반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
브레인즈컴퍼니, 서비스 확대 및 고객 만족도 향상 위해 원주사무소 오픈
데브옵스(DevOps)에 대한 오해, 그리고 진실은?!
원종혁
2024.02.14
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
잘파세대(Z세대 + 알파 세대)에 대한 모든 것
2000년 대 후반 IT 분야에서 데브옵스(DevOps)라는 움직임이 시작된 후, 꾸준하게 관심이 이어지고 있습니다. 데브옵스와 관련된 전 세계 시장의 규모는 2023년 기준 약 15조 원으로 추산되며, 올해부터는 연평균 25.5%씩 성장하여 2032년에 118조 원에 이를 것으로 예상됩니다
(*출처: Grand View Research)
.
우리나라의 경우 네이버, 카카오, 우아한 형제들, 토스 등과 같은 국내 대기업부터 스타트업까지 데브옵스 팀을 구축하여 적극적으로 활용하고 있기도 한데요.
이처럼 많은 기업들이 말하는 데브옵스란 과연 무엇일까요? 그리고 어떻게 하면 데브옵스를 성공적으로 도입하고 활용할 수 있을까요?
│ 데브옵스(DevOps)란 무엇인가?
[그림 1] DevOps 개념 ⓒdevopedia
우선 데브옵스가 무엇인지부터 살펴봅시다. 검색 사이트에서 '데브옵스 혹은 DevOps'라고 검색하면 위 [그림1]과 같은 결과를 찾을 수 있는데요.
[그림 2] DevOps에 대한 필자의 첫인상
하지만 처음 데브옵스라는 단어를 접할 경우 [그림 2]처럼 오버랩되는 건, 필자만 그런 것은 아니라고 생각합니다. 위 그림처럼 "개발자 보러 운영까지 하라는 거야? 아니면 운영자에게 개발까지 하라는 거야?"라는 질문을 던질 수 있겠죠.
데브옵스(DevOps)는 소프트웨어의 개발(Developmnet)과 + 운영(Operations)의 합성어이다. 이는 소프트웨어 개발자와 정보기술 전문가 간의 소통, 협업 및 통합을 강조하는 개발 환경이나 문화를 말한다. 데브옵스는 소프트웨어 개발조직과 운영조직 간의 상호 의존적 대응이며, 조직이 소프트웨어 제품과 서비스를 빠른 시간에 개발 및 배포하는 것을 목적으로 한다.
ⓒ위키백과
위 내용에도 언급되었듯이, 데브옵스라는 것은 결국 단순한 기술이 아닌 환경 또는 사람들 간에 관계라고 할 수 있습니다. 그렇다면 데브옵스는 어떤 이유로 주목받을 수 있었을까요?
│ 데브옵스(DevOps)가 주목받게 된 배경은?
데브옵스가 주목받은 이유는 여러 가지 있을 수 있지만, 주요한 이유 중 몇 가지를 설명하면 다음과 같습니다.
클라우드 컴퓨팅 기술의 발전
IT 산업의 발전에 따라 빠른 개발과 빠른 배포, 그리고 고객의 요구에 신속하게 대응하는 능력이 중요해졌습니다. 특히
클라우드 컴퓨팅(Cloud Computing) 기술의 발전으로 데브옵스의 필요성이 더 대두
되었는데요.
클라우드 자원의 가상화 기술과 빠른 프로비저닝
*1
을 통해 기존의 개발과 운영 간의 경계가 허물어지며, 서로 간의 협력이 필수적으로 요구되었기 때문입니다. 실제로 데브옵스만으로는 52%, 클라우드 단독 사용으로는 53%의 성능 향상을 얻었지만, 데브옵스와 클라우드가 결합된 환경에서는 평균 81%의 성능을 향상시킬 수 있다는
조사 결과
도 있습니다.
*1 프로비저닝(Provisioning): 사용자가 요청한 IT 자원을 사용할 수 있는 상태로 준비하는 것
MSA의 등장
[그림 4] 모놀리식 구조 예시(왼) [그림 5] MSA 구조 예시(오)
지금까지 운영 중인 시스템 혹은 서비스는, 하나의 큰 덩어리로 구성된 [그림 4]
모놀리식(Monolithic) 구조를 많이 사용
하고 있습니다. 안정성을 확보하고 기능 추가를 편리하게 할 수 있었기 때문이죠. 하지만 한 부분의 변경이 전체 시스템에 영향을 미칠 수 있어, 유지보수가 어렵다는 한계점이 있습니다. 예를 든다면 특정 기능이 수정이 필요한 경우에도, 전체 시스템을 수정해야 해서 번거롭고 비효율적인 부분이 있습니다.
이러한 모놀리식 구조의 한계점으로 소프트웨어의 구조가 서서히 [그림 5]
MSA(Micro Service Architecture)로 변화
되고 있습니다. MSA는 통합된 하나의 덩어리를 관리하는 것이 아닌, 작은 단위로 쪼개어 관리하는 방식인데요. 관리하기도 효율적이고, 소프트웨어 품질개선과 요구사항 반영이 비교적 편리해졌습니다. 각 서비스가 독립적으로 배포되고 운영되기 때문에, 특정 기능을 수정할 때 전체 기능을 수정하거나 다시 배포할 필요가 없어진 거죠. 하지만 이러한 변화는 기존의 개발 환경과 조직 문화로 대응하기엔 어려움이 있었습니다.
이때
'데브옵스(DevOps)'
가 좋은 솔루션으로 등장한 것이죠!
데브옵스가 지속적인 통합(CI)
1
과 지속적인 배포(CD)
2
를 통해 빠른 개발 주기를 실현하고 배포할 수 있을 뿐만 아니라, 다수의 독립적인 서비스가 상호작용할 수 있도록 원활한 협업과 통합을 가능하게 했기 때문입니다.
*1 지속적인 통합(Continuous Integration, CI)
개발자가 코드를 변경할 때마다 자동으로 통합하고 빌드 하여, 소프트웨어의 품질을 빠르게 확인하는 과정
*2 지속적인 배포(Continuous Delivery, CD)
통합된 코드를 자동으로 테스트하고, 안정적으로 통과한 경우에는 자동으로 프로덕션 환경에 소프트웨어를 배포하는 것. 이에 따라 사용자에게 새로운 기능이나 수정 사항을 신속히 제공하는 과정
│ 데브옵스(DevOps) 도입 성공사례는?
이처럼 데브옵스의 정의와 주목받게 된 배경을 살펴봤는데요. 이번에는 데브옵스를 실제로 기업에 적용해 보고 성공한 사례를 자세히 살펴볼까요?
넷플릭스
넷플릭스(Netflix)는 데브옵스를 성공의 핵심요소로 삼아, 지속적으로 새로운 기능과 업데이트를 제공했습니다.
자동화된 유연한 인프라
로 사용자 경험을 향상시켰죠. 이를 통해 빠르게 변화하는 스트리밍 산업에서 앞서 나갈 수 있게 되었고, 많은 비즈니스 이점을 얻게 되었습니다. 사실 넷플릭스는 2008년 큰 장애를 겪은 후, 클라우드로 이전되면서 인프라를 혁신적으로 개편했습니다. 이로써 기존의 수직적 단일 장애 지점에서 벗어나, 수평적으로 확장 가능한 분산 시스템을 구축할 수 있었습니다.
