠르게 찾고 해결하기 위해 시스템의 동작과 성능을 측정하고 분석할 필요가 있습니다. 옵저버빌리티를 통해 다음과 같은 이점을 얻을 수 있습니다. 옵저버빌리티가 필요한 이유 1. 문제 해결 속도 향상: 옵저버빌리티를 사용하면 복잡한 시스템에서 발생하는 문제를 더욱 빠르게 파악할 수 있습니다. 이를 통해 시스템 장애나 성능 저하와 같은 문제를 빠르게 해결할 수 있습니다. 2. 전체 시스템 이해도 증가: 옵저버빌리티를 사용하면 전체 시스템의 내부 동작을 쉽게 이해할 수 있습니다. 이는 문제를 예방하거나 빠르게 대처할 수 있도록 도와줍니다. 3. 대규모 시스템 관리 가능: 대규모 분산 시스템에서는 옵저버빌리티가 필수적입니다. 이를 통해 수많은 서버, 네트워크, 애플리케이션 등에서 발생하는 다양한 데이터를 수집하고 분석할 수 있습니다. 4. 문제 예방 및 최적화: 옵저버빌리티를 사용하면 시스템의 성능을 지속적으로 모니터링하고 문제를 예방할 수 있습니다. 또한 시스템의 최적화를 위해 데이터를 분석하고 개선할 수 있습니다. 따라서, 옵저버빌리티는 복잡한, 여러 개의 세분화된 시스템으로 구성된 전체 시스템에서 필수적인 도구로, 시스템의 성능 개선과 장애 대응 등 다양한 측면에서 가치를 제공합니다. Monitoring vs Observability 모니터링과 달리, 옵저버빌리티는 사전에 정의된 메트릭과 알람에 의존하는 대신, 시스템 동작의 더욱 전체적인 관점을 제공합니다. 옵저버빌리티는 여러 소스에서 수집한 데이터를 같이 분석함으로써 쉽게 찾을 수 없는 어떤 패턴과 상관관계를 발견하는 데 도움을 줄 수 있습니다. 이 접근 방식은 예측할 수 없는 동작을 가진 복잡한 시스템에서 특히 유용합니다. 모니터링과 옵저버빌리티의 또 다른 중요한 차이점은 사람의 개입 수준입니다. 모니터링은 특정 이벤트 또는 조건을 감지하고 해당 이벤트 또는 조건이 발생할 때 경고를 트리거하도록 설계되므로 모니터링을 설정하고 구성하는데 사람의 개입이 필요할 수 있지만 일단 도구가 셋업되면 사람의 개입 없이 자동으로 작동하는 편입니다. 반면에, 옵저버빌리티는 데이터를 해석하고 결정을 내리고 조치를 취하는데 IT 운영자의 전문 지식을 사용해 프로세스에 관여합니다. 이러한 접근 방식은 시간이 더 많이 소요될 수 있지만, 문제의 근본 원인에 대한 더 많은 인사이트를 제공할 수도 있습니다. 올바른 어프로치 선택하기 모니터링과 옵저버빌리티는 각각 장단점이 있으며, 시스템의 특정 요구사항에 따라 어떤 접근 방식을 선택할지 달라져야 합니다. 비교적 상황 파악이 어렵지 않은 간단한 시스템의 경우, 전통적인 모니터링 도구로 충분할 수 있습니다. 그러나 복잡하고 시스템이 분산된 경우, 시스템 동작을 완전히 이해하기 위해 옵저버빌리티가 필요할 수 있습니다. 결국, 효과적인 시스템 관리의 핵심은 문제를 빠르게 감지하고 해결하기 위한 적절한 도구와 프로세스를 갖추는 것입니다. 모니터링 또는 옵저버빌리티를 선택하든, 시스템과 조직의 요구에 부합하는지 정기적으로 검토하고 개선하는 것이 중요합니다. 적절한 도구와 프로세스에 투자함으로써, 시스템의 신뢰성과 성능을 개선하고 비용이 많이 드는 다운타임과 서비스 중단을 피할 수 있습니다. Zenius EMS 브레인즈컴퍼니는 20년 이상 축적된 노하우를 바탕으로 레거시 환경은 물론 최근 더욱 복잡해지고 있는 클라우드 네이티브 시스템까지 모니터링과 옵저버빌리티 모두를 제공함으로써 고객이 원하는 방식으로 사용이 가능합니다. Zenius EMS는 SMS, NMS, APM 등 각 인프라별 모니터링을 통합해 시스템을 더욱 안정성 있게 관리하고 자동화된 장애대응 환경을 제공하며 객관적인 데이터 기반으로 리포팅이 가능한 지능형 IT 성능 모니터링입니다. 또한 쿠버네티스, 오픈 스택을 지원하는 클라우드 환경을 모니터링합니다. 국내 공공분야 관제 SW 1위, 제니우스의 상관관계 분석, 인공지능을 활용한 성능예측 등 옵저버빌리티 기술을 통해 다양한 시스템 레이어에서 성능, 장애, 구성에 대한 인사이트를 얻으시기 바랍니다.
