반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
[브레인저가 알려주는 IT#1] 네트워크 관리, SNMP가 뭔가요?
카프카를 통한 로그 관리 방법
김채욱
2023.09.19
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
메모리 누수 위험있는 FinalReference 참조 분석하기
안녕하세요! 저는 개발4그룹에서 제니우스(Zenius) SIEM의 로그 관리 기능 개발을 담당하고 있는 김채욱 입니다. 제가 하고 있는 일은 실시간으로 대용량 로그 데이터를 수집하여 분석 후, 사용자에게 가치 있는 정보를 시각화하여 보여주는 일입니다.
이번 글에서 다룰 내용은
1) 그동안 로그(Log)에 대해 조사한 것과 2) 최근에 CCDAK 카프카 자격증을 딴 기념으로, 카프카(Kafka)를 이용하여 어떻게 로그 관리를 하는지
에 대해 이야기해 보겠습니다.
PART1. 로그
1. 로그의 표면적 형태
로그(Log)는 기본적으로 시스템의 일련된 동작이나 사건의 기록입니다. 시스템의 일기장과도 같죠. 로그를 통해 특정 시간에 시스템에서 ‘어떤 일’이 일어났는지 파악할 수도 있습니다. 이렇게 로그는 시간에 따른 시스템의 동작을 기록하고, 정보는 순차적으로 저장됩니다.
이처럼
로그의 핵심 개념은 ‘시간’
입니다. 순차적으로 발생된 로그를 통해 시스템의 동작을 이해하며, 일종의 생활기록부 역할을 하죠. 시스템 내에서 어떤 행동이 발생하였고, 어떤 문제가 일어났으며, 유저와의 어떤 교류가 일어났는지 모두 알 수 있습니다.
만약 시간의 개념이 없다면 어떻게 될까요? 발생한 모든 일들이 뒤섞이며, 로그 해석을 하는데 어려움이 생기겠죠.
이처럼 로그를 통해 시스템은 과거의 변화를 추적합니다. 똑같은 상황이 주어지면 항상 같은 결과를 내놓는 ‘결정론적’인 동작을 보장할 수 있죠. 로그의 중요성, 이제 조금 이해가 되실까요?
2. 로그와 카프카의 관계
자, 그렇다면! 로그(Log)와 카프카(Kafka)는 어떤 관계일까요? 우선 카프카는 분산 스트리밍 플랫폼으로서, 실시간으로 대용량의 데이터를 처리하고 전송하는데 탁월한 성능을 자랑합니다. 그 중심에는 바로 ‘로그’라는 개념이 있는데요. 좀 더 자세히 짚고 넘어가 보겠습니다.
3. 카프카에서의 로그 시스템
카프카에서의 로그 시스템은, 단순히 시스템의 에러나 이벤트를 기록하는 것만이 아닙니다. 연속된 데이터 레코드들의 스트림을 의미하며, 이를 ‘토픽(Topic)’이라는 카테고리로 구분하죠. 각 토픽은 다시 *파티션(Partition)으로 나누어, 단일 혹은 여러 서버에 분산 저장됩니다. 이렇게 분산 저장되는 로그 데이터는, 높은 내구성과 가용성을 보장합니다.
*파티션(Partition): 하드디스크를 논리적으로 나눈 구역
4. 카프카가 로그를 사용하는 이유
로그의 순차적인 특성은 카프카의 ‘핵심 아키텍처’와 깊게 연결되어 있습니다. 로그를 사용하면,
데이터의 순서를 보장할 수 있어 대용량의 데이터 스트림을 효율적
으로 처리할 수 있기 때문이죠. 데이터를 ‘영구적’으로 저장할 수 있어,
데이터 손실 위험 또한 크게 줄어
듭니다.
로그를 사용하는 또 다른 이유는 ‘장애 복구’
입니다. 서버가 장애로 인해 중단되었다가 다시 시작되면, 저장된 로그를 이용하여 이전 상태로 복구할 수 있게 되죠. 이는 ‘카프카가 높은 가용성’을 보장하는 데 중요한 요소입니다.
