반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
브레인즈컴퍼니, 서비스 확대 및 고객 만족도 향상 위해 원주사무소 오픈
데브옵스(DevOps)에 대한 오해, 그리고 진실은?!
원종혁
2024.02.14
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
잘파세대(Z세대 + 알파 세대)에 대한 모든 것
2000년 대 후반 IT 분야에서 데브옵스(DevOps)라는 움직임이 시작된 후, 꾸준하게 관심이 이어지고 있습니다. 데브옵스와 관련된 전 세계 시장의 규모는 2023년 기준 약 15조 원으로 추산되며, 올해부터는 연평균 25.5%씩 성장하여 2032년에 118조 원에 이를 것으로 예상됩니다
(*출처: Grand View Research)
.
우리나라의 경우 네이버, 카카오, 우아한 형제들, 토스 등과 같은 국내 대기업부터 스타트업까지 데브옵스 팀을 구축하여 적극적으로 활용하고 있기도 한데요.
이처럼 많은 기업들이 말하는 데브옵스란 과연 무엇일까요? 그리고 어떻게 하면 데브옵스를 성공적으로 도입하고 활용할 수 있을까요?
│ 데브옵스(DevOps)란 무엇인가?
[그림 1] DevOps 개념 ⓒdevopedia
우선 데브옵스가 무엇인지부터 살펴봅시다. 검색 사이트에서 '데브옵스 혹은 DevOps'라고 검색하면 위 [그림1]과 같은 결과를 찾을 수 있는데요.
[그림 2] DevOps에 대한 필자의 첫인상
하지만 처음 데브옵스라는 단어를 접할 경우 [그림 2]처럼 오버랩되는 건, 필자만 그런 것은 아니라고 생각합니다. 위 그림처럼 "개발자 보러 운영까지 하라는 거야? 아니면 운영자에게 개발까지 하라는 거야?"라는 질문을 던질 수 있겠죠.
데브옵스(DevOps)는 소프트웨어의 개발(Developmnet)과 + 운영(Operations)의 합성어이다. 이는 소프트웨어 개발자와 정보기술 전문가 간의 소통, 협업 및 통합을 강조하는 개발 환경이나 문화를 말한다. 데브옵스는 소프트웨어 개발조직과 운영조직 간의 상호 의존적 대응이며, 조직이 소프트웨어 제품과 서비스를 빠른 시간에 개발 및 배포하는 것을 목적으로 한다.
ⓒ위키백과
위 내용에도 언급되었듯이, 데브옵스라는 것은 결국 단순한 기술이 아닌 환경 또는 사람들 간에 관계라고 할 수 있습니다. 그렇다면 데브옵스는 어떤 이유로 주목받을 수 있었을까요?
│ 데브옵스(DevOps)가 주목받게 된 배경은?
데브옵스가 주목받은 이유는 여러 가지 있을 수 있지만, 주요한 이유 중 몇 가지를 설명하면 다음과 같습니다.
클라우드 컴퓨팅 기술의 발전
IT 산업의 발전에 따라 빠른 개발과 빠른 배포, 그리고 고객의 요구에 신속하게 대응하는 능력이 중요해졌습니다. 특히
클라우드 컴퓨팅(Cloud Computing) 기술의 발전으로 데브옵스의 필요성이 더 대두
되었는데요.
클라우드 자원의 가상화 기술과 빠른 프로비저닝
*1
을 통해 기존의 개발과 운영 간의 경계가 허물어지며, 서로 간의 협력이 필수적으로 요구되었기 때문입니다. 실제로 데브옵스만으로는 52%, 클라우드 단독 사용으로는 53%의 성능 향상을 얻었지만, 데브옵스와 클라우드가 결합된 환경에서는 평균 81%의 성능을 향상시킬 수 있다는
조사 결과
도 있습니다.
*1 프로비저닝(Provisioning): 사용자가 요청한 IT 자원을 사용할 수 있는 상태로 준비하는 것
MSA의 등장
[그림 4] 모놀리식 구조 예시(왼) [그림 5] MSA 구조 예시(오)
지금까지 운영 중인 시스템 혹은 서비스는, 하나의 큰 덩어리로 구성된 [그림 4]
모놀리식(Monolithic) 구조를 많이 사용
하고 있습니다. 안정성을 확보하고 기능 추가를 편리하게 할 수 있었기 때문이죠. 하지만 한 부분의 변경이 전체 시스템에 영향을 미칠 수 있어, 유지보수가 어렵다는 한계점이 있습니다. 예를 든다면 특정 기능이 수정이 필요한 경우에도, 전체 시스템을 수정해야 해서 번거롭고 비효율적인 부분이 있습니다.
