반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
[브레인저가 알려주는 IT#1] 네트워크 관리, SNMP가 뭔가요?
카프카를 통한 로그 관리 방법
김채욱
2023.09.19
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
메모리 누수 위험있는 FinalReference 참조 분석하기
안녕하세요! 저는 개발4그룹에서 제니우스(Zenius) SIEM의 로그 관리 기능 개발을 담당하고 있는 김채욱 입니다. 제가 하고 있는 일은 실시간으로 대용량 로그 데이터를 수집하여 분석 후, 사용자에게 가치 있는 정보를 시각화하여 보여주는 일입니다.
이번 글에서 다룰 내용은
1) 그동안 로그(Log)에 대해 조사한 것과 2) 최근에 CCDAK 카프카 자격증을 딴 기념으로, 카프카(Kafka)를 이용하여 어떻게 로그 관리를 하는지
에 대해 이야기해 보겠습니다.
PART1. 로그
1. 로그의 표면적 형태
로그(Log)는 기본적으로 시스템의 일련된 동작이나 사건의 기록입니다. 시스템의 일기장과도 같죠. 로그를 통해 특정 시간에 시스템에서 ‘어떤 일’이 일어났는지 파악할 수도 있습니다. 이렇게 로그는 시간에 따른 시스템의 동작을 기록하고, 정보는 순차적으로 저장됩니다.
이처럼
로그의 핵심 개념은 ‘시간’
입니다. 순차적으로 발생된 로그를 통해 시스템의 동작을 이해하며, 일종의 생활기록부 역할을 하죠. 시스템 내에서 어떤 행동이 발생하였고, 어떤 문제가 일어났으며, 유저와의 어떤 교류가 일어났는지 모두 알 수 있습니다.
만약 시간의 개념이 없다면 어떻게 될까요? 발생한 모든 일들이 뒤섞이며, 로그 해석을 하는데 어려움이 생기겠죠.
이처럼 로그를 통해 시스템은 과거의 변화를 추적합니다. 똑같은 상황이 주어지면 항상 같은 결과를 내놓는 ‘결정론적’인 동작을 보장할 수 있죠. 로그의 중요성, 이제 조금 이해가 되실까요?
2. 로그와 카프카의 관계
자, 그렇다면! 로그(Log)와 카프카(Kafka)는 어떤 관계일까요? 우선 카프카는 분산 스트리밍 플랫폼으로서, 실시간으로 대용량의 데이터를 처리하고 전송하는데 탁월한 성능을 자랑합니다. 그 중심에는 바로 ‘로그’라는 개념이 있는데요. 좀 더 자세히 짚고 넘어가 보겠습니다.
3. 카프카에서의 로그 시스템
카프카에서의 로그 시스템은, 단순히 시스템의 에러나 이벤트를 기록하는 것만이 아닙니다. 연속된 데이터 레코드들의 스트림을 의미하며, 이를 ‘토픽(Topic)’이라는 카테고리로 구분하죠. 각 토픽은 다시 *파티션(Partition)으로 나누어, 단일 혹은 여러 서버에 분산 저장됩니다. 이렇게 분산 저장되는 로그 데이터는, 높은 내구성과 가용성을 보장합니다.
*파티션(Partition): 하드디스크를 논리적으로 나눈 구역
4. 카프카가 로그를 사용하는 이유
로그의 순차적인 특성은 카프카의 ‘핵심 아키텍처’와 깊게 연결되어 있습니다. 로그를 사용하면,
데이터의 순서를 보장할 수 있어 대용량의 데이터 스트림을 효율적
으로 처리할 수 있기 때문이죠. 데이터를 ‘영구적’으로 저장할 수 있어,
데이터 손실 위험 또한 크게 줄어
듭니다.
로그를 사용하는 또 다른 이유는 ‘장애 복구’
입니다. 서버가 장애로 인해 중단되었다가 다시 시작되면, 저장된 로그를 이용하여 이전 상태로 복구할 수 있게 되죠. 이는 ‘카프카가 높은 가용성’을 보장하는 데 중요한 요소입니다.
∴
로그 요약
로그는 단순한 시스템 메시지를 넘어 ‘데이터 스트림’의 핵심 요소로 활용됩니다. 카프카와 같은 현대의 데이터 처리 시스템은
로그의 이러한 특성을 극대화하여, 대용량의 실시간 데이터 스트림을 효율적으로 처리
할 수 있는 거죠. 로그의 중요성을 다시 한번 깨닫게 되는 순간이네요!
PART2. 카프카
로그에 이어 에 대해 설명하겠습니다. 들어가기에 앞서 가볍게 ‘구조’부터 알아가 볼까요?
1. 카프카 구조
· 브로커(Broker)
브로커는 *클러스터(Cluster) 안에 구성된 여러 서버 중 각 서버를 의미합니다. 이러한 브로커들은, 레코드 형태인 메시지 데이터의 저장과 검색 및 컨슈머에게 전달하고 관리합니다.
*클러스터(Cluster): 여러 대의 컴퓨터들이 연결되어 하나의 시스템처럼 동작하는 컴퓨터들의 집합
데이터 분배와 중복성도 촉진합니다. 브로커에 문제가 발생하면, 데이터가 여러 브로커에 데이터가 복제되어 데이터 손실이 되지 않죠.