2023.03.28
옵저버빌리티 향상을 위한 제니우스 대표 기능들
옵저버빌리티 향상을 위한 제니우스 대표 기능들
이번 블로그에서는 지난 블로그에서 다루었던 옵저버빌리티를 구현하기 위한 오픈 소스들은 어떤 것들이 있는지 간략히 알아보고, 제니우스(Zenius-EMS)에서는 옵저버빌리티 향상을 위해서 어떤 제품들을 제공하고 있는 지 살펴보겠습니다. 옵저버빌리티 구현을 위해 널리 활용되는 대표적인 오픈소스로는 아래 네 가지 정도를 들 수 있습니다. l Prometheus: 메트릭 수집 및 저장을 전문으로 하는 도구입니다. Prometheus는 강력한 쿼리 기능을 가지고 있으며, 다양한 기본 메트릭을 제공하며 데이터 시각화를 위해 Grafana와 같은 도구와 통합될 수 있습니다. 또한 이메일, Slack 및 PagerDuty와 같은 다양한 채널을 통해 알림을 보낼 수 있습니다. l OpenTelemetry: 에이전트 추가 없이 원격으로 클라우드 기반의 애플리케이션이나 인프라에서 측정한 데이터, 트레이스와 로그를 백엔드에 전달하는 기술을 제공합니다. Java, Go, Python 및 .NET을 포함한 다양한 언어를 지원하며 추적 및 로그에 대한 통합 API를 제공합니다. l Jaeger: 분산 서비스 환경에서는 한번의 요청으로 서로 다른 마이크로서비스가 실행될 수 있습니다. Jaeger는 서비스 간 트랜잭션을 추적하는 기능을 가지고 있는 오픈 소스 소프트웨어입니다. 이 기능을 통해 애플리케이션 속도를 저해하는 병목지점을 찾을 수 있으며 동작에 문제가 있는 애플리케이션에서 문제의 시작점을 찾는데 유용합니다. l Grafana: 시계열 메트릭 데이터를 시각화 하는데 필요한 도구를 제공하는 툴킷입니다. 다양한 DB를 연결하여 데이터를 가져와 시각화 할 수 있으며, 그래프를 그릴 수도 있습니다. 시각화한 그래프에서 특정 수치 이상일 때 알람 기능을 제공하며 다양한 플러그인으로 기능확장이 가능합니다. ------------------------------------------------- 오픈 기술을 이용해 Do It Yourself 방식으로 옵저버빌리티를 구현한다면 어떨까요? 직접 옵저버빌리티를 구현하기 위해서는 먼저 필요한 데이터를 수집해야 합니다. 필요한 데이터가 무엇인지, 어떤 방식으로 수집할지 결정하고 Prometheus, OpenTelemetry 같은 도구들을 이용해 설치 및 설정합니다. 이 단계는 시간이 가장 오래 걸리고, 나중에 잘못된 구성이나 누락이 발견되기도 합니다. 다음 단계는 데이터 저장입니다. 이 단계에서 주의할 점은 예전처럼 여러 소스에서 수집한 데이터를 단순하게 저장하는 것이 아니라, 전체적인 관점에서 어떤 이벤트가 일어나는지를 추적이 가능하도록 데이터 간의 연결과 선후 관계를 설정하는 것입니다. 어려운 점은 새로운 클라우드 기술을 도입하거나 기존의 인프라나 애플리케이션에서 변경이 발생할 때마다 데이터를 계속해서 정리를 해야 하는데, 이를 위해 플랫폼을 지속적으로 수정하고 구성을 추가해야 한다는 것입니다. 마지막으로 부정확한 경고들은 제거해야 합니다. 비즈니스 상황과 데이터는 계속해서 변화하기 때문에 이에 맞게 베이스 라인을 지속적으로 확인하고, 임계치를 조정해서 불필요한 알람이나 노이즈 데이터가 생기는 것을 방지해야 합니다. 