반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
최신이야기
검색
기술이야기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
기술이야기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
앞선 글들을 통해서 NMS의 기본 개념, 구성요소와 기능, 정보 수집 프로토콜에 대해서 알아봤었는데요. 이번 글에서는 NMS의 역사와 진화 과정, 그리고 최근 트렌드에 대해서 자세히 알아보겠습니다. EMS, NPM, 그리고 AIOps에 이르기까지 네트워크의 빠른 변화에 발맞추어 진화하고 있는 NMS에 대해서 하나씩 하나씩 살펴보겠습니다. ㅣNMS의 역사와 진화 과정 우선 NMS의 전반적인 역사와 진화 과정을 살펴보겠습니다. [1] 초기 단계 (1980년대 이전) 초기에는 네트워크 관리가 수동적이었습니다. 네트워크 운영자들은 네트워크를 모니터링하고 문제를 해결하기 위해 로그 파일을 수동으로 분석하고 감독했습니다. [2] SNMP의 등장 (1988년) SNMP(Simple Network Management Protocol)의 등장으로 네트워크 장비에서 데이터를 수집하고 이를 중앙 집중식으로 관리하는 표준 프로토콜을 통해 네트워크 관리자들이 네트워크 장비의 상태를 실시간으로 모니터링하고 제어할 수 있게 됐습니다. [3] 네트워크 관리 플랫폼의 출현 (1990년대 중후반) 1990년대 후반부에는 상용 및 오픈 소스 기반의 통합된 네트워크 관리 플랫폼이 등장했습니다. 이러한 플랫폼들은 다양한 네트워크 장비와 프로토콜을 지원하고, 시각화된 대시보드와 경고 기능 등을 제공하여 네트워크 관리의 편의성을 높였습니다. [4] 웹 기반 NMS (2000년대 중반) 2000년대 중반에는 웹 기반의 NMS가 등장했습니다. 이러한 시스템은 사용자 친화적인 웹 인터페이스를 통해 네트워크 상태를 모니터링하고 관리할 수 있게 했습니다. [5] 클라우드 기반 NMS (2010년대 이후) 최근 몇 년간 클라우드 기반 NMS의 등장으로 네트워크 관리의 패러다임이 변화하고 있습니다. 또한 빅데이터 기술과 인공지능(AI) 기술을 활용하여 네트워크 성능을 최적화하고, 향후 성능을 예측할 수 있는 성능 예측 기능까지 NMS에서 제공하고 있습니다. ㅣNMS에서 EMS로의 진화 네트워크 환경은 빠르게 변화하게 되고, 이에 따라서 NMS도 EMS로 진화하게 됩니다. NMS의 진화는 총 세 가지 세대로 나눌 수 있습니다. 1세대: 디바이스 관리 시스템 기존의 NMS는 외산 제조사에서 제공하는 전용 네트워크 솔루션이 주를 이루었습니다. CISCO의 시스코웍스(CiscoWorks), IBM의 넷뷰(NetView) HP의 네트워크 노드 매니저(Network Node Manager) 등 다양한 벤더들이 자사의 제품에 대한 모니터링 서비스를 제공하기 위해 특화된 디바이스 관리 솔루션을 내놓았죠. HP Network Node Manager 예시 화면(출처ⓒ omgfreeet.live) 물론 자사의 제품을 관리하기 위한 목적에서 출발한 솔루션이었기에, 대규모 이기종 IT 인프라 환경에 대한 모니터링 기능은 제공하지 못했습니다. 2세대: IT 인프라 관리 시스템 EMS의 등장 1세대의 NMS의 경우 빠르게 급변하는 네트워크 트렌드를 따라갈 수 없었습니다. 가상랜(VLAN), 클라이언트-서버 기술이 발달하게 되자, IP 네트워크 관계만으로 실제 토폴로지를 파악하기 어려웠습니다. 또한 네트워크장비 및 회선의 상태뿐 아니라, 서버 등의 이기종 IT 인프라 통합 모니터링에 대한 니즈와 함께 EMS(Enterprise Management System)의 시대가 시작됩니다. 이에 따라 서비스 관리 차원의 통합 관제 서비스가 등장합니다. 기존의 네트워크 모니터링뿐 아니라 서버, DBMS, WAS 등 IT 서비스를 이루고 있는 모든 인프라들에 대한 통합 모니터링에 대한 관심과 니즈가 증가했기 때문입니다. 3세대: 클라우드 네이티브 환경의 EMS 2010년 중 이후 서버, 네트워크 등 IT 인프라에 대한 클라우드 네이티브로의 전환이 가속화되었습니다. 기존의 레거시 환경에 대한 모니터링과 함께 퍼블릭, 프라이빗 클라우드에 대한 모니터링 니즈가 증가하면서 모든 환경에 대한 통합적인 가시성을 제공해 줄 수 있는 EMS가 필요하게 되었죠. 이외에도 AI의 발전을 통해 AIOps, Observability라는 이름으로 인프라에 대한 장애를 사전적으로 예측할 수 있는 기능이 필요하게 됐습니다. ㅣ네트워크 환경 변화(가상화)와 NMS의 변화 이번에는 네트워크 환경 변화에 따른 NMS의 변화에 대해서 알아보겠습니다. 네트워크 환경 변화(네트워크 가상화) 네트워크 구성 방식은 지속적으로 변화해왔습니다. 클라이언트-서버 모델부터 중앙 집중식 네트워크, MSA 환경에서의 네트워크 구성까지 이러한 변화는 기술 발전, 비즈니스 요구 사항, 보안 요구 사항 등 다양한 요인에 의해 영향을 받았는데요. 무엇보다 가장 중요한 변화는 전통적인 온 프레미스 네트워크 구조에서 네트워크 자원이 더 이상 물리적인 장비 기반의 구성이 아닌 가상화 환경에서 구성된다는 점입니다. ▪소프트웨어 정의 네트워킹(SDN, 2000년대 후반 - 현재): 네트워크 관리와 제어를 분리하고 소프트웨어로 정의하여 유연성과 자동화를 향상시키는 접근 방식입니다. SDN은 네트워크 관리의 복잡성을 줄이고 가상화, 클라우드 컴퓨팅 및 컨테이너화와 같은 새로운 기술의 통합을 촉진시켰습니다. ▪네트워크 가상화 (NFV, 현재): 기존 하드웨어 기반 전용 장비에서 수행되던 네트워크 기능을 소프트웨어로 가상화하여 하드웨어 의존성과 장비 벤더에 대한 종속성을 배제하고, 네트워크 오케스트레이션을 통해 네트워크 환경 변화에 민첩한 대응을 가능하게 합니다. ㅣ클라우드, AI 등의 등장에 따른 NMS의 방향 클라우드 네이티브가 가속화되고, AI를 통한 인프라 관리가 주요 화두로 급부상하면서 네트워크 구성과 이를 모니터링하는 NMS의 환경 역시 급변하고 있습니다. 클라우드 내의 네트워크: VPC VPC(Virtual Private Cloud)는 퍼블릭 클라우드 환경에서 사용할 수 있는 전용 사설 네트워크입니다. VPC 개념에 앞서 VPN에 대한 개념을 단단히 잡고 넘어가야 합니다. VPN(Virtual Private Network)은 가상사설망으로 '가상'이라는 단어에서 유추할 수 있듯이 실제 사설망이 아닌 가상의 사설망입니다. VPN을 통해 하나의 네트워크를 가상의 망으로 분리하여, 논리적으로 다른 네트워크인 것처럼 구성할 수 있습니다. VPC도 이와 마찬가지로 클라우드 환경을 퍼블릭과 프라이빗의 논리적인 독립된 네트워크 영역으로 분리할 수 있게 해줍니다. VPC가 등장한 후 클라우드 내에 있는 여러 리소스를 격리할 수 있게 되었는데요. 예를 들어 'IP 주소 간에는 중첩되는 부분이 없었는지', '클라우드 내에 네트워크 분리 방안' 등 다양한 문제들을 VPC를 통해 해결할 수 있었습니다. ▪서브넷(Subnet): 서브넷은 서브 네트워크(Subnetwork)의 줄임말로 IP 네트워크의 논리적인 영역을 부분적으로 나눈 하위망을 말합니다. AWS, Azure, KT클라우드, NHN 등 다양한 퍼블릭 클라우드의 VPC 서브넷을 통해 네트워크를 분리할 수 있습니다. ▪서브넷은 크게 퍼블릿 서브넷과 프라이빗 서브넷으로 나눌 수 있습니다. 말 그대로 외부 인터넷 구간과 직접적으로 통신할 수 있는 공공, 폐쇄적인 네트워크 망입니다. VPC를 이용하면 Public subnet, Private subnet, VPN only subnet 등 필요에 따라 다양한 서브넷을 생성할 수 있습니다. ▪가상 라우터와 라우트 테이블(routing table): VPC를 통해 가상의 라우터와 라우트 테이블이 생성됩니다. NPM(Network Performance Monitoring) 네트워크 퍼포먼스 모니터링(NPM)은 전통적인 네트워크 모니터링을 넘어 사용자가 경험하는 네트워크 서비스 품질을 측정, 진단, 최적화하는 프로세스입니다. NPM 솔루션은 다양한 유형의 네트워크 데이터(ex: packet, flow, metric, test result)를 결합하여 네트워크의 성능과 가용성, 그리고 사용자의 비즈니스와 연관된 네트워크 지표들을 분석합니다. 단순하게 네트워크 성능 데이터(Packet, SNMP, Flow 등)를 수집하는 수동적인 과거의 네트워크 모니터링과는 다릅니다. 우선 NPM은 네트워크 테스트(Synthetic test)를 통해 수집한 데이터까지 활용하여, 실제 네트워크 사용자가 경험하는 네트워킹 서비스 품질을 높이는데 그 목적이 있습니다. NPM 솔루션은 NPMD라는 이름으로 불리기도 합니다. Gartner는 네트워크 성능 모니터링 시장을 NPMD 시장으로 명명하고 다양한 데이터를 조합하여 활용하는 솔루션이라고 정의했습니다. 즉 기존의 ICMP, SNMP 활용 및 Flow 데이터 활용과 패킷 캡처(PCAP), 퍼블릭 클라우드에서 제공하는 네트워크 데이터 활용까지 모든 네트워크 데이터를 조합하는 것이 핵심이라 할 수 있습니다. AIOps: AI를 활용한 네트워크 모니터링 AI 모델을 활용한 IT 운영을 'AIOps'라고 부릅니다. 2014년 Gartner를 통해 처음으로 등장한 이 단어는 IT 인프라 운영에 머신러닝, 빅데이터 등 AI 모델을 활용하여 리소스 관리 및 성능에 대한 예측 관리를 실현하는 것을 말합니다. 가트너에서는 AIOps에 대한 이해를 위해 관제 서비스, 운영, 자동화라는 세 가지 영역으로 분류해서 설명하고 있습니다. ▪관제(Observe): AIOps는 장애 이벤트가 발생할 때 분석에 필요한 로그, 성능 메트릭 정보 및 기타 데이터를 자동으로 수집하여 모든 데이터를 통합하고 패턴을 식별할 수 있는 관제 단계가 필요합니다. ▪운영(Engine): 수집된 데이터를 분석하여 장애의 근본 원인을 판단하고 진단하는 단계로, 장애 해결을 위해 상황에 맞는 정보를 IT 운영 담당자에게 전달하여 반복적인 장애에 대한 조치 방안을 자동화하는 과정입니다. ▪자동화(Automation): 장애 발생 시 적절한 해결책을 제시하고 정상 복구할 수 있는 방안을 제시하여, 유사 상황에도 AIOps가 자동으로 조치할 수 있는 방안을 마련하는 단계입니다. 위의 세 단계를 거쳐 AIOps를 적용하면 IT 운영을 사전 예방의 성격으로 사용자가 이용하는 서비스, 애플리케이션, 그리고 인프라까지 전 구간의 사전 예방적 모니터링을 가능하게 합니다. 또한 구축한 데이터를 기반으로 AI 알고리즘 및 머신 러닝을 활용하여 그 어떠한 장애에 대한 신속한 조치와 대응도 자동으로 가능하게 합니다. Zenius를 통한 클라우드 네트워크 모니터링 참고로 Zenius를 통해 각 퍼블릭 클라우드 별 VPC 모니터링이 가능합니다. VPC의 상태 정보와 라우팅 테이블, 서브넷 목록 및 서브넷 별 상세 정보 (Subnet ID, Available IP, Availability Zone 등)에 대한 모니터링 할 수 있습니다. Zenius-CMS를 통한 AWS VPC 모니터링 이외에도 각 클라우드 서비스에 대한 상세 모니터링을 통해 클라우드 모니터링 및 온 프레미스를 하나의 화면에서 모니터링하실 수 있습니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼, 네트워크의 변화에 따라서 NMS는 계속해서 진화하고 있습니다. 현재의 네트워크 환경과 변화할 환경을 모두 완벽하게 관리할 수 있는 NMS 솔루션을 통해 안정적으로 서비스를 운영하시기 바랍니다.
2024.04.03
기술이야기
Helm과 Argo의 개념과 통합 활용법?!
기술이야기
Helm과 Argo의 개념과 통합 활용법?!