아마존
아마존(Amazon)은 데브옵스 원칙을 초기에 채택하여, 개발과 운영팀 간의 협력을 강화했습니다.
자동화와 지속적인 통합을 강조
함에 따라, 빠른 배포 주기와 개선된 확장성을 달성할 수 있었죠. 이러한 아마존의 데브옵스 접근 방식은, 시장에서 경쟁 우위를 유지하는데 중요한 역할을 했습니다. 아마존 창립자인 제프 베이조스는 아마존의 데브옵스에 대해 '고객에게 집중하고, 혁신을 포용하며, 실험할 용기'를 강조했습니다. 베이조스는 혁신을 위해, 오해를 받고 비판받을 의향이 있어야 한다고 말했던 것이죠.
페이스북
페이스북(Facebook)은 "빠르게 움직이고 물건을 부수라"는 문화에 뿌리를 둔 데브옵스 관행을 택했습니다. 실험, 민첩성, 위험 감수를 중시하는 접근 방식을 포함해서 말이죠. 이처럼 페이스북은
지속적인 통합과 배포, 자동화된 테스팅, 모니터링
을 사용하여 사용자에게 더 빠르고 높은 품질의 새로운 기능과 업데이트를 제공하고 있습니다.
월마트
2011년부터 데브옵스를 도입한 월마트(Walmart)는
자동화와 협업 그리고 지속적인 배포
에 중점을 두었습니다. 애자일(Agile) 방법론과 클라우드 기반의 인프라 및 데브옵스 툴체인을 활용하여, 하루에 최대 100번까지 코드를 배포할 수 있게 된 것이죠. 이를 통해 디지털 변환을 가속화하고, 전자상거래 플랫폼을 개선하며, 고객 경험을 향상시킬 수 있었습니다.
위 기업들은 데브옵스라는 도구를 효과적으로 활용하여 비즈니스 성과를 창출하고, 경쟁 우위를 확보할 수 있었습니다. 그렇다면 데브옵스를 도입하기만 하면 무조건 성공할 수 있을까요?
│ 데브옵스(DevOps)의 오해와 한계
앞선 질문에 대한 대답은 아쉽게도 NO입니다. 데브옵스는 개발 환경과 문화를 전부 해결해 줄 수 있는 '만능책'은 아니라는 것이죠. 데브옵스가 도입된 이후 새로운 한계점이 발견되었고, 실패할 사례들도 적지 않게 나왔습니다.
이러한 결과는 아래와 같은 오해들에서 비롯될 확률이 높은데요. 대표적으로 3가지만 살펴봅시다.
[그림 6] DevOps 구현을 위한 도구 ⓒMedium_Ajesh Martin
오해 1. 데브옵스는 일종의 단순한 도구일 뿐이다?
데브옵스를 '일종의 도구'로만 보는 것은 잘못된 판단입니다. 물론 여러 팀에서 보다 더 나은 환경과 문화를 위해 슬랙(Slack), 젠킨즈(Jenkins), 도커(Docker) 등 여러 도구를 사용하는 것은 좋습니다.
하지만 데브옵스는 이보다 더 광범위한 접근 방식을 담고 있습니다. 즉 개발과 운영팀 간의 협력과 더 빠른 소프트웨어 개발과 배포를 가능하게 하는 방법론을 포함한다는 것이죠. 다시 말해 데브옵스라는 '도구'를 이용하기 이전에, 문화적 그리고 기술적 접근 방식이 바탕이 되어야 데브옵스라는 툴이 도움 될 수 있습니다.
오해 2. 데브옵스는 모든 조직에 적합하다?
만약 '다른 회사에 데브옵스라는 팀이 있으니, 우리도 데브옵스 팀을 만들자'라는 식으로 접근한다면, [그림 2]와 같은 모습이 될 것으로 예상됩니다. 즉 데브옵스의 조직 체계를 구성한다고 해서 데브옵스가 실현될 순 없습니다. 서로 다른 입장과 상황이 있는 개발자-팀-회사, 운영자-팀-회사 간에 상당한 노력을 통해 만들어 내는 것이 더 중요한 것이죠.
이와 비슷한 사례로 애자일(Agile) 문화가 있습니다. 2000년대 초반 '애자일 소프트웨어 선언문'으로 다양한 애자일 방법론이 주목을 받았었죠. 개발에서 빠르고 유연한 방법을 강조하며, 이후 많은 기업들이 애자일 방법론을 도입하게 되며 유행처럼 번져갔습니다.
[그림 7] Agile 프로세스
여기서 애자일 문화를 도입한 많은 기업들이 간과했던 사실은, 애자일 문화 도입 자체가 '해결책'이라고 생각했다는 점입니다. 이보다 기존의 조직 문화에서 애자일 문화를 도입하는 것이 적합한 상황인지, 기존의 프로세스보다 효과를 발휘할 수 있는지, 팀 구성원들이 충분히 적응할 수 있는 문화인지 등을 우선적으로 고려하는 것이 더 중요합니다.
데브옵스 역시 마찬가지로 기존의 조직 규모, 문화, 프로젝트의 특성에 대한 명확한 이해가 먼저 선행되어야 합니다. 데브옵스 도입 전에 조직의 현재 상황과 목표를 면밀히 평가한 후, 점진적으로 도입하는 것이 중요하죠. 대기업이나 캐시카우가 있는 기업들이 데브옵스를 실행했다고 해서, 또는 단지 트렌드라는 이유만으로 도입하는 것은 위험할 수 있습니다.
오해 3. 데브옵스는 빠른 소프트웨어 배포만을 목표로 한다?
데브옵스는 속도만 중시하고 품질이나 안정성을 소홀히 한다는 인식이 있습니다. 하지만 데브옵스는 소프트웨어의 빠른 배포뿐만 아니라, 품질과 안정성 그리고 보안을 동시에 추구해야 합니다. 이에 따라 지속적인 통합과 배포(CI/CD), 자동화된 테스트, 모니터링 등을 통해 이러한 목표를 달성하려고 노력해야 하죠.
이처럼 데브옵스라는 도구를 도입하고 데브옵스 팀을 구성했다고 해서, 데브옵스가 즉각적으로 실현되는 것은 아닙니다.
│ 데브옵스(DevOps) 보다 선행되어야 하는 '이것'
진정한 데브옵스를 실현하기 위한 방법을 한 문장으로 표현한다면 다음과 같습니다.
"싸우지 말고 함께
소프트웨어 시스템 혹은 서비스를 만들어봐요"
힘 빠지는 결론일 수도 있습니다. 하지만 데브옵스를 도입하기 이전에 더 선행되어야 할 것은 각각 다른 업무의 조직원들끼리 서로를 이해하고, 협력하며, 보다 안정적인 시스템과 서비스를 제공하는 '문화'를 만드는 것이 더 현실적인 행동이라고 생각합니다.
물론 데브(Dev)와 옵스(Ops)는 우선순위가 동일하지 않고, 동일한 언어를 사용하지 않을 수 있으며, 매우 다른 관점에서 문제 해결될 가능성이 높습니다. 이처럼 팀을 하나로 모으기 위해서는 상당한 시간과 지속적인 노력이 필요한 것이죠.
그렇다면 어떤 방식으로 팀 협업 문화를 만들어야, 데브옵스를 보다 성공적으로 도입할 수 있을까요?