이러한 모놀리식 구조의 한계점으로 소프트웨어의 구조가 서서히 [그림 5]
MSA(Micro Service Architecture)로 변화
되고 있습니다. MSA는 통합된 하나의 덩어리를 관리하는 것이 아닌, 작은 단위로 쪼개어 관리하는 방식인데요. 관리하기도 효율적이고, 소프트웨어 품질개선과 요구사항 반영이 비교적 편리해졌습니다. 각 서비스가 독립적으로 배포되고 운영되기 때문에, 특정 기능을 수정할 때 전체 기능을 수정하거나 다시 배포할 필요가 없어진 거죠. 하지만 이러한 변화는 기존의 개발 환경과 조직 문화로 대응하기엔 어려움이 있었습니다.
이때
'데브옵스(DevOps)'
가 좋은 솔루션으로 등장한 것이죠!
데브옵스가 지속적인 통합(CI)
1
과 지속적인 배포(CD)
2
를 통해 빠른 개발 주기를 실현하고 배포할 수 있을 뿐만 아니라, 다수의 독립적인 서비스가 상호작용할 수 있도록 원활한 협업과 통합을 가능하게 했기 때문입니다.
*1 지속적인 통합(Continuous Integration, CI)
개발자가 코드를 변경할 때마다 자동으로 통합하고 빌드 하여, 소프트웨어의 품질을 빠르게 확인하는 과정
*2 지속적인 배포(Continuous Delivery, CD)
통합된 코드를 자동으로 테스트하고, 안정적으로 통과한 경우에는 자동으로 프로덕션 환경에 소프트웨어를 배포하는 것. 이에 따라 사용자에게 새로운 기능이나 수정 사항을 신속히 제공하는 과정
│ 데브옵스(DevOps) 도입 성공사례는?
이처럼 데브옵스의 정의와 주목받게 된 배경을 살펴봤는데요. 이번에는 데브옵스를 실제로 기업에 적용해 보고 성공한 사례를 자세히 살펴볼까요?
넷플릭스
넷플릭스(Netflix)는 데브옵스를 성공의 핵심요소로 삼아, 지속적으로 새로운 기능과 업데이트를 제공했습니다.
자동화된 유연한 인프라
로 사용자 경험을 향상시켰죠. 이를 통해 빠르게 변화하는 스트리밍 산업에서 앞서 나갈 수 있게 되었고, 많은 비즈니스 이점을 얻게 되었습니다. 사실 넷플릭스는 2008년 큰 장애를 겪은 후, 클라우드로 이전되면서 인프라를 혁신적으로 개편했습니다. 이로써 기존의 수직적 단일 장애 지점에서 벗어나, 수평적으로 확장 가능한 분산 시스템을 구축할 수 있었습니다.
아마존
아마존(Amazon)은 데브옵스 원칙을 초기에 채택하여, 개발과 운영팀 간의 협력을 강화했습니다.
자동화와 지속적인 통합을 강조
함에 따라, 빠른 배포 주기와 개선된 확장성을 달성할 수 있었죠. 이러한 아마존의 데브옵스 접근 방식은, 시장에서 경쟁 우위를 유지하는데 중요한 역할을 했습니다. 아마존 창립자인 제프 베이조스는 아마존의 데브옵스에 대해 '고객에게 집중하고, 혁신을 포용하며, 실험할 용기'를 강조했습니다. 베이조스는 혁신을 위해, 오해를 받고 비판받을 의향이 있어야 한다고 말했던 것이죠.
페이스북
페이스북(Facebook)은 "빠르게 움직이고 물건을 부수라"는 문화에 뿌리를 둔 데브옵스 관행을 택했습니다. 실험, 민첩성, 위험 감수를 중시하는 접근 방식을 포함해서 말이죠. 이처럼 페이스북은
지속적인 통합과 배포, 자동화된 테스팅, 모니터링
을 사용하여 사용자에게 더 빠르고 높은 품질의 새로운 기능과 업데이트를 제공하고 있습니다.
월마트
2011년부터 데브옵스를 도입한 월마트(Walmart)는
자동화와 협업 그리고 지속적인 배포
에 중점을 두었습니다. 애자일(Agile) 방법론과 클라우드 기반의 인프라 및 데브옵스 툴체인을 활용하여, 하루에 최대 100번까지 코드를 배포할 수 있게 된 것이죠. 이를 통해 디지털 변환을 가속화하고, 전자상거래 플랫폼을 개선하며, 고객 경험을 향상시킬 수 있었습니다.
위 기업들은 데브옵스라는 도구를 효과적으로 활용하여 비즈니스 성과를 창출하고, 경쟁 우위를 확보할 수 있었습니다. 그렇다면 데브옵스를 도입하기만 하면 무조건 성공할 수 있을까요?
│ 데브옵스(DevOps)의 오해와 한계
앞선 질문에 대한 대답은 아쉽게도 NO입니다. 데브옵스는 개발 환경과 문화를 전부 해결해 줄 수 있는 '만능책'은 아니라는 것이죠. 데브옵스가 도입된 이후 새로운 한계점이 발견되었고, 실패할 사례들도 적지 않게 나왔습니다.