애플리케이션을 클라우드 네이티브 환경에서 효율적으로 관리하고 운영할 수 있는 플랫폼인 쿠버네티스(kubernetes)를 활용하는 기업들이 점점 더 늘어나고 있습니다. 이에 따라 효율적인 애플리케이션 관리를 통해 패키징 배포, 관리를 자동화하고 일관된 상태를 유지하는 것이 중요해지고 있습니다. 이번 글을 통해서는 애플리케이션 개발 및 도구 중 최근 많이 사용되는 Helm과 Argo에 대해서 자세히 알아보겠습니다. ㅣHelm의 등장 쿠버네티스를 활용한 애플리케이션 배포에 가장 기본이 되는 단위는 yaml 파일로, 주로 쿠버네티스 object(리소스)들을 정의하고 다루는데 활용됩니다. 쿠버네티스를 통해 애플리케이션을 배포하다 보면 비슷한 틀과 내용을 공유하고, 내부 값(configuration)만 일부 변경하는 작업을 하게 되는데요, 이 과정에서 애플리케이션마다 모두 yaml 파일을 만들어야 하나 보니 매우 번거로웠습니다. 위 이미지를 보면, A 애플리케이션은 정적 파일인 yaml을 오브젝트별(Service, Pod, ConfigMap)로 만들어서 생성하고 배포합니다. 그러다가 프로젝트의 확장에 따른 기능 추가로 인해 B와 C 애플리케이션으로 쪼개어 각각의 yaml 파일을 복사해서 사용합니다. 하지만, 팀 단위로 인프라가 확장될 경우는 어떻게 할까요? 개별 오브젝트에 대한 yaml 개별적으로 관리할 수 있을까요? 만약, 개별적으로 관리한다면 파일의 갯수와 코드량의 증가로 인해 개발자들은 매우 혼잡하게 될 것입니다. 이러한 문제점을 해결하기 위해, 쿠버네티스에서 애플리케이션을 배포하기 위해 사용되는 대표적인 패키징 툴인 Helm이 등장하게 됐습니다. Helm을 활용하면 컨테이너 배포뿐 아니라 애플리케이션을 배포하기 위해 필요한 쿠버네티스 리소스를Node의 npm, Ubuntu의 APT, Mac의 Homebrew처럼 모두 패키지 형태로 배포할 수 있습니다. ㅣHelm의 역사 Helm은 v1부터 v3에 이르기까지 아래와 같은 변화의 과정을 거쳐왔습니다. Helm v1 ◾ [2015년 11월] DEIS의 내부 프로젝트로 시작되어 KubeCon에서 발표 ◾ [2017년 04월] MS에서 DEIS를 인수 Helm v2 ◾ [2016년 01월] Google 프로젝트에 합류 ◾ [2016년 ~ 2018년] Helm v2 고도화, 2.15.0 릴리스 발표에서 v2 향후 계획 세부사항 공유 Helm v3 ◾ [2018년 06월] CNCF 프로젝트에 합류, MS, 삼성 SDS, IBM 및 Blood Orange의 구성원 등이 참여 ◾ [2019년 11월] 릴리스 발표 v2에서 v3로 고도화되면서 가장 눈에 띄는 변화는 Tiller(클러스터 내에서 Helm 패키지 및 배포 상태를 관리하는 서버 구성요소)의 제거입니다. Helm v2에서는 클러스터에 Tiller를 설치하여, API Server와 REST*1 통신을 하고, Client와 gRPC*2 통신을 진행했었는데요, Helm v3부터는 Tiller가 제거되면서 Client에서 바로 REST 통신을 통해 API Server로 요청하는 방식으로 변경되었습니다. 그 외에도 Helm v3으로 업그레이드되면서 보안 취약점이 줄어들었으며, 설치 및 관리 과정이 단순화되었습니다. 또한 사용자에게 보다 더 안전하고 효율적인 배포 및 관리 환경을 제공할 수 있게 되었습니다. *1 REST (Representational State Transfer) : 웹 기반 애플리케이션에서 자원을 관리하기 위한 아키텍처 스타일, 데이터를 고유한 URL로 표현하고 HTTP 메서드(GET, POST, PUT, DELETE 등)를 사용하여 해당 자원에 대한 행위를 정의함 *2 gRPC (google Remote Procedure Call) : 구글에서 개발한 오픈소스 프레임워크, 원격지에 있는 다른 시스템 또는 서버에 있는 함수를 호출하는 방식 ㅣHelm의 주요 개념 Helm은 애플리케이션을 배포해 주는 툴이라고 앞서 살펴봤는데요, Helm과 같이 사용되는 주요 개념들을 살펴보겠습니다. ◾ Helm Chart: 쿠버네티스 리소스를 하나로 묶은 패키지입니다. 이는 yaml 파일의 묶음(패키지)으로, 이 묶음 public 혹은 private registry에 push 해두고, helm 명령어를 통해 Helm Chart를 설치하여 쿠버네티스 리소스를 배포하는 역할을 합니다. ◾ Repository: Helm Chart 들의 저장소 ◾ Release: kubernetes Cluster에서 구동되는 차트 인스턴스이며, Chart는 여러 번 설치되고 새로운 인스턴스는 Release로 관리됩니다. ㅣHelm의 주요 기능 Helm의 두 가지 주요 기능을 살펴보겠습니다. [1] Helm Chart를 통한 손쉬운 배포 Helm을 사용하면 어떻게 되는지 그림으로 살펴보겠습니다. 개발 클러스터가 있고 앱 2개를 배포한다고 가정했을 때, Helm Chart Template을 만들면 변수 처리를 통해 yaml 파일을 하나하나 수정할 필요 없습니다. kubectl 명령어를 통해 yaml 파일의 동적 값을 치환하여 템플릿 형태로 편리하게 배포할 수 있다는 장점이 있습니다. [2] Helm Package를 이용한 오픈소스 설치 및 배포 Helm을 통해서 쿠버네티스에서 가동할 수 있는 아래와 같은 다양한 오픈소스들의 제품들을 쉽게 설치/배포할 수 있습니다. 위제품들 외에도 Helm Chart는 총 14,376개의 패키지와 281,373개의 릴리스를 오픈소스로 제공합니다. 이를 통해 사용자들은 자신의 요구에 맞는 가장 적합한 솔루션을 선택하여 개발할 수 있습니다. 또한 많은 사용자들이 검증하고 사용함에 따라 안정성 있는 운영도 가능하죠. 다양한 Helm Chart 패키지는 커스터마이징이 가능한 경우가 많은데요, 사용자는 필요에 따라 구성을 조정하고 수정해서 사용할 수 있는 장점이 있습니다. 다음으로는 Helm 못지않게 많이 활용되는 ArgoCD에 대해서 살펴보겠습니다. ㅣ ArgoCD란?! 기존의 kubernetes 애플리케이션을 배포하고 관리하는 방식은 수동적이었습니다. yaml 파일을 직접 편집하고, kubectl로 변경사항을 클러스터에 적용하는 수동 배포 방식은 실수를 많이 유발했죠. 또한 여러 개발자나 팀이 각자의 방식대로 배포 및 관리를 수행하는 경우, 클러스터 상태의 일관성이 저하되었는데요. 이로 인해 개발 및 운영팀 간의 협업이 어렵고 생산성이 감소되는 문제가 발생하기도 했습니다. 이러한 기존 접근 방식에 대한 대안으로 GitOps가 탄생했는데요, GitOps는 Git 저장소를 사용하는 소프트웨어 배포 접근 방식입니다. GitOps는 인프라와 소프트웨어를 함께 관리함으로써, Git 버전 관리 시스템과 운영환경 간의 일관성을 유지할 수 있도록 합니다. ArgoCD는 GitOps를 구현하기 위한 도구 중 하나로 kubernetes 애플리케이션의 자동 배포를 위한 오픈소스 도구입니다. kubernetes 클러스터에 배포된 애플리케이션의 CI/CD 파이프라인에서 CD 부분을 담당하며, Git 저장소에서 변경사항을 감지하여 자동으로 kubernetes 클러스터에 애플리케이션을 배포할 수 있습니다. kubernetes 애플리케이션 배포 과정을 살펴보겠습니다. ① 사용자가 개발한 내용을 Git 저장소에 Push(이때, kubernetes 배포 방식인 Helm 배포 방식의 구조로 Git 저장소에 Push 할 수 있습니다.) ② ArgoCD가 Git 저장소의 변경 상태를 감지 ③ Git 저장소의 변경된 내용을 kubernetes에 배포하여 반영 ㅣ ArgoCD의 주요 기능 ◾ 애플리케이션을 지정된 환경에 자동으로 배포 ◾ 멀티 클러스터 관리기능 제공 ◾ OCI, OAuth2, LDAP 등 SSO 연동 ◾ 멀티 테넌시와 자체적인 RBAC 정책 제공 ◾ 애플리케이션 리소스 상태 분석 ◾ 애플리케이션 자동 및 수동 동기화 기능 제공 ◾ Argo가 관리하고 있는 쿠버네티스 리소스 시각화 UI 제공 ◾ 자동화 및 CI 통합을 위한 CLI 제공 위 내용은 ArgoCD가 제공하는 주요 기능을 나열한 것인데요, 이 중에서도 대표적인 다섯 가지 기능에 대해서 자세히 살펴보겠습니다. ① 쿠버네티스 모니터링 ArgoCD는 쿠버네티스를 항상 추적하고 있다가 저장소의 변경사항이 감지되면, 자동으로 클러스터의 상태를 저장소의 상태와 동기화합니다. 또한 문제가 생기면 이전 상태로 롤백 할 수 있으며, 이를 통해 시스템 복구 및 문제 해결을 용이하게 합니다. ② 멀티 클러스터 관리 다중 클러스터 환경에서도 배포를 관리할 수 있어 복잡한 인프라 환경에서의 효율적인 작업을 가능하게 합니다. ③ ArgoCD 대시보드 Argo에서는 클러스터 상태를 효과적으로 관리하고 모니터링할 수 있는 대시보드를 제공합니다. ArgoCD 대시보드를 통해 애플리케이션의 실시간 상태와 동기화 상태와 같은 전체적인 배포 파이프라인을 자동화하여 시각적으로 확인할 수 있고, 롤백 및 이력 추적 기능도 동시에 제공하고 있습니다. ④ 안전한 인증 및 권한 관리 역할 기반 액세스 제어(RBAC) 및 권한 제어기능을 통해 민감한 정보에 대한 접근을 제어할 수 있습니다. ⑤ GitOps 지원 ArgoCD는 GitOps 방법론을 따르므로 애플리케이션의 배포를 Git Repository와 동기화할 수 있습니다. 이를 통해 코드와 인프라의 일관성을 유지하고 변경사항을 추적할 수 있습니다. ㅣ Helm과 ArgoCD의 통합 활용 프로세스 Helm과 Argo를 함께 사용하면 개발, 테스트, 배포 프로세스를 효과적으로 관리할 수 있습니다. Helm으로 애플리케이션을 패키징하고 버전을 관리하며, Argo를 활용하여 GitOps 워크플로우를 통해 지속적인 통합 및 배포를 자동화할 수 있습니다. ① develop: Helm을 사용하여 애플리케이션을 Helm Chart로 패키징 합니다. 이후 개발된 Helm Chart를 저장하기 위한 Git 저장소를 설정합니다. ArgoCD에서 저장한 저장소를 특정 배포 대상 Kubernetes 클러스터와 연결하여, Git 저장소의 변경사항을 감지하고 새로운 배포를 시작하여 클러스터에 적용합니다. ② git push: 개발자가 로컬 저장소 내용을 원격 저장소에 배포합니다. ③ Observe(GitOps): ArgoCD는 Git 저장소의 변경 사항을 감지하여, 변경사항이 발생하면 새로운 버전의 애플리케이션을 배포하여 자동화 및 일관성을 유지합니다. ④ 운영/테스트/개발 ㅣ마무리 오늘 함께 살펴본 Helm과 ArgoCD 두 가지 강력한 도구를 함께 이용한다면 CI/CD 통합, 버전 관리, 자동화 등의 이점을 활용해서 kubernetes 환경에서 애플리케이션을 더 효율적으로 관리할 수 있습니다. 한편 애플리케이션을 효과적으로 개발하는 것도 중요하지만, kubernetes 환경의 프로세스를 실시간 모니터링하고 추적하여 관리하는 것도 매우 중요합니다. 브레인즈컴퍼니의 kubernetes 모니터링 솔루션 Zenius-K8s는 다양한 CI/CD 도구를 이용하여 개발한 kubernetes 애플리케이션의 전체 클러스터 및 구성요소에 대한 상세 성능 정보를 모니터링하고, 리소스를 추적함으로써 시스템의 안정성과 성능을 높여주고 있습니다.
2024.03.08
다양한이야기
잘파세대(Z세대 + 알파 세대)에 대한 모든 것
다양한이야기
잘파세대(Z세대 + 알파 세대)에 대한 모든 것
IT 기술의 빠른 발전 못지않게, 각 세대별 특성도 빠르게 변화하고 있습니다. 특히 몇 해 전부터 'MZ 세대'와 관련한 이슈들이 크게 부각되었습니다. 유튜브나 TV 예능에서의 소재뿐 아니라, 사회 전체적으로도 모두가 관심을 가진 그야말로 '핫'한 주제가 되었죠. MZ 세대와 관련한 다양한 도서들(출처: 교보문고) MZ 세대에 대해 이해하고 함께 어울려보려고 노력해서 이제 조금 익숙해져가는 와중에... 이제 'MZ 세대' 보다 중요한 세대가 등장했습니다. 바로 '잘파세대'! 잘파세대는 Z세대와 알파 세대를 합친 말인데요, 소비자로서 그리고 직장의 구성원으로서 정말 중요한 부분을 차지하고 있고 영향력이 더 커질 잘파세대에 대해서 지금부터 자세히 알아보겠습니다. │ 세대는 어떻게 구분되는가?! 본격적으로 이야기를 시작하기 전에 한 가지 분명히 해야 할 것이 있습니다. 지금부터 알아볼 특징들이 전체를 대표하는 경향이 있긴 하지만, 같은 세대 안에서도 개인차가 있으므로 모든 사람에게 동일하게 적용될 수는 없다는 것이죠. 하지만 이와 동시에 각 세대별 차이는 분명히 존재하기 때문에, 각 세대의 특징과 경향을 앎으로써 서로 더 가까워지기 위한 목적을 가지고 본격적으로 들여다보도록 하겠습니다. 조금씩의 차이는 있지만, 가장 나이가 많은 베이비부머 세대부터 알파 세대에 이르기까지 총 다섯 개의 분류로 세대를 구분하는 것이 일반적입니다. 세대별 구분 기준과 특징은 아래와 같이 정리할 수 있습니다. 베이비부머부터 X세대 초반(1975년생)까지는 그동안의 한국 사회의 가파른 성장을 이끌어온, 이른바 '기성세대'라고 볼 수 있습니다. 한편 그동안 'MZ세대(밀레니얼세대 + Z세대)'로 묶여왔던 밀레니얼 세대는 대세에서 멀어지고, 알파 세대가 새롭게 떠오르며 Z세대와 대세를 이루게 됐습니다. 밀레니얼 세대는 회사 내에서 '주니어급'에서 '중간관리자' 급으로 성장했죠. 따라서 위로는 베이비부머와 X세대를 모셔야 하고, 아래로는 잘파세대를 관리해야 함에 따른 밀레니얼 세대의 고충도 커지고 있습니다(이 이슈는 나중에 따로 자세히 살펴보도록 하죠). 회사 내에서의 세대별 차이에서 오는 에피소드를 극대화한 MZ 오피스 (출처: 쿠팡플레이) 현재 대부분의 회사에서는 X세대 이상의 임원과, 차~부장급 팀장이 된 밀레니얼 세대, 그리고 주니어에서 갓 벗어나 과장급 실무자가 됐거나 주니어급인 Z세대가 어울려 있습니다. 그리고 이들이 알파 세대 고객을 만나 고생하기도 하고요. 그리고 가정에서는 은퇴한 베이비부머 세대를 둔 X세대 후반 ~ 밀레니얼 세대가 결혼해서 알파 세대를 낳은 후 고군분투하고 있고, Z세대는 그런 밀레니얼 시대를 보면서 결혼에 대해 심각하게 고민하는 모습을 흔치않게 볼 수 있습니다. 직장과 가정 모두에서 각 세대가 서로를 이해하며 오래오래 행복하게 살면 좋겠지만, 현실은 그렇지 않죠. 앞에도 언급했듯이 이제 주류가 된 잘파세대를 제대로 알고 함께 어울리기 위한 방법은 무엇일까요? │ 소비자로서의 잘파세대, 그리고 대응 방안 본격적으로 잘파세대에 대해서 알아보겠습니다. 먼저 그들에게 우리 서비스와 제품을 잘 알리기 위해 '소비자로서의' 잘파세대의 특성을 살펴보죠. 세부적으로 Z세대와 알파 세대의 특성이 차이가 있기 때문에 나눠서 살펴보겠습니다. Z세대(14세~28세) Z세대는 소비자로서 세 가지 특성이 있습니다. ▪디지털 네이티브: 인터넷, 스마트폰, 소셜미디어와 함께 성장한 이들은 소비에 있어서도 다양한 온라인 플랫폼을 적극 활용합니다. 특히 온라인 리뷰와 소셜미디어 추천을 매우 중요하게 여깁니다. ▪가치 중심의 소비: 제품이나 브랜드가 대표하는 가치와 사회적 책임을 중시합니다. 