│ 데브옵스(DevOps) 성공을 위한 첫걸음
먼저 조직 내의 문화를 이해한 다음, 조직 내 교육과 커뮤니케이션을 강화하는 것이 중요한데요. 구체적인 방안을 제안한다면 다음과 같습니다.
로테이션 프로그램 도입
진정한 데브옵스를 실현하려면, 무엇보다 각 부서의 업무적인 이해가 중요합니다. 가장 직관적인 방법으로는 다른 부서의 업무를 '직접 체험'해 보는 것입니다. 예를 든다면 개발자가 운영팀의 업무를 수행하거나, 보안 팀이 개발 업무에 참여하는 등, 다양한 부서 간의 경험을 쌓아 보는 것이죠. 이를 통해 서로의 업무 환경과 각 부서 간의 역할을 이해하는 데 큰 도움을 받을 수 있습니다.
지식 공유 플랫폼 구축
내부 플랫폼이나 문서화된 지식 공유 시스템을 구축하는 방법도 있습니다. 각 부서의 업무와 프로세스에 대한 정보를 쉽게 접근할 수 있도록 하는 것이죠. 예를 들면 데브옵스 문화나 기술적인 도구, 프로세스 등을 포함하여 다양한 지식을 공유합니다. 이를 통해 각 부서의 업무 특성을 명확히 이해할 수 있고, 협업을 원활하게 진행할 수 있겠죠.
정기적인 교육 세션
빠르게 변화하는 기술에 대응하기 위해, 팀원들이 지속적으로 학습하고 발전해야 합니다. 정기적인 교육은 이러한 학습을 지원하는 데 중요한 역할을 하는데요. 예를 든다면 새로 도입된 CI/CD 도구에 대한 워크숍을 개최하여, 팀원들이 해당 도구의 사용법과 이점을 학습할 수 있도록 합니다. 또한 현재 사용 중인 프로세스 개선점에 대한 세션을 주기적으로 열어, 팀원들이 학습한 내용을 바탕으로 업무에 효율적으로 적용할 수 있습니다. 만약 특정 분야에 강점을 가진 팀원이 있어 주기적으로 자신의 경험과 성과를 공유한다면, 팀 전체에게 영감을 주고 학습 기회를 제공할 수도 있겠죠.
스탠드 업 미팅 활성화
매일 정해진 시간에 각 팀원이 자신의 진행 상황이나 이슈, 계획을 간결하게 공유합니다. 정해진 시간을 지키고 효율적인 미팅 진행을 위해, 공유하는 팀원들의 말에 집중하되 '총 15분'을 초과하지 않도록 노력하는 것이 중요합니다. 이를 통해 짧은 시간 동안 팀 전체가 빠르게 현재 상황을 파악하고, 실시간으로 정보를 공유하며, 신속하게 문제를 해결할 수 있습니다.
이처럼 위와 같은 방법들을 통해 구성원들이 효과적으로 협력할 수 있는 환경을 조성하는 노력들이 필요합니다.
。。。。。。。。。。。。
많은 기업들이 경쟁에서 지지 않기 위해 도입하고 있는 데브옵스(DevOps).
하지만 진정한 데브옵스를 실현하기 위해서는
"싸우지 말고 소프트웨어 시스템 혹은 서비스를 만들어 봐요"
라는 문장처럼 각각 다른 업무의 조직원들끼리 서로 이해하고, 협력하는 문화가 선행되는 것이 매우 중요합니다.
즉 너희 팀 vs 우리 팀 업무를 구분하지 않고 함께 협력하여, 아이디어를 생산하고, 가치를 창출해야 하는 것이죠. 혹시 아직 데브옵스를 도입하기 전이거나, 도입 이후에 올바르게 활용되고 있는지 궁금하시다면, 오늘 이 글을 통해 심도 있게 생각해 보시는 건 어떨까요?
#데브옵스
#DevOps
#MSA
#클라우드컴퓨팅
원종혁
솔루션사업팀
최일선에서 일하는 솔루션사업팀에서 근무 중입니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
앞선 글들을 통해서 NMS의 기본 개념, 구성요소와 기능, 정보 수집 프로토콜에 대해서 알아봤었는데요. 이번 글에서는 NMS의 역사와 진화 과정, 그리고 최근 트렌드에 대해서 자세히 알아보겠습니다. EMS, NPM, 그리고 AIOps에 이르기까지 네트워크의 빠른 변화에 발맞추어 진화하고 있는 NMS에 대해서 하나씩 하나씩 살펴보겠습니다. ㅣNMS의 역사와 진화 과정 우선 NMS의 전반적인 역사와 진화 과정을 살펴보겠습니다. [1] 초기 단계 (1980년대 이전) 초기에는 네트워크 관리가 수동적이었습니다. 네트워크 운영자들은 네트워크를 모니터링하고 문제를 해결하기 위해 로그 파일을 수동으로 분석하고 감독했습니다. [2] SNMP의 등장 (1988년) SNMP(Simple Network Management Protocol)의 등장으로 네트워크 장비에서 데이터를 수집하고 이를 중앙 집중식으로 관리하는 표준 프로토콜을 통해 네트워크 관리자들이 네트워크 장비의 상태를 실시간으로 모니터링하고 제어할 수 있게 됐습니다. [3] 네트워크 관리 플랫폼의 출현 (1990년대 중후반) 1990년대 후반부에는 상용 및 오픈 소스 기반의 통합된 네트워크 관리 플랫폼이 등장했습니다. 이러한 플랫폼들은 다양한 네트워크 장비와 프로토콜을 지원하고, 시각화된 대시보드와 경고 기능 등을 제공하여 네트워크 관리의 편의성을 높였습니다. [4] 웹 기반 NMS (2000년대 중반) 2000년대 중반에는 웹 기반의 NMS가 등장했습니다. 이러한 시스템은 사용자 친화적인 웹 인터페이스를 통해 네트워크 상태를 모니터링하고 관리할 수 있게 했습니다. [5] 클라우드 기반 NMS (2010년대 이후) 최근 몇 년간 클라우드 기반 NMS의 등장으로 네트워크 관리의 패러다임이 변화하고 있습니다. 또한 빅데이터 기술과 인공지능(AI) 기술을 활용하여 네트워크 성능을 최적화하고, 향후 성능을 예측할 수 있는 성능 예측 기능까지 NMS에서 제공하고 있습니다. ㅣNMS에서 EMS로의 진화 네트워크 환경은 빠르게 변화하게 되고, 이에 따라서 NMS도 EMS로 진화하게 됩니다. NMS의 진화는 총 세 가지 세대로 나눌 수 있습니다. 1세대: 디바이스 관리 시스템 기존의 NMS는 외산 제조사에서 제공하는 전용 네트워크 솔루션이 주를 이루었습니다. CISCO의 시스코웍스(CiscoWorks), IBM의 넷뷰(NetView) HP의 네트워크 노드 매니저(Network Node Manager) 등 다양한 벤더들이 자사의 제품에 대한 모니터링 서비스를 제공하기 위해 특화된 디바이스 관리 솔루션을 내놓았죠. HP Network Node Manager 예시 화면(출처ⓒ omgfreeet.live) 물론 자사의 제품을 관리하기 위한 목적에서 출발한 솔루션이었기에, 대규모 이기종 IT 인프라 환경에 대한 모니터링 기능은 제공하지 못했습니다. 