이러한 결과는 아래와 같은 오해들에서 비롯될 확률이 높은데요. 대표적으로 3가지만 살펴봅시다.
[그림 6] DevOps 구현을 위한 도구 ⓒMedium_Ajesh Martin
오해 1. 데브옵스는 일종의 단순한 도구일 뿐이다?
데브옵스를 '일종의 도구'로만 보는 것은 잘못된 판단입니다. 물론 여러 팀에서 보다 더 나은 환경과 문화를 위해 슬랙(Slack), 젠킨즈(Jenkins), 도커(Docker) 등 여러 도구를 사용하는 것은 좋습니다.
하지만 데브옵스는 이보다 더 광범위한 접근 방식을 담고 있습니다. 즉 개발과 운영팀 간의 협력과 더 빠른 소프트웨어 개발과 배포를 가능하게 하는 방법론을 포함한다는 것이죠. 다시 말해 데브옵스라는 '도구'를 이용하기 이전에, 문화적 그리고 기술적 접근 방식이 바탕이 되어야 데브옵스라는 툴이 도움 될 수 있습니다.
오해 2. 데브옵스는 모든 조직에 적합하다?
만약 '다른 회사에 데브옵스라는 팀이 있으니, 우리도 데브옵스 팀을 만들자'라는 식으로 접근한다면, [그림 2]와 같은 모습이 될 것으로 예상됩니다. 즉 데브옵스의 조직 체계를 구성한다고 해서 데브옵스가 실현될 순 없습니다. 서로 다른 입장과 상황이 있는 개발자-팀-회사, 운영자-팀-회사 간에 상당한 노력을 통해 만들어 내는 것이 더 중요한 것이죠.
이와 비슷한 사례로 애자일(Agile) 문화가 있습니다. 2000년대 초반 '애자일 소프트웨어 선언문'으로 다양한 애자일 방법론이 주목을 받았었죠. 개발에서 빠르고 유연한 방법을 강조하며, 이후 많은 기업들이 애자일 방법론을 도입하게 되며 유행처럼 번져갔습니다.
[그림 7] Agile 프로세스
여기서 애자일 문화를 도입한 많은 기업들이 간과했던 사실은, 애자일 문화 도입 자체가 '해결책'이라고 생각했다는 점입니다. 이보다 기존의 조직 문화에서 애자일 문화를 도입하는 것이 적합한 상황인지, 기존의 프로세스보다 효과를 발휘할 수 있는지, 팀 구성원들이 충분히 적응할 수 있는 문화인지 등을 우선적으로 고려하는 것이 더 중요합니다.
데브옵스 역시 마찬가지로 기존의 조직 규모, 문화, 프로젝트의 특성에 대한 명확한 이해가 먼저 선행되어야 합니다. 데브옵스 도입 전에 조직의 현재 상황과 목표를 면밀히 평가한 후, 점진적으로 도입하는 것이 중요하죠. 대기업이나 캐시카우가 있는 기업들이 데브옵스를 실행했다고 해서, 또는 단지 트렌드라는 이유만으로 도입하는 것은 위험할 수 있습니다.
오해 3. 데브옵스는 빠른 소프트웨어 배포만을 목표로 한다?
데브옵스는 속도만 중시하고 품질이나 안정성을 소홀히 한다는 인식이 있습니다. 하지만 데브옵스는 소프트웨어의 빠른 배포뿐만 아니라, 품질과 안정성 그리고 보안을 동시에 추구해야 합니다. 이에 따라 지속적인 통합과 배포(CI/CD), 자동화된 테스트, 모니터링 등을 통해 이러한 목표를 달성하려고 노력해야 하죠.
이처럼 데브옵스라는 도구를 도입하고 데브옵스 팀을 구성했다고 해서, 데브옵스가 즉각적으로 실현되는 것은 아닙니다.
│ 데브옵스(DevOps) 보다 선행되어야 하는 '이것'
진정한 데브옵스를 실현하기 위한 방법을 한 문장으로 표현한다면 다음과 같습니다.
"싸우지 말고 함께
소프트웨어 시스템 혹은 서비스를 만들어봐요"
힘 빠지는 결론일 수도 있습니다. 하지만 데브옵스를 도입하기 이전에 더 선행되어야 할 것은 각각 다른 업무의 조직원들끼리 서로를 이해하고, 협력하며, 보다 안정적인 시스템과 서비스를 제공하는 '문화'를 만드는 것이 더 현실적인 행동이라고 생각합니다.
물론 데브(Dev)와 옵스(Ops)는 우선순위가 동일하지 않고, 동일한 언어를 사용하지 않을 수 있으며, 매우 다른 관점에서 문제 해결될 가능성이 높습니다. 이처럼 팀을 하나로 모으기 위해서는 상당한 시간과 지속적인 노력이 필요한 것이죠.