∴
로그 요약
로그는 단순한 시스템 메시지를 넘어 ‘데이터 스트림’의 핵심 요소로 활용됩니다. 카프카와 같은 현대의 데이터 처리 시스템은
로그의 이러한 특성을 극대화하여, 대용량의 실시간 데이터 스트림을 효율적으로 처리
할 수 있는 거죠. 로그의 중요성을 다시 한번 깨닫게 되는 순간이네요!
PART2. 카프카
로그에 이어 에 대해 설명하겠습니다. 들어가기에 앞서 가볍게 ‘구조’부터 알아가 볼까요?
1. 카프카 구조
· 브로커(Broker)
브로커는 *클러스터(Cluster) 안에 구성된 여러 서버 중 각 서버를 의미합니다. 이러한 브로커들은, 레코드 형태인 메시지 데이터의 저장과 검색 및 컨슈머에게 전달하고 관리합니다.
*클러스터(Cluster): 여러 대의 컴퓨터들이 연결되어 하나의 시스템처럼 동작하는 컴퓨터들의 집합
데이터 분배와 중복성도 촉진합니다. 브로커에 문제가 발생하면, 데이터가 여러 브로커에 데이터가 복제되어 데이터 손실이 되지 않죠.
·
프로듀서(Producer)
프로듀서는 토픽에 레코드를 전송 또는 생성하는 *엔터티(Entity)입니다. 카프카 생태계에서 ‘데이터의 진입점’ 역할도 함께 하고 있죠. 레코드가 전송될 토픽 및 파티션도 결정할 수 있습니다.
*엔터티(Entity): 업무에 필요한 정보를 저장하고 관리하는 집합적인 것
·
컨슈머(Consumer)
컨슈머는 토픽에서 레코드를 읽습니다. 하나 이상의 토픽을 구독하고, 브로커로부터 레코드를 소비합니다. 데이터의 출구점을 나타내기도 하며, 프로듀서에 의해 전송된 메시지를 최종적으로 읽히고 처리되도록 합니다.
·
토픽(Topic)
토픽은 프로듀서로부터 전송된 레코드 카테고리입니다. 각 토픽은 파티션으로 나뉘며, 이 파티션은 브로커 간에 복제됩니다.
카프카로 들어오는 데이터를 조직화하고, 분류하는 방법을 제공하기도 합니다. 파티션으로 나눔으로써 카프카는 ‘수평 확장성과 장애 허용성’을 보장합니다.
·
주키퍼(ZooKeeper)
주키퍼는 브로커를 관리하고 조정하는 데 도움을 주는 ‘중앙 관리소’입니다. 클러스터 노드의 상태, 토픽 *메타데이터(Metadata) 등의 상태를 추적합니다.
*메타데이터(Metadata): 데이터에 관한 구조화된 데이터로, 다른 데이터를 설명해 주는 데이터
카프카는 분산 조정을 위해 주키퍼에 의존합니다. 주키퍼는 브로커에 문제가 발생하면, 다른 브로커에 알리고 클러스터 전체에 일관된 데이터를 보장하죠.
∴
카프카 구조 요약
요약한다면 카프카는
1) 복잡하지만 견고한 아키텍처 2) 대규모 스트림 데이터를 실시간으로 처리하는 데 있어 안정적이고 장애 허용성이 있음 3) 고도로 확장 가능한 플랫폼을 제공
으로 정리할 수 있습니다.
이처럼 카프카가 큰 데이터 환경에서 ‘어떻게’ 정보 흐름을 관리하고 최적화하는지 5가지의 구조를 통해 살펴보았습니다. 이제 카프카에 대해 조금 더 명확한 그림이 그려지지 않나요?
2. 컨슈머 그룹과 성능을 위한 탐색
카프카의 가장 주목할 만한 특징 중 하나는
‘컨슈머 그룹의 구현’
입니다. 이는 카프카의 확장성과 성능 잠재력을 이해하는 데 중심적인 개념이죠.
컨슈머 그룹 이해하기
카프카의 핵심은
‘메시지를 생산하고 소비’
하는 것입니다. 그런데 수백만, 심지어 수십억의 메시지가 흐르고 있을 때 어떻게 효율적으로 소비될까요?