·
프로듀서(Producer)
프로듀서는 토픽에 레코드를 전송 또는 생성하는 *엔터티(Entity)입니다. 카프카 생태계에서 ‘데이터의 진입점’ 역할도 함께 하고 있죠. 레코드가 전송될 토픽 및 파티션도 결정할 수 있습니다.
*엔터티(Entity): 업무에 필요한 정보를 저장하고 관리하는 집합적인 것
·
컨슈머(Consumer)
컨슈머는 토픽에서 레코드를 읽습니다. 하나 이상의 토픽을 구독하고, 브로커로부터 레코드를 소비합니다. 데이터의 출구점을 나타내기도 하며, 프로듀서에 의해 전송된 메시지를 최종적으로 읽히고 처리되도록 합니다.
·
토픽(Topic)
토픽은 프로듀서로부터 전송된 레코드 카테고리입니다. 각 토픽은 파티션으로 나뉘며, 이 파티션은 브로커 간에 복제됩니다.
카프카로 들어오는 데이터를 조직화하고, 분류하는 방법을 제공하기도 합니다. 파티션으로 나눔으로써 카프카는 ‘수평 확장성과 장애 허용성’을 보장합니다.
·
주키퍼(ZooKeeper)
주키퍼는 브로커를 관리하고 조정하는 데 도움을 주는 ‘중앙 관리소’입니다. 클러스터 노드의 상태, 토픽 *메타데이터(Metadata) 등의 상태를 추적합니다.
*메타데이터(Metadata): 데이터에 관한 구조화된 데이터로, 다른 데이터를 설명해 주는 데이터
카프카는 분산 조정을 위해 주키퍼에 의존합니다. 주키퍼는 브로커에 문제가 발생하면, 다른 브로커에 알리고 클러스터 전체에 일관된 데이터를 보장하죠.
∴
카프카 구조 요약
요약한다면 카프카는
1) 복잡하지만 견고한 아키텍처 2) 대규모 스트림 데이터를 실시간으로 처리하는 데 있어 안정적이고 장애 허용성이 있음 3) 고도로 확장 가능한 플랫폼을 제공
으로 정리할 수 있습니다.
이처럼 카프카가 큰 데이터 환경에서 ‘어떻게’ 정보 흐름을 관리하고 최적화하는지 5가지의 구조를 통해 살펴보았습니다. 이제 카프카에 대해 조금 더 명확한 그림이 그려지지 않나요?
2. 컨슈머 그룹과 성능을 위한 탐색
카프카의 가장 주목할 만한 특징 중 하나는
‘컨슈머 그룹의 구현’
입니다. 이는 카프카의 확장성과 성능 잠재력을 이해하는 데 중심적인 개념이죠.
컨슈머 그룹 이해하기
카프카의 핵심은
‘메시지를 생산하고 소비’
하는 것입니다. 그런데 수백만, 심지어 수십억의 메시지가 흐르고 있을 때 어떻게 효율적으로 소비될까요?
여기서 컨슈머 그룹(Consumer Group)이 등장합니다. 컨슈머 그룹은, 하나 또는 그 이상의 컨슈머로 구성되어 하나 또는 여러 토픽에서 메시지를 소비하는데 협력합니다. 그렇다면 왜 효율적인지 알아보겠습니다.
·
로드 밸런싱:
하나의 컨슈머가 모든 메시지를 처리하는 대신, 그룹이 부하를 분산할 수 있습니다. 토픽의 각 파티션은 그룹 내에서 정확히 하나의 컨슈머에 의해 소비됩니다. 이는 메시지가 더 빠르고 효율적으로 처리된다는 것을 보장합니다.
·
장애 허용성:
컨슈머에 문제가 발생하면, 그룹 내의 다른 컨슈머가 그 파티션을 인수하여 메시지 처리에 차질이 없도록 합니다.
·
유연성:
데이터 흐름이 변함에 따라 그룹에서 컨슈머를 쉽게 추가하거나 제거합니다. 이에 따라 증가하거나 감소하는 부하를 처리할 수 있습니다.
여기까지는 최적의 성능을 위한 ‘카프카 튜닝 컨슈머 그룹의 기본 사항’을 다루었으니, 이와 관련된 ‘성능 튜닝 전략’에 대해 알아볼까요?
성능 튜닝 전략
·
파티션 전략:
토픽의 파티션 수는, 얼마나 많은 컨슈머가 활성화되어 메시지를 소비할 수 있는지 영향을 줍니다. 더 많은 파티션은 더 많은 컨슈머가 병렬로 작동할 수 있음을 의미하는 거죠. 그러나 너무 많은 파티션은 *오버헤드를 야기할 수 있습니다.
*오버헤드: 어떤 처리를 하기 위해 간접적인 처리 시간
·
컨슈머 구성:
*fetch.min.bytes 및 *fetch.max.wait.ms와 같은 매개변수를 조정합니다. 그다음 한 번에 얼마나 많은 데이터를 컨슈머가 가져오는지 제어합니다. 이러한 최적화를 통해 브로커에게 요청하는 횟수를 줄이고, 처리량을 높입니다.
*fetch.min.bytes: 한 번에 가져올 수 있는 최소 데이터 사이즈 *fetch.max.wait.ms: 데이터가 최소 크기가 될 때까지 기다릴 시간
·
메시지 배치:
프로듀서는 메시지를 함께 배치하여 처리량을 높일 수 있게 구성됩니다. *batch.size 및 *linger.ms와 같은 매개변수를 조정하여, 대기 시간과 처리량 사이의 균형을 찾을 수 있게 되죠.