지속 가능성, 윤리적 생산, 다양성 존중 등이 소비에 있어서 중요한 결정 요소가 됩니다. ▪개인화된 경험 선호: Z세대는 자신들의 취향과 관심사에 맞춤화된 제품이나 서비스를 선호합니다. 따라서 기업의 입장에선 우선 콘텐츠 마케팅/인플루언스 마케팅/자체 소셜미디어 운영 등을 통해서 Z세대와의 접점을 최대한 늘려야 합니다. 그리고 철저한 데이터 분석을 통해, 소비자의 취향과 선호를 파악하고 맞춤형 제품과 경험을 제공해야 하죠. 더불어서 기업의 사회적 책임과 지속 가능성 목표를 명확히 하고, 이를 적극적으로 알려야 합니다. 다만, 이때 주의해야 할 것은 '바르게 잘 하고 있는 척' 만 하는 것이 아니라, '실제로 바르게 말하고 행동'해야 합니다. 말과 행동이 다른 기업이나 서비스는 Z세대에게 바로 외면받을 수밖에 없기 때문이죠. 환경 보호를 직접 실천하며 꾸준한 사랑을 받고 있는 Patagonia Z세대를 대상으로 성공적인 마케팅을 펼친 사례를 간단히 정리해 보면, ▪나이키: 나이키는 AR(증강현실)을 이용한 신발 피팅 기술과, 소비자가 자신만의 디자인을 할 수 있는 커스터마이징 옵션을 제공하여 좋은 반응을 얻고 있습니다. ▪Spotify: Z세대의 음악 취향을 분석하여 개인화된 플레이리스트를 제공하는 것을 통해 많은 사용자를 유지하고 있습니다. ▪Patagonia: 환경 보호를 중시하는 아웃도어 의류 브랜드로, 지속 가능한 제품 제조 방식과 환경 보호 캠페인을 펼치며 Z세대로부터 큰 지지를 받고 있습니다. 2023년에는 주식 전체를 환경보호 단체에 기부하며 큰 화제가 되기도 했죠. ▪Beyond Meat: 식물로 만든 대체 육류 제품을 제공하여, 지속 가능한 소비와 동물 복지, 환경 보호에 앞장섬으로써 많은 사랑을 받고 있습니다. 식물로 만든 다양한 육류 제품으로 인기를 끌고 있는 Beyond Meat Z세대를 위한 마케팅은 다음과 같은 한 마디로 정의할 수 있습니다. '정말 좋은 목적을 가지고 만든 고객 맞춤형 제품과 서비스를, 소셜미디어를 통해 활발하게 알린다!' 알파 세대(~13세) 알파 세대는 Z세대와 비슷하지만 조금은 다른 특성을 가지고 있습니다. ▪기술과의 완전한 통합: 알파 세대는 태어난 직후부터 스마트 기기와 AI와 함께 자랐습니다. 따라서 이들에게 최신 기술은 일상의 일부죠(실제 미국에서 많은 아기들이 처음으로 발음한 것이 '엄마'가 아닌, '알렉사(구글의 AI 서비스)'여서 큰 화제가 되기도 했습니다). ▪교육적 콘텐츠 소비: 아직 성장단계에 있고, 부모의 영향도 있기 때문에 교육적 가치가 있는 콘텐츠를 주로 많이 소비합니다. ▪가족 구매 결정에 영향: 아직 어린 나이에도 불구하고, 알파 세대가 가족의 구매 결정에 영향을 미치는 경우가 꽤 많습니다. 디지털 기기와 매우 친숙한 알파 세대 알파 세대를 대상으로 성공적인 마케팅과 서비스를 제공하고 있는 사례를 살펴보면, ▪Duolingo: 언어 학습 앱으로 게임 기능을 통해 교육적 가치와 재미를 동시에 제공하고 있습니다. ▪Roblox: 아이들이 자신만의 게임을 만들고 다른 사람들과 공유할 수 있는 플랫폼으로, 창의력과 코딩 기술을 향상시킬 수 있어서 많은 사랑을 받고 있습니다. ▪Amazone Echo Dot Kids Edition: 아이들을 위한 스마트 스피커로, 부모가 컨트롤할 수 있는 콘텐츠와 함께 다양한 교육 콘텐츠를 제공합니다. ▪LEGO Super Mario: 레고와 닌텐도의 협업으로 만들어진 이 제품은, 게임과 실제 놀이의 결합을 통해 창의력과 문제 해결 능력을 발전시킬 수 있어서 좋은 반응을 얻고 있습니다. 알파 세대에게 큰 사랑을 받고 있는 Roblox (출처: The Irish Times) 결국 위에 살펴본 사례처럼 알파 세대에게 사랑받으려면, 교육적 가치가 있는 제품을 개발하고 가족 친화적 마케팅을 진행하면서 부모의 신뢰를 얻을 수 있는 안전한 디지털 환경을 제공해야 합니다(유해 콘텐츠 방지, 개인정보 보호 등). 잘파세대인 소비자들에게 어떻게 다가갈지 조금 감이 잡히시나요? 함께 살펴본 내용은 극히 기본에 불과하지만, 이번 기회를 통해서 잘파세대 소비자들과 한 걸음이라도 가까워질 있게 되기를 바랍니다. │ 직장인으로서의 잘파세대, 그리고 대응방안 자 이제, 소비자가 아닌 내 동료로서의 잘파세대를 알아보겠습니다. 단, 알파 세대는 아직 사회에 진출하기 전이 때문에 Z세대를 중심으로 하나씩 살펴보도록 하죠. 2020년대 초반부터 본격적으로 직장 생활을 시작한 Z세대는, 그들만의 독특한 특성과 가치관을 가지고 있습니다. 사실 'MZ 세대'에 특성으로 꼽히는 부분 중에 기성세대가 많이 새로워하고 놀란 특성들 대부분이 'Z세대'의 특성이라고 볼 수 있죠. 직장인으로서의 Z세대 특성은 다섯 가지로 정리할 수 있습니다. Z세대가 즐겨 사용하는 업무 도구인 Slack 기술에 대한 높은 숙련도 디지털 네이티브인 Z세대는 다양한 기술과 플랫폼을 자연스럽게 사용합니다. Slack이나 Notion 등 효율적인 업무 도구와 소프트웨어를 활용하여 업무를 진행하는 것을 선호하죠(반면에 전화나 대면 미팅을 꺼리는 경향도 있습니다). 자율성과 유연성에 대한 강한 욕구 자율적인 업무 환경과 일과 생활의 균형을 매우 중요시합니다. 유연한 근무시간과 재택근무 옵션을 높은 연봉보다 선호할 정도입니다. 다양성과 포용성에 대한 강조 Z세대는 다양성, 평등, 포용성에 대한 가치를 중요하게 여깁니다. 다양한 배경과 경험을 가진 사람들과의 협업을 중시하며, 모두가 존중받는 직장 문화를 원합니다. 목적과 가치에 대한 추구 단순히 급여를 받는 것에 그치지 않고, 자신이 하는 일이 사회적으로 선하고 긍정적인 영향을 미치는지를 중요하게 여깁니다. 따라서 회사를 선택할 때도 회사의 사회적 책임과 가치에 공감할 수 있는지를 진지하게 고민합니다. 피드백과 성장 기회에 대한 욕구 지속적인 피드백과 자신의 역량을 개발할 수 있는 기회를 중요하게 생각합니다. 특히 본인의 업무 성과에 대한 구체적이고 명확한 피드백을 원하죠. 불투명한 평가절차 및 결과로 인한 Z세대의 퇴사가 늘고 있는 이유입니다. 따라서 Z세대를 회사의 구성원으로 잘 적응시키기 위해서는, 유연한 근무 환경을 제공하고 개인의 성장과 개발을 지원하는 프로그램을 갖추는 것이 중요합니다. 이와 동시에 회사의 사회적 책임에 대해서 어필하고, 다양성과 포용성을 증진할 수 있는 실질적인 실천도 뒷받침되어야 하죠. 그리고 무엇보다 이들의 성과를 정확히 평가하고, 구체적이고, 투명하게 피드백을 줄 수 있는 시스템도 갖춰야 합니다. Z세대가 선호하는 직장으로 꼽히는 곳들은 대부분 구글과 같이 유연한 근무 환경/자율성 존중/개인의 성장과 개발에 대한 강력한 지원을 하거나, Salesforce나 에어비앤비처럼 사회적 가치와 미션에 대해서 강조하고 직원들과 투명한 커뮤니케이션을 진행하고 있습니다. 신입/주니어급이던 Z세대가 실무의 핵심으로 자리 잡고 있는 가운데, 본인의 이상과 실제에 거리감에 회의를 느낀 Z세대의 이직이나 퇴사도 늘고 있습니다. 또한 퇴사는 하지 않아도 일을 잘하려는 의지 없이 최소한의 업무만 하는 이른바 '조용한 퇴사'도 늘고 있는데요. 조용한 퇴사로 인한 기업의 손실이 약 2,500조에 이른다는 갤럽의 분석도 있습니다. 따라서 모든 기업이 Z세대의 마음을 사로잡고, 그들의 업무 효율을 높이기 위한 빠른 노력이 꼭 필요합니다. 이제 곧 Z세대가 기업 실무진행의 핵심으로 자리 잡을 시기가 오기 때문이죠. │ 글을 마치며 "요즘 젊은이들은 버릇이 없다." 기원전 1700년에 만들어진 수메르 시대 점토판 문자에 이렇게 쓰여있다고 하죠. 기존 세대와 새로운 세대의 갈등은 오래전부터 존재해왔습니다. 하지만 기술의 발달과 넘치는 정보로 인해서 상황이 옛날과 많이 바뀌었습니다. 앞서 살펴본 대로 잘파세대는 소비자로서도 중요한 위치에 오르고 있고, 회사 내에서도 잘파세대의 역할이 점점 더 중요해지고 있기 때문입니다. 특히 기업을 운영할 때 '기성세대의 노하우를 전수하는 것'보다, '신기술을 빠르게 터득하고 활용하는 것'이 더 중요해졌기 때문에 새로운 세대와 효과적으로 함께 하기 위한 노력이 빠르게 필요합니다. 점심회식을 통해 세대간 어울리기 위한 노력을 이어가고 있는 브레인즈컴퍼니 어려워 보이고 갈 길이 멀어 보일 수도 있지만, 오늘부터 잘파세대를 이해하기 위한 하나씩 실천해 보는 건 어떨까요? (그렇다고 잘파세대 후배 불러서 저녁회식 같은거 하시면 안 됩니다...)
2024.02.19
기술이야기
데브옵스(DevOps)에 대한 오해, 그리고 진실은?!
기술이야기
데브옵스(DevOps)에 대한 오해, 그리고 진실은?!
2000년 대 후반 IT 분야에서 데브옵스(DevOps)라는 움직임이 시작된 후, 꾸준하게 관심이 이어지고 있습니다. 데브옵스와 관련된 전 세계 시장의 규모는 2023년 기준 약 15조 원으로 추산되며, 올해부터는 연평균 25.5%씩 성장하여 2032년에 118조 원에 이를 것으로 예상됩니다(*출처: Grand View Research). 우리나라의 경우 네이버, 카카오, 우아한 형제들, 토스 등과 같은 국내 대기업부터 스타트업까지 데브옵스 팀을 구축하여 적극적으로 활용하고 있기도 한데요. 이처럼 많은 기업들이 말하는 데브옵스란 과연 무엇일까요? 그리고 어떻게 하면 데브옵스를 성공적으로 도입하고 활용할 수 있을까요? │ 데브옵스(DevOps)란 무엇인가? [그림 1] DevOps 개념 ⓒdevopedia 우선 데브옵스가 무엇인지부터 살펴봅시다. 검색 사이트에서 '데브옵스 혹은 DevOps'라고 검색하면 위 [그림1]과 같은 결과를 찾을 수 있는데요. [그림 2] DevOps에 대한 필자의 첫인상 하지만 처음 데브옵스라는 단어를 접할 경우 [그림 2]처럼 오버랩되는 건, 필자만 그런 것은 아니라고 생각합니다. 위 그림처럼 "개발자 보러 운영까지 하라는 거야? 아니면 운영자에게 개발까지 하라는 거야?"라는 질문을 던질 수 있겠죠. 데브옵스(DevOps)는 소프트웨어의 개발(Developmnet)과 + 운영(Operations)의 합성어이다. 이는 소프트웨어 개발자와 정보기술 전문가 간의 소통, 협업 및 통합을 강조하는 개발 환경이나 문화를 말한다. 데브옵스는 소프트웨어 개발조직과 운영조직 간의 상호 의존적 대응이며, 조직이 소프트웨어 제품과 서비스를 빠른 시간에 개발 및 배포하는 것을 목적으로 한다. ⓒ위키백과 위 내용에도 언급되었듯이, 데브옵스라는 것은 결국 단순한 기술이 아닌 환경 또는 사람들 간에 관계라고 할 수 있습니다. 그렇다면 데브옵스는 어떤 이유로 주목받을 수 있었을까요? │ 데브옵스(DevOps)가 주목받게 된 배경은? 데브옵스가 주목받은 이유는 여러 가지 있을 수 있지만, 주요한 이유 중 몇 가지를 설명하면 다음과 같습니다. 클라우드 컴퓨팅 기술의 발전 IT 산업의 발전에 따라 빠른 개발과 빠른 배포, 그리고 고객의 요구에 신속하게 대응하는 능력이 중요해졌습니다. 특히 클라우드 컴퓨팅(Cloud Computing) 기술의 발전으로 데브옵스의 필요성이 더 대두되었는데요. 클라우드 자원의 가상화 기술과 빠른 프로비저닝*1을 통해 기존의 개발과 운영 간의 경계가 허물어지며, 서로 간의 협력이 필수적으로 요구되었기 때문입니다. 실제로 데브옵스만으로는 52%, 클라우드 단독 사용으로는 53%의 성능 향상을 얻었지만, 데브옵스와 클라우드가 결합된 환경에서는 평균 81%의 성능을 향상시킬 수 있다는 조사 결과도 있습니다. *1 프로비저닝(Provisioning): 사용자가 요청한 IT 자원을 사용할 수 있는 상태로 준비하는 것 MSA의 등장 [그림 4] 모놀리식 구조 예시(왼) [그림 5] MSA 구조 예시(오) 지금까지 운영 중인 시스템 혹은 서비스는, 하나의 큰 덩어리로 구성된 [그림 4] 모놀리식(Monolithic) 구조를 많이 사용하고 있습니다. 안정성을 확보하고 기능 추가를 편리하게 할 수 있었기 때문이죠. 하지만 한 부분의 변경이 전체 시스템에 영향을 미칠 수 있어, 유지보수가 어렵다는 한계점이 있습니다. 예를 든다면 특정 기능이 수정이 필요한 경우에도, 전체 시스템을 수정해야 해서 번거롭고 비효율적인 부분이 있습니다. 이러한 모놀리식 구조의 한계점으로 소프트웨어의 구조가 서서히 [그림 5] MSA(Micro Service Architecture)로 변화되고 있습니다. MSA는 통합된 하나의 덩어리를 관리하는 것이 아닌, 작은 단위로 쪼개어 관리하는 방식인데요. 관리하기도 효율적이고, 소프트웨어 품질개선과 요구사항 반영이 비교적 편리해졌습니다. 각 서비스가 독립적으로 배포되고 운영되기 때문에, 특정 기능을 수정할 때 전체 기능을 수정하거나 다시 배포할 필요가 없어진 거죠. 하지만 이러한 변화는 기존의 개발 환경과 조직 문화로 대응하기엔 어려움이 있었습니다. 이때 '데브옵스(DevOps)'가 좋은 솔루션으로 등장한 것이죠! 데브옵스가 지속적인 통합(CI)1과 지속적인 배포(CD)2를 통해 빠른 개발 주기를 실현하고 배포할 수 있을 뿐만 아니라, 다수의 독립적인 서비스가 상호작용할 수 있도록 원활한 협업과 통합을 가능하게 했기 때문입니다. *1 지속적인 통합(Continuous Integration, CI) 개발자가 코드를 변경할 때마다 자동으로 통합하고 빌드 하여, 소프트웨어의 품질을 빠르게 확인하는 과정 *2 지속적인 배포(Continuous Delivery, CD) 통합된 코드를 자동으로 테스트하고, 안정적으로 통과한 경우에는 자동으로 프로덕션 환경에 소프트웨어를 배포하는 것. 이에 따라 사용자에게 새로운 기능이나 수정 사항을 신속히 제공하는 과정 │ 데브옵스(DevOps) 도입 성공사례는? 이처럼 데브옵스의 정의와 주목받게 된 배경을 살펴봤는데요. 이번에는 데브옵스를 실제로 기업에 적용해 보고 성공한 사례를 자세히 살펴볼까요? 넷플릭스 넷플릭스(Netflix)는 데브옵스를 성공의 핵심요소로 삼아, 지속적으로 새로운 기능과 업데이트를 제공했습니다. 자동화된 유연한 인프라로 사용자 경험을 향상시켰죠. 이를 통해 빠르게 변화하는 스트리밍 산업에서 앞서 나갈 수 있게 되었고, 많은 비즈니스 이점을 얻게 되었습니다. 사실 넷플릭스는 2008년 큰 장애를 겪은 후, 클라우드로 이전되면서 인프라를 혁신적으로 개편했습니다. 이로써 기존의 수직적 단일 장애 지점에서 벗어나, 수평적으로 확장 가능한 분산 시스템을 구축할 수 있었습니다. 아마존 아마존(Amazon)은 데브옵스 원칙을 초기에 채택하여, 개발과 운영팀 간의 협력을 강화했습니다. 자동화와 지속적인 통합을 강조함에 따라, 빠른 배포 주기와 개선된 확장성을 달성할 수 있었죠. 이러한 아마존의 데브옵스 접근 방식은, 시장에서 경쟁 우위를 유지하는데 중요한 역할을 했습니다. 아마존 창립자인 제프 베이조스는 아마존의 데브옵스에 대해 '고객에게 집중하고, 혁신을 포용하며, 실험할 용기'를 강조했습니다. 베이조스는 혁신을 위해, 오해를 받고 비판받을 의향이 있어야 한다고 말했던 것이죠. 페이스북 페이스북(Facebook)은 "빠르게 움직이고 물건을 부수라"는 문화에 뿌리를 둔 데브옵스 관행을 택했습니다. 실험, 민첩성, 위험 감수를 중시하는 접근 방식을 포함해서 말이죠. 이처럼 페이스북은 지속적인 통합과 배포, 자동화된 테스팅, 모니터링을 사용하여 사용자에게 더 빠르고 높은 품질의 새로운 기능과 업데이트를 제공하고 있습니다. 