그렇다면 어떤 방식으로 팀 협업 문화를 만들어야, 데브옵스를 보다 성공적으로 도입할 수 있을까요?
│ 데브옵스(DevOps) 성공을 위한 첫걸음
먼저 조직 내의 문화를 이해한 다음, 조직 내 교육과 커뮤니케이션을 강화하는 것이 중요한데요. 구체적인 방안을 제안한다면 다음과 같습니다.
로테이션 프로그램 도입
진정한 데브옵스를 실현하려면, 무엇보다 각 부서의 업무적인 이해가 중요합니다. 가장 직관적인 방법으로는 다른 부서의 업무를 '직접 체험'해 보는 것입니다. 예를 든다면 개발자가 운영팀의 업무를 수행하거나, 보안 팀이 개발 업무에 참여하는 등, 다양한 부서 간의 경험을 쌓아 보는 것이죠. 이를 통해 서로의 업무 환경과 각 부서 간의 역할을 이해하는 데 큰 도움을 받을 수 있습니다.
지식 공유 플랫폼 구축
내부 플랫폼이나 문서화된 지식 공유 시스템을 구축하는 방법도 있습니다. 각 부서의 업무와 프로세스에 대한 정보를 쉽게 접근할 수 있도록 하는 것이죠. 예를 들면 데브옵스 문화나 기술적인 도구, 프로세스 등을 포함하여 다양한 지식을 공유합니다. 이를 통해 각 부서의 업무 특성을 명확히 이해할 수 있고, 협업을 원활하게 진행할 수 있겠죠.
정기적인 교육 세션
빠르게 변화하는 기술에 대응하기 위해, 팀원들이 지속적으로 학습하고 발전해야 합니다. 정기적인 교육은 이러한 학습을 지원하는 데 중요한 역할을 하는데요. 예를 든다면 새로 도입된 CI/CD 도구에 대한 워크숍을 개최하여, 팀원들이 해당 도구의 사용법과 이점을 학습할 수 있도록 합니다. 또한 현재 사용 중인 프로세스 개선점에 대한 세션을 주기적으로 열어, 팀원들이 학습한 내용을 바탕으로 업무에 효율적으로 적용할 수 있습니다. 만약 특정 분야에 강점을 가진 팀원이 있어 주기적으로 자신의 경험과 성과를 공유한다면, 팀 전체에게 영감을 주고 학습 기회를 제공할 수도 있겠죠.
스탠드 업 미팅 활성화
매일 정해진 시간에 각 팀원이 자신의 진행 상황이나 이슈, 계획을 간결하게 공유합니다. 정해진 시간을 지키고 효율적인 미팅 진행을 위해, 공유하는 팀원들의 말에 집중하되 '총 15분'을 초과하지 않도록 노력하는 것이 중요합니다. 이를 통해 짧은 시간 동안 팀 전체가 빠르게 현재 상황을 파악하고, 실시간으로 정보를 공유하며, 신속하게 문제를 해결할 수 있습니다.
이처럼 위와 같은 방법들을 통해 구성원들이 효과적으로 협력할 수 있는 환경을 조성하는 노력들이 필요합니다.
。。。。。。。。。。。。
많은 기업들이 경쟁에서 지지 않기 위해 도입하고 있는 데브옵스(DevOps).
하지만 진정한 데브옵스를 실현하기 위해서는
"싸우지 말고 소프트웨어 시스템 혹은 서비스를 만들어 봐요"
라는 문장처럼 각각 다른 업무의 조직원들끼리 서로 이해하고, 협력하는 문화가 선행되는 것이 매우 중요합니다.
즉 너희 팀 vs 우리 팀 업무를 구분하지 않고 함께 협력하여, 아이디어를 생산하고, 가치를 창출해야 하는 것이죠. 혹시 아직 데브옵스를 도입하기 전이거나, 도입 이후에 올바르게 활용되고 있는지 궁금하시다면, 오늘 이 글을 통해 심도 있게 생각해 보시는 건 어떨까요?