*batch.size: 한 번에 모델이 학습하는 데이터 샘플의 개수 *linger.ms: 전송 대기 시간
·
압축:
카프카는 메시지 압축을 지원하여 전송 및 저장되는 데이터의 양을 줄입니다. 이로 인해 전송 속도가 빨라지고 전체 성능이 향상될 수 있습니다.
·
로그 정리 정책:
카프카 토픽은, 설정된 기간 또는 크기 동안 메시지를 유지할 수 있습니다. 보존 정책을 조정하면, 브로커가 저장 공간이 부족해지는 점과 성능이 저하되는 점을 방지할 수 있습니다.
3. 컨슈머 그룹과 성능을 위한 실제 코드 예시
다음 그림과 같은 코드를 보며 조금 더 자세히 살펴보겠습니다. NodeJS 코드 중 일부를 발췌했습니다. 카프카 설치 시에 사용되는 설정 파일 *server.properties에서 파티션의 개수를 CPU 코어 수와 같게 설정하는 코드입니다. 이에 대한 장점들을 쭉 살펴볼까요?
*server.properties: 마인크래프트 서버 옵션을 설정할 수 있는 파일
CPU 코어 수에 파티션 수를 맞추었을 때의 장점
·
최적화된 리소스 활용:
카프카에서는 각 파티션이 읽기와 쓰기를 위한 자체 *I/O(입출력) 스레드를 종종 운영합니다. 사용 가능한 CPU 코어 수와 파티션 수를 일치시키면, 각 코어가 특정 파티션의 I/O 작업을 처리합니다. 이 동시성은 리소스에서 최대의 성능을 추출하는 데 도움 됩니다.
·
최대 병렬 처리:
카프카의 설계 철학은 ‘병렬 데이터 처리’를 중심으로 합니다. 코어 수와 파티션 수 사이의 일치는, 동시에 처리되어 처리량을 높일 수 있습니다.
·
간소화된 용량 계획:
이 접근 방식은, 리소스 계획에 대한 명확한 기준을 제공합니다. 성능 병목이 발생하면 CPU에 *바인딩(Binding)되어 있는지 명확하게 알 수 있습니다. 인프라를 정확하게 조정할 수도 있게 되죠.
*바인딩(Binding): 두 프로그래밍 언어를 이어주는 래퍼 라이브러리
·
오버헤드 감소:
병렬 처리와 오버헤드 사이의 균형은 미묘합니다. 파티션 증가는 병렬 처리를 촉진할 수 있습니다. 하지만 더 많은 주키퍼 부하, 브로커 시작 시간 연장, 리더 선거 빈도 증가와 같은 오버헤드도 가져올 수도 있습니다. 파티션을 CPU 코어에 맞추는 것은 균형을 이룰 수 있게 합니다.
다음은 프로세스 수를 CPU 코어 수만큼 생성하여, 토픽의 파티션 개수와 일치시킨 코드에 대한 장점입니다.
파티션 수와 컨슈머 프로세스 수 일치의 장점
·
최적의 병렬 처리:
카프카 파티션의 각각은 동시에 처리될 수 있습니다. 컨슈머 수가 파티션 수와 일치하면, 각 컨슈머는 특정 파티션에서 메시지를 독립적으로 소비할 수 있게 되죠. 따라서 병렬 처리가 향상됩니다.
·
리소스 효율성:
파티션 수와 컨슈머 수가 일치하면, 각 컨슈머가 처리하는 데이터의 양이 균등하게 분배됩니다. 이로 인해 전체 시스템의 리소스 사용이 균형을 이루게 되죠.
·
탄력성과 확장성:
트래픽이 증가하면, 추가적인 컨슈머를 컨슈머 그룹에 추가하여 처리 능력을 증가시킵니다. 동일한 방식으로 트래픽이 감소하면 컨슈머를 줄여 리소스를 절약할 수 있습니다.
·
고가용성과 오류 회복:
컨슈머 중 하나가 실패하면, 해당 컨슈머가 처리하던 파티션은 다른 컨슈머에게 자동 재분배됩니다. 이를 통해 시스템 내의 다른 컨슈머가 실패한 컨슈머의 작업을 빠르게 인수하여, 메시지 처리가 중단되지 않습니다.
마지막으로 각 프로세스별 컨슈머를 생성해서 토픽에 구독 후, 소비하는 과정을 나타낸 소스코드입니다.
∴
컨슈머 그룹 요약
컨슈머 그룹은 높은 처리량과 장애 허용성 있는 메시지 소비를 제공하는 능력이 핵심입니다. 카프카가 어떤 식으로 운영되는지에 대한 상세한 부분을 이해하고 다양한 매개변수를 신중하게 조정한다면, 어떠한 상황에서도 카프카의 최대 성능을 이끌어낼 수 있습니다!
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
©
참고 자료
· Jay Kreps, “I Hearts Logs”, Confluent
· 위키피디아, “Logging(computing)”
· Confluent, “https://docs.confluent.io/kafka/overview.html”
· Neha Narkhede, Gwen Shapira, Todd Palino, “Kafka: The Definitive Guide”
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
#LOG
#로그
#카프카
#컨슈머
#KAFKA
#SIEM
#제니우스
김채욱
개발4그룹
실시간 대용량 로그 데이터의 수집 및 가공에 관심을 가지고 있습니다. 함께 발전해 나가는 개발을 추구합니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
쿠버네티스(K8s) 모니터링에서 가장 중요한 두 가지?!