결론적으로 직접 옵저버빌리티를 구현하는 것은 처음에는 쉬워 보여도 고급 인력과 많은 시간을 확보해야 하며, 별개로 시간이 지남에 따라서 효율성과 확장성이 떨어진다는 점을 감안하면 대부분의 기업은 감당하기 어렵다고 할 수 있습니다. 그렇다면, Zenius(제니우스) EMS는 옵저버빌리티를 어떻게 확보하고 있을까요? 옵저버빌리티 향상을 위한 가장 기본적인 기능은 토폴로지맵 또는 대시보드입니다. 다양한 인프라의 물리적 논리적 연결구조들을 한 눈에 시각적으로 파악할 수 있도록 해야 합니다. Zenius는 각 인프라별 상황을 한 눈에 볼 수 있는 오버뷰와 시스템 전체를 조망할 수 있는 토폴로지맵, 그리고 서비스 별 상황들을 감시할 수 있는 대시보드 등 크게 세가지의 뷰어(Viewer)를 제공합니다. 인프라의 구성 상황에 따라 다층적으로 구성되어 고객들이 인프라에서 일어나는 상황을 즉각 알 수 있도록 해 줍니다. 이러한 뷰어들은 기존 ‘모니터링’의 개념에서 ‘옵저버빌리티’ 개념으로 진화화면서 좀 더 다층적, 다양화되는 형태로 진화하고 있습니다. 또한, Zenius는 기존의 각 인프라별로 단순히 감시를 설정하는 방식이 아닌 다양한 인프라로부터의 로그와 메트릭 정보를 이용해 어떤 상관관계가 있는지 분석하는 ‘복합감시’라는 서비스가 기본적으로 탑재돼 있습니다. 복합감시를 대표 기능에는 ERMS(Event Relation Management System), 스냅샷 그리고 조치 자동화 등을 들 수 있습니다. l ERMS 기능은 로깅, 메트릭 정보와 장비의 상태를 이용해 새로운 감시 기준을 만들어, 의미있는 이벤트를 생성해 사용자에게 개별 장비 수준이 아닌 서비스 관점에서 정확한 상황 정 보를 제공합니다. l 스냅샷은 서비스 동작에서 이벤트가 발생했을 때, 당시 상황을 Rawdata 기반으로 그대로 재현하는 기능으로 SMS, DBMS, APM, NMS 등 모든 인프라를 동시에 볼 수 있습니다. l 조치 자동화는 ERMS를 자동운영시스템과 연동해, 특정 상황에서 자동으로 스크립트를 실행해 제어하는 기능입니다. 트레이싱 기능은 APM에서 제공하는 기능으로, WAS(Web Application Server)에 인입되고 처리되는 모든 트랜잭션들을 실시간으로 모니터링하고 지연되고 있는 상황을 토폴로지 뷰를 통해 가시적으로 분석할 수 있습니다. 사용자는 토폴로지 뷰를 통해 수행 중인 액티브 트랜잭션의 상세정보와 WAS와 연결된 DB, 네트워크 등 여러 노드들 간의 응답속도 및 시간들을 직관적으로 파악할 수 있습니다. 제니우스의 또 다른 옵저버빌리티는 인공지능 기반의 미래 예측 기능으로 미래 상황을 시각적으로 보여줍니다. 인프라 종류에 상관없이 인공신경망 등 다양한 알고리즘을 통해 미래 데이터를 생성하고, 장애발생 가능성을 빠르게 파악해 서비스 다운타임이 없도록 도와줍니다. 또한 이상 탐지 기능은 보안 침해 또는 기타 비정상적인 활동을 나타낼 수 있는 시스템 로그, 메트릭 및 네트워크 트래픽의 비정상적인 패턴을 식별할 수 있습니다. 이상탐지 알고리즘은 시간이 지남에 따라 시스템 동작의 변화에 적응하고 새로운 유형의 위협을 식별하는 방법을 학습할 수 있습니다. 이상과 같이 Zenius(제니우스) EMS는 최고의 옵저버빌리티를 제공하기 위해서 연구개발에 매진하고 있습니다. 옵저버빌리티 향상을 위한 다양한 기능/제품들은 고객의 시스템과 조직 상황에 맞게 선별적으로 사용될 수 있습니다.
2023.04.19
다음 슬라이드 보기