#데브옵스
#DevOps
#MSA
#클라우드컴퓨팅
원종혁
솔루션사업팀
최일선에서 일하는 솔루션사업팀에서 근무 중입니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
효율적인 로그 모니터링과 실시간 로그 분석을 위한 OpenSearch PPL 활용 가이드
효율적인 로그 모니터링과 실시간 로그 분석을 위한 OpenSearch PPL 활용 가이드
오늘날 대규모 인프라 환경에서 발생하는 방대한 데이터를 관리하기 위해 로그 모니터링과 로그분석은 필수적인 요소가 되었습니다. OpenSearch(및 Elasticsearch)는 이 분야의 사실상 표준으로 자리 잡았으나, 이를 활용하는 엔지니어와 분석가들은 강력한 기능의 이면에 있는 ‘Query DSL’이라는 높은 진입 장벽을 마주하곤 합니다. JSON 형식을 기반으로 하는 DSL은 검색 조건을 매우 정밀하게 정의할 수 있다는 장점이 있습니다. 하지만 쿼리가 복잡해질수록 로직이 깊게 중첩되어 가독성이 떨어지고 생산성이 저하되는 구조적 문제를 안고 있습니다. 특히 1분 1초가 급한 장애 상황이나 보안 침해 사고를 분석해야 하는 SIEM(보안 정보 및 이벤트 관리) 환경에서, 수십 줄의 JSON 괄호를 맞추는 작업은 민첩한 대응을 방해하는 실질적인 걸림돌이 됩니다. 이러한 문제를 해결하기 위해 등장한 것이 바로 PPL(Piped Processing Language)입니다. PPL이 제안하는 새로운 분석 방식을 살펴보기 전, 먼저 우리가 기존 DSL 환경에서 겪어온 실제적인 어려움들을 통해 왜 방식의 변화가 필요한지 짚어보겠습니다. 1. 데이터 탐색의 어려움 1.1. OpenSearch DSL OpenSearch(및 Elasticsearch)는 검색 엔진 시장의 사실상 표준으로 자리 잡았지만, 데이터 분석가나 엔지니어들에게는 한 가지 큰 진입 장벽이 존재했습니다. 바로 Query DSL(Domain Specific Language)입니다. DSL은 JSON(JavaScript Object Notation) 형식을 기반으로 하며, 검색 쿼리의 구조를 매우 정밀하게 정의할 수 있다는 강력한 장점이 있습니다. 하지만 이는 동시에 인간의 직관과는 거리가 먼 방식이기도 합니다. DSL은 쿼리가 복잡해질수록 JSON 객체가 깊게 중첩되는 특성이 있기 때문입니다. 예를 들어 단순한 GROUP BY 집계를 수행하려 해도 aggs안에 terms, 그 안에 다시 aggs를 정의해야 하는 피라미드 구조가 형성됩니다. 일반적으로 데이터를 탐색하는 과정은 "A를 찾고, B를 제외한 뒤, C로 묶어서 계산한다"라는 선형적인 사고를 따릅니다. 하지만 DSL은 이 모든 조건을 하나의 거대한 JSON 객체로 구조화해야 하므로, 작성과 수정 시 높은 집중력을 요합니다. 또한 로그를 분석하거나 장애 원인을 파악하는 긴급한 상황에서, 수십 줄의 JSON 괄호 짝들은 가독성과 생산성을 저하시키는 요인이 됩니다. <예시 1.1: 지난 1시간 동안 500 에러가 발생한 상위 5개 IP 추출하기 위한 DSL문> 1.2. PPL(Piped Processing Language) PPL은 이러한 구조적 복잡성을 해결하기 위해 등장했습니다. 이름에서 알 수 있듯이, 파이프(Pipe, |)를 통해 데이터를 순차적으로 처리하는 언어입니다. PPL이 가져온 변화는 단순히 문법의 형태를 바꾼 수준에 그치지 않습니다. 데이터에 접근하는 패러다임 자체를 선언적 구조(JSON)에서 절차적 흐름(Pipeline)으로 전환시킨 것입니다. 이는 Unix와 Linux에서 익숙하게 사용되는 명령어 파이프라인 철학을 데이터 검색 엔진에 이식한 결과이기도 합니다. 이러한 방식의 변화 덕분에 사용자는 더 이상 복잡한 JSON의 계층 구조를 설계할 필요가 없습니다. 대신 "데이터를 가져오고, 필터링한 뒤, 통계를 낸다"는 인간의 자연스러운 사고 흐름에 맞춰 질의를 작성할 수 있게 되었습니다. 이는 결과적으로 쿼리 작성 시간을 단축시키고, 분석가의 의도를 더욱 명확하게 코드에 투영할 수 있게 해줍니다. <예시 1.2: 예시 1.2와 동일한 로직을 PPL로 작성한 경우> 2. PPL의 핵심 특징 및 장점 PPL을 도입해야 하는 이유는 단순히 쓰기 편해서가 아닙니다. 이는 데이터 분석의 접근성(Accessibility), 가독성(Readability), 유연성(Flexibility) 측면에서 근본적인 이점을 제공하기 때문입니다. 