월마트 2011년부터 데브옵스를 도입한 월마트(Walmart)는 자동화와 협업 그리고 지속적인 배포에 중점을 두었습니다. 애자일(Agile) 방법론과 클라우드 기반의 인프라 및 데브옵스 툴체인을 활용하여, 하루에 최대 100번까지 코드를 배포할 수 있게 된 것이죠. 이를 통해 디지털 변환을 가속화하고, 전자상거래 플랫폼을 개선하며, 고객 경험을 향상시킬 수 있었습니다. 위 기업들은 데브옵스라는 도구를 효과적으로 활용하여 비즈니스 성과를 창출하고, 경쟁 우위를 확보할 수 있었습니다. 그렇다면 데브옵스를 도입하기만 하면 무조건 성공할 수 있을까요? │ 데브옵스(DevOps)의 오해와 한계 앞선 질문에 대한 대답은 아쉽게도 NO입니다. 데브옵스는 개발 환경과 문화를 전부 해결해 줄 수 있는 '만능책'은 아니라는 것이죠. 데브옵스가 도입된 이후 새로운 한계점이 발견되었고, 실패할 사례들도 적지 않게 나왔습니다. 이러한 결과는 아래와 같은 오해들에서 비롯될 확률이 높은데요. 대표적으로 3가지만 살펴봅시다. [그림 6] DevOps 구현을 위한 도구 ⓒMedium_Ajesh Martin 오해 1. 데브옵스는 일종의 단순한 도구일 뿐이다? 데브옵스를 '일종의 도구'로만 보는 것은 잘못된 판단입니다. 물론 여러 팀에서 보다 더 나은 환경과 문화를 위해 슬랙(Slack), 젠킨즈(Jenkins), 도커(Docker) 등 여러 도구를 사용하는 것은 좋습니다. 하지만 데브옵스는 이보다 더 광범위한 접근 방식을 담고 있습니다. 즉 개발과 운영팀 간의 협력과 더 빠른 소프트웨어 개발과 배포를 가능하게 하는 방법론을 포함한다는 것이죠. 다시 말해 데브옵스라는 '도구'를 이용하기 이전에, 문화적 그리고 기술적 접근 방식이 바탕이 되어야 데브옵스라는 툴이 도움 될 수 있습니다. 오해 2. 데브옵스는 모든 조직에 적합하다? 만약 '다른 회사에 데브옵스라는 팀이 있으니, 우리도 데브옵스 팀을 만들자'라는 식으로 접근한다면, [그림 2]와 같은 모습이 될 것으로 예상됩니다. 즉 데브옵스의 조직 체계를 구성한다고 해서 데브옵스가 실현될 순 없습니다. 서로 다른 입장과 상황이 있는 개발자-팀-회사, 운영자-팀-회사 간에 상당한 노력을 통해 만들어 내는 것이 더 중요한 것이죠. 이와 비슷한 사례로 애자일(Agile) 문화가 있습니다. 2000년대 초반 '애자일 소프트웨어 선언문'으로 다양한 애자일 방법론이 주목을 받았었죠. 개발에서 빠르고 유연한 방법을 강조하며, 이후 많은 기업들이 애자일 방법론을 도입하게 되며 유행처럼 번져갔습니다. [그림 7] Agile 프로세스 여기서 애자일 문화를 도입한 많은 기업들이 간과했던 사실은, 애자일 문화 도입 자체가 '해결책'이라고 생각했다는 점입니다. 이보다 기존의 조직 문화에서 애자일 문화를 도입하는 것이 적합한 상황인지, 기존의 프로세스보다 효과를 발휘할 수 있는지, 팀 구성원들이 충분히 적응할 수 있는 문화인지 등을 우선적으로 고려하는 것이 더 중요합니다. 데브옵스 역시 마찬가지로 기존의 조직 규모, 문화, 프로젝트의 특성에 대한 명확한 이해가 먼저 선행되어야 합니다. 데브옵스 도입 전에 조직의 현재 상황과 목표를 면밀히 평가한 후, 점진적으로 도입하는 것이 중요하죠. 대기업이나 캐시카우가 있는 기업들이 데브옵스를 실행했다고 해서, 또는 단지 트렌드라는 이유만으로 도입하는 것은 위험할 수 있습니다. 오해 3. 데브옵스는 빠른 소프트웨어 배포만을 목표로 한다? 데브옵스는 속도만 중시하고 품질이나 안정성을 소홀히 한다는 인식이 있습니다. 하지만 데브옵스는 소프트웨어의 빠른 배포뿐만 아니라, 품질과 안정성 그리고 보안을 동시에 추구해야 합니다. 이에 따라 지속적인 통합과 배포(CI/CD), 자동화된 테스트, 모니터링 등을 통해 이러한 목표를 달성하려고 노력해야 하죠. 이처럼 데브옵스라는 도구를 도입하고 데브옵스 팀을 구성했다고 해서, 데브옵스가 즉각적으로 실현되는 것은 아닙니다. │ 데브옵스(DevOps) 보다 선행되어야 하는 '이것' 진정한 데브옵스를 실현하기 위한 방법을 한 문장으로 표현한다면 다음과 같습니다. "싸우지 말고 함께 소프트웨어 시스템 혹은 서비스를 만들어봐요" 힘 빠지는 결론일 수도 있습니다. 하지만 데브옵스를 도입하기 이전에 더 선행되어야 할 것은 각각 다른 업무의 조직원들끼리 서로를 이해하고, 협력하며, 보다 안정적인 시스템과 서비스를 제공하는 '문화'를 만드는 것이 더 현실적인 행동이라고 생각합니다. 물론 데브(Dev)와 옵스(Ops)는 우선순위가 동일하지 않고, 동일한 언어를 사용하지 않을 수 있으며, 매우 다른 관점에서 문제 해결될 가능성이 높습니다. 이처럼 팀을 하나로 모으기 위해서는 상당한 시간과 지속적인 노력이 필요한 것이죠. 그렇다면 어떤 방식으로 팀 협업 문화를 만들어야, 데브옵스를 보다 성공적으로 도입할 수 있을까요? │ 데브옵스(DevOps) 성공을 위한 첫걸음 먼저 조직 내의 문화를 이해한 다음, 조직 내 교육과 커뮤니케이션을 강화하는 것이 중요한데요. 구체적인 방안을 제안한다면 다음과 같습니다. 로테이션 프로그램 도입 진정한 데브옵스를 실현하려면, 무엇보다 각 부서의 업무적인 이해가 중요합니다. 가장 직관적인 방법으로는 다른 부서의 업무를 '직접 체험'해 보는 것입니다. 예를 든다면 개발자가 운영팀의 업무를 수행하거나, 보안 팀이 개발 업무에 참여하는 등, 다양한 부서 간의 경험을 쌓아 보는 것이죠. 이를 통해 서로의 업무 환경과 각 부서 간의 역할을 이해하는 데 큰 도움을 받을 수 있습니다. 지식 공유 플랫폼 구축 내부 플랫폼이나 문서화된 지식 공유 시스템을 구축하는 방법도 있습니다. 각 부서의 업무와 프로세스에 대한 정보를 쉽게 접근할 수 있도록 하는 것이죠. 예를 들면 데브옵스 문화나 기술적인 도구, 프로세스 등을 포함하여 다양한 지식을 공유합니다. 이를 통해 각 부서의 업무 특성을 명확히 이해할 수 있고, 협업을 원활하게 진행할 수 있겠죠. 정기적인 교육 세션 빠르게 변화하는 기술에 대응하기 위해, 팀원들이 지속적으로 학습하고 발전해야 합니다. 정기적인 교육은 이러한 학습을 지원하는 데 중요한 역할을 하는데요. 예를 든다면 새로 도입된 CI/CD 도구에 대한 워크숍을 개최하여, 팀원들이 해당 도구의 사용법과 이점을 학습할 수 있도록 합니다. 또한 현재 사용 중인 프로세스 개선점에 대한 세션을 주기적으로 열어, 팀원들이 학습한 내용을 바탕으로 업무에 효율적으로 적용할 수 있습니다. 만약 특정 분야에 강점을 가진 팀원이 있어 주기적으로 자신의 경험과 성과를 공유한다면, 팀 전체에게 영감을 주고 학습 기회를 제공할 수도 있겠죠. 스탠드 업 미팅 활성화 매일 정해진 시간에 각 팀원이 자신의 진행 상황이나 이슈, 계획을 간결하게 공유합니다. 정해진 시간을 지키고 효율적인 미팅 진행을 위해, 공유하는 팀원들의 말에 집중하되 '총 15분'을 초과하지 않도록 노력하는 것이 중요합니다. 이를 통해 짧은 시간 동안 팀 전체가 빠르게 현재 상황을 파악하고, 실시간으로 정보를 공유하며, 신속하게 문제를 해결할 수 있습니다. 이처럼 위와 같은 방법들을 통해 구성원들이 효과적으로 협력할 수 있는 환경을 조성하는 노력들이 필요합니다. 。。。。。。。。。。。。 많은 기업들이 경쟁에서 지지 않기 위해 도입하고 있는 데브옵스(DevOps). 하지만 진정한 데브옵스를 실현하기 위해서는 "싸우지 말고 소프트웨어 시스템 혹은 서비스를 만들어 봐요"라는 문장처럼 각각 다른 업무의 조직원들끼리 서로 이해하고, 협력하는 문화가 선행되는 것이 매우 중요합니다. 즉 너희 팀 vs 우리 팀 업무를 구분하지 않고 함께 협력하여, 아이디어를 생산하고, 가치를 창출해야 하는 것이죠. 혹시 아직 데브옵스를 도입하기 전이거나, 도입 이후에 올바르게 활용되고 있는지 궁금하시다면, 오늘 이 글을 통해 심도 있게 생각해 보시는 건 어떨까요?
2024.02.14
기술이야기
쿠버네티스를 통해 본 컨테이너 오케스트레이션
기술이야기
쿠버네티스를 통해 본 컨테이너 오케스트레이션
‘쿠버네티스(kubernetes)’는 2013년 구글에서 공개한 이후 컨테이터 오케스트레이션 도구의 표준으로 자리 잡았습니다. CNCF의 1호 졸업 프로젝트이기도 한 쿠버네티스는 지속적인 릴리즈를 거쳐 꽤 성숙한 제품이 됐는데요. 쿠버네티스는 컨테이너화된 어플리케이션을 자동으로 배포하고 스케일링 및 관리하기 위한 컨테이너 오케스트레이션 도구라고 간단하게 정의할 수 있습니다. 일반적으로 컨테이너를 사용할 때 ‘도커(Docker)’를 많이 사용한다는 이야기를 들으셨을 것입니다. 도커는 컨테이너를 쉽게 만들고, 내려받고, 공유할 수 있도록 사용되는 컨테이너 플랫폼입니다. 온프레미스 환경 아래의 배포에서 가상환경의 배포로 발전하고 더 나아가 컨테이너 환경 아래에서 리소스를 관리하게 되면서, 도커는 컨테이너 런타임의 표준으로 자리 잡았습니다. 이미지 출처 ⓒ https://kubernetes.io/ko 컨테이너 환경의 배포는 온프레미스 환경과 가상화 환경의 배포보다 관리는 용이하지만, 컨테이너 수가 많아지게 되면서 부하 분산과 안정적인 배포를 위해 관리해야 할 필요성이 지속적으로 증가하였습니다. 이 때 등장하는 것이 컨테이너의 오케스트레이션 도구라고 할 수 있는 쿠버네티스입니다. 이번 시간에는 컨테이너 오케스트레이션의 주요 도구인 쿠버네티스를 통해 컨테이너 오케스트레이션에 대해 알아보고자 합니다. │쿠버네티스의 주요 목적 쿠버네티스의 주요 목적을 이해하려면 컨테이너 오케스트레이션의 개념을 먼저 짚고 넘어가야 합니다. 컨테이너 오케스트레이션 위키피디아의 정의에 따르면 ‘컴퓨터 리소스 자원과 애플리케이션 및 서비스에 대한 자동화된 설정 및 관리’를 의미합니다. 이를 컨테이너에 적용하면, 여러 컨테이너에 대한 프로세스를 최적화하고 적절한 자원의 할당과 자동으로 컨테이너를 생성하고 배포할 수 있도록 해야 합니다. 소수 사용자를 위한 비교적 단순한 컨테이너 앱은 보통 별도의 오케스트레이션이 필요하지 않을 수 있습니다. 관리자가 각 컨테이너 별 리소스 자원을 할당하면 그만이겠죠. 하지만 만약 앱의 기능과 사용자 수가 사소한 수준 이상이라면, 컨테이너 오케스트레이션 시스템을 사용하지 않고 직접 해결하기 어려워집니다. 무엇보다 아키텍처의 트렌드가 모놀리식(Monolithic Architecture)에서 마이크로서비스(Microservice Architecture)로 변화하는 과정에서 컨테이너의 수는 계속 증가할 것이고 무중단 서비스, 즉 고가용성을 제공해야 하는 환경이라면 컨테이너 오케스트레이션은 원활한 서비스 구성을 위한 필수 요소라고 할 수 있습니다. 마이크로서비스 아키텍처 환경에서는 애플리케이션의 세부 기능들이 작은 서비스 단위로 분리되어 있습니다. 이 각각의 서비스를 구현하는데 컨테이너 기술이 가장 흔하게 이용되는데요, 다수의 컨테이너를 관리하는 상황이라면 위의 4가지 이슈에 대한 해답을 찾아야 합니다. │쿠버네티스의 핵심 아키텍처 앞서 살펴본 4가지 이슈를 해결하기 위해 쿠버네티스는 아래와 같은 네 가지 핵심 아키텍처로 구성되어 있습니다. ① 선언적 구성 기반의 배포 환경 쿠버네티스는 동작을 지시하는 개념보다는 원하는 상태를 선언하는 개념을 주로 사용합니다. 즉 사용자가 설정한 원하는 상태(Desired State)와 현재의 상태(Current State)가 일치하는지를 지속적으로 체크하면서 업데이트합니다. 결과적으로 ‘이렇게 되어야 해!’ 라는 선언적 방식으로 명령을 주면 쿠버네티스는 이를 해석하여 컨테이너들을 자동으로 관리하게 됩니다. ② 기능 단위의 분산 쿠버네티스에서는 각각의 기능들이 모두 독립적인 컴포넌트로 분산되어 있습니다. 앞으로 후술할 쿠버네티스 ‘APIserver’를 통해 내부 컴포넌트들을 컨트롤 하고 있습니다. ③ 클라스터 단위의 중앙 제어 쿠버네티스는 가용할 수 있는 리소스를 클러스터 > 노드 > 파드 단위로 추상화 하여 관리합니다. 각각의 클러스터를 통해 노드를 관리하고 노드 안의 컨테이너를 효율적으로 관리할 수 있습니다. ④ API 기반의 네트워킹 쿠버네티스의 구성 요소들은 오직 ‘APIserver’를 통해서만 상호 접근이 가능한 구조를 가지고 있습니다. 마스터 노드의 ‘Kubectl’라는 컴포넌트를 거쳐 실행되는 모든 명령은 이 API 서버를 거쳐 수행되며, 워커 노드에 포함된 ‘Kubelet’, ‘Kube-proxy’ 역시 API 서버를 통해 상호작용하게 되어 있습니다. │쿠버네티스의 오케스트레이션 기능 컨테이너 오케스트레이션의 핵심은 컨테이너의 프로비저닝, 배포, 네트워킹, 확장 가용성, 라이프사이클 관리, 상태 모니터링 일체를 자동화하는 데 있습니다. 쿠버네티스가 제공하는 오케스트레이션 기능은 위의 컨테이너 관리 이슈에 대한 적절한 해결책을 제공합니다. 이미지 출처 ⓒ https://kubernetes.io/ko ① 오토스케일링 (Auto-Scaling) 쿠버네티스에서 생성하고 관리할 수 있는 가장 작은 컴퓨팅 단위를 파드(Pod)라고 부르는데요. 쿠버네티스는 각 클러스터 안에 있는 노드의 CPU와 메모리 자원에 대한 할당을 Pod를 통해 자동으로 조정합니다. 만약 부하가 증가하여 리소스를 과하게 점유하고 있다면 자동으로 파드 복제본이 실행되어 가용성을 확보할 수 있습니다. ② 스케줄링 (Scheduling) 컨테이너를 일정한 알고리즘에 기초하여 구체적으로 어떤 노드에서 움직이게 할지 배치하는 것을 스케줄링이라고 합니다. ‘Kube Scheduler’라는 컴포넌트를 통해 클러스터 내에 실행할 파드를 노드에 스케줄링 할 수 있습니다. ③ 오토 힐링 (Auto-Healing) 쿠버네티스는 사용자가 지정한 컨테이너의 상태를 지속적으로 관찰하여 비정상적인 상태를 감지하면 컨테이너를 재시작하고 스케줄링을 빠르게 재시작 할 수 있습니다. 사용자의 선언적 상태에 따라 응답하지 않은 컨테이너를 새롭게 구동 시킬 수 있습니다. ④ 분산 부하 (Load-Balancing) 하나의 서비스에 여러 개의 컨테이너가 구동 시, 서비스에 들어오는 요청을 컨테이너들 사이에 균등하게 분배하여 부하를 분산시킵니다. 이를 통해 급증하는 서비스 요청에 대해 효율적인 대응이 가능합니다. │쿠버네티스의 구성요소 쿠버네티스는 총 네 가지의 구성요소로 이루어져 있습니다. 이미지 출처 ⓒ https://kubernetes.io/ko ① 클러스터 (Cluster) CNCF 재단에 따르면 클러스터는 공통의 목표를 위해 작동하는 애플리케이션의 그룹이라고 정의하고 있습니다. 쉽게 표현하면, 클러스터는 컨테이너를 통해 실행되는 여러 서비스들의 집합이라고 할 수 있겠는데요. 클러스터의 구성 목적은 애플리케이션의 효율적인 관리에 그 목적이 있습니다. 일반적으로 컨트롤 타워 역할을 하는 마스터 노드와 컨테이너가 실행되는 워커 노드로 구성되어 있습니다. ② 마스터 노드 (Master Nodes) 마스터 노드는 클러스터 전체를 관리하는 컨트롤 타워의 역할을 합니다. 대규모의 컨테이너 관리를 위해 각 워커 노드들의 리소스 사용률을 고려하여 컨테이너 배치와 모니터링이 필요한데요. 