쿠버네티스(K8s) 모니터링에서 가장 중요한 두 가지?!
2022년 CNCF의 연간 조사에 따르면 전 세계 기업의 96%가 쿠버네티스를 활용 중이거나 활용을 고려 중인 것으로 나타났습니다. 또한 가트너는 쿠버네티스(Kubernetes, K8s) 시장의 규모가 올해 1조 2천억 원대를 돌파할 것으로 내다봤습니다. 이처럼 쿠버네티스가 '대세'로 자리 잡고 있는 가운데, 쿠버네티스 활용에 대한 어려움을 겪는 기업도 많아지고 있습니다. 클러스터 내의 리소스 할당/운영과 쿠버네티스 콘솔(대시보드)의 구성이 가장 큰 어려움으로 꼽히는데요, 이러한 어려움을 극복하기 위한 첫 번째 조건은 바로 올바른 '쿠버네티스 모니터링'입니다. 효과적이고 올바른 쿠버네티스 모니터링을 위해선 두 가지를 '꼭' 기억해야 하는데요, 지금부터 그 두 가지를 자세히 알아보겠습니다. ㅣ올바른 쿠버네티스 모니터링을 위한 두 가지 조건 첫 번째, 쿠버네티스의 주요 항목을 한눈에 볼 수 있어야 합니다 쿠버네티스 환경은 규모가 크고 동적이며 복잡한 구조를 가지고 있습니다. 그렇기 때문에 리소스 사용률, 에러 로그 등의 중요 정보를 실시간으로 파악할 수 있어야 합니다. 따라서 쿠버네티스 모니터링을 효과적으로 수행하기 위해 첫 번째로 기억해야 할 것은 '쿠버네티스 환경을 한 화면에서 종합적으로 볼 수 있어야 한다는 점'입니다. 우선 종합적인 모니터링을 통해 리소스 사용률, 트래픽 패턴 등의 중요 정보를 실시간으로 파악할 수 있어 문제 발생 시 빠르게 원인을 진단하고 해결할 수 있습니다. 또한 쿠버네티스 운영의 핵심은 효율적인 리소스 관리인데, 종합적인 모니터링을 통해 리소스 낭비를 줄이고 애플리케이션의 성능을 최적화할 수 있습니다. 이와 더불어 시스템의 이상 유무를 지속적으로 모니터링함으로써, 예기치 않은 다운타임 등의 오류를 방지할 수도 있죠. 따라서 쿠버네티스 모니터링 솔루션에는 각 구성요소들 간의 관계와 영향도를 '한 눈'에 파악할 수 있는 모니터링 View가 반드시 필요합니다. 더불어 쿠버네티스 환경을 관리하는 운영자나 조직마다 중요하게 생각하는 데이터 지표가 다릅니다. 때문에 운영자가 자신의 필요에 따라 모니터링 화면을 자유롭게 구성할 수 있다면, 더욱 효과적으로 시스템을 관리할 수 있습니다. [그림1] (왼) 클러스터 상세 모니터링 View, (중) 클러스터 메인 모니터링 View, (오) 주요 Service 모니터링 View 더 자세한 설명을 위해 제니우스(Zenius)의 쿠버네티스 모니터링 솔루션인 Zenius-K8s을 예로 살펴보겠습니다. 우선 [그림1]에 나와있는 것처럼 쿠버네티스 모니터링 솔루션은 여러 클러스터 현황을 한눈에 확인할 수 있는 요약 뷰를 제공해야 합니다. 이를 통해 클러스터의 상세한 현황과 노드, 파드, 컨테이너, 서비스 등을 통합적으로 모니터링할 수 있기 때문이죠. 이러한 기능은 운영자로 하여금 시스템 전반에 대한 신속한 이해를 가능하게 하고, 업무 효율성을 크게 높여줍니다. [그림2] (왼) Zenius-K8s 운영현황 오버뷰 (오) 사용자가 직접 정보를 구성할 수 있는 컴포넌트 수정창 여기에 더해서 Zenius-K8s처럼 쿠버네티스 주요 데이터 지표를 '사용자 관제 목적'에 따라 자유롭게 구성이 가능하고 가시성 높은 다양한 차트와 컴포넌트를 포함한 오버뷰를 제공한다면, 더욱더 성공적인 쿠버네티스 활용이 가능해집니다. 두 번째, 클러스터 별로 상세한 성능을 확인할 수 있어야 합니다 효과적이고 올바른 쿠버네티스 모니터링을 위한 두 번째 조건은, '클러스터 별로 상세한 성능을 확인할 수 있어야 한다는 것'입니다. 특히 쿠버네티스 환경을 관리하고 최적화함에 있어서 핵심적인 역할을 하는 클러스터 현황(노드, 파드, 컨테이너), 성능 지표(CPU 사용량, Memory 사용량), 이벤트 현황을 연관 지어 직관적으로 모니터링할 수 있어야 합니다. 이를 통해서 운영자는 클러스터의 전반적인 상태를 실시간으로 모니터링하고, 발생 가능한 문제를 조기에 식별하여 시스템의 안정성과 성능을 지속적으로 높일 수 있기 때문이죠. 또한 클러스터의 각 구성 요소가 서로 다른 역할을 수행하기 때문에 각 노드, 파드, 컨테이너별로 상세히 모니터링하는 것도 매우 중요합니다. [그림3] 클러스터 별 상세정보 요약 뷰 지금 살펴본 내용을 Zenius-K8s 예시 화면을 통해 다시 한번 되짚어 보겠습니다. 