2세대: IT 인프라 관리 시스템 EMS의 등장 1세대의 NMS의 경우 빠르게 급변하는 네트워크 트렌드를 따라갈 수 없었습니다. 가상랜(VLAN), 클라이언트-서버 기술이 발달하게 되자, IP 네트워크 관계만으로 실제 토폴로지를 파악하기 어려웠습니다. 또한 네트워크장비 및 회선의 상태뿐 아니라, 서버 등의 이기종 IT 인프라 통합 모니터링에 대한 니즈와 함께 EMS(Enterprise Management System)의 시대가 시작됩니다. 이에 따라 서비스 관리 차원의 통합 관제 서비스가 등장합니다. 기존의 네트워크 모니터링뿐 아니라 서버, DBMS, WAS 등 IT 서비스를 이루고 있는 모든 인프라들에 대한 통합 모니터링에 대한 관심과 니즈가 증가했기 때문입니다. 3세대: 클라우드 네이티브 환경의 EMS 2010년 중 이후 서버, 네트워크 등 IT 인프라에 대한 클라우드 네이티브로의 전환이 가속화되었습니다. 기존의 레거시 환경에 대한 모니터링과 함께 퍼블릭, 프라이빗 클라우드에 대한 모니터링 니즈가 증가하면서 모든 환경에 대한 통합적인 가시성을 제공해 줄 수 있는 EMS가 필요하게 되었죠. 이외에도 AI의 발전을 통해 AIOps, Observability라는 이름으로 인프라에 대한 장애를 사전적으로 예측할 수 있는 기능이 필요하게 됐습니다. ㅣ네트워크 환경 변화(가상화)와 NMS의 변화 이번에는 네트워크 환경 변화에 따른 NMS의 변화에 대해서 알아보겠습니다. 네트워크 환경 변화(네트워크 가상화) 네트워크 구성 방식은 지속적으로 변화해왔습니다. 클라이언트-서버 모델부터 중앙 집중식 네트워크, MSA 환경에서의 네트워크 구성까지 이러한 변화는 기술 발전, 비즈니스 요구 사항, 보안 요구 사항 등 다양한 요인에 의해 영향을 받았는데요. 무엇보다 가장 중요한 변화는 전통적인 온 프레미스 네트워크 구조에서 네트워크 자원이 더 이상 물리적인 장비 기반의 구성이 아닌 가상화 환경에서 구성된다는 점입니다. ▪소프트웨어 정의 네트워킹(SDN, 2000년대 후반 - 현재): 네트워크 관리와 제어를 분리하고 소프트웨어로 정의하여 유연성과 자동화를 향상시키는 접근 방식입니다. SDN은 네트워크 관리의 복잡성을 줄이고 가상화, 클라우드 컴퓨팅 및 컨테이너화와 같은 새로운 기술의 통합을 촉진시켰습니다. ▪네트워크 가상화 (NFV, 현재): 기존 하드웨어 기반 전용 장비에서 수행되던 네트워크 기능을 소프트웨어로 가상화하여 하드웨어 의존성과 장비 벤더에 대한 종속성을 배제하고, 네트워크 오케스트레이션을 통해 네트워크 환경 변화에 민첩한 대응을 가능하게 합니다. ㅣ클라우드, AI 등의 등장에 따른 NMS의 방향 클라우드 네이티브가 가속화되고, AI를 통한 인프라 관리가 주요 화두로 급부상하면서 네트워크 구성과 이를 모니터링하는 NMS의 환경 역시 급변하고 있습니다. 클라우드 내의 네트워크: VPC VPC(Virtual Private Cloud)는 퍼블릭 클라우드 환경에서 사용할 수 있는 전용 사설 네트워크입니다. VPC 개념에 앞서 VPN에 대한 개념을 단단히 잡고 넘어가야 합니다. VPN(Virtual Private Network)은 가상사설망으로 '가상'이라는 단어에서 유추할 수 있듯이 실제 사설망이 아닌 가상의 사설망입니다. VPN을 통해 하나의 네트워크를 가상의 망으로 분리하여, 논리적으로 다른 네트워크인 것처럼 구성할 수 있습니다. VPC도 이와 마찬가지로 클라우드 환경을 퍼블릭과 프라이빗의 논리적인 독립된 네트워크 영역으로 분리할 수 있게 해줍니다. VPC가 등장한 후 클라우드 내에 있는 여러 리소스를 격리할 수 있게 되었는데요. 예를 들어 'IP 주소 간에는 중첩되는 부분이 없었는지', '클라우드 내에 네트워크 분리 방안' 등 다양한 문제들을 VPC를 통해 해결할 수 있었습니다. ▪서브넷(Subnet): 서브넷은 서브 네트워크(Subnetwork)의 줄임말로 IP 네트워크의 논리적인 영역을 부분적으로 나눈 하위망을 말합니다. AWS, Azure, KT클라우드, NHN 등 다양한 퍼블릭 클라우드의 VPC 서브넷을 통해 네트워크를 분리할 수 있습니다. ▪서브넷은 크게 퍼블릿 서브넷과 프라이빗 서브넷으로 나눌 수 있습니다. 말 그대로 외부 인터넷 구간과 직접적으로 통신할 수 있는 공공, 폐쇄적인 네트워크 망입니다. VPC를 이용하면 Public subnet, Private subnet, VPN only subnet 등 필요에 따라 다양한 서브넷을 생성할 수 있습니다. ▪가상 라우터와 라우트 테이블(routing table): VPC를 통해 가상의 라우터와 라우트 테이블이 생성됩니다. NPM(Network Performance Monitoring) 네트워크 퍼포먼스 모니터링(NPM)은 전통적인 네트워크 모니터링을 넘어 사용자가 경험하는 네트워크 서비스 품질을 측정, 진단, 최적화하는 프로세스입니다. NPM 솔루션은 다양한 유형의 네트워크 데이터(ex: packet, flow, metric, test result)를 결합하여 네트워크의 성능과 가용성, 그리고 사용자의 비즈니스와 연관된 네트워크 지표들을 분석합니다. 단순하게 네트워크 성능 데이터(Packet, SNMP, Flow 등)를 수집하는 수동적인 과거의 네트워크 모니터링과는 다릅니다. 