클러스터 내에서 이 역할을 수행하는 노드를 마스터 노드라고 부릅니다. ③ 워커 노드 (Worker Nodes) 워커 노드는 마스터 노드의 컨트롤을 받아 실제 컨테이너를 실행하고 쿠버네티스 실행 환경을 관리합니다. ‘Kubelet’이라는 노드 컴포넌트를 통해 파드의 실행을 직접 관리하며 APIserver와 통신하게 됩니다. 하나의 노드는 일반적으로 여러 개의 파드로 구성됩니다. 마스터 노드를 통해 파드에 대한 스케줄링을 자동으로 처리할 수 있습니다. ④ 파드 (Pod) 쿠버네티스에서 생성하고 관리할 수 있는 가장 작은 컴퓨팅 단위입니다. 위의 그림과 같이 하나의 파드 안에 다수의 컨테이너 혹은 단일 컨테이너로 구성될 수 있는데요. 쿠버네티스는 파드를 통해 컨테이너가 동일한 리소스 및 로컬 네트워크를 공유하게 합니다. 위와 같은 방식으로 컨테이너를 그룹화하면 분산된 환경에서도 동일한 하드웨어를 공유하는 것처럼 컨테이너를 서로 통신할 수 있도록 만듭니다. 파드의 사용 목적은 단순합니다. 일반적으로 서로 다른 컨테이너들이 각기 다른 기능들을 수행하며 하나의 완전한 애플리케이션으로 이루어 지게 되는데요. 이 때, 파드를 통해 각 컨테이너들의 내부 통신이 가능하게 하고 모든 컨테이너에 동일한 환경을 제공해 줄 수 있습니다. 요약하면 파드는 컨테이너가 제공하는 모든 기능을 활용하는 동시에 프로세스가 함께 실행되는 것처럼 보이게 하는 역할을 합니다. │쿠버네티스의 주요 컴포넌트 쿠버네티스의 주요 컴포턴트를 컨트롤 플레인 컴포넌트와 노드 컴포넌트로 나눠서 살펴보겠습니다. ① 컨트롤 플레인 컴포넌트 (Control Plane Components) 마스터 노드의 컨테이너, 워커 노드의 관리는 컨트롤 플레인 컴포넌트를 통해 이루어집니다. 컨트롤 플레인 컴포넌트는 클러스터 전체의 워크로드 리소스 등 주요 구성 요소들을 배포하고 제어하는 역할을 합니다. * Kube-APIserver API서버 라는 이름에서 말해주듯이 쿠버네티스의 컴포넌트와 사용자와의 접점 역할을 맡고 있습니다. 쿠버네티스에서 클러스터의 모든 구성 요소들은 오직 API서버를 통해서만 상호 접근이 가능하도록 설계되어 있습니다. 쿠버네티스의 중앙관리자라는 표현이 어울릴지 모르겠지만, 파드의 생성부터 스케줄링, etcd와의 통신까지 쿠버네티스의 모든 동작 과정에 API서버는 쿠버네티스의 중심에 있습니다. * etcd etcd는 클러스터 안의 각 구성요소에 대한 정보가 키-값 형태로 저장된 자체적인 데이터베이스입니다. 현재 클러스터에 있는 컴포넌트가 몇 개인지, 각각의 파드들이 어떤 노드에 붙어 있는지, 어떤 컨테이너를 들고 있는지에 대한 모든 정보가 etcd에 저장됩니다. 중요한 점은 etcd가 다운된다면 클러스터는 제대로 동작하지 못하게 되므로 자체적인 백업 스케줄링은 쿠버네티스 관리에 필수 요소라고 할 수 있습니다. * kube-controller-manager 컨트롤러 매니저는 클러스터 내에 작업 중인 다양한 리소스들을 모니터링하며 사용자가 설정한 원하는 상태(Desired State)와 현재의 상태(Current State)가 일치하도록 관리하는 작업을 합니다. 주요 컨트롤러로는 파드 복제를 유지해 주는 레플리카셋(ReplicaSet), 앱 배포를 세밀하게 관리할 수 있는 디플로이먼트(Deployment) 등으로 구성되어 있으며, 하나의 패키징 된 형태를 가지고 있습니다. * Kube-Scheduler 스케줄러는 각 파드들이 어떤 노드에서 작업을 수행할지 결정해 주는 역할을 맡고 있습니다. 비유하자면 작업 장소를 선택해 주는 의사 결정만 담당하고 있으며 실질적인 배치 작업은 아래 설명할 Kubelet이 담당하고 있습니다. ② 노드 컴포넌트 (Node Components) 노드 컴포넌트는 노드에서 작동하는 파드들을 관리하기 컴포넌트입니다. 워커 노드뿐 아니라 마스터 노드에서도 존재합니다. * Kubelet Kebelet은 클러스터의 모든 노드에서 실행되는 에이전트입니다. 파드의 실행을 직접적으로 관리한다고 볼 수 있는데요. 컨테이너디(Containerd), 크라이오(CRI-O) 같은 컨테이너 런타임과도 통신이 가능하며 노드 내에 구동 중인 컨테이너에 대한 라이프사이클을 관리합니다. 본래 쿠버네티스에서는 컨테이너 생성과 실행을 위한 런타임 엔진으로 도커(Docker)를 지원해왔으나, 2022년 2월 기준으로 완전히 중단되었습니다. 물론 런타임 엔진에서 도커가 제외된다는 것이 클러스터에서 도커 자체를 사용하지 못하게 된다는 뜻은 아닙니다. * Kube-proxy Kube-proxy는 노드에서 구동되는 쿠버네티스 네트워크 프록시입니다. 쿠버네티스에서 서비스라고 불리는 내부/외부 트래픽을 어느 파드로 전달할 것인지에 대한 규칙을 생성하고 관리하는 역할을 합니다. 。。。。。。。。。。。。 쿠버네티스의 주요 오케스트레이션 기능과 쿠버네티스의 주요 구성 요소 및 컴포넌트들을 살펴보았는데요. 쿠버네티스만이 컨테이너의 관리 복잡성을 해결할 수 있는 유일한 오픈소스는 아닙니다. 아파치 소프트웨어 재단에서 개발한 ‘아파치 메소스(Apache Mesos)’, 도커에서 개발한 ‘도커 스웜(Docker Swarm)’ 등의 컨테이너 관리 오픈소스도 있지만 2024년 현재 쿠버네티스는 독점적인 위치를 차지하고 있습니다. 무엇보다 3대 퍼블릭 클라우드사인 AWS, Azure, GCP 모두 매니지드 쿠버네티스 플랫폼을 제공하고 있습니다. 국내 퍼블릭 클라우드인 kt cloud, 네이버클라우드, NHN클라우드, 가비아, 카카오클라우드, 삼성클라우드플랫폼 등 모두 각 클라우드 환경에 최적화된 쿠버네티스 서비스를 제공하고 있죠. 또한, RedHat은 쿠버네티스 기반의 오픈시프트(OpenShift)를 통해 CaaS(Container as a Service) 시장의 선점을 노리고 있습니다. 스타트업과 대기업을 가리지 않고 기업에서 운영하는 컨테이너 기반의 애플리케이션이 복잡화됨에 따라 컨테이너 오케스트레이션 관리 도구인 쿠버네티스는 이제 기업 IT 운영전략의 핵심 요소가 되었습니다. 제니우스 쿠버네티스 모니터링 화면 예시 브레인즈컴퍼니의 제니우스(Zenius) 역시 컨테이너 모니터링뿐 아니라 쿠버네티스에 대한 모니터링을 환경을 제공하고 있습니다. 멀티 클러스터 환경에서의 모든 클러스터에 대한 모니터링뿐 아니라 Object Meta 정보를 제공하며 다양한 임계치 기반의 이벤트 감시 설정으로 선제적 장애 대응이 가능합니다. ?참고 자료 쿠버네티스 공식 문서: Kubernetes Components 쿠버네티스 공식 문서: Options for Highly Available Topology 쿠버네티스 공식 문서: Container runtimes
2024.02.05
기술이야기
NMS(네트워크 관리 시스템)에 대해서 꼭 알아야 할 네 가지
기술이야기
NMS(네트워크 관리 시스템)에 대해서 꼭 알아야 할 네 가지
산업 분야를 통틀어서 최근 모든 기업과 공공기관들의 ‘네트워크’ 활용도와 의존도가 빠르게 증가하고 있습니다. 따라서 이제 ‘안정적인 네트워크 관리 = 성공적인 비즈니스 운영’이라고도 할 수 있는데요. 오늘은 네트워크를 안정적으로 유지해서 성공적인 비즈니스 운영을 도와주는, NMS(Network Management System, 네트워크 관리 시스템)에 대해서 자세히 알아보겠습니다. NMS의 등장 배경, 시대별 변화, 그리고 핵심 개념과 실제 사례까지 NMS에 대해서 꼭 알아야 할 네 가지는 무엇일까요? 。。。。。。。。。。。。 │NMS(네트워크 관리 시스템)의 기본 개념과 등장 배경 NMS란 다양한 이기종 네트워크 장치(Network device)를 중앙에서 관리하고 감시할 수 있는 시스템입니다. 즉 전체 네트워크를 중앙 시스템을 통해 모니터링, 진단, 분석, 가용성을 유지하기 위해 만들어진 시스템을 말합니다. NMS의 필요성과 등장 배경은 OSI의 SMFAs(Specific Management Functional Areas)의 다섯 가지 영역(FCAPS)로 정리할 수 있습니다. 장애관리(Fault Management): 경보 감시, 고장 위치의 측정 시험 등 NMS의 첫 번째 관심사는 네트워크의 가용성을 보장하는 것입니다. 네트워크에서 발생하는 장애를 감지·격리·복구하는 과정으로, 네트워크 가동 시간을 최대화하고 서비스 중단을 최소화하는 것이 목적입니다. 구성 관리(Configuration Management): 설비제공, 상태 제어, 설치 지원 등 네트워크의 구성 요소(하드웨어, 소프트웨어, 네트워크 설정 등)를 관리하는 과정으로, 네트워크의 변경 사항을 추적하고 일관된 네트워크 성능과 안정성을 유지하는 데 중요합니다. 계정관리(Accounting Management): 계정(과금) 정보의 수집/저장/제어 등 네트워크 자원의 사용량을 추적하고 기록하는 과정이며, 자원의 할당과 과금에 사용됩니다. 사용량, 사용시간, 서비스 품질, 장비 사용률 등 네트워크 관리 및 운영에 관한 비용 할당 시 필요합니다. 성능 관리(Performance Management): 성능감시/트래픽 관리/품질관리/통계관리 네트워크의 트래픽이 특정 시간에 급증하는 것을 성능 관리 시스템이 감지했을 때, 이 정보를 사용하여 네트워크 용량을 적절히 조정하거나 트래픽을 분산시킬 수 있습니다. 보안 관리(Security Management): 보안/안전/기밀 관리 등 보안 관리 시스템은 사용자의 무단 엑세스 시도를 감지하며 즉시 차단할 수 있는 접근 제어, 인증, 암호화, 키관리 등을 관리하는 것과 관련이 있습니다. 네트워크 인프라의 로그 모니터링을 통해 잠재적인 보안 문제를 사전에 예방할 수 있습니다. 위와 같은 등장 배경과 필요성을 가진 NMS, 시대별로는 어떻게 변해왔는지 살펴보겠습니다. │NMS(네트워크 관리 시스템)의 시대별 변화 1980년대 초부터 현재에 이르기까지 NMS의 시대별 변화를 간략히 살펴보면 다음과 같습니다. 1980년대 ~ 2010년대 초 1980년대에 등장한 초기 NMS는 단순한 모니터링과 제어에 둔 간단한 형태였고, 특정 벤더의 하드웨어에 종속되고 표준화가 제대로 이루어지지 않았었습니다. 1990년대에 들어서 네트워크의 복잡성이 커지면서 NMS의 필요성도 증가했습니다. 이때 보안 기능이 향상된 SNMPv2와 같은 표준 프로토콜이 도입되면서, 다양한 제조사의 장비를 하나의 시스템으로 통합 관리할 수 있게 되었습니다. 또한 네트워크뿐만 아니라 서버까지 같이 관리하기 위한 SNMS(Server and network Management System)와, 더 나아가 EMS(ITIM)도 나오게 되었습니다. 이후 2000년대 초반에 웹 기반 NMS 솔루션이 등장하면서, 사용자 친화적인 인터페이스와 원격 접근 기능 등을 통해 효율적인 네트워크 관리가 가능해졌습니다. 2010년대 중반 ~ 2010년대 후반 NMS는 2010년대 중반부터 등장한 클라우드 컴퓨팅, 빅데이터, 인공지능(AI) 등의 기술과 함께 더욱 고도화되었습니다. 점점 더 다양한 네트워크와 서비스를 통합 관리하며, 자동화된 분석과 의사결정을 지원하게 되었습니다. 최신 동향 최근에는 AI와 머신러닝을 활용하여 예측 분석, 네트워크의 자동 최적화, 사이버 보안 통합 등이 NMS의 중요한 요소로 강조되고 있습니다. 또한 새로운 네트워크 기술인 5G의 도입으로 NMS는 더욱 복잡해지고 다양한 네트워크 환경을 관리하게 되었습니다. 이처럼 NMS는 네트워크 기술의 발전과 산업의 변화에 발맞추어, 지속적이고 빠르게 발전하고 있습니다. 이제 NMS의 구조에 대해서 자세히 알아보겠습니다. │NMS(네트워크 관리 시스템)의 3-Tier 아키텍처 NMS는 3-Tier 아키텍처(수집-저장-표출)로 구성되어 있습니다. 각각 독립된 계층으로 구분되어 있는데요. 특정 부분의 업그레이드가 필요할 때 해당 계층만 영향을 주기 때문에 시스템을 보다 쉽게 관리할 수 있습니다. 다시 정리한다면 NMS Manager에서 SNMP · ICMP · RMON 등 다양한 네트워크 프로토콜을 활용하여, 네트워크 자원의 성능 데이터를 수집합니다. 만약 Managed Device 장비들이 한계치에 도달하거나 장애가 발생했을 경우, 즉각적으로 User Interface를 통해 사용자에게 알립니다. 그렇다면 NMS의 핵심 기능은 무엇일까요? │NMS(네트워크 관리 시스템)의 핵심 기능 네트워크 장애에 대한 신속한 파악과 대응이 반드시 필요한 NMS의 핵심 기능에는 어떤 것들이 있는지 자세히 살펴보겠습니다. 장애 관리 네트워크 인프라의 결함이나 오류를 탐지하고 경고 및 알림을 생성하여, 관리자가 신속하게 대응할 수 있도록 지원합니다. 이를 통해 다운타임을 최소화하고 서비스 지속성을 보장합니다. 예를 들어 네트워크의 라우터가 다운될 경우, NMS는 즉시 관리자에게 경고를 보내 신속한 문제 해결을 도와줍니다. 성능 관리 네트워크 구성 자원인 트래픽 가용성, 응답시간, 사용량, 오류량, 처리 속도 등을 추적하고 최적화합니다. 또한 부하가 발생하지 않도록 문제점을 미리 검출해 안정적인 네트워크 운영이 될 수 있도록 합니다. 예를 들어 특정 애플리케이션이 과도한 대역폭을 소비할 경우, NMS가 문제를 정확히 찾아내서 관리자가 네트워크를 최적화할 수 있도록 돕습니다. ▲ 제니우스(Zenius)를 활용한 성능 모니터링 화면 예시 구성 관리 관리자는 NMS를 통해 분산된 네트워크 장치 구성 프로세스를 자동화하여, 네트워크 전반에 걸쳐 일관성과 정확성을 보장할 수 있습니다. 이러한 핵심 기능을 하는 NMS의 구체적인 활용 사례를 살펴보겠습니다. │NMS(네트워크 관리 시스템)의 활용 사례 IT 분야뿐 아니라 제조업, 금융, 여행, 유통 및 물류 등 전 분야에 걸쳐서 NMS가 사용되고 있습니다. 특히 처리 속도, 가용성, 보안 등이 중요한 금융산업의 경우에 NMS를 통한 안정적인 관리가 중요한데요. 브레인즈컴퍼니의 제니우스(Zenius) EMS를 사용하고 있는 S금융사의 사례를 자세히 살펴보겠습니다. S금융사, Zenius NMS를 통해 완벽하게 네트워크를 관리하게 되다 S금융사는 서버만 800ea, NW 14,000ea 이상의 대규모 인프라를 보유하고 있었습니다. 하지만 Zenius NMS 도입 전까지는 서비스 장애에 영향을 준 네트워크 장애 원인 파악을 위한 장기간 투자하고 있는 상황이었고, 네트워크 운영 현황 데이터 수집과 분석에 많은 시간이 소요되고 있었습니다. 무엇보다 신속한 장애 인지와 처리가 어려워서 큰 고민이 있었는데요. 위 도표에서도 살펴본 것처럼 Zenius NMS 도입을 통해, 이전에 고민과 단점을 극복하고 안정적으로 네트워크 관리를 할 수 있게 되었습니다. 특히 Zenius NMS는 고성능의 Manager를 제공하고 있어 대규모 환경에서도 장애를 신속하게 판단하여, 타사 대비 많은 자원을 효율적으로 관리할 수 있습니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼 NMS는 네트워크 인프라를 효율적으로 관리하는데 가장 중요한 역할을 합니다. 제니우스(Zenius) NMS처럼 고성능의 Manager를 기반으로 네트워크 상태를 신속하게 판단하며, 유저 중심의 통합 UI를 제공하는 NMS 솔루션을 꼭 선택하시기 바랍니다!