먼저 위 [그림3]에서 보이는 것처럼 주요 클러스터 현황(노드, 파드, 컨테이너 등), 주요 성능 지표(CPU, Memory 사용률 등), 이벤트 현황 등을 한 화면에서 확인할 수 있는 요약 뷰가 있어야 합니다. [그림4] Zenius-K8s 토폴로지 맵 특히, Zenius-K8s의 경우 수집한 데이터를 기반으로 자동으로 각 구성요소 간의 연관관계와 서비스 상태를 토폴로지 맵(Topolgy Map) 형태로 구성할 수 있습니다. 또한 다양한 조회 기준(노드, 네임스페이스, 서버)과 상세 정보 조회 기능을 제공하고 있죠. 쿠버네티스 모니터링 솔루션에는, 직관적이고 효율적인 모니터링을 위해 반드시 위와 같은 기능이 포함되어 있어야 합니다. [그림5] 노드(Node) 별 상세 모니터링 [그림6] 파드(Pod) 별 상세 모니터링 [그림7] 컨테이너(Container) 별 상세 모니터링 마지막으로 위의 Zenius-K8s의 예시 화면들처럼, 클러스터 내 각각의 구성요소에 대한 상세한 모니터링이 필요합니다. 이를 통해 산재된 데이터에 대한 효율적인 관리가 가능하기 때문이죠. 。。。。。。。。。。。。 지금까지 성공적인 쿠버네티스 모니터링을 위한 두 가지 조건을 살펴봤습니다. 쿠버네티스의 활용도와 중요성이 더 커지는 가운데, 운영의 안정성과 효율성을 높여주는 쿠버네티스 모니터링 솔루션 도입은 이제 선택이 아닌 필수가 되었습니다. 쿠버네티스 현황을 한눈에 볼 수 있고, 세부 요소를 세밀하게 들여다볼 수 있는 모니터링 솔루션을 통해서 성공적으로 쿠버네티스를 활용하시기 바랍니다.
2024.04.05
금융권에서 꾸준히 각광받는 제니우스(Zenius)
금융권에서 꾸준히 각광받는 제니우스(Zenius)
지난해 10월 일본의 은행 간 결제 시스템이 이틀간 '먹통'이 된 사태가 발생했었습니다. 그리고 한 달 후에는 카드 결제 데이터를 처리하는 일본 카드 네트워크의 시스템 오류로 인해 일본 각지에서 7시간 넘게 시민들이 카드 사용을 못 하는 불편이 발생하기도 했죠. 일본의 사례와 같이 은행이나 카드회사 등의 금융회사에서 네트워크/서버의 장애가 발생할 경우 궁극적으로 이익과 신뢰도의 급감으로 이어질 수 있습니다. 그렇기 때문에 '사고 없는' IT 인프라 환경 운영을 위한 노력을 이어가는 가운데, 브레인즈컴퍼니의 제니우스(Zenius)을 활용하는 금융기관이 꾸준히 증가하고 있습니다. ㅣ제니우스, 금융기관에서 꾸준히 각광받다 앞서 언급한 대로, 제니우스를 도입하고 활용하는 금융기관이 꾸준히 늘고 있습니다. 최근 수협중앙회는 '통합관제 및 운영 자동화'를 위해, 그리고 새마을금고는 '빅데이터 플랫폼 고도화'를 위해 제니우스를 도입했습니다. 또한 한국수출입은행과 한국 주택금융공사도 서버와 네트워크 관리를 위해 제니우스를 활용하고 있습니다. 이 밖에도 NH 뱅크, 신협중앙회, 광주은행, IBK 투자증권, DB손해보험 등에서도 꾸준히 제니우스를 활용하고 있습니다. 그렇다면 금융기관에서 제니우스를 꾸준히 사용하고 있는 이유는 무엇일까요? ㅣ제니우스의 네 가지 강점 금융기관에서 꾸준히 각광받는 제니우스는 크게 네 가지의 강점이 있습니다. [1] IT 인프라에 대한 통합 관리 제니우스는 금융기관의 복잡한 IT 환경을 통합 관리할 수 있는 기능들을 제공합니다. 이를 통해 IT 인프라의 성능 및 장애 정보를 빠르게 파악할 수 있어서, 운영 효율성과 안정성을 크게 높을 수 있습니다. [2] 보안 강화 금융기관에 필수적인 높은 수준의 보안을 유지할 수 있도록 제니우스는 통합 로그 관리, 보안 취약점 점검 등의 보안 기능을 제공합니다. 이를 통해 보안 위협에 대응하고 사전에 예방할 수 있습니다. [그림] 제니우스(Zenius) 오버뷰 예시화면 [3] 장애 대응 및 예방 실시간 모니터링과 자동 장애 복구 기능으로 시스템 장애에 대한 신속한 예방과 대응이 가능합니다. 이를 통해 서비스 중단을 최소화하고, 고객 만족도를 높일 수 있습니다. [4] 클라우드 서비스 지원 쿠버네티스 활용을 비롯한 클라우드 환경으로의 전환은 금융기관의 중요한 이슈로 떠오르고 있습니다. 제니우스는 모든 클라우드 환경(퍼블릭, 프라이빗, 하이브리드)에 대한 모니터링이 가능하여, 클라우드 서비스 안정성과 효율성을 크게 높여줍니다. 제니우스(Zenius)는 앞서 살펴 본 금융기관뿐 아니라, 공공기관과 기업을 포함한 1,000곳 이상에서 활발히 활용되고 있습니다. CSAP 인증과 GS 인증 1등급도 획득한 제니우스를 통해 성공적인 IT 인프라를 관리하시기 바랍니다.