우선 NPM은 네트워크 테스트(Synthetic test)를 통해 수집한 데이터까지 활용하여, 실제 네트워크 사용자가 경험하는 네트워킹 서비스 품질을 높이는데 그 목적이 있습니다. NPM 솔루션은 NPMD라는 이름으로 불리기도 합니다. Gartner는 네트워크 성능 모니터링 시장을 NPMD 시장으로 명명하고 다양한 데이터를 조합하여 활용하는 솔루션이라고 정의했습니다. 즉 기존의 ICMP, SNMP 활용 및 Flow 데이터 활용과 패킷 캡처(PCAP), 퍼블릭 클라우드에서 제공하는 네트워크 데이터 활용까지 모든 네트워크 데이터를 조합하는 것이 핵심이라 할 수 있습니다. AIOps: AI를 활용한 네트워크 모니터링 AI 모델을 활용한 IT 운영을 'AIOps'라고 부릅니다. 2014년 Gartner를 통해 처음으로 등장한 이 단어는 IT 인프라 운영에 머신러닝, 빅데이터 등 AI 모델을 활용하여 리소스 관리 및 성능에 대한 예측 관리를 실현하는 것을 말합니다. 가트너에서는 AIOps에 대한 이해를 위해 관제 서비스, 운영, 자동화라는 세 가지 영역으로 분류해서 설명하고 있습니다. ▪관제(Observe): AIOps는 장애 이벤트가 발생할 때 분석에 필요한 로그, 성능 메트릭 정보 및 기타 데이터를 자동으로 수집하여 모든 데이터를 통합하고 패턴을 식별할 수 있는 관제 단계가 필요합니다. ▪운영(Engine): 수집된 데이터를 분석하여 장애의 근본 원인을 판단하고 진단하는 단계로, 장애 해결을 위해 상황에 맞는 정보를 IT 운영 담당자에게 전달하여 반복적인 장애에 대한 조치 방안을 자동화하는 과정입니다. ▪자동화(Automation): 장애 발생 시 적절한 해결책을 제시하고 정상 복구할 수 있는 방안을 제시하여, 유사 상황에도 AIOps가 자동으로 조치할 수 있는 방안을 마련하는 단계입니다. 위의 세 단계를 거쳐 AIOps를 적용하면 IT 운영을 사전 예방의 성격으로 사용자가 이용하는 서비스, 애플리케이션, 그리고 인프라까지 전 구간의 사전 예방적 모니터링을 가능하게 합니다. 또한 구축한 데이터를 기반으로 AI 알고리즘 및 머신 러닝을 활용하여 그 어떠한 장애에 대한 신속한 조치와 대응도 자동으로 가능하게 합니다. Zenius를 통한 클라우드 네트워크 모니터링 참고로 Zenius를 통해 각 퍼블릭 클라우드 별 VPC 모니터링이 가능합니다. VPC의 상태 정보와 라우팅 테이블, 서브넷 목록 및 서브넷 별 상세 정보 (Subnet ID, Available IP, Availability Zone 등)에 대한 모니터링 할 수 있습니다. Zenius-CMS를 통한 AWS VPC 모니터링 이외에도 각 클라우드 서비스에 대한 상세 모니터링을 통해 클라우드 모니터링 및 온 프레미스를 하나의 화면에서 모니터링하실 수 있습니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼, 네트워크의 변화에 따라서 NMS는 계속해서 진화하고 있습니다. 현재의 네트워크 환경과 변화할 환경을 모두 완벽하게 관리할 수 있는 NMS 솔루션을 통해 안정적으로 서비스를 운영하시기 바랍니다.
2024.04.03
서버 모니터링의 두 가지 방식
서버 모니터링의 두 가지 방식
이번 블로그에서는 일반적으로 서버 모니터링 소프트웨어들이 널리 쓰고 있는 서버 모니터링의 두 가지 방식에 대해서 논의하고 그 차이점을 알아보겠습니다. 지난 블로그에서 언급했듯이, 서버 모니터링은 컴퓨터 서버의 성능을 관찰하고 분석해 최적의 상태로 실행되고 있는지 확인하는 작업입니다. 이 프로세스에는 일반적으로 CPU 사용률, 메모리 사용량, 디스크 I/O, 네트워크 트래픽 및 응용 프로그램 성능과 같은 다양한 메트릭에 대한 데이터를 수집하는 소프트웨어 도구의 사용이 포함됩니다. 서버 모니터링 소프트웨어는 데이터 수집 후 추세, 패턴 및 이상 현상을 식별하기 위해 데이터를 분석합니다. 분석을 통해 잠재적인 문제가 심각해지기 전에 식별하고 서버 관리자가 시정 조치를 취할 수 있도록 합니다. 예를 들어, CPU 사용률이 지속적으로 높은 경우 서버의 성능이 부족해 더 많은 리소스를 할당해야 할 수 있음을 나타낼 수 있습니다. 또는 디스크 I/O가 느린 경우 서버의 저장소가 과부하됐거나 최적화가 필요함을 나타낼 수 있습니다. 서버 모니터링 소프트웨어에는 관리자가 서버 성능을 파악하는데 도움이 되는 대시보드, 경고 및 보고 기능이 포함되는 경우가 많습니다. 대시보드는 핵심 성과 지표의 실시간 보기를 제공하는 동시에 특정 임계값을 초과하거나 문제가 감지되면 관리자에게 알림을 보냅니다. 서버 관리자는 보고 기능을 통해 시간 경과에 따른 성능 추세 및 문제에 대한 보고서를 생성할 수 있으며, 이를 통해 용량 계획 및 리소스 할당 결정을 알리는데 사용할 수 있습니다. 서버 모니터링은 일반적으로 에이전트 없는 서버 모니터링과 에이전트 기반 서버 모니터링, 이 두 가지 주요 접근 방식이 있습니다. 두 가지 모두 장단점이 있으며 어떤 것을 선택하느냐는 특정 요구 사항과 선호도에 따라 달라집니다. 에이전트 기반 서버 모니터링 에이전트 기반 서버 모니터링에는 모니터링하려는 각 서버에 ‘에이전트’라고 하는 별도의 서버용 모니터링 소프트웨어를 설치해 데이터를 수집하는 방식을 말합니다. 에이전트는 서버에서 다양한 성능 메트릭에 대한 데이터를 수집해 모니터링 시스템으로 다시 보냅니다. 이 접근 방식은 에이전트 없는 모니터링보다 더 상세하고 세분화된 데이터와 기능을 제공합니다. 또, 데이터를 암호화하고 보안 채널을 사용해 데이터를 전송하므로 일반적으로 에이전트 없는 모니터링보다 더 안전합니다. 에이전트 기반 서버 모니터링의 주요 기능은 다음과 같습니다. ∙ 성능 모니터링: 에이전트는 CPU, 메모리, 디스크 사용률, 네트워크 트래픽 등의 정보를 수집할 수 있습니다. 