2024.01.31
기술이야기
가트너부터 딜로이트까지, 2024 IT트렌드 총정리
기술이야기
가트너부터 딜로이트까지, 2024 IT트렌드 총정리
지난해는 AI를 중심으로 IT 전 분야에서 혁신적인 변화가 있었고, 올 2024년에는 변화의 속도가 더 빨라질 것으로 예상됩니다. 따라서 이와 같은 빠른 변화를에 얼마나 잘 대처하는지가 점점 더 중요해지고 있는데요. 변화를 더 자세하고 빠르게 파악하기 위해서 가트너, 딜로이트, 포레스터 리서치가 발표한 2024 IT 트렌드의 핵심 내용을 모아봤습니다. 。。。。。。。。。。。。 가트너, AI가 가져올 구체적인 변화에 주목하다 가트너는 AI TRiSM부터 Machine Customers까지 총 10개의 주제로 2024년 IT 트렌드를 정리했습니다. 특히 AI와 클라우드를 통한 산업에서의 구체적인 변화에 주목했는데요. 자세한 내용을 살펴보겠습니다. [1] AI TRiSM: AI의 신뢰, 위험 및 보안 관리 AI TRiSM(AI Trust, Risk, and Security Management)은 인공지능 시스템의 신뢰성, 위험, 보안을 관리하는 프레임워크입니다. AI가 윤리적이고 공정하며 투명해야 함을 의미하며, 잠재적 위험을 식별하고 완화하는 데 중점을 둡니다. 보안 관리는 AI 시스템을 사이버 공격과 데이터 유출로부터 보호합니다. AI TRiSM은 의료·금융·자율주행 차량 등, 다양한 분야에서 AI의 안전하고 책임 있는 사용을 보장하는 데 필수적입니다. 이를 통해서 AI 기술의 지속 가능한 발전과 사회적 신뢰를 유지할 수 있습니다. [2] CTEM: 지속적인 위협 노출 관리 Continuous Threat Exposure Management(CTEM)은 사이버 보안 분야에서 조직의 지속적인 위협 노출을 관리하는 전략입니다. 이 방법론은 실시간 모니터링, 자동화된 위험 평가, 적응적 대응 전략을 포함하며 장기적으로 비즈니스의 연속성을 보장하는데 기여합니다. 예를 들어 금융 서비스 회사는 네트워크와 시스템을 지속적으로 스캔하여 취약점을 탐지하고, 감지된 위협에 대해 우선순위를 매겨 신속하게 대응해야 합니다. 또한 소프트웨어 개발 회사는 개발 중인 소프트웨어와 인프라를 모니터링하여 보안 취약점을 조기에 발견하고, 자동화된 도구를 사용해 코드의 취약점을 수정해야 합니다. [3] Sustainable Technology: 지속 가능한 기술 지속 가능한 기술은 환경 영향을 줄이고 지속 가능성을 촉진하는 혁신 및 관행을 포함합니다. IIoT(산업용 사물 인터넷) 센서와 AI를 사용하여 공급망 작업을 최적화하고, 탄소 배출을 줄이며 전반적인 장비 효율성을 향상시키는 산업이 좋은 예입니다. 또한 자급자족 LED 조명, 전기 교통, 태양 에너지, 탄소 포집 및 저장 기술 등의 지속 가능한 기술과 관행도 포함됩니다. 가트너는 또한 지속 가능한 기술이 위험 감소, 운영 효율성 향상, 경쟁 우위 획득, 인재 유치, 환경 및 사회적 책임 강화와 같은 비즈니스 이점을 제공한다고 강조합니다. [4] Platform Engineering: 플랫폼 엔지니어링 플랫폼 엔지니어링은 개발자와 사용자가 쉽게 사용할 수 있는 도구, 기능 및 프로세스 세트를 제공하는 방식입니다. 사용자의 생산성을 높이고 부담을 줄이는데 중점을 둡니다. 플랫폼 엔지니어링은 사용자의 특정 요구와 비즈니스 요구에 맞게 플랫폼을 수정합니다. 전담 제품 팀은 재사용 가능한 도구와 적절한 기능을 제공하며, 사용자 친화적인 인터페이스 솔루션을 제공합니다. 자동화된 프로세스 및 의사 결정을 위한 기초를 제공하며, 복잡한 상황에서도 디지털 개발을 가속화하게 하는 Be Informed 플랫폼이 좋은 예입니다. [5] AI-Augmented Development: AI 증강 개발 소프트웨어 개발 과정에서 AI를 활용하여 개발자의 작업을 돕고, 테스트 플랫폼과 문서 작성을 지원하는 것을 뜻합니다. GitHub Copilot, Replit GhostWriter, Amazon CodeWhisperer와 같은 AI 기반 코드 생성 서비스가 좋은 예입니다. 이러한 AI 기반 코딩 도우미를 사용하여 업무의 효율을 높일 수 있지만, AI가 오류를 발생시킬 수 있고 독창적인 코드를 생성할 수 없기에 개발자의 역할은 여전히 중요합니다. [6] Industry Cloud Platforms: 산업 클라우드 플랫폼 Industry Cloud Platforms은 특정 산업에 특화된 기능을 제공하는 클라우드 서비스입니다. SaaS(Software as a Service), PaaS(Platform as a Service), IaaS(Infrastructure as a Service)를 결합하여 업계별 맞춤형 기능을 제공합니다. 구체적으로 네 가지의 서비스를 예로 들 수 있습니다. ◾ AWS for Healthcare AWS는 의료 산업에 특화된 클라우드 서비스를 제공하여 의료 데이터 관리, 환자 관리, 의료 연구 등을 지원합니다. ◾ Microsoft Cloud for Financial Services 금융 산업에 맞춤화된 클라우드 솔루션을 제공하여 은행업, 보험 업계에서 사용되고 있습니다. ◾ GCP for Retail Google은 소매 산업에 특화된 클라우드 서비스를 통해 고객 데이터 분석, 재고 관리, 전자상거래 솔루션 등을 지원합니다. ◾ IBM Cloud for Telecommunications 통신 산업에 최적화된 클라우드 서비스를 제공하여 네트워크 운영, 고객 서비스 향상, 신기술 적용 등을 지원합니다. 이러한 산업별 클라우드 플랫폼은 기업이 보다 효율적으로 운영하고 혁신을 가속화하는 데 도움을 줍니다. [7] Intelligent Applications: 지능형 애플리케이션 Intelligent Applications은 인공지능(AI)과 머신러닝 기술을 활용하여 데이터를 분석하고, 사용자 행동을 예측하는 등의 기능을 제공합니다. 자동화된 의사결정, 사용자 맞춤형 경험 제공, 그리고 비즈니스 프로세스의 효율성 향상을 위해 설계되었습니다. 예를 들어 고객 서비스를 위한 AI 기반 챗봇, 데이터 분석을 통해 사용자에게 맞춤형 추천을 제공하는 소매 애플리케이션, 또는 실시간 의료 데이터 분석을 제공하는 헬스케어 애플리케이션 등이 있습니다. Salesforce Einstein, Google Cloud AI, IBM Watson, Microsoft Azure AI가 지능형 애플리케이션에 해당합니다. [8] Democratized Generative AI: 민주화된 생성 AI Democratized Generative AI는 인공지능의 생성 능력을 널리 사용할 수 있게 하는 개념으로, 비전문가도 쉽게 사용할 수 있는 AI 도구와 플랫폼을 의미합니다. 창작물 생성, 데이터 분석, 예측 모델링 등 다양한 분야에서 사용됩니다. 구체적인 서비스나 회사로는 OpenAI의 GPT-, Google의 DeepMind, Adobe의 Sensei와 같은 플랫폼들이 이에 해당합니다. 이러한 도구들은 사용자가 복잡한 알고리즘을 직접 다루지 않고도 AI의 혜택을 누릴 수 있게 해줍니다. [9] Augmented Connected Workforce: 증강 연결된 노동력 기술을 활용하여 직원들의 작업 능력을 향상시키고 원격 협업을 강화하는 전략입니다. 가상 현실, 증강 현실, 인공지능 등을 포함하는 다양한 기술을 활용하여 직원들이 더 효율적이고 효과적으로 협업하고 작업할 수 있도록 지원합니다. Microsoft의 HoloLens와 같은 증강 현실 기기나 Slack, Microsoft Teams와 같은 협업 플랫폼이 좋은 예입니다. 이러한 기술들은 직원들이 시간과 장소의 제약 없이, 효과적으로 협업하고 작업할 수 있는 환경을 만들어줍니다. [10] Machine Customers: 기계 고객 기계나 소프트웨어가 독립적으로 결정을 내리고 트랜잭션을 수행하는 시나리오를 말합니다. 예를 들어 IoT(사물 인터넷) 기기나 자동화 시스템이 소비자 역할을 수행하여 자동으로 주문하거나, 서비스를 요청하는 것입니다. Amazone Dash의 예시 소모품의 사용량을 체크하여 필요할 때 자동으로 주문하는 Amazon의 Dash Service가 대표적인 예입니다. 이러한 기술은 자동화된 공급 체인 관리와 효율적인 재고 관리 등에 기여하며, 비즈니스와 소비자 모두에게 편리함을 제공합니다. 딜로이트, 6가지 트렌드에 주목하다 딜로이트(Deloitte)는 2024 IT 트렌드를 아래와 같은 여섯 개의 주제로 정리했습니다. [1] 공간 컴퓨팅과 메타버스 메타버스는 기업의 주요 도구로 자리 잡고 있으며, 공간 컴퓨팅 기술도 점점 더 중요한 역할을 할 예정입니다. 디지털 트윈, 5G, 클라우드, 엣지, AI 기술에 대한 투자가 이 변화를 주도하고 있습니다. [2] 생성형 AI 생성형 AI는 비즈니스를 개선하고 혁신을 촉진하는 강력한 도구로, 전략적 계획과 특정 비즈니스 요구에 초점을 맞추어 구현되고 있습니다. 기업은 이 기술을 통해 각 분야에서 높은 경쟁력을 확보할 수 있습니다. 사용자의 시청 패턴과 선호도를 분석하여, 개인화된 추천 콘텐츠를 제공하는 Netflix와 Spotify가 가장 기본적이고 좋은 예입니다. [3] 새로운 컴퓨팅 방식의 도입 비즈니스는 기존 인프라를 더 효율적으로 활용하고, 최첨단 하드웨어를 추가하여 프로세스를 가속화하고 있습니다. 일부 기업은 이전 컴퓨팅을 넘어서 클라우드, 엣지, 양자 컴퓨팅 등 새로운 컴퓨팅 방식을 모색하고 있습니다. [4] 개발자 경험 강화(DevOps를 넘어 DevEx로) 기술 인재를 유치하고 유지하기 위해 회사들은 개발자 경험에 초점을 맞추고 있습니다. Github Copilot 같은 코드 자동 완성 및 분석 도구의 도입, 통합 개발 환경(IDE) 최적화, 컨테이너화 및 오케스트레이션 도구 도입 등이 이에 해당합니다. 이러한 노력은 결국 최종 사용자의 경험을 향상시켜 비지니스 성과를 높여줄 예정입니다. [5] 합성 미디어 시대의 진실 방어 AI의 부상으로 인해 악의적인 딥페이크 콘텐츠가 증가함에 따라, 각 기업과 조직들은 유해 콘텐츠를 식별하고 잠재적 공격을 예측하기 위한 방법을 도입하고 있습니다. 특히 2024년은 미국 대통령 선거 등 중요한 이벤트가 많기에 중요한 이슈로 떠오를 예정입니다. [6] 기술적 부채에서 기술적 웰니스로 각 회사와 조직은 기존 코어 시스템, 인프라, 데이터, 애플리케이션을 포함한 노후화된 시스템을 현대화해야 합니다. 이를 위해 정기적인 점검과 예방적 관리에 중점을 두는 새로운 접근 방식이 필요합니다. 포레스터 리서치, 생성형 AI와 디지털 혁신에 주목하다 포레스터 리서치에 따르면 전 세계 기술 분야에 대한 투자는 5.3% 증가할 것으로 예상됩니다. 이 중 금융 서비스와 헬스케어가 가장 빠른 성장세를 보일 것이고, 클라우드 컴퓨팅을 포함한 IT 서비스와 소프트웨어 분야는 2027년까지 가장 높은 비중을 차지할 예정입니다. 또한 기업이 위험을 줄이고 경쟁력을 확보하기 위해선 생성형 AI, 그리고 녹색 및 디지털 혁신 등에 주목해야 합니다. 생성형 AI 생성형 AI는 2024년에 중요한 역할을 할 것으로 예상됩니다. 대형 컨설팅 회사들은 생성형 AI에 큰 규모의 투자를 할 것이며, 해당 기업들은 경쟁력을 높이기 위해 AWS, Microsoft Azure, GCP 등과 파트너십을 맺을 것으로 예상됩니다. 이제 각 기업이 생성형 AI를 활용하여 실질적인 이윤을 추구하기 시작할 것이기 때문에, 2024년을 '의도적 AI 시대(era of intentional AI)의 원년'이라고도 말할 수 있습니다. 녹색 및 디지털 혁신 데이터 센터의 에너지 효율을 높이기 위한 노력이 진전을 보이고 있습니다. 2030년까지 데이터 센터를 탄소 중립으로 만들겠다는 약속이 강화되고 있습니다. 이는 지속 가능하고 환경친화적인 기술로의 전환의 시작을 뜻합니다. 기술 리더들의 도전 기술 분야의 리더들이 인재를 발굴하고 비즈니스 전략과 기술을 조화시키는데 어려움을 겪을 것으로 예상됩니다. 또한 AI와 관련된 기술의 수요가 빠르게 증가할 것이기에, 관련된 기술과 경험을 기르는 것도 매우 중요해지고 있습니다. 마지막으로 포레스터는 기업들의 경쟁력 유지와 성장 촉진을 위해 위와 같은 트렌드를 빠르게 받아들여야 한다고 강조했습니다. 매튜 구아리니 포레스터 리서치 부사장은, "전체 기술 전략을 핵심까지 현대화하고 조직과 운영을 크게 향상시켜야 성과를 얻을 수 있다"라고 말했습니다. 。。。。。。。。。。。。 가트너, 포레스터 리서치, 딜로이트가 전망한 2024 IT 트렌드를 살펴봤습니다. 트렌드를 아는 것에서 그치는 것이 아니라 발 빠르게 대응하는 것이 가장 중요합니다. 브레인즈컴퍼니는 트렌드에 빠르고 효과적으로 대응할 수 있도록, 제니우스(Zenius)를 통해 쿠버네티스(Kubernetes)를 비롯한 프라이빗/퍼블릭/하이브리드 클라우드 환경, 온-프레미스 환경 모두를 완벽하게 관리할 수 있는 서비스를 제공하고 있습니다. 또한 브레인즈컴퍼니의 자회사인 에이프리카는 AI 비즈니스를 위한 쿠버네티스 기반의 AI 개발 통합 플랫폼 솔루션과, 멀티 클라우드 통합 관리 플랫폼(CMP) 솔루션을 제공하고 있습니다(?에이프리카 솔루션 자세히 보기). 힘차게 시작한 2024년, 올 한 해는 또 얼마나 큰 변화가 있을까요? 이 글을 읽으시는 모두가 변화에 앞서가서 성공 스토리를 만들 수 있기를 기원합니다.