2024.04.16
CMS로 클라우드 서비스 효율적으로 관리하는 3가지 방법
CMS로 클라우드 서비스 효율적으로 관리하는 3가지 방법
오늘날 많은 기업들이 AWS, 구글, 마이크로소프트 등의 클라우드 서비스를 적극 활용하고 있습니다. 클라우드 서비스는 데이터의 안정성과 가용성을 보장하고, 비용을 절감하며, 자원을 최적화하는 등 다양한 이점을 제공하기 때문인데요. 2024년 클라우드 서비스 시장 전망도 매우 밝습니다. 시장조사기관에 따르면 2024년 클라우드 시장 규모는 약 727.9억 달러에 이를 것으로 예상됩니다. 2023년과 대비하면 16.2% 증가한 수치이죠. 하지만 클라우드 서비스의 이용률이 증가하고 클라우드 인프라가 복잡해짐에 따라, 체계적이고 효율적인 클라우드 관리가 필요한데요. 클라우드 환경에서는 사용한 만큼 비용을 지불하기 때문에 자원을 효율적으로 관리할 수 있어야 하며, 실시간으로 이상 징후를 감지하여 보안을 강화할 수 있는 시스템이 필요합니다. 이러한 관리를 가능하게 해주는 시스템이 바로 CMS(Cloud Service Management System)입니다. 그래서 이번 시간에는 대표적인 CMS 솔루션인 Zenius CMS 사례를 통해, 클라우드 서비스를 관리하는 방법을 자세히 살펴보겠습니다. │CMS를 이용해 클라우드 서비스 관리하는 법 실시간 성능 모니터링 우선 클라우드 서비스 관리를 할 때 꼭 확인해야 할 첫 번째는, 클라우드 서비스의 세부 성능을 실시간으로 모니터링할 수 있어야 합니다. 클라우드 환경에서는 작은 문제가 큰 장애로 이어질 수 있기 때문에, 실시간 모니터링을 통해 이상 징후를 빠르게 감지하고 대응할 수 있어야 하죠. [그림] (왼)AWS EC2 (오)AWS EBS 좀 더 이해하기 쉽게 Zenius CMS를 통해 살펴볼게요. Zenius CMS는 각 서비스에 맞는 주요 지표를 상세히 모니터링할 수 있도록 해줍니다. 예를 들어 AWS EC2와 EBS에서 제공하는 서비스에 맞춰 각각의 구성과 성능 정보를 수집하여, 실시간 모니터링이 가능하죠. [그림] (왼)Amazon Billing, (오)Amazon VPC 특히 과금 정보를 실시간으로 모니터링할 수 있는 AWS Billing을 통해, 지출 현황을 직관적으로 파악하고 관리할 수 있도록 도와줍니다. 클라우드에서 네트워크를 분리하고 안정하게 관리할 수 있는 VPC(Virtual Private Cloud) 서비스에 대한 상세한 정보도 제공해 주죠. 서비스마다 다른 차트와 그래프를 시각화해서 보여주기 때문에, 직관적으로 확인할 수 있습니다. [그림] (왼) 관심 서비스 그룹 모니터링 (오) 서비스 그룹 별 대상/항목 설정 또한 Zenius-CMS는 클라우드와 연관된 서비스와 특성에 맞게 그룹핑하여, 한 화면에서 성능 비교를 분석할 수 있습니다. 서비스 그룹 별 대상이나 항목 설정을 할 때도 유용하죠. 클라우드 인프라 구성 시각화 클라우드 서비스 관리를 할 때 꼭 확인해야 할 두 번째는, 복잡한 클라우드 환경을 한눈에 파악할 수 있어야 합니다. 다양한 클라우드 인프라의 복잡한 구성과 서비스 간의 연결 구조를 시각적으로 보여줘야 하죠. 이는 문제 발생 시 신속하게 원인을 파악할 수 있고 해결할 수 있기 때문이죠. [그림] 클라우드 서비스 맵 Zenius CMS를 통해 다시 한번 살펴볼게요. Zenius CMS는 구성도를 자동으로 생성하여, 클라우드 서비스 맵을 쉽게 확인할 수 있습니다. 현재 사용하고 있는 각 계정에 연결된 클라우드의 구성 현황을 한눈에 파악할 수 있습니다. 또한 이러한 Map 구성을 직접 편집할 수도 있는데요. 손쉬운 Map 구성 편집을 위한 아이콘, 이미지, 폰트 등 다양한 기능을 제공하고 있습니다. 이를 통해 클라우드 환경의 복잡한 구성을 쉽게 이해하고 관리할 수 있습니다. 중앙 통합 관리 시스템 CMS로 클라우드 서비스 관리를 할 때 꼭 확인해야 할 세 번째는, 다양한 클라우드 서비스를 중앙에서 통합 관리할 수 있어야 합니다. 각 서비스의 상태의 성능을 한곳에서 모니터링하고 관리할 수 있어, 관리의 편의성과 효율성이 크게 향상되기 때문인데요. [그림] 하이브리드 토폴로지 맵 Zenius CMS는 클라우드와 온프레미스 환경(On-Premise)을 통합하여 모니터링이 가능합니다. 이 시스템은 AWS, Azure, GCP 등 멀티 클라우드 서비스의 구성/성능/장애 정보를 직관적으로 모니터링할 수 있죠. 