2.1. SQL-like Syntax 데이터 업계에서 SQL은 가장 보편적인 언어입니다. PPL은 SQL의 문법적 특성을 차용하여 접근성을 높였습니다. SELECT, WHERE, LIKE 등 익숙한 키워드를 그대로 사용하므로, 새로운 도구 도입에 따른 저항감을 최소화합니다. 2.2. Pipe ($|$) PPL의 가장 강력한 무기는 | (파이프) 연산자입니다. 이는 쿼리를 논리적 단계로 분해합니다. 1단계: 전체 데이터 가져오기 (source=logs) 2단계: 필요한 부분만 남기기 (| where status=500) 3단계: 불필요한 필드 버리기 (| fields timestamp, message) 이처럼 하나의 문제를 단계별로 쪼개며 순차적으로 해결할 수 있습니다. 이러한 방식은 디버깅의 용이성도 증가시킵니다. DSL은 쿼리가 실패하면 전체 JSON 구조를 다시 살펴봐야 하지만, PPL은 파이프를 하나씩 끊어가며 어느 단계에서 데이터가 의도와 다르게 변형되었는지 즉시 확인할 수 있습니다. 2.3. Aggregation의 추상화 OpenSearch의 집계(Aggregation) 기능은 강력하지만 DSL 작성이 매우 까다롭습니다. PPL은 이를 stats 명령어로 추상화했습니다. 기존 DSL 방식에서 집계를 하려면 버킷(Buckets)과 메트릭(Metrics)의 개념을 이해하고, 이를 JSON의 계층 구조로 쌓아 올려야 했습니다. 하지만 PPL은 이 복잡한 과정을 우리가 흔히 쓰는 SQL 스타일로 탈바꿈시켰습니다. 간단한 시나리오인 “카테고리별 평균 가격 구하기”를 DSL로 작성하면 aggs 안에 그룹핑을 위한 terms를 정의하고, 그 안에 다시 계산을 위한 aggs를 중첩해야 합니다. 평균을 구한다라는 쿼리의 의도보다 괄호와 같은 문법적 구조에 더 신경 써야 합니다. 그룹핑 조건이 늘어날수록 JSON은 기하급수적으로 깊어집니다. 반면 동일한 시나리오를 PPL로 작성하면 stats 이라는 명령어로 간단하게 표현할 수 있습니다. stats: "집계를 시작하겠다"는 선언입니다. avg(price): "무엇을 계산할지" 명시합니다. (Metric) by category: "무엇을 기준으로 묶을지" 명시합니다. (Bucket) 단 한 줄의 코드로 DSL의 복잡한 로직을 완벽하게 대체할 수 있습니다. 2.4. 동적 필드 생성 데이터 분석을 하다 보면, 인덱스에 저장된 원본 데이터(Raw Data)만으로는 부족할 때가 많습니다. - 용량이 bytes 단위로 저장되어 있어 보기 불편한 경우 - 파일 경로와 파일 이름이 하나의 필드에 있어 각각 분리해야 하는 경우 - 보낸 용량, 받은 용량만 있고 총 용량이 없는 경우 이를 해결하기 위해 데이터를 재색인(Reindexing)하는 것은 너무 복잡한 과정입니다. 하지만 PPL은 eval 명령어 하나로 쿼리 실행 시점에 필드를 즉석에서 생성합니다. 바이트 단위를 메가바이트로 변환하여 새로운 필드 size_mb를 만드는 로직은 eval 명령어와 간단한 연산자를 이용하여 작성할 수 있습니다. 원본 데이터에는 size_mb라는 필드가 존재하지 않습니다. 하지만 PPL이 실행되는 순간 계산되어, 마치 원래 있던 필드처럼 where 절에서 필터링 조건으로 사용하거나 fields로 출력할 수 있습니다. PPL의 eval은 데이터 저장 구조(Schema)가 분석의 한계가 되지 않도록, 분석가에게 데이터를 재정의할 수 있는 강력한 권한을 부여하는 기능입니다. 3. PPL 문법 해부 앞서 PPL이 데이터 분석에 제공하는 근본적인 이점들을 살펴보았습니다. 하지만 이러한 장점들을 실무에 온전히 녹여내기 위해서는 PPL이 데이터를 처리하는 방식, 즉 문법의 구조를 정확히 이해하는 과정이 필요합니다. PPL의 문법은 단순한 규칙의 나열이 아니라, 데이터의 흐름을 제어하는 그 자체입니다. 각 명령어는 이전 단계에서 넘어온 데이터를 가공하여 다음 단계로 넘겨주는 '필터' 역할을 수행합니다. 마치 공장의 컨베이어 벨트 위에서 원재료가 각 공정을 거쳐 완성품이 되는 것과 같은 원리입니다. 그럼 지금부터 데이터 분석 현장에서 가장 빈번하게 사용되는 6가지 핵심 명령어를 통해 PPL의 구조를 깊이 있게 살펴보겠습니다. 3.1. source 모든 PPL 쿼리의 시작점입니다. SQL의 FROM 절에 해당하지만, PPL에서는 search source=... 형태로 명시합니다. 