여기서 컨슈머 그룹(Consumer Group)이 등장합니다. 컨슈머 그룹은, 하나 또는 그 이상의 컨슈머로 구성되어 하나 또는 여러 토픽에서 메시지를 소비하는데 협력합니다. 그렇다면 왜 효율적인지 알아보겠습니다.
·
로드 밸런싱:
하나의 컨슈머가 모든 메시지를 처리하는 대신, 그룹이 부하를 분산할 수 있습니다. 토픽의 각 파티션은 그룹 내에서 정확히 하나의 컨슈머에 의해 소비됩니다. 이는 메시지가 더 빠르고 효율적으로 처리된다는 것을 보장합니다.
·
장애 허용성:
컨슈머에 문제가 발생하면, 그룹 내의 다른 컨슈머가 그 파티션을 인수하여 메시지 처리에 차질이 없도록 합니다.
·
유연성:
데이터 흐름이 변함에 따라 그룹에서 컨슈머를 쉽게 추가하거나 제거합니다. 이에 따라 증가하거나 감소하는 부하를 처리할 수 있습니다.
여기까지는 최적의 성능을 위한 ‘카프카 튜닝 컨슈머 그룹의 기본 사항’을 다루었으니, 이와 관련된 ‘성능 튜닝 전략’에 대해 알아볼까요?
성능 튜닝 전략
·
파티션 전략:
토픽의 파티션 수는, 얼마나 많은 컨슈머가 활성화되어 메시지를 소비할 수 있는지 영향을 줍니다. 더 많은 파티션은 더 많은 컨슈머가 병렬로 작동할 수 있음을 의미하는 거죠. 그러나 너무 많은 파티션은 *오버헤드를 야기할 수 있습니다.
*오버헤드: 어떤 처리를 하기 위해 간접적인 처리 시간
·
컨슈머 구성:
*fetch.min.bytes 및 *fetch.max.wait.ms와 같은 매개변수를 조정합니다. 그다음 한 번에 얼마나 많은 데이터를 컨슈머가 가져오는지 제어합니다. 이러한 최적화를 통해 브로커에게 요청하는 횟수를 줄이고, 처리량을 높입니다.
*fetch.min.bytes: 한 번에 가져올 수 있는 최소 데이터 사이즈 *fetch.max.wait.ms: 데이터가 최소 크기가 될 때까지 기다릴 시간
·
메시지 배치:
프로듀서는 메시지를 함께 배치하여 처리량을 높일 수 있게 구성됩니다. *batch.size 및 *linger.ms와 같은 매개변수를 조정하여, 대기 시간과 처리량 사이의 균형을 찾을 수 있게 되죠.
*batch.size: 한 번에 모델이 학습하는 데이터 샘플의 개수 *linger.ms: 전송 대기 시간
·
압축:
카프카는 메시지 압축을 지원하여 전송 및 저장되는 데이터의 양을 줄입니다. 이로 인해 전송 속도가 빨라지고 전체 성능이 향상될 수 있습니다.
·
로그 정리 정책:
카프카 토픽은, 설정된 기간 또는 크기 동안 메시지를 유지할 수 있습니다. 보존 정책을 조정하면, 브로커가 저장 공간이 부족해지는 점과 성능이 저하되는 점을 방지할 수 있습니다.
3. 컨슈머 그룹과 성능을 위한 실제 코드 예시
다음 그림과 같은 코드를 보며 조금 더 자세히 살펴보겠습니다. NodeJS 코드 중 일부를 발췌했습니다. 카프카 설치 시에 사용되는 설정 파일 *server.properties에서 파티션의 개수를 CPU 코어 수와 같게 설정하는 코드입니다. 이에 대한 장점들을 쭉 살펴볼까요?
*server.properties: 마인크래프트 서버 옵션을 설정할 수 있는 파일
CPU 코어 수에 파티션 수를 맞추었을 때의 장점
·
최적화된 리소스 활용:
카프카에서는 각 파티션이 읽기와 쓰기를 위한 자체 *I/O(입출력) 스레드를 종종 운영합니다. 사용 가능한 CPU 코어 수와 파티션 수를 일치시키면, 각 코어가 특정 파티션의 I/O 작업을 처리합니다. 이 동시성은 리소스에서 최대의 성능을 추출하는 데 도움 됩니다.