이를 통해 전체 인프라의 연관 관계와 상태를 직관적으로 파악할 수 있습니다. [그림] 오버뷰 또한 Zenius CMS는 사용자의 관점에 맞게 클라우드 서비스를 한 화면에 구성하여 관리할 수 있습니다. 사용자의 운영 목적이나 환경에 맞춰, 클라우드 서비스 현황/관련 지표/이벤트/토폴로지 등 선택적으로 구성할 수 있습니다. 이를 통해 클라우드 환경을 보다 효율적으로 운영할 수 있죠. 이번 시간에는 CMS 도구를 활용해, 클라우드 서비스 관리 방법을 알아보았습니다. 앞으로 클라우드 서비스는 기업에서 더욱 필수적이며, 그 수요는 지속적으로 증가할 것입니다. 이제는 클라우드 자원을 효율적으로 운영하고 다양한 클라우드 환경에서도 통합 관리할 수 있는 Zenius CMS를 통해 효과적으로 관리해 보세요! ?더보기 Zenius CMS로 효율적으로 클라우드 관리하기
2024.07.28
서버 모니터링 툴, Zenius SMS의 주요기능과 특장점
서버 모니터링 툴, Zenius SMS의 주요기능과 특장점
최근 서버 환경은 온프레미스 시스템에서 가상화, 컨테이너 기반 인프라, 하이브리드 및 멀티 클라우드까지 다양해지며 점점 더 복잡해지고 있습니다. 이러한 변화는 단순히 서버 상태를 확인하는 것을 넘어서 문제가 발생하기 전에 예방하고, 데이터를 효율적으로 관리할 수 있는 통합 솔루션의 필요성을 크게 높이고 있습니다. Zenius SMS는 이런 복잡한 환경에서 온프레미스 시스템뿐만 아니라 가상화된 서버, 이중화 구성, Docker와 같은 컨테이너 기반 기술까지 폭넓게 지원하며 효과적으로 활용되고 있습니다. 또한, 서버 상태를 실시간으로 모니터링하고, 장애를 예측해 빠르게 대응하며, 운영 현황을 분석해 정밀한 리포트를 제공하는 기능을 통해 IT 인프라 운영의 효율성과 안정성을 동시에 높입니다. 서버 모니터링 툴 Zenius SMS가 제공하는 주요 기능과 차별화된 장점을 구체적으로 살펴보겠습니다 서버 모니터링 툴, Zenius SMS의 주요기능 [1] 가시성 높은 실시간 모니터링 Zenius SMS는 서버를 안정적으로 운영하기 위해 실시간 모니터링과 직관적인 시각화 도구를 제공하는 통합 솔루션입니다. 운영자는 CPU, 메모리, 디스크 사용량 등 서버 자원의 상태를 실시간으로 확인할 수 있어 문제가 발생하기 전에 빠르게 대처할 수 있습니다. 또한, 이러한 데이터를 그래프, 차트, 색상 코드 등으로 시각화해, 서버의 상태나 문제 원인을 한눈에 파악할 수 있습니다. 특히, Topology Map 기능을 통해 서버 구성 요소와 장애 정보를 한 화면에서 통합적으로 확인할 수 있어, 복잡한 환경에서도 효율적인 관리가 가능합니다. 이 기능은 서버 간 연결 상태와 장애 지점을 시각적으로 보여주기 때문에 운영자가 문제를 신속히 해결하는 데 도움을 줍니다. 또한 Zenius SMS의 오버뷰와 대시보드는 전체 서버의 운영 상태와 장애 상황을 요약해 한눈에 보여주는 화면을 제공합니다. 이를 통해 운영자는 서버의 전반적인 상태를 빠르게 파악하고, 안정성을 유지할 수 있는 중요한 통찰력을 얻을 수 있습니다. Zenius SMS는 이러한 기능들로 운영 효율성과 서버 안정성을 동시에 높이고 있습니다. [2] 다양한 항목에 대한 모니터링 Zenius SMS는 서버 운영의 핵심인 리소스 상태 추적과 안정적인 서비스 지원을 위해 다양한 항목에 대한 세밀한 모니터링 기능을 제공합니다. CPU, 메모리, 디스크 사용률 등 기본적인 서버 자원을 실시간으로 모니터링함으로써 성능 저하를 사전에 방지할 수 있으며, 서버에서 실행 중인 프로세스와 Microsoft 특화 서비스(WPM), Apache 웹 서버 상태까지 확인하여 주요 서비스가 안정적으로 운영되도록 지원합니다. 또한 GPU와 같은 고성능 하드웨어 자원이나 EC2와 같은 클라우드 인스턴스를 포함한 복합적인 서버 환경에서도 높은 안정성을 제공하며, Docker 컨테이너 자원 사용 현황을 추적하여 현대적인 서버 환경에서도 유연하고 효과적으로 대응할 수 있습니다. 이러한 포괄적인 모니터링 기능을 통해 Zenius SMS는 서버 운영 효율성을 극대화하며 안정적이고 신뢰할 수 있는 환경을 제공합니다. [3] 효율적인 장애 감지 및 관리 Zenius SMS는 서버 관리에서 가장 중요한 요소인 장애 예측과 신속한 복구를 위한 체계적인 관리 기능을 통해 안정적인 서버 운영을 보장합니다. 