이를 이용해 서버의 성능을 모니터링하고, 부하가 높아지면 적시에 대처할 수 있습니다. ∙ 로그 모니터링: 에이전트는 서버에서 발생하는 로그를 수집할 수 있습니다. 이를 이용해 서버에서 발생한 이벤트의 원인 파악에 도움을 줄 수 있습니다. ∙ 보안 모니터링: 에이전트는 서버 내부의 보안 상태를 모니터링할 수 있습니다. 예를 들어, 악성 코드 감지, 사용자 로그인 상태, 파일 권한 등을 체크해 보안 위협을 조기에 감지할 수 있습니다. ∙ 애플리케이션 모니터링: 에이전트는 서버에 설치된 애플리케이션의 상태를 모니터링할 수 있습니다. 예를 들어, 웹 서버에서는 HTTP 요청, 응답 코드, 응답 속도 등을 모니터링해 애플리케이션의 상태를 파악할 수 있습니다. ∙ 자동화된 조치: 에이전트는 모니터링 데이터를 기반으로 자동화된 조치를 수행할 수 있습니다. 예를 들면, CPU 부하가 높아지면 자동으로 스케일 업 또는 스케일 아웃을 수행할 수 있습니다. 에이전트 리스 서버 모니터링 에이전트가 없는 서버 모니터링은 서버 자체에 소프트웨어를 설치할 필요가 없습니다. 대신 모니터링 소프트웨어가 별도의 서버나 워크스테이션에 설치되고, SNMP 또는 WMI와 같은 네트워크 프로토콜을 사용해 대상 서버에서 데이터를 원격으로 수집합니다. 이 접근 방식은 각 서버에 소프트웨어 에이전트를 설치하고 관리할 필요가 없어 일반적으로 설정 및 유지 관리가 더 쉽고 빠릅니다. 또, 에이전트 기반보다 같은 자원을 이용해서 더 많은 수의 서버를 모니터링할 수 있어 경제적입니다. 대신 기능이 제한적이고 프로토콜이 의존해 데이터를 수집하기 때문에 보안 문제가 발생할 수 있습니다. 에이전트 리스 서버 모니터링의 주요 기능은 다음과 같습니다. ∙ 원격 모니터링: 에이전트 없는 모니터링 도구는 원격 데이터 센터, 지사 또는 클라우드 환경에 있는 서버를 포함해 모든 곳에 있는 서버를 원격으로 모니터링할 수 있습니다. 이러한 유연성을 통해 조직의 전체 서버 인프라를 중앙집중식으로 모니터링하고 관리할 수 있습니다. ∙ 확장성: 에이전트 없는 모니터링은 서버 인프라 또는 워크로드 요구사항의 변화를 수용하기 위해 쉽게 확장 또는 축소할 수 있습니다. 추가 에이전트 소프트웨어 설치 또는 구성 없이 모니터링 시스템에 추가 서버를 추가할 수 있습니다. ∙ 포괄적인 모니터링: 에이전트 없는 모니터링은 서버 성능 메트릭을 추적하고 문제를 식별하며, 실시간 경고를 제공함으로써 관리자가 서버 인프라의 상태를 유지하고 중요한 애플리케이션과 서비스가 원활하게 실행되도록 합니다. ∙ 손쉬운 유지 관리 및 업데이트: 에이전트 없는 모니터링을 사용하면 모니터링 되는 각 시스템에서 에이전트 소프트웨어를 관리하고 업데이트할 필요가 없습니다. 이는 유지보수를 단순화하고 모니터링 시스템을 항상 최신 상태로 유지합니다. Zenius(제니우스)의 서버 모니터링 브레인즈컴퍼니의 지능형 IT 인프라 통합관리 소프트웨어 ‘Zenius(제니우스)’는 고객의 시스템 상황에 따라 에이전트 기반 및 리스 방식 모두 가능합니다. 에이전트 기반의 통합 모니터링 소프트웨어 ‘Zenius SMS’는 HTML5 기반 Web UI와 토폴로지 맵을 통해 서버 성능과 상태 및 서버 간 연관관계를 직관적으로 파악합니다. 특히, Zenius SMS는 애플리케이션 단위에 성능이나 로그를 세밀하게 모니터링 및 분석이 가능합니다. Zenius SMS의 주요 기능은 아래와 같습니다. Zenius SMS의 주요 서버 모니터링 기능 1. 프로세스: 프로세스 상태(Up/Down) 및 성능 모니터링(CPU/MEM) 2. 로그: 프로세스나 시스템 로그와 같은 각종 로그 모니터링 3. GPU: GPU의 상태 및 성능 모니터링 4. 보안: 서버의 보안 취약점 점검 5. 자동화: 모니터링 데이터를 기반으로 자동화된 조치 수행 6. 기타: 코어별 온도 모니터링, 서비스 포트별 네트워크 상태, S/W 목록, 환경변수, 계정, 그룹, 스케쥴링, 공유폴더 현황 등 ‘Zenius SMS’ 도입을 통해 체계화된 서버 통합관리를 할 수 있습니다. 반복적이고 수동적인 업무는 자동화돼 업무 효율성을 향상시키며, 객관적인 데이터를 기반으로 정확한 성능 현황 및 비교분석이 가능합니다. 이는 곧 서비스 연속성 확보로 이어지며, 향후 고객 만족도 향상을 기대할 수 있습니다. 반면, 고객 서버에 에이전트 탑재가 불가능한 경우에는 에이전트 리스 방식으로도 사용 가능합니다. 브레인즈컴퍼니의 에이전트 리스 제품으로는 ‘Zenius VMS’가 있습니다. ‘Zenius VMS’는 VMware, Citrix Xen Server, Hyper-V와 같은 서버 가상화 환경에서 호스트 서버와 게스트 서버의 리소스 할당 및 사용 현황, 관계 등을 통합적으로 관제합니다. ‘Zenius VMS’는 프라이빗 클라우드 환경을 모니터링하는데 효과적입니다. Open API로 프라이빗 클라우드 인프라와 통신해, 가상머신의 상태 및 성능, 스토리지 활용도 및 네트워크 트래픽과 같은 환경의 다양한 측면에 대한 데이터를 수집합니다. 수집된 데이터를 분석해 잠재적 문제를 나타낼 수 있는 경향, 패턴 및 이상 현상을 식별하고, 크게 CPU, 메모리, 디스크, MIB 이 4가지 정보를 기본적으로 제공합니다. ‘Zenius VMS’는 VM 상세 관리를 위해 SMS 추가 확장이 용이한 제품입니다. VMS를 통해 호스트-게스트 간 연관관계 기반의 모니터링을 시행하고, 별도로 가상화 서버에 SMS 모듈을 추가해 보다 다양한 모니터링 항목으로 정밀하게 관리함으로써 효과적인 통합관리 환경을 조성할 수 있습니다.
2023.05.09
[브레인저가 알려주는 IT#1] 네트워크 관리, SNMP가 뭔가요?
[브레인저가 알려주는 IT#1] 네트워크 관리, SNMP가 뭔가요?