2024.01.19
기술이야기
테라폼(Terraform)의 모든 것, 그리고 AWS EC2 생성하기
기술이야기
테라폼(Terraform)의 모든 것, 그리고 AWS EC2 생성하기
클라우드 환경이 도래하면서 CSP(Cloud Service Provider)에서는 콘솔을 통해 클라우드 자원에 쉽게 접근할 수 있게 되었습니다. 하지만 서비스를 운영하며 발생하는 다양한 이슈를 콘솔에서 전부 관리하기에는 무리가 있습니다. 반복적인 작업과 휴먼에러가 발생하기 때문이죠. 이러한 문제를 한 번에 해결할 수 있는 방법이 바로 IaC(Infrastructure as Code)입니다. 인프라를 코드로 관리하는 컨셉으로, 효율적인 데브옵스와 클라우드 자동화 구축을 위해 ‘꼭’ 필요한 기술로 각광받고 있죠. 그중에서도 ‘테라폼(Terraform)’은 가장 강력한 IaC 도구로 꼽힙니다. “테라폼(Terraform)이란?” 테라폼은 하시코프(Hashicorp) 사에서 Go 언어로 개발한 오픈소스 IaC 도구입니다. 테라폼에서는 HCL(Hashicorp Configuration Language, 하시코프 설정 언어)을 사용해 클라우드 리소스를 선언합니다. *쉽게 설명한다면 코드로서 클라우드 인프라 서버를 더 효율적으로 구축하고, 운영할 수 있는 오픈소스 소프트웨어죠. 따라서 이번 시간에는 테라폼의 기본동작방식, 특장점, 명령어의 종류, 구체적인 활용 예시에 대해서 살펴보겠습니다. 。。。。。。。。。。。。 테라폼의 기본동작방식 테라폼은 Write, Plan, Apply 기본동작방식으로 이루어져 있는데요. Write 단계에서는 HCL 언어로 필요한 리소스를 선언하고, Plan 단계에서는 앞에서 선언된 리소스들이 생성 가능한지 테스트 및 예측 실행을 수행하며, Apply 단계에서는 선언된 리소스들을 CSP에 적용하는 과정을 거칩니다. *쉽게 설명한다면 Write 단계는 코드 기반으로 선언하고, Plan 단계는 코드 기반으로 검토하며, Apply 단계는 코드 기반으로 리소스를 생성하는 것이죠. 테라폼의 기본개념 테라폼의 주요 기본개념이자 구성요소입니다. 전부 필수적인 내용이지만 특히 Resource, Provider, State는 많이 쓰이는 중요 개념이며 하단 예시에도 나오니 꼭 기억해 두세요! 테라폼의 장점 테라폼은 다양한 장점들이 있는데요. 그중 가장 큰 장점은 자동화를 통해 코드 기반으로 서버 운영 및 관리가 가능한 점입니다. 초보자도 쉬운 코드 재사용을 통해, 효율적인 협업이 가능하고 생산성도 향상시킬 수 있죠. 또한 테라폼은 AWS, GCP(구글), Azure(MS), Naver Cloud(네이버클라우드) 등 다양한 환경에서 지원이 가능한데요. 즉 테라폼만으로도 멀티 클라우드 리소스들을 선언하고 코드로 관리할 수 있습니다. 테라폼의 명령어 테라폼에서 자주 쓰이는 명령어입니다. 그중에서도 코드를 통해 실행될 내용을 미리 확인하는 Plan, 코드 기반으로 리소스를 생성하는 Apply, 그리고 상태를 확인하는 State가 핵심 명령어로 많이 사용되고 있습니다. 테라폼의 활용예시 테라폼을 통해 많은 것을 할 수 있지만, 이번 시간에는 테라폼을 이용하여 AWS에 가장 중심이 되는 서비스인 EC2(AWS에서 제공하는 서버)를 생성해 보겠습니다. 또한 제니우스(Zenius) 모니터링까지 살펴봅시다! 우선 앞서 [테라폼의 기본동작방식]에서 설명했던 것처럼 테라폼은 Write, Plan, Apply 단계를 거치게 되는데요. 테라폼 명령어가 어떤 방식으로 쓰이고 반응하는지, 예시를 통해 확인해 볼까요? > Write 단계: Provider 및 Resource 선언하기 Writer 단계에서는 [테라폼의 기본개념]으로 언급된 *Provider, Resource를 코드 기반으로 선언한 부분을 확인할 수 있습니다. > Plan 단계: Terraform plan Plan 단계에서는 *Terraform plan을 통해 검증을 하게 되는데요. 위 사진 하단에 나와있듯 1개가 추가되고, 0개가 변하고 0개가 없어진다는 의미입니다. 이처럼 +을 통해 추가되는 인프라의 상세정보를 확인할 수 있습니다. > Apply 단계: Terraform apply Apply 단계에서는 앞서 구축 계획에 문제가 없다면 *Terraform apply를 통해 검증된 결과를 바탕으로 실제 인프라에 적용하는 단계입니다. apply 명령을 이용하여 리소스를 생성·수정·삭제하는 것이죠. > State로 확인해 보기 State list 명령어를 통해서도 확인해 보니, 1개의 인스턴스(instance, 클래스의 현재 생성된 오브젝트)가 확인 되네요. 앞서 State list 명령어를 통해 생성된 ‘부분’만 확인했다면, 이번에는 State show 명령어를 통해 어떻게 생성이 됐는지 ‘상세’하게 확인해 봅시다. State 명령어뿐만 아니라 State는 terraform.tfstate 파일로도 확인 가능해 인스턴스 Name 또한 비교해 보았습니다. 테라폼을 이용해 최종 목표였던 AWS에 EC2 인스턴스가 잘 생성이 되었는지 확인해 봐야겠죠? *빨간색 네모 박스에 표기되어 있는 것처럼 잘 생성 되었습니다. 여기서 다시 주목할 점은 AWS의 인스턴스를 생성하기 위해선, 여러 가지 절차를 거쳐야 하는데요. 테라폼을 이용하면 ‘코드’ 하나로 바로 생성이 가능하다는 점입니다. 코드 기반으로 서버운영 및 관리의 자동화라는 특장점 또한 다시 한번 상기해 볼 수 있겠죠? 이처럼 인프라 서버를 효율적으로 구축하는 테라폼을 이용하여, AWS에 EC2를 생성해 보았습니다. 하지만 ‘생성’만 중요한 게 아닌, 효율적인 클라우드 인프라 관리를 극대화하기 위해 ‘모니터링’하는 점도 매우 중요한데요. 테라폼처럼 매우 쉽고 효율적인 방법을 소개하겠습니다. 바로 AWS EC2 모니터링이 가능한 클라우드 서비스 모니터링 시스템인 제니우스-CMS(Zenius-CMS) 예시를 통해, 다양한 환경에서 인프라 모니터링을 어떻게 하고 있는지 살펴보겠습니다! Zenius에서 AWS 모니터링하기 Zenius-CMS는 API를 통해 AWS 계정 기반으로 자동 모니터링을 제공하고 있는데요. 테라폼을 통해 AWS에서 EC2가 코드 기반으로 쉽게 생성했던 것처럼, CMS도 간편한 AWS 모니터링 실행이 가능합니다. 위 사진처럼 EC2 클라우드 서버에 대한 성능도 모니터링이 가능하죠. 여기서 새로운 인스턴스를 추가하면, 이 또한 자동으로 모니터링이 됩니다. Zenius-CMS는 EC2뿐만 아니라 RDS, VPC 등 과금 현황까지 통합 모니터링할 수 있는데요. AWS 콘솔에 접속하지 않고도, AWS 주요 성능 지표에 대한 모니터링 추이도 확인할 수 있습니다. 。。。。。。。。。。。。 이번 시간에는 인프라 서버를 효율적으로 구축하는 테라폼에 대해 학습하고, AWS에 EC2를 생성해 보며 활용 예시까지 살펴보았습니다. 또한 제니우스-CMS(Zenius-CMS) 예시를 통해, AWS EC2 모니터링뿐만 아니라 다양한 환경에서 인프라 모니터링 방법을 알 수 있었는데요. 앞으로도 클라우드 환경에서의 인프라 관리뿐만 아니라, 다양한 환경에서의 모니터링이 가능한 제니우스 제품에 많은 관심 부탁드릴게요! ?참고 자료 모두의 Terraform(테라폼) PART1 - 개념(230313) Terraform(테라폼)이란? 간단 사용기(220711) 테라폼(Terraform) 기초 튜토리얼(200314)
2024.01.11
기술이야기
쿠버네티스와 Helm 등 CNCF의 주요 프로젝트
기술이야기
쿠버네티스와 Helm 등 CNCF의 주요 프로젝트
지난 포스팅을 통해 정리한 것처럼 CNCF는 클라우드 네이티브 생태계의 활성화를 위해, 다양한 오픈소스 프로젝트를 개발하고 공급하고 있습니다. 또한 프로젝트 채택 단계부터 사용 빈도까지의 성숙도를 관리하기 위한, 프로세스 체계를 보유하고 있는데요. 이번 시간에는 CNCF의 주요 프로세스인 쿠버네티스(K8s), Helm 등과 CNCF 프로세스에 대해서 알아보고자 합니다. 。。。。。。。。。。。。 CNCF 프로젝트 프로세스 2023년 10월 기준으로 약 170여 개의 CNCF 프로젝트가 진행 중인데요. 이들 프로젝트는 성숙도에 따라서 샌드박스(Sandbox), 인큐베이팅(Incubating), 졸업(Graduated)으로 나뉩니다. 성숙도 수준에 대한 평가는 CNCF 위원회 멤버들에 의해서 결정되며, 졸업(Graduated) 단계의 프로젝트로 인정받기 위해서는 3분의 2 이상의 찬성 표가 필요합니다. ▲프로젝트 성숙도 단계 Step1. 샌드박스(Sandbox) CNCF의 새로운 프로젝트가 채택되면 Sandbox 단계에서 시작합니다. 이 단계에서는 프로젝트가 CNCF의 가이드라인과 정책에 부합되는지를 확인하는 절차를 주로 거칩니다. Step2. 인큐베이팅(Incubating) Sandbox를 통과한 프로젝트는 Incubating 단계로 집입하며, 이 단계에서는 프로젝트의 커뮤니티와 기술적 성숙도를 더욱 강화하도록 합니다. 해당 프로젝트의 커뮤니티의 규모와 다양성을 평가하고 기능들의 안정성을 검증합니다. Step3. 졸업(Graduated) Incubating 단계를 성공적으로 통과한 프로젝트는 Graduated 단계로 올라갑니다. 높은 수준의 품질과 안정성이 보장되어야 이 단계에 올라갈 수 있는 거죠. 커뮤니티가 활발하게 유지되고 관련자의 참여가 적극적으로 이루어져야 하며, 실제 사용 사례에서 성공한 경험들이 존재해야 합니다. Step4. 사용 사례 검증 Graduated 프로젝트 중 실제로 다양한 산업에서 사용되고, 기업과 조직이 해당 프로젝트를 많이 채택하는지를 평가하여, 지속적인 성장 가능성과 성숙도를 평가합니다. CNCF에서 관리하는 프로젝트 영역은 꽤 넓고 다양한데요. 애플리케이션 개발을 위한 도구부터 컨테이너 오케스트레이션, 서비스 프로비저닝, 모니터링 도구 등 소프트웨어 개발부터 운영까지를 위한 도구들이 존재합니다. 이제부터는 가장 성공적인 프로젝트인 쿠버네티스를 포함하여, Incubating 단계 이상의 프로젝트를 알아보고자 합니다. CNCF의 주요 프로젝트 쿠버네티스(kubernetes) 쿠버네티스는 CNCF에서 최초로 Graduated 단계에 진입한 프로젝트입니다. 컨테이너 오케스트레이션 기능을 통해, 애플리케이션 컨테이너 기반으로 자동화하고 확장할 수 있는 플랫폼을 제공합니다. A. 컨테이너 오케스트레이션 기능 컨테이너화된 애플리케이션을 자동으로 배포·확장하고 관리하는 기능을 제공합니다. 애플리케이션의 변경이 필요할 경우, 개발자가 애플리케이션을 빠르게 수정 및 배포하고 운영할 수 있게 합니다. B. 스케일링 기능 리소스 사용량이나 사용자 트래픽 증가에 따라 자동으로 애플리케이션을 확장·축소하는 오토 스케일링 기능을 제공합니다. C. 롤백 기능 문제가 발생된 애플리케이션의 경우, 롤백 기능을 제공하여 서비스 장애에 신속히 대응합니다. Helm Helm은 쿠버네티스 환경에서 애플리케이션을 관리하기 위한 도구로 사용됩니다. Helm은 차트라고 불리는 패키지로 애플리케이션을 패키징 하는데요. 이 차트에는 애플리케이션의 설치부터 관리에 필요한 모든 것을 포함합니다. 쉽게 말하면 이 차트라는 기능을 통해 애플리케이션을 탬플릿화하고, 배포하며, 롤백 및 공유하는 역할을 하는 프로젝트입니다. Envoy ▲Envoy를 사용하는 주요 업체 리스트 ⓒenvoyproxy.io Envoy는 클라우드 네이티브 환경에서 애플리케이션의 네트워크 트래픽을 관리하고, 제어하기 위한 프로젝트입니다. 프록시 기능을 수행하고, 클라이언트 서버 간의 통신을 관리하며, 애플리케이션 간의 통신의 보안 향상시킵니다. 여러 애플리케이션 사이에서 부하 분산을 자동화하여 가용성과 성능을 향상시킬 수 있도록 합니다. 부하 분산을 함에도 불구하고 특정 시스템에 부하가 생겨 장애 발생이 생길 경우, 트래픽을 가중치에 따라 다른 시스템으로 분산시키는 역할을 합니다. Containerd Containerd는 쿠버네티스 환경에서 컨테이너를 만들고 실행하는 데 도움을 주는 프로젝트입니다. 개발자가 컨테이너를 만들고 실행시키는 역할을 하며, 필요할 때는 중지하거나 삭제하는 작업을 지원합니다. 컨테이너 실행에 필요한 파일과 설정을 모아 놓은 이미지를 다운로드하고, 저장하며, 불러오는 역할과 같은 이미지 관리 기능도 제공하고 있습니다. Prometheus Prometheus는 시스템이나 애플리케이션의 동작을 실시간으로 모니터링하고, 이상 상황이 발생할 경우 알림을 줄 수 있는 도구입니다. 다양한 데이터를 수집하고 기록하여 차후 분석 용도로 활용할 수 있습니다. 또한 핵심 지표들을 유형 및 종류별로 제공하여, 다각적인 관점에서의 관찰을 지원합니다. 시스템의 리소스부터 애플리케이션의 동작 및 응답 상태를 적시에 확인하게 해줍니다. Fluentd ▲Fluentd 개념 설명 ⓒfluentd.org Fluentd는 다양한 시스템에서 발생되는 로그 데이터를 수집·처리·전송하는 데이터 수집 도구로서, 스플렁크(SPLUNK)와 유사한 역할을 수행하는 프로젝트입니다. 다양한 소스에서 발생되는 로그를 수집할 수 있을 뿐만 아니라, 원하는 목적지의 저장소까지 전송하는 역할을 수행합니다. 예를 들어 Syslog 등을 실시간 수집하고, 이를 Elasticsearch나 Amazon S3 등의 원하는 저장소로 목적지를 설정할 수 있게 합니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼, CNCF에서 클라우드 네이티브 생태계 활성화를 위해 다양한 프로젝트를 진행하고 있는데요. 브레인즈컴퍼니 역시 클라우드 네이티브 모니터링을 위한 다양한 제품과 기능 등을 속속 출시하고 있습니다. 대표 제품인 제니우스(Zenius)를 통해 클라우드 네이티브의 핵심요소인 컨테이너(Docker)의 상태와 리소를 실시간으로 모니터링할 수 있습니다. MSA 환경을 만들기 위한 필수 도구인 쿠버네티스(K8s)의 Cluster·Node·Pod 등의 구성과 변화를 관찰하며, 이상 상황 알림을 통해 선제적 장애 대응 또한 가능합니다. Zenius에 대해 더 자세히 알고 싶으시다면, 바로 아래 링크를 클릭해 주세요! ?더보기 Zenius로 클라우드 네이티브 모니터링하기 CNCF 세 가지 핵심가치(1탄)도 있어요