동적 임계치 기반의 장애 예측 기능은 서버 리소스 사용량 변화에 따라 임계치를 자동으로 조정하여 잠재적인 장애를 사전에 감지하고 효과적으로 대응할 수 있도록 지원하며, 사전에 설정된 복구 스크립트를 통해 장애 발생 시 자동으로 복구 작업을 실행하여 다운타임을 최소화합니다. 또한, 장애 발생 당시의 서버 상태를 Snapshot으로 기록하고 처리 이력을 체계적으로 관리해 원인 분석 및 향후 장애 예방에 활용할 수 있는 데이터를 제공합니다. 장애 상황은 단문자, 이메일, Push 알림 등 다양한 채널로 운영자에게 실시간 통보되어 즉각적인 대응이 가능하며, 파일 로그 및 서비스 상태를 실시간으로 감시하여 시스템 무결성을 유지합니다. 이러한 종합적인 장애 관리 기능을 통해 Zenius SMS는 안정적이고 효율적인 서버 운영 환경을 제공합니다. [4] 정밀한 분석 및 리포팅 기능 Zenius SMS는 서버 최적화와 운영 의사결정에 필수적인 데이터를 체계적으로 분석하고 보고하는 정밀한 리포팅 기능을 제공합니다. 주요 서버 성능 지표에 대한 정밀 분석 기능을 통해 성능 변화를 세부적으로 파악할 수 있으며, 성능 비교, 시간대별 분석, 증설 필요성 평가 등 다양한 성능 및 트렌드 분석 도구를 활용해 서버 리소스를 최적화할 수 있습니다. 또한, 네트워크 연결 상태를 정밀히 분석하여 서버 간 통신에서 발생하는 병목 현상을 식별하고 개선 방안을 도출할 수 있는 TCP 상태 분석 기능도 제공합니다. 사용자 요구에 따라 정기 보고서와 성능 보고서 등을 자동으로 생성해 운영 데이터를 명확하고 효율적으로 전달하며, 이를 통해 Zenius SMS는 서버 운영의 투명성과 효율성을 높여줍니다. 서버 모니터링 툴 Zenius SMS만의 장점은?! IT 환경이 기존 온프레미스를 넘어 클라우드, VM(가상머신), MSA(마이크로서비스 아키텍처) 등으로 확장되며 복잡성이 증가함에 따라 서버 관리의 난이도 역시 높아지고 있습니다. 이질적인 환경이 공존하면서 자원을 통합적으로 관리하거나 다양한 플랫폼 간의 연계를 효과적으로 수행하는 데 어려움이 늘어나고 있습니다. 클라우드나 VM과 같은 동적으로 생성·폐기되는 자원의 특성상 자원 과부하, 네트워크 병목 현상, 비효율적인 자원 배분 등의 문제를 실시간으로 모니터링하고 대응하기가 점점 더 어려워지고 있습니다. 또한, 마이크로서비스와 분산 시스템의 확산으로 서비스 간 의존성이 복잡해지면서, 특정 서비스 장애가 전체 시스템에 영향을 미치거나 장애 원인을 추적하는 데 오랜 시간이 걸리는 사례가 빈번히 발생하고 있습니다. Zenius SMS는 이러한 문제를 해결하고 안정적인 서버운영을 지원하는 솔루션입니다. Zenius SMS는 온프레미스뿐 아니라 클라우드, VM, 컨테이너 기반 환경에 대한 모니터링을 지원합니다. 또한 Framework 구조로 구성되어 있기 때문에 서버와 연관된 네트워크, 애플리케이션, 데이터베이스 등을 실시간으로 통합해서 모니터링할 수 있습니다. 이를 통해 운영자는 장애 가능성을 조기에 파악하고, 서비스 중단을 예방할 수 있으며, 네트워크 병목 현상이나 비효율적인 자원 활용으로 인한 성능 저하를 미리 방지할 수 있습니다. 또한, 장애 발생 시 신속한 원인 분석과 대응이 가능해 복구 시간을 단축할 수 있고, 운영 전반의 가시성을 확보함으로써 의사결정의 정확성과 속도를 동시에 향상시킬 수 있습니다. 이를 바탕으로 복잡한 IT 환경에서도 안정적이고 효율적인 서버 운영을 지속적으로 유지할 수 있습니다. 단일 Manager로 최대 1,500개의 장비를 동시에 관리할 수 있는 고성능 설계와 C/C++ 기반의 경량 구조도 Zenius SMS의 강점입니다. 이 구조는 서버의 자원 소모를 줄이고, Kernel 수준에서 최적화되어 시스템이 안정적으로 작동하도록 지원합니다. 특히, 대규모 IT 환경에서도 필요한 장비를 손쉽게 추가하거나 확장할 수 있어 변화하는 요구사항에 빠르게 대응할 수 있습니다. 서버 모니터링 툴 Zenius SMS는 대규모 서버 관리 프로젝트를 포함해 약 1,000여 개의 성공적인 구축 사례를 보유하고 있습니다. GS 인증(1등급) 및 조달청 우수제품으로 지정된 이력은 제품의 품질과 안정성을 입증하며, IT 인프라 관리 시장에서 가장 신뢰받는 솔루션 중 하나로 자리 잡고 있습니다.
2024.12.13
다음 슬라이드 보기