반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
최신이야기
검색
회사이야기
브레인즈컴퍼니가 주목받은, BIXPO 2024 생생 후기
회사이야기
브레인즈컴퍼니가 주목받은, BIXPO 2024 생생 후기
한국전력공사가 주최하고 브레인즈컴퍼니가 참가한 'BIXPO 2024'가 지난 11월 6일(수)부터 8일(금)까지 진행됐습니다. 올해로 10주년을 맞이한 BIXPO 2024는 '에너지 미래로 향하는 여정'이라는 주제로 국내외를 대표하는 기업들과 기관들이 모여 최신 기술과 솔루션을 공유하는 자리였습니다. 이번 BIXPO 2024는 국제컨퍼런스, 국제발명특허대전, 신기술 전시회 등 다양한 프로그램으로 구성되어 있어 에너지 산업의 미래를 이끌 혁신 기술들을 한눈에 볼 수 있었습니다. 관람객들에게 다양한 볼거리와 체험 기회를 제공하여 관련 산업에 대한 이해를 높였습니다. 특히 이번 행사에서 주목을 받은 프로그램 중 하나는 신기술 전시회로 브레인즈컴퍼니, 한국전력공사, LS ELECTRIC, 효성중공업, IBM 등 150여 개의 국내외 기업이 참가하여 총 200개의 부스를 운영하며 많은 참관객의 이목을 끌었습니다. 신기술 전시회는 ▲재생에너지 확대와 친환경 연료전환을 다룬 '청정성(Carbon-free)' ▲차세대 전력 그리드의 운영 디지털화 및 예방 진단 고도화를 중심으로 한 '안정성(Stability)' ▲건축, 산업, 수송 분야의 효율화를 위한 '효율성(Efficiency)'이라는 세 가지 테마로 구성되어, 각 주제에 맞는 최신 기술과 제품들에 대한 자세한 소개와 시연이 진행됐습니다. 이번 BIXPO에서 브레인즈컴퍼니는 '효율성' 테마에 포함되어 전시부스를 운영하며 Zenius EMS, APM, SIEM, ITSM 등 주요 제품을 소개했습니다. 브레인즈컴퍼니 부스에서 제니우스를 접한 관람객분들은 K8s와 CMS 등 MSA 환경을 비롯해, 멀티 및 하이브리드 클라우드까지 모두 통합하여 모니터링할 수 있는 기능에 큰 관심을 보여주셨습니다. 한 관람객은 "각 지사별 IDC뿐만 아니라 클라우드로 이전한 시스템의 운영 현황까지 파악할 수 있는 솔루션이 필요했는데, 단일 플랫폼에서 실시간으로 인프라 상태를 모니터링하고 문제 발생 시 빠르게 대응할 수 있도록 지원하는 점이 인상적이다. 제품 기본 화면도 잘 구성되어 있고, 맞춤형 대시보드도 눈에 띈다"라고 소감을 전했습니다. 다른 관람객은 "최근 쿠버네티스 도입 후 활용에 어려움이 있었는데, Zenius의 쿠버네티스 모니터링 솔루션에 대한 자세한 설명을 듣고 그간의 고민에 대한 답이 담겨있다는 생각이 들었다. 긍정적으로 도입을 검토할 예정이다"라고 소감을 전했습니다. 또한 퍼블릭 클라우드, 프라이빗 클라우드, 하이브리드 클라우드 환경 모두를 모니터링할 수 있는 Zenius CMS에 대한 관심도 높았습니다. 이번 BIXPO에서는 브레인즈컴퍼니와 오랜 관계를 이어온 고객사들도 다수 방문해 자리를 빛내주셨습니다. 10년 이상 Zenius 제품을 사용해 온 한 고객은 "전시회에서 오랜 파트너를 만나 반가웠고, 새롭게 출시된 제니우스의 기능들과 향후 발전 방향성에 대해 깊이 있는 대화를 나눌 수 있어 의미 있는 시간이었다"라고 전했습니다. 브레인즈컴퍼니는 앞으로도 다양한 활동을 통해 지능형 IT 인프라 통합관리 솔루션 제니우스를 알릴 예정입니다.