·
최대 병렬 처리:
카프카의 설계 철학은 ‘병렬 데이터 처리’를 중심으로 합니다. 코어 수와 파티션 수 사이의 일치는, 동시에 처리되어 처리량을 높일 수 있습니다.
·
간소화된 용량 계획:
이 접근 방식은, 리소스 계획에 대한 명확한 기준을 제공합니다. 성능 병목이 발생하면 CPU에 *바인딩(Binding)되어 있는지 명확하게 알 수 있습니다. 인프라를 정확하게 조정할 수도 있게 되죠.
*바인딩(Binding): 두 프로그래밍 언어를 이어주는 래퍼 라이브러리
·
오버헤드 감소:
병렬 처리와 오버헤드 사이의 균형은 미묘합니다. 파티션 증가는 병렬 처리를 촉진할 수 있습니다. 하지만 더 많은 주키퍼 부하, 브로커 시작 시간 연장, 리더 선거 빈도 증가와 같은 오버헤드도 가져올 수도 있습니다. 파티션을 CPU 코어에 맞추는 것은 균형을 이룰 수 있게 합니다.
다음은 프로세스 수를 CPU 코어 수만큼 생성하여, 토픽의 파티션 개수와 일치시킨 코드에 대한 장점입니다.
파티션 수와 컨슈머 프로세스 수 일치의 장점
·
최적의 병렬 처리:
카프카 파티션의 각각은 동시에 처리될 수 있습니다. 컨슈머 수가 파티션 수와 일치하면, 각 컨슈머는 특정 파티션에서 메시지를 독립적으로 소비할 수 있게 되죠. 따라서 병렬 처리가 향상됩니다.
·
리소스 효율성:
파티션 수와 컨슈머 수가 일치하면, 각 컨슈머가 처리하는 데이터의 양이 균등하게 분배됩니다. 이로 인해 전체 시스템의 리소스 사용이 균형을 이루게 되죠.
·
탄력성과 확장성:
트래픽이 증가하면, 추가적인 컨슈머를 컨슈머 그룹에 추가하여 처리 능력을 증가시킵니다. 동일한 방식으로 트래픽이 감소하면 컨슈머를 줄여 리소스를 절약할 수 있습니다.
·
고가용성과 오류 회복:
컨슈머 중 하나가 실패하면, 해당 컨슈머가 처리하던 파티션은 다른 컨슈머에게 자동 재분배됩니다. 이를 통해 시스템 내의 다른 컨슈머가 실패한 컨슈머의 작업을 빠르게 인수하여, 메시지 처리가 중단되지 않습니다.
마지막으로 각 프로세스별 컨슈머를 생성해서 토픽에 구독 후, 소비하는 과정을 나타낸 소스코드입니다.
∴
컨슈머 그룹 요약
컨슈머 그룹은 높은 처리량과 장애 허용성 있는 메시지 소비를 제공하는 능력이 핵심입니다. 카프카가 어떤 식으로 운영되는지에 대한 상세한 부분을 이해하고 다양한 매개변수를 신중하게 조정한다면, 어떠한 상황에서도 카프카의 최대 성능을 이끌어낼 수 있습니다!