단일 인덱스뿐만 아니라 와일드카드(*)를 사용하여 여러 인덱스를 동시에 조회할 수 있습니다. search source=logs-* : 'logs-'로 시작하는 모든 인덱스 조회. 3.2. where 분석에 불필요한 데이터를 걸러내는 단계입니다. SQL의 WHERE 절과 동일합니다. where는 파이프라인의 가장 앞단에 위치시키는 것이 성능상 유리합니다. 처리해야 할 데이터의 총량을 줄여주기 때문입니다. where는 AND, OR, NOT 논리 연산자와 in, like 등의 비교 연산자를 모두 지원합니다. 3.3. eval 원본 데이터에는 없지만 분석 시점에 필요한 새로운 데이터를 만들어냅니다. 기존 필드 값을 이용해 계산을 하거나 문자열을 조합하여 새로운 필드를 정의합니다. 3.4. stats SQL의 GROUP BY와 집계 함수를 합친 개념입니다. 문법: stats <function>(<field>) by <grouping_field> 집계함수: count, sum, avg, min, max와 같은 통계 분석에 필요한 함수를 제공합니다. 3.5. fields 최종 사용자에게 보여줄 데이터를 다듬는 과정입니다. SELECT 절과 유사합니다. 수백 개의 필드 중 분석에 필요한 핵심 필드만 남깁니다 (+로 포함, -로 제외 가능). rename: 기술적인 필드명(예: req_ts_ms)을 비즈니스 친화적인 이름(예: Response Time)으로 변경하여 가독성을 높입니다. 3.6. sort & head sort: 데이터의 정렬 순서를 정합니다. - 기호를 붙이면 내림차순(DESC)이 됩니다. (sort -count) head: SQL의 LIMIT와 같습니다. 상위 N개의 결과만 잘라냅니다. 대량의 데이터 분석 시 결과를 끊어서 확인하는 데 필수적입니다. 4. 실전 예제 지금까지 PPL의 기본 개념과 주요 명령어들을 살펴보았습니다. 하지만 도구의 진정한 가치는 이론적인 문법을 아는 것에 그치지 않고, 이를 실제 복잡한 데이터 환경에 어떻게 적용하느냐에 있습니다. 이제 우리가 현업에서 흔히 마주할 수 있는 구체적인 시나리오들을 통해, PPL이 실무적인 문제들을 얼마나 직관적이고 효율적으로 해결하는지 단계별로 알아보겠습니다. 4.1. Brute Force 공격 탐지 상황: 과도한 로그인 실패(401 Error) IP 식별 1) search source=access_logs: 엑세스 로그 전체를 가져옵니다. 2) where status = 401: 전체 로그 중 로그인 실패 로그만 남깁니다. 3) stats count() as fail_count by client_ip: IP 주소별로 실패 횟수를 집계합니다. 이제 데이터는 개별 로그가 아니라 'IP별 요약 정보'가 됩니다. 4) where fail_count > 50: 50회 이상 실패한 의심 IP만 필터링합니다. (집계 후 필터링 - SQL의 HAVING 절과 유사) 5) sort -fail_count: 가장 공격 빈도가 높은 IP를 최상단에 노출합니다. 4.2. 카테고리별 매출 분석 상황: 상품 카테고리별 매출 현황과 평균 단가 확인 1) eval revenue = price * quantity: price와 quantity 필드를 곱하여, 원본 데이터에 없던 revenue(매출액) 필드를 실시간으로 계산해냅니다. 2) stats sum(revenue) as total_sales, avg(revenue) as avg_order_value by category: 카테고리 기준으로 총 매출(sum)과 평균 주문액(avg)을 동시에 계산합니다. 3) head 10: 상위 10개 카테고리만 추출하여 리포트용 데이터를 완성합니다. 4.3. 시간대별 트래픽 추이 시각화 상황: 지난 24시간 동안 웹 서버의 트래픽 변화 1) span(timestamp, 10m): 연속적인 시간 데이터를 10분 단위로 자릅니다. 2) stats count() as request_count by ...: 잘라낸 10분 단위별로 요청 수(count)를 셉니다. 결과: 이 쿼리의 결과는 그대로 라인 차트(Line Chart)나 바 차트(Bar Chart)로 시각화하기 완벽한 형태(X축: 시간, Y축: 횟수)가 됩니다. 5. PPL 성능 최적화와 고려사항 PPL은 사용자가 직관적으로 쿼리를 작성할 수 있게 돕지만, 그 이면에서는 방대한 데이터를 처리하는 무거운 작업이 수행됩니다. 