1. SNMP(Simple Network Management Protocol)란? 컴퓨터 네트워크 장치를 관리하고 모니터링하기 위해 사용되는 네트워크 관리 프로토콜이에요. 네트워크 장치, 서버, 라우터, 스위치, 프린터 등과 같은 네트워크 장치들의 상태를 모니터링하고 구성할 수 있는 표준 방법 또한 제공하고 있어요. 요약한다면 네트워크에 있는 장비들을 관리하기 위한 프로토콜이라고 이해하시면 된답니다! (1) SNMP의 역사 • SNMPv1(1988)초기 SNMP 버전으로 RFC 1067에 정의되었어요. 간단한 모니터링과 설정 변경 기능을 제공했으나, 보안 측면에서 취약점이 있었어요. 커뮤니티 문자열(Community String)을 사용하여 인증을 수행했어요. • SNMPv2(1993) SNMPv1의 한계와 보안 이슈를 개선하기 위해 개발되었어요. 여러 개의 추가 기능을 제공하려 했으나, 규격이 복잡해졌고 보안 문제로 인해 널리 채택되지 않았어요. • SNMPv2c(1996) SNMPv2의 복잡성을 줄이고 보안을 개선한 버전이에요. 커뮤니티 문자열을 계속 사용하여 보안적인 취약성은 여전히 존재했어요. • SNMPv3(1998) 현재까지 널리 사용되고 있는 최신 버전이에요. 보안 기능을 크게 강화하여 데이터 암호화, 사용자 인증, 데이터 무결성 검사 등을 제공하고 있어요. 비동기적인 알림 메커니즘으로 Trap 메시지와 함께 메시지의 암호화 및 보안 기능을 지원해요. • SNMPv3의 보안 개선(2002 이후~) SNMPv3에서 시작된 보안 향상이 계속 발전되어 왔어요. 데이터 암호화와 사용자 인증 등의 기능이 더욱 강화되고, 다양한 보안 솔루션과 표준이 제안되었어요. 2. SNMP의 주요 특징과 역할 (1) 클라이언트-서버 모델 SNMP는 관리자의 명령을 수행하는 에이전트와, 에이전트의 정보를 수집하는 매니저 간의 통신을 기반으로 해요. (2) MIB(Management Information Base) 네트워크 장치의 정보를 계층 구조로 정의한 데이터베이스입니다. 각 정보 항목은 OID(Object Identifier)로 식별되며, 매니저는 OID를 통해 특정 정보를 요청하고 수집할 수 있어요. (3) 동작 방식 • GET: 매니저가 에이전트에게 특정 정보의 값을 요청해요. • SET: 매니저가 에이전트에게 특정 정보의 값을 변경하도록 요청합니다. • TRAP: 에이전트가 이벤트 발생 시 매니저에게 알림을 보내요. (4) 보안 • SNMPv1: 초기 버전으로, 보안에 취약한 프로토콜이었어요. • SNMPv2c: SNMPv1을 확장한 버전으로, 여전히 보안에 취약했어요. • SNMPv3: 보안 강화 버전으로 데이터 암호화, 사용자 인증, 데이터 무결성 검사 등을 지원하여 보안을 강화했어요. (5) 확장 가능성 SNMP는 다양한 버전과 확장 프로토콜을 지원하여 새로운 기능을 추가하거나 보완할 수 있어요. (6) 주요 용도 • 네트워크 장치 모니터링: 장비의 성능, 상태, 트래픽 등 정보를 수집하여 네트워크를 모니터링해요. • 구성 관리: 장치의 설정 변경 및 관리를 원격으로 수행할 수 있어요. • 이벤트 알림: 장애나 이상 상태가 발생하면 즉시 알림을 받을 수 있어요. 이처럼 SNMP는 네트워크 관리에 필수적인 프로토콜 중 하나로, 네트워크의 안정성과 성능을 유지하며 문제를 신속하게 해결하는 데 도움을 준답니다! 3. Zenius에서의 SNMP 활용 안내 (1) NMS 모니터링 SNMP GET 방식으로 데이터를 수집할 수 있어요. SNMP를 활용하여 장비모니터링 화면, 등록된 장비의 장비명, IP, 성능데이터 등을 확인 할 수 있어요. 장비의 상세한 데이터를 모니터링 할 수 있어요. IF 포트의 UP/DOWN과 트래픽 데이터를 수집하여 확인 가능해요. • NMS in/out bps 전일 대비 In/Out bps의 데이터 확인 및 추이 분석기능도 제공하고 있어요. 사진과 같이 초 단위 실시간 데이터를 통한 상세 트랙픽 분석도 가능하답니다! 성능 데이터를 수집하여 그래프 형태로 보관하고 제공하고 있어요. 수집 시간대별 데이터도 제공해요. 해당 데이터를 통하여, 트래픽사용량이 많이 발생한 시간을 찾을수 있어요. • 장비등록 화면 SNMP 모든 버전에 대해서 모니터링을 제공하고 있어요. 장비 설정에 따라서, 버전 및 정보 입력하여 등록하여 모니터링 할 수 있어요. (2) TRAP 모니터링 • 네트워크 장비와 시스템에서 발생하는 이벤트나 상태 변화를 실시간으로 알려주기 위한 SNMP의 비동기적인 메시지에요. 이벤트 발생 시, 장치가 주도적으로 SNMP 매니저에게 알림을 보내는 방식으로 작동해요. Trap은 장애 상황이나 경고 상태 등에 대한 신속한 대응을 가능하게 해요. • Trap은 네트워크 관리자에게 실시간 정보를 제공해요. 장비나 시스템의 이상 상태를 빠르게 감지하고 대응하여, 서비스의 가용성과 신뢰성을 유지하는 데 중요한 역할을 하고 있죠. • Trap의 활용✅ 장애 관리: 장비나 시스템의 고장이나 다운 상태 등의 이벤트가 발생하면 즉시 Trap이 생성되어 매니저에게 알려줘요.✅ 경고 및 알림: 주의가 필요한 상황에서도 Trap을 활용하여 관리자에게 알림을 제공해요.✅ 보안 이벤트: 불법 로그인 시도나 보안 위반 등의 이벤트가 발생하면, 해당 정보를 Trap으로 매니저에게 전송하여 보안 조치를 취할 수 있어요. Trap 발생시, 모니터링 화면을 통해서 내용을 확인 할 수 있어요. Trap 받은 내역을 저장하여, 기간 검색 등을 통하여 활용할 수 있어요. 이제 Zenius를 활용하여 네트워크 장비를 모니터링 해보는 것은 어떨까요?
2023.09.05
NMS(네트워크 관리 시스템)에 대해서 꼭 알아야 할 네 가지
NMS(네트워크 관리 시스템)에 대해서 꼭 알아야 할 네 가지
산업 분야를 통틀어서 최근 모든 기업과 공공기관들의 ‘네트워크’ 활용도와 의존도가 빠르게 증가하고 있습니다. 따라서 이제 ‘안정적인 네트워크 관리 = 성공적인 비즈니스 운영’이라고도 할 수 있는데요. 오늘은 네트워크를 안정적으로 유지해서 성공적인 비즈니스 운영을 도와주는, NMS(Network Management System, 네트워크 관리 시스템)에 대해서 자세히 알아보겠습니다. NMS의 등장 배경, 시대별 변화, 그리고 핵심 개념과 실제 사례까지 NMS에 대해서 꼭 알아야 할 네 가지는 무엇일까요? 。。。。。。。。。。。。 │NMS(네트워크 관리 시스템)의 기본 개념과 등장 배경 NMS란 다양한 이기종 네트워크 장치(Network device)를 중앙에서 관리하고 감시할 수 있는 시스템입니다. 즉 전체 네트워크를 중앙 시스템을 통해 모니터링, 진단, 분석, 가용성을 유지하기 위해 만들어진 시스템을 말합니다. NMS의 필요성과 등장 배경은 OSI의 SMFAs(Specific Management Functional Areas)의 다섯 가지 영역(FCAPS)로 정리할 수 있습니다. 장애관리(Fault Management): 경보 감시, 고장 위치의 측정 시험 등 NMS의 첫 번째 관심사는 네트워크의 가용성을 보장하는 것입니다. 