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
©
참고 자료
· Jay Kreps, “I Hearts Logs”, Confluent
· 위키피디아, “Logging(computing)”
· Confluent, “https://docs.confluent.io/kafka/overview.html”
· Neha Narkhede, Gwen Shapira, Todd Palino, “Kafka: The Definitive Guide”
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
#LOG
#로그
#카프카
#컨슈머
#KAFKA
#SIEM
#제니우스
김채욱
개발4그룹
실시간 대용량 로그 데이터의 수집 및 가공에 관심을 가지고 있습니다. 함께 발전해 나가는 개발을 추구합니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
네트워크 모니터링 툴을 통한 LLDP 오토맵 구성 및 활용 방법
네트워크 모니터링 툴을 통한 LLDP 오토맵 구성 및 활용 방법
디지털 인프라 환경이 점차 복잡해지면서, 네트워크 구성도 보다 유연하고 다층적인 구조로 변화하고 있습니다. 다양한 벤더의 장비가 혼재되어 운영되고, 포트 연결은 수시로 변경되며, 구성도는 시간이 지날수록 실제 환경과 일치하지 않는 경우가 많습니다. 이러한 변화 속에서 운영자는 전체 네트워크 구조를 정확히 파악하고 관리하는 데 어려움을 겪게 됩니다. 연결 상태를 명확히 확인하지 못하면 장애 대응이 지연되고, 트래픽 흐름이나 장비 간 영향도 분석이 제한될 수밖에 없습니다. 문서화된 구성도만으로 실시간 상태를 파악하는 데는 분명한 한계가 있습니다. 이럴 때 LLDP(Link Layer Discovery Protocol)를 활용하면, 장비 간의 연결 정보를 자동으로 수집하고 시각적으로 표현할 수 있어, 현재의 네트워크 상태를 보다 직관적으로 파악할 수 있습니다. Zenius NMS와 같은 네트워크 모니터링 툴은 이러한 LLDP 정보를 기반으로 오토맵을 자동 구성해, 운영자가 수작업 없이도 네트워크의 실제 연결 상태를 명확히 확인하고 효율적으로 관리할 수 있도록 지원합니다. 그렇다면 LLDP 기반 오토맵의 개념과 이를 통해 기대할 수 있는 운영상 효과, 그리고 네트워크 모니터링 툴인 Zenius NMS에서 이를 어떻게 구체적으로 활용할 수 있는지를 차례대로 살펴보겠습니다. LLDP 기반의 오토맵은 무엇이고 어떤 문제를 해결할 수 있을까? LLDP는 네트워크 장비 간의 연결 정보를 자동으로 수집하는 프로토콜입니다. Cisco에서 사용하는 CDP(Cisco Discovery Protocol)와 유사한 기능을 하지만, LLDP는 특정 벤더에 종속되지 않아 다양한 제조사의 장비 환경에서도 유연하게 활용할 수 있습니다. 네트워크 모니터링 툴 Zenius NMS는 이러한 LLDP 정보를 활용해 장비 간 실제 연결 상태를 자동으로 시각화하는 오토맵 기능을 제공합니다. 별도의 수작업 없이도 실시간 구성도 수준의 네트워크 맵을 생성할 수 있어, 운영자가 현재 네트워크 구조를 보다 직관적으로 파악할 수 있도록 돕습니다. 특히 구성 정보가 부실하거나 최신화되지 않은 환경에서도 유용하며, 수년간 운영되며 복잡해진 네트워크 구조도 LLDP 오토맵을 통해 효과적으로 시각화할 수 있습니다. 장애가 발생했을 때는 어떤 포트가 어느 장비와 연결되어 있는지를 즉시 확인할 수 있어, 원인 파악과 대응 속도를 높이는 데 도움이 됩니다. 또한 각 인터페이스의 상태 정보(BPS, PPS, 최대 전송 속도 등)도 함께 표시되어, 트래픽 흐름을 보다 정확하게 분석할 수 있습니다. 