2024.01.03
기술이야기
클라우드 네이티브의 핵심! CNCF의 세 가지 핵심가치
기술이야기
클라우드 네이티브의 핵심! CNCF의 세 가지 핵심가치
최근 디지털 트랜스포매이션(Digital Transformation)이 IT 트렌드로 자리 잡았습니다. 기업과 조직은 빠르게 변화하는 환경에 대응하고 경쟁에서 앞서기 위해 '클라우드 네이티브 컴퓨팅' 기술을 채택하고 있는데요. 여기서 클라우드 네이티브 컴퓨팅 기술을 연구 및 발전시키고, 생태계를 촉진하는데 중추적인 역할을 하는 커뮤니티가 바로 'CNCF(Cloud Native Computing Foundation)'입니다. 현재 CNCF에서는 Google, Intel, Azure 등 700여 곳 이상의 회원사들이 활동에 참가하고 있습니다. 이번 시간에는 CNCF가 정확히 무엇이고, 추구하는 핵심가치와 주요 프로젝트에 대해 자세히 알아보겠습니다. 。。。。。。。。。。。。 CNCF(Cloud Native Computing Foundation)란 CNCF는 2015년 12월에 리눅스 재단에 의해서 출범된 비영리 단체로, 네이티브 컴퓨팅 기술의 채택을 촉진하는 오픈소스 소프트웨어 재단입니다. CNCF는 클라우드 네이티브 컴퓨팅 플랫폼에서 사용하며, 확장 가능한 애플리케이션을 개발하는데요. 이와 관련된 기술인 컨테이너, 마이크로서비스, 서비스 메쉬 등의 발전을 촉진하여 이러한 기술 패턴을 누구나 이해하고 활용할 수 있도록 하는 것이 목표입니다. ▲총 24개의 CNCF Platinum Members 이러한 클라우드 네이티브 컴퓨팅 환경을 대중화하기 위해 Google Cloud, AWS, MS Azure, Cisco, IBM, Apple, Oracle, Red Hat, VMware, SAP 등 유수의 기업들이 플래티넘 회원사로 참여하여 뜻을 같이 하고 있습니다. CNCF의 세 가지 핵심 가치 CNCF의 핵심가치는 1) 클라우드 네이티브 기술의 촉진 2) 오픈소스 프로젝트 생태계 육성 3) 기술의 표준화 수립으로 정리할 수 있습니다. 이 세 가지 핵심 가치를 더 자세하게 살펴볼까요? CNCF 핵심가치1 : 클라우드 네이티브 기술의 촉진 CNCF는 현대적이고 미래 지향적인 '클라우드 네이티브 기술의 촉진'을 중요한 핵심 가치로 규정하고 있는데요. 이는 CNCF가 오늘날의 IT 생태계의 중심에 서서, 클라우드 네이티브 기술을 지속적으로 연구 및 개발하여 새로운 디지털 전환의 시대를 선도하고자 하는 의지가 담겨 있다고 볼 수 있습니다. CNCF는 기존 온 프레미스(On-Premise) 환경, 그리고 모놀리식(Monolithic)한 개발 환경에서 탈피한 컨테이너, 마이크로서비스, 서비스 메시, 서버리스 등. 보다 혁신적이고 미래지향적인 기술 영역을 보급하고 대중화하기 위한 노력과 지원을 아끼지 않습니다. ▲기존 모놀리식 아키텍처와 마이크로서비스 아키텍처 비교 또한 디지털 트랜스포메이션 과정에서 클라우드 환경으로의 전환이 더욱 효율적으로 이루어질 수 있도록, 클라우드 네이티브 기술과 기업들의 서비스 모델을 재구성하기 위한 방법들을 안내하고 있습니다. 이렇게 새로운 서비스 모델 구축을 통해 민첩성과 효율성을 강화하여, 빠르게 변화하는 IT서비스의 수요에 기민하게 대응하고 고객 요구에 부응할 수 있도록 지원합니다. 여기서 계속 언급되고 있는 '클라우드 네이티브'는 정확히 무엇을 뜻할까요? CNCF의 활동에 대한 이해도를 높이기 위해, 클라우드 네이티브의 의미를 짚어보겠습니다! ?클라우드 네이티브(Cloud Native)란? 클라우드 네이티브는, 클라우드 컴퓨팅 환경에서 현대적 애플리케이션을 구축·배포·관리할 때의 소프트웨어 접근 방식입니다. 기업과 조직은 고객의 요구를 충족하기 위해 신속하게 업데이트할 수 있는 확장성과 유연성, 그리고 복원력이 뛰어난 애플리케이션을 구축하고자 합니다. 이를 위해 클라우드 네이티브에서 사용되는 기술들은, IT 서비스에 영향을 미치지 않고 애플리케이션을 신속하게 변경합니다. 또한 리소스를 효율적으로 활용하여 빠르게 변화에 대응할 수 있도록 지원하고 있습니다. 위의 개념을 '클라우드 컴퓨팅'과 비교한다면 보다 더 쉽게 이해할 수 있는데요. 클라우드 컴퓨팅은, 클라우드 서비스 제공 업체가 단순히 리소스와 인프라를 클라우드 형태로 제공하는 방식입니다. 여기서 서비스 제공 방식은 기존 '모놀리식' 방식과 크게 다르지 않습니다. ▲클라우드 네이티브의 핵심요소 ⓒPivotal 클라우드 네이티브는 마이크로서비스 아키텍처(MSA)와 컨테이너를 기반으로, IT 서비스의 확장·변경 등에 대응이 용이한 환경입니다. 예를 들어 Ex1) 서비스 수요가 폭증하거나 장애가 생겼을 경우 Ex2) 자동적으로 애플리케이션을 확장하거나 장애가 발생했을 경우에는 대체 가능한 모델을 바로 적용하여 Fail-Over가 손쉽게 이루어질 수 있도록 합니다. CNCF에서는 위 그림과 같이 클라우드 네이티브의 핵심 요소를 마이크로서비스, 컨테이너, 애플리케이션의 개발·통합·배포의 의미를 내포하는 DevOps, CI/CD의 개발 방법론을 포함하여 설명하고 있습니다. CNCF 핵심가치2 : 오픈소스 프로젝트 생태계 육성 CNCF는 다양하고 혁신적인 '오픈소스 프로젝트'를 개발·공급·대중화하여, 클라우드 네이티브 생태계를 활성화하는데 큰 기여를 하고 있습니다. 또한 클라우드 네이티브 컴퓨팅 환경을 구성하고 효율적으로 운영하기 위해, 다양한 오픈소스를 개발하고 있는데요. 누구나 이와 같은 기술들을 이용할 수 있도록 지원합니다. 가장 성공적인 프로젝트는 2018년 8월에 컨테이너 오케스레이션 플랫폼인 'Kubernetes' 프로젝트이며, 컨테이너 생성·실행·종료 등의 역할을 하는 'Containerd', 시스템 모니터링 및 경고 역할을 하는 'Prometheus' 그리고 여러 시스템의 트래픽을 균등하게 분배하여 로드밸런싱을 제공하는 'Envoy' 등이 있습니다. 이처럼 클라우드 네이티브 생태계 활성화를 위한 다양한 프로젝트를 실행하며 배포하고 있습니다. ▲CNCF 개발 완료된 프로젝트 이외에도 클라우드 네이티브 커뮤니티인 이벤트·웨비나·워크샵 등을 활성화하여, 온오프라인 영역에서 개발자들 간의 교류를 원활하게 합니다. 개발자들이 오픈소스 프로젝트를 효과적으로 활용할 수 있도록, 사용법에 대한 교육과 튜토리얼을 제공하기도 합니다. 이를 통해 많은 기업과 이용자들이 클라우드 네이티브 환경에 손쉽게 접근할 수 있도록 지원하고 있습니다. CNCF 핵심가치3 : 기술의 표준화 수립 CNCF는 클라우드 네이티브 관련 기술의 무분별한 확장과 사용으로 인한 혼란을 방지하고자, 기술의 표준화를 촉진하고 정책의 일관성을 확보하는 노력 또한 지속하고 있는데요. 기술의 안정성과 품질 확보를 위해 재단 자체적으로 테스트와 벤치마킹 등을 수행하고, Best Practice를 공유하여, 기술의 표준화와 성숙도를 유지합니다. 이 외에도 CNCF는 새로운 기술의 적용 가능성과 성숙도를 평가하고, 클라우드 관련 기술을 보유한 회원사 및 파트너와의 협력을 촉진합니다. 이처럼 다양한 형태로 클라우드 네이티브 생태계의 지속적인 발전을 지원하고 있습니다. 。。。。。。。。。。。。 이번 시간에는 CNCF의 정의와 핵심가치를 알아보았는데요. CNCF는 앞에서 소개해 드린 내용처럼, 클라우드 네이티브 생태계 활성화를 위해 다양한 노력을 기울이고 있습니다. 브레인즈컴퍼니 역시 클라우드 네이티브 모니터링을 위한 다양한 제품과 기능들을 속속 출시하고 있으니, 많은 관심 부탁드립니다. 다음 시간에는 [CNCF의 핵심 프로젝트] 주제로 돌아오겠습니다!
2023.12.27
회사이야기
[전시회] ‘공공용 민간 SaaS 서비스 제공기업’으로 선정된 브레인즈컴퍼니
회사이야기
[전시회] ‘공공용 민간 SaaS 서비스 제공기업’으로 선정된 브레인즈컴퍼니
브레인즈컴퍼니가 행정안전부와 한국정보사회진흥원(NIA)가 선정한 ‘공공용 민간 SaaS 서비스 제공기업’에 선발되었습니다. 。。。。。。。。。。。。 공공용 민간 SaaS 시범이용 사업은? 공공용 민간 SaaS 시범 이용 사업이란, 중앙정부·지자체·공공기관이 업무처리를 위한 정보시스템이나 소프트웨어를 직접 구축하거나 구매하지 않고 민간 클라우드(SaaS)서비스 이용을 장려하는 사업입니다. 쉽게 요약한다면, 업무상 필요한 모든 서비스를 이제 SaaS 형태로 이용한다는 의미입니다! ‘디지털 플랫폼 정부’ 혁신활동의 일환인 이번 사업을 위해, 행정안전부와 NIA는 엄격한 심사를 거쳐서 제공기업을 선정했는데요. 서비스 제공기업 주요 심사기준 ▪CSAP(클라우드 보안인증) 획득 여부 ▪높은 등급의 기업신용평가 등급 ▪행정·공공 기관이 이용 가능한 SaaS 서비스 보유 여부 등 브레인즈컴퍼니는 위에 있는 내용을 중심으로 심사를 거쳐 네이버클라우드, 더존비즈온, 가비아 등과 함께 서비스 제공기업으로 선정되었습니다? 공공용 민간 SaaS 매칭데이 진행 서비스 제공기업 선정 이후에 사업 활성화를 위해, 지난 24일 부산 벡스코에서 ‘2023 대한민국 정부 박람회의 부대행사’로 「매칭데이」가 진행되었는데요. 현재 정부가 디지털 플랫폼 정부를 표방하는 만큼 박람회의 열기는 뜨거웠습니다! 매칭데이는 총 2부로 진행되었는데요. 1부는 SaaS 활용 촉진 사업 안내와 기업별 SaaS 소개, 2부에서는 ‘맞춤 상담’으로 구성되었습니다. 1부ㅣ브레인즈컴퍼니의 특장점이 주목받다 1부에서는 기업별 SaaS 소개 순서에서 저희 브레인즈컴퍼니도 발표를 진행했습니다. 연속적인 기술 지원으로 높은 만족도의 고객서비스 제공, IT 인프라 서비스 관리를 위한 20여 종의 플랫폼 서비스, 높은 신용평가 등급 및 다수의 고객 등! 발표를 통해 소개된 브레인즈컴퍼니와 서비스의 특장점에 대해서 많은 참관객분들께서 관심을 가져주셨습니다. 2부ㅣ기업별 맞춤 상담에도 이어진 관심 2부에서는 벡스코 회의실에 위치한 전담 부스에서, 고객별 상황에 따른 ‘맞춤 상담’ 시간을 가졌는데요. 비록 약 100분의 길지 않은 시간이었지만, 많은 분들이 저희 부스를 찾아주셨습니다. 부스에서는 제니우스(Zenius) EMS의 실제 데모 화면을 기반으로 자세히 설명을 드리고, 고객 상황별 맞춤 안내를 진행하여 좋은 반응을 얻을 수 있었습니다! 。。。。。。。。。。。。 공공용 민간 SaaS 서비스 제공 업체로 선정된 브레인즈컴퍼니는, 이번 매칭데이를 시작으로 보다 많은 행정기관 및 공기업에 IT 인프라·서비스 통합 모니터링 서비스를 제공하는데 속도를 낼 예정입니다. 브레인즈컴퍼니가 공공용 관제 서비스 시장에서 지속해서 선두를 유지하고, ‘디지털 정부 플랫폼’으로의 혁신에 기여할 수 있도록 많은 관심과 응원 부탁드립니다! 감사합니다?♀️
2023.12.07
회사이야기
[전시회] 브레인즈컴퍼니 ‘소프트웨이브 2023’에서 새로운 비전 제시
회사이야기
[전시회] 브레인즈컴퍼니 ‘소프트웨이브 2023’에서 새로운 비전 제시
브레인즈컴퍼니가 11월 29일(수)부터 12월 1일(금)까지 삼성동 코엑스에서 국내 최대 소프트웨어(SW) 전시회인 「소프트웨이브 2023(소프트웨어 대전)」에 참가했어요. 자회사인 AI 전문기업 ‘에이프리카’와 함께 “AI, 클라우드 네이티브의 창을 열다. 디지털 플랫폼을 위한 Brainz Group”이라는 슬로건 아래 IT 분야의 새로운 비전을 제시하기 위해 참가한 것인데요. 「소프트웨이브 2023」 전시회는 참관객 3만 명, 국내외를 대표하는 320개 사, 557개 홍보 부스가 참가할 정도로 뜨거운 관심 아래 진행되었어요. 브레인즈컴퍼니와 에이프리카는 참관객분들께 자사 핵심 제품을 다채롭고 직관적으로 보여드리기 위해 세미나, 이벤트, 이 밖에도 다양한 콘텐츠를 마련했답니다. 3일 동안 많은 참관객분들과 마주하는 자리여서 더더욱 설레었던 소프트웨이브 2023 전시회. 그 현장감을 담은 후기 바로 시작할게요! 。。。。。。。。。。。。 브레인즈컴퍼니 부스 탐험 브레인즈컴퍼니와 에이프리카의 부스는 멀리서 봐도 한눈에 띨 정도로 웅장했는데요! 부스 곳곳에 브레인즈컴퍼니와 에이프리카의 제품을 다양한 형태로 구성해 보았어요. 참관객분들과 가장 처음 마주하는 안내데스크, 핵심 제품인 데모 영상과 대시보드 영상, 세미나 공간까지! 무엇보다 브레인저가 여러분들을 기다리고 있었답니다? 특히 데모 영상과 대시보드 영상을 통해 제니우스(Zenius)의 핵심제품인 EMS·APM·ITSM·SIEM을 직관적으로 소개해 드릴 수 있었는데요. 제품별 담당 엔지니어가 제니우스를 데모화면과 함께 직접 설명해 드리고 시연해 드리는 자리를 마련해서, 참관객 분들께 좋은 반응을 얻었어요! 브레인즈컴퍼니 x 에이프리카 세미나 Brainz Group Tech Talk 2023 브레인즈컴퍼니는 에이프리카와 함께 「Brainz Group Tech Talk 2023」 이름으로 세미나를 진행하기도 했는데요. ‘인공지능(AI) & 클라우드(Cloud)’를 성공적으로 디지털 전환하기 위한 네 가지 주제를 선보여드렸습니다. ▲광주과학기술원 사례로 본 대규모 AI 플랫폼 구축방안 ▲MLOps와 DevOps를 활용한 프라이빗 LLM 구축방안 ▲클라우드 전환기의 성공적인 IT 인프라 모니터링 방안 ▲디지털 플랫폼 정부의 클라우드 네이티브 구현 사례를 참관객분들께 보여드리는 자리를 가졌답니다. 이 밖에도 QR코드를 통해 온라인 설문 참여를 해주신 참관객분들에 한해, 스타벅스 커피 쿠폰 이벤트도 진행했어요. 이처럼 다양한 콘텐츠로 채워진 브레인즈컴퍼니 부스에 많은 참관객들이 몰리며 대 성황을 이루었습니다! 。。。。。。。。。。。。 소프트웨이브 2023 전시회를 통해 많은 고객분들과 마주하고, 저희 제품을 다양한 각도에서 알릴 수 있어 뿌듯하고 행복했던 시간이었어요. 자회사인 에이프리카와 함께해서 더더욱 뜻깊었답니다. 3일 동안 브레인즈컴퍼니와 에이프리카 큰 관심 보내주셔서 감사드리며, 앞으로도 IT 인프라 통합모니터링 분야뿐만 아니라 인공지능(AI) & 클라우드(Cloud) 분야에서 지속적으로 차별화된 서비스를 보여드릴게요! PS. 3일 동안 진행한 소프트웨이브 2023 전시회인 만큼 아직도 못다 한 얘기가 아직도 많아요. 다음에는 소프트웨이브 2023 못다 한 이야기 시즌2 콘텐츠로 돌아올게요-! To be continued…
2023.12.06
1
2
3
4
5