도구의 편리함이 시스템의 부하로 이어지지 않도록, 쿼리 효율성을 고려하는 분석 습관을 갖추는 것이 중요합니다 5.1. 성능 최적화 방안 PPL 쿼리는 파이프라인 구조이기 때문에, 앞단에서 데이터의 크기를 줄일수록 전체 실행 속도가 기하급수적으로 빨라집니다. 1) where는 search 바로 뒤에 오는 것이 좋습니다. 데이터를 집계(stats)하거나 정렬(sort)한 뒤에 필터링하는 것은 낭비입니다. 불필요한 데이터를 메모리에 올리기 전에 where 절로 과감하게 잘라내야 합니다. 2) 필요한 필드만 명시하는 것이 좋습니다. OpenSearch 문서는 수십, 수백 개의 필드를 가질 수 있습니다. fields 명령어를 사용하여 분석에 꼭 필요한 필드만 남기면 네트워크 전송량과 메모리 사용량을 획기적으로 줄일 수 있습니다. 5.2. PPL vs DSL 언제 무엇을 써야 할까? PPL이 등장했다고 해서 기존의 DSL(Domain Specific Language)이 사라지는 것은 아닙니다. 두 언어는 태생적 목적이 다릅니다. 이 둘을 상호 보완적인 관계로 이해하고 적재적소에 사용하는 것이 좋습니다. 1) PPL을 써야 하는 경우 - 사람 중심, 탐색, Ad-hoc 분석, 운영/보안 PPL은 사람이 데이터를 봐야 하는 상황에 최적화되어 있습니다. 사고의 흐름이 끊기지 않고 빠르게 질문을 던지고 답을 얻어야 하는 상황입니다. * 상황 A: 장애 발생 시 긴급 원인 분석 "지금 500 에러가 급증하는데, 특정 API에서만 발생하는 건가?" 긴급 상황에서 복잡한 JSON 괄호를 맞출 시간은 없습니다. PPL로 빠르게 필터링(where)하고 집계(stats)하여 원인을 좁혀나가야 합니다. * 상황 B: 보안 위협 헌팅 "지난 1주일간 새벽 시간에만 접속한 관리자 계정이 있는가?" 데이터를 이리저리 돌려보고, 조건을 바꿔가며 숨겨진 패턴을 찾아내는 '탐색적 분석'에는 수정이 용이한 PPL이 압도적으로 유리합니다. * 상황 C: 비개발 직군의 데이터 접근 기획자(PM), 마케터, 데이터 분석가가 직접 데이터를 추출해야 할 때. SQL에 익숙한 이들에게 JSON DSL을 학습시키는 것은 비효율적입니다. PPL은 이들에게 데이터 접근 권한을 열어주는 열쇠가 됩니다. 2) DSL을 써야 하는 경우 키워드: 기계 중심, 애플리케이션 개발, 정밀도, 검색 튜닝 DSL은 애플리케이션이 데이터를 조회할 때 최적화되어 있습니다. 코드로 구현되어 시스템의 일부로 동작하거나, 매우 정교한 검색 로직이 필요할 때 사용합니다. * 상황 A: 검색 서비스 기능 구현 쇼핑몰 검색창, 자동 완성, 추천 시스템 등 최종 사용자에게 노출되는 기능을 개발할 때. Java, Python, Go 등의 클라이언트 라이브러리(SDK)는 객체 지향적인 JSON 구조(DSL)와 완벽하게 매핑됩니다. 코드로 쿼리를 조립하기에는 DSL이 훨씬 안정적입니다. * 상황 B: 정교한 검색 랭킹 튜닝 function_score, boosting, slop 등 검색 품질을 미세하게 조정하는 기능은 DSL만이 100% 지원합니다. PPL은 '분석'에 강하지만 '검색 랭킹' 제어력은 약합니다. * 상황 C: 초고성능 최적화가 필요한 고정 쿼리 수천만 건의 데이터를 0.1초 안에 조회해야 하는 API 백엔드. DSL은 필터 캐싱, 라우팅 제어 등 엔진 내부의 최적화 기능을 극한까지 활용할 수 있는 세밀한 옵션들을 제공합니다.\ 3) 정리 지금까지 OpenSearch의 PPL(Piped Processing Language)에 대해 깊이 있게 살펴보았습니다. 과거에는 OpenSearch 데이터를 분석하려면 'JSON 괄호와의 싸움'을 피할 수 없었습니다. 하지만 PPL의 등장으로 이제 SQL을 아는 개발자, 데이터 분석가, 심지어 비개발 직군까지도 데이터와 직접 대화할 수 있는 길이 열렸습니다. PPL이 가져온 변화는 명확합니다. - 직관성: 사고의 흐름대로 파이프(|)를 연결하여 로직을 구현합니다. - 생산성: 복잡한 집계 코드를 단 한 줄로 압축합니다. - 협업: 누구나 읽고 이해할 수 있는 코드로 팀 간 커뮤니케이션이 원활해집니다. 여러분의 데이터 인프라에 OpenSearch가 있다면, 오늘 당장 복잡한 JSON 대신 PPL을 입력해 보시길 권합니다. 단순히 쿼리 언어를 바꾸는 것을 넘어, 데이터 속에 숨겨진 인사이트를 발견하는 속도가 달라질 것입니다.
2026.01.07
다음 슬라이드 보기