결과적으로 LLDP 기반 오토맵은 구성도가 없는 환경에서도 네트워크 연결 상태를 명확하게 파악하고, 장애 대응과 성능 분석의 효율을 높이는 데 실질적으로 활용할 수 있습니다. 이제 Zenius NMS를 통해 LLDP 오토맵을 어떻게 구성하고 활용할 수 있는지 자세히 살펴보겠습니다. Zenius NMS에서 LLDP 기반 오토맵 구성 및 활용 방법 오토맵 구성 절차 Zenius NMS는 LLDP로 수집한 장비 간 연결 정보를 바탕으로, 네트워크 토폴로지를 자동으로 구성할 수 있는 기능을 제공합니다. 아래와 같은 절차를 통해 오토맵을 손쉽게 생성하고, 운영 환경에서 실시간으로 활용할 수 있습니다 [Step 01] [EMS > 토폴로지 > 맵목록관리 > 맵등록]: 먼저 오토맵을 구성할 새로운 맵을 등록합니다. 이 단계에서는 맵의 이름, 유형 등을 입력하고 기본 설정을 저장합니다. [Step 02] [EMS > 토폴로지 > 등록맵 선택 > 편집]: 등록한 맵을 선택한 후, [편집] 버튼을 클릭하여 맵 에디터 모드를 활성화합니다. [Step 03] [EMS > 토폴로지 > 등록맵 선택 > 편집 > NMS 자동맵 > 대상 Drag]: NMS 자동맵 기능을 선택한 뒤, 자동 구성을 적용할 장비(스위치, 라우터 등)를 화면으로 드래그합니다. 이후 [맵구성] 버튼을 클릭하면, 선택한 장비를 중심으로 LLDP 기반의 연결 구조가 자동 생성됩니다. [Step 04] [EMS > 토폴로지 > 등록맵 선택 > 편집]: 자동 생성된 맵이 화면에 나타나면, 각 장비의 위치를 드래그하여 보기 좋게 배치할 수 있습니다. [Step 05] [EMS > 토폴로지 > 등록맵 선택 > 편집]: 구성한 맵이 완성되면, [오토맵 저장]을 눌러 현재 상태를 저장합니다. 이후 해당 맵은 Zenius EMS/NMS에서 실시간 모니터링 화면과 연동되어 사용됩니다. 이와 같은 절차를 통해 구성된 LLDP 오토맵은, 구성도가 없는 환경에서도 네트워크 전반의 실제 구조를 빠르게 파악하고, 운영 중 발생하는 연결 변화나 장애 상황을 실시간으로 모니터링하는 데 유용하게 활용할 수 있습니다. 이제 이러한 오토맵 기능이 실제 운영 환경에서 어떻게 적용되는지, 세 가지 구체적인 예시를 통해 살펴보겠습니다. 구체적인 활용 가이드 ① 복잡한 네트워크 구성 한눈에 파악하기 일반적으로 네트워크 토폴로지는 조직 내부에서 보유한 구성도에 따라 수작업으로 구성되며, 이를 기반으로 주요 장비의 장애 상태를 모니터링합니다. 그러나 이러한 구성도가 오래되었거나 존재하지 않는 경우, 실제 네트워크 연결 구조를 정확하게 파악하기 어려운 경우가 많습니다. 이런 상황에서 LLDP 기반 오토맵 기능은 수집된 연결 정보를 바탕으로 자동으로 네트워크 구조를 시각화해줍니다. 운영자는 구성도 없이도 전체 네트워크 구성을 실시간으로 확인할 수 있으며, 각 장비 간의 물리적 관계를 직관적으로 파악할 수 있습니다. [네트워크 구성도 기반 구성한 토폴로지의 사례] 구체적인 활용 가이드 ② 연결 장비의 트래픽 정보 자동 확인하기 스위치 장비는 여러 개의 인터페이스를 통해 다양한 장비와 트래픽을 주고받습니다. 이러한 환경에서 각 인터페이스가 어떤 장비와 연결되어 있는지, 어떤 구간에 트래픽이 집중되고 있는지를 수작업으로 확인하는 것은 현실적으로 매우 어렵습니다. 특히 별도의 분석 도구나 관리 시스템이 없을 경우, 문제 발생 시 신속한 대응이 더욱 어려워집니다. Zenius LLDP 오토맵은 이러한 연결 정보를 자동으로 시각화할 뿐 아니라, 각 연결 구간의 인터페이스 트래픽 정보도 함께 표시합니다. 