네트워크에서 발생하는 장애를 감지·격리·복구하는 과정으로, 네트워크 가동 시간을 최대화하고 서비스 중단을 최소화하는 것이 목적입니다. 구성 관리(Configuration Management): 설비제공, 상태 제어, 설치 지원 등 네트워크의 구성 요소(하드웨어, 소프트웨어, 네트워크 설정 등)를 관리하는 과정으로, 네트워크의 변경 사항을 추적하고 일관된 네트워크 성능과 안정성을 유지하는 데 중요합니다. 계정관리(Accounting Management): 계정(과금) 정보의 수집/저장/제어 등 네트워크 자원의 사용량을 추적하고 기록하는 과정이며, 자원의 할당과 과금에 사용됩니다. 사용량, 사용시간, 서비스 품질, 장비 사용률 등 네트워크 관리 및 운영에 관한 비용 할당 시 필요합니다. 성능 관리(Performance Management): 성능감시/트래픽 관리/품질관리/통계관리 네트워크의 트래픽이 특정 시간에 급증하는 것을 성능 관리 시스템이 감지했을 때, 이 정보를 사용하여 네트워크 용량을 적절히 조정하거나 트래픽을 분산시킬 수 있습니다. 보안 관리(Security Management): 보안/안전/기밀 관리 등 보안 관리 시스템은 사용자의 무단 엑세스 시도를 감지하며 즉시 차단할 수 있는 접근 제어, 인증, 암호화, 키관리 등을 관리하는 것과 관련이 있습니다. 네트워크 인프라의 로그 모니터링을 통해 잠재적인 보안 문제를 사전에 예방할 수 있습니다. 위와 같은 등장 배경과 필요성을 가진 NMS, 시대별로는 어떻게 변해왔는지 살펴보겠습니다. │NMS(네트워크 관리 시스템)의 시대별 변화 1980년대 초부터 현재에 이르기까지 NMS의 시대별 변화를 간략히 살펴보면 다음과 같습니다. 1980년대 ~ 2010년대 초 1980년대에 등장한 초기 NMS는 단순한 모니터링과 제어에 둔 간단한 형태였고, 특정 벤더의 하드웨어에 종속되고 표준화가 제대로 이루어지지 않았었습니다. 1990년대에 들어서 네트워크의 복잡성이 커지면서 NMS의 필요성도 증가했습니다. 이때 보안 기능이 향상된 SNMPv2와 같은 표준 프로토콜이 도입되면서, 다양한 제조사의 장비를 하나의 시스템으로 통합 관리할 수 있게 되었습니다. 또한 네트워크뿐만 아니라 서버까지 같이 관리하기 위한 SNMS(Server and network Management System)와, 더 나아가 EMS(ITIM)도 나오게 되었습니다. 이후 2000년대 초반에 웹 기반 NMS 솔루션이 등장하면서, 사용자 친화적인 인터페이스와 원격 접근 기능 등을 통해 효율적인 네트워크 관리가 가능해졌습니다. 2010년대 중반 ~ 2010년대 후반 NMS는 2010년대 중반부터 등장한 클라우드 컴퓨팅, 빅데이터, 인공지능(AI) 등의 기술과 함께 더욱 고도화되었습니다. 점점 더 다양한 네트워크와 서비스를 통합 관리하며, 자동화된 분석과 의사결정을 지원하게 되었습니다. 최신 동향 최근에는 AI와 머신러닝을 활용하여 예측 분석, 네트워크의 자동 최적화, 사이버 보안 통합 등이 NMS의 중요한 요소로 강조되고 있습니다. 또한 새로운 네트워크 기술인 5G의 도입으로 NMS는 더욱 복잡해지고 다양한 네트워크 환경을 관리하게 되었습니다. 이처럼 NMS는 네트워크 기술의 발전과 산업의 변화에 발맞추어, 지속적이고 빠르게 발전하고 있습니다. 이제 NMS의 구조에 대해서 자세히 알아보겠습니다. │NMS(네트워크 관리 시스템)의 3-Tier 아키텍처 NMS는 3-Tier 아키텍처(수집-저장-표출)로 구성되어 있습니다. 각각 독립된 계층으로 구분되어 있는데요. 특정 부분의 업그레이드가 필요할 때 해당 계층만 영향을 주기 때문에 시스템을 보다 쉽게 관리할 수 있습니다. 다시 정리한다면 NMS Manager에서 SNMP · ICMP · RMON 등 다양한 네트워크 프로토콜을 활용하여, 네트워크 자원의 성능 데이터를 수집합니다. 만약 Managed Device 장비들이 한계치에 도달하거나 장애가 발생했을 경우, 즉각적으로 User Interface를 통해 사용자에게 알립니다. 그렇다면 NMS의 핵심 기능은 무엇일까요? │NMS(네트워크 관리 시스템)의 핵심 기능 네트워크 장애에 대한 신속한 파악과 대응이 반드시 필요한 NMS의 핵심 기능에는 어떤 것들이 있는지 자세히 살펴보겠습니다. 장애 관리 네트워크 인프라의 결함이나 오류를 탐지하고 경고 및 알림을 생성하여, 관리자가 신속하게 대응할 수 있도록 지원합니다. 이를 통해 다운타임을 최소화하고 서비스 지속성을 보장합니다. 예를 들어 네트워크의 라우터가 다운될 경우, NMS는 즉시 관리자에게 경고를 보내 신속한 문제 해결을 도와줍니다. 성능 관리 네트워크 구성 자원인 트래픽 가용성, 응답시간, 사용량, 오류량, 처리 속도 등을 추적하고 최적화합니다. 또한 부하가 발생하지 않도록 문제점을 미리 검출해 안정적인 네트워크 운영이 될 수 있도록 합니다. 예를 들어 특정 애플리케이션이 과도한 대역폭을 소비할 경우, NMS가 문제를 정확히 찾아내서 관리자가 네트워크를 최적화할 수 있도록 돕습니다. ▲ 제니우스(Zenius)를 활용한 성능 모니터링 화면 예시 구성 관리 관리자는 NMS를 통해 분산된 네트워크 장치 구성 프로세스를 자동화하여, 네트워크 전반에 걸쳐 일관성과 정확성을 보장할 수 있습니다. 이러한 핵심 기능을 하는 NMS의 구체적인 활용 사례를 살펴보겠습니다. │NMS(네트워크 관리 시스템)의 활용 사례 IT 분야뿐 아니라 제조업, 금융, 여행, 유통 및 물류 등 전 분야에 걸쳐서 NMS가 사용되고 있습니다. 특히 처리 속도, 가용성, 보안 등이 중요한 금융산업의 경우에 NMS를 통한 안정적인 관리가 중요한데요. 브레인즈컴퍼니의 제니우스(Zenius) EMS를 사용하고 있는 S금융사의 사례를 자세히 살펴보겠습니다. S금융사, Zenius NMS를 통해 완벽하게 네트워크를 관리하게 되다 S금융사는 서버만 800ea, NW 14,000ea 이상의 대규모 인프라를 보유하고 있었습니다. 하지만 Zenius NMS 도입 전까지는 서비스 장애에 영향을 준 네트워크 장애 원인 파악을 위한 장기간 투자하고 있는 상황이었고, 네트워크 운영 현황 데이터 수집과 분석에 많은 시간이 소요되고 있었습니다. 무엇보다 신속한 장애 인지와 처리가 어려워서 큰 고민이 있었는데요. 위 도표에서도 살펴본 것처럼 Zenius NMS 도입을 통해, 이전에 고민과 단점을 극복하고 안정적으로 네트워크 관리를 할 수 있게 되었습니다. 특히 Zenius NMS는 고성능의 Manager를 제공하고 있어 대규모 환경에서도 장애를 신속하게 판단하여, 타사 대비 많은 자원을 효율적으로 관리할 수 있습니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼 NMS는 네트워크 인프라를 효율적으로 관리하는데 가장 중요한 역할을 합니다. 제니우스(Zenius) NMS처럼 고성능의 Manager를 기반으로 네트워크 상태를 신속하게 판단하며, 유저 중심의 통합 UI를 제공하는 NMS 솔루션을 꼭 선택하시기 바랍니다!
2024.01.31
다음 슬라이드 보기