이를 통해 운영자는 트래픽이 집중되는 구간, 병목 현상이 발생할 수 있는 지점을 빠르게 확인하고 사전에 대응할 수 있습니다. [오토맵을 통한 연결 장비 트래픽 확인 사례] 구체적인 활용 가이드 ③ 인터페이스 장애 영향도 분석하기 오토맵을 통해 트래픽이 몰리는 특정 연결 구간을 식별한 이후에는, 해당 구간에 연결된 인터페이스의 상세 정보를 확인할 수 있습니다. 연결된 포트의 상태, 전송 속도(BPS/PPS), 최대 속도(Max Speed) 등 다양한 지표를 기반으로 문제의 원인을 보다 구체적으로 분석할 수 있습니다. 예를 들어, MainSwitch와 Switch755fa 간의 연결을 조회하면 MainSwitch의 gi4 포트를 통해 연결되어 있다는 점을 확인할 수 있고, 해당 포트의 트래픽 수치까지 함께 확인 가능합니다. 이를 통해 인터페이스 장애가 전체 네트워크에 미치는 영향도 보다 정확하게 판단할 수 있습니다. 구체적인 활용 가이드 ④ CDP, LLDP 연결정보 확인 하기 이뿐만 아니라, Zenius NMS는 Cisco 장비에서 제공하는 CDP(Cisco Discovery Protocol)와 LLDP 정보를 모두 지원합니다. 이를 통해 오토맵 구성 외에도 정적인 장비 연결 정보 점검이 가능하며, 다양한 환경에서 유연한 연결 정보 수집이 가능합니다. 운영자는 NMS > 모니터링 > 장비 > 대상 클릭 > 부가정보 메뉴를 통해 각 장비에 대한 CDP 및 LLDP 연결 정보를 확인할 수 있으며, 이를 통해 오토맵 구성 외에도 정적인 장비 연결 정보 확인 및 점검이 가능합니다. [NMS > 모니터링 > 장비 > 대상 클릭 > 부가정보 ] CDP, LLDP 정보 Zenius LLDP 오토맵 기능은 실제 운영 환경에서도 효과적으로 활용되고 있습니다. 예를 들어, B제약사는 주요 스위치를 제외한 장비의 연결 상태를 명확히 파악하기 어려운 상황에서 LLDP 기반 오토맵 도입을 요청한 고객사입니다. 특히 대부분의 장비가 Cisco가 아닌 타 벤더 장비로 구성되어 있어, 기존의 CDP 기반 구성으로는 한계가 있었습니다. 이에 따라 Zenius를 통해 LLDP 기반 웹 오토맵 기능이 POC 형태로 제공되어 실제 환경에 적용되었습니다. 도입 이후에는 기존에 파악되지 않았던 스위치 간 연결 관계와 인터페이스 수준의 상태까지 시각적으로 확인할 수 있게 되었고, 관리의 사각지대였던 영역도 체계적으로 관리할 수 있게 되었습니다. 이를 통해 B제약사는 운영 효율성과 문제 대응 속도를 동시에 개선할 수 있었습니다. LLDP 기반 오토맵은 단순히 장비 간 연결 상태를 보여주는 도구에 그치지 않습니다. 실제 환경에 적용해보면, 운영자가 놓치기 쉬운 연결 구조를 시각적으로 재구성하고, 네트워크 상의 다양한 상호작용을 보다 명확하게 이해하는 데 도움이 됩니다. 특히 장애나 트래픽 변화처럼 빠른 대응이 필요한 순간에는, 자동화된 시각 정보가 판단과 조치의 속도를 좌우할 수 있습니다. 인터페이스 수준의 상세 정보까지 함께 제공되기 때문에, 문제가 발생한 구간의 영향도를 실시간으로 파악하고, 사전에 우선 대응할 수 있는 근거도 마련됩니다. 도입 사례를 통해 확인할 수 있었듯이, 기존 관리 체계만으로는 파악하기 어려웠던 장비 간 연결이나 관리 사각지대 역시 오토맵을 통해 자연스럽게 드러나며, 운영 체계 전반의 신뢰성을 높이는 계기가 됩니다. 정적인 문서나 수작업 기반의 관리에서 벗어나, 실시간 연결 정보를 바탕으로 네트워크를 보다 직관적으로 운영하고자 한다면, LLDP를 기반으로 한 Zenius의 오토맵 기능을 통해 보다 효율적이고 안정적인 네트워크 운영 환경을 구축할 수 있습니다.
2025.06.04
다음 슬라이드 보기