2024.11.11
회사이야기
[2024 K-ICT WEEK in BUSAN]에서 큰 호응 얻은 브레인즈컴퍼니
회사이야기
[2024 K-ICT WEEK in BUSAN]에서 큰 호응 얻은 브레인즈컴퍼니
브레인즈컴퍼니가 9월 10일(화)부터 12일(목)까지 부산 벡스코(BEXCO)에서 열린 [2024 K-ICT WEEK in BUSAN] 참가하여 큰 호응을 얻었습니다. 많은 참관객들과 교류했던 생생한 현장의 분위기를 그대로 담아왔습니다! 부산광역시와 과학기술정보통신부 등이 함께 주최한 2024 K-ICT WEEK in BUSAN은 인공지능(AI), 클라우드, 양자정보기술 등을 아우르는 동남권 최대 ICT 행사입니다. 올해는 200여 개의 국내외 기업이 참여하며, 총 489개 부스에서 다양한 기술과 솔루션을 선보였는데요. 주목할 만한 프로그램으로는 클라우드 콘퍼런스가 있었습니다. 마이크로소프트(MS), 카카오엔터프라이즈 등 클라우드 기술을 선도하는 기업들이 최신 기술과 트렌드를 주제로 기조 강연을 진행했습니다. 또한 양자정보기술, 세미나, AI 교육관, 국내외 바이어 상담회, 기업 투자 상담회(IR 데모데이) 등도 마련되어 많은 관심을 받았습니다. 특히 올해는 메타버스 플랫폼을 활용한 가상 전시장이 운영되어, 참관객들이 실제 AI 기술이 적용된 환경을 직접 체험할 수 있었습니다. 더불어 실내 내비게이션 서비스를 제공해 방문객들이 전시장을 편리하게 둘러볼 수 있었습니다. 브레인즈컴퍼니는 이번 대규모 행사에서 전시부스 운영을 통해 Zenius EMS, APM, SIEM, ITSM 등 주요 제품들을 소개했습니다. 다양한 기관과 기업의 관계자들과 적극적으로 소통할 수 있는 시간이었습니다. 또한 자회사인 에이프리카의 MLOps 솔루션 '치타'와 클라우드 통합 관리 솔루션인 '세렝게티(Serengeti)'도 이번 전시회를 통해 함께 소개됐습니다. 부스를 방문해 준 참가자들 중 몇몇 분은 "서버, 네트워크 등 핵심 IT 인프라를 한눈에 모니터링할 수 있는 제품을 찾고 있었다. 분산된 IT 인프라를 어떻게 하면 효과적으로 통합 관리할 수 있을지 오랫동안 고민했는데, 이번 기회를 통해 실질적인 해결책을 찾은 것 같다"라며 좀 더 상세한 자료와 미팅을 요청하셨습니다. 또 다른 참가자는 "현재 오픈소스 모니터링을 사용하고 있지만, 대규모 인프라에서는 리소스 소모가 크고, 디테일한 기능이 부족해서 아쉬움을 느끼고 있었다. 반면 Zenius는 대규모 IT 인프라 환경에도 안정적인 관리와 더 다양한 지표와 고급 기능을 제공해, 보다 효과적인 모니터링이 가능할 것 같다"라는 구체적인 소감도 전했습니다. "대시보드가 깔끔하고 직관적이다"라는 참가자들의 반응도 이어졌습니다. Zenius 대시보드는 주요 IT 인프라를 한눈에 볼 수 있도록 고객별 상황과 니즈에 맞춰 제작되어, 많은 참관객들에게 좋은 반응을 얻었습니다. 이번 박람회 기간동안 수백여 명의 기관과 기업 관계자분들이 부스를 방문해 Zenius에 큰 관심을 보여주셨습니다. 앞으로도 다양한 지역에서 고객들과 직접 소통하며, 더 나은 IT 솔루션을 제공할 수 있도록 최선을 다하겠습니다. 브레인즈컴퍼니에 대한 많은 관심과 성원 부탁드립니다!
2024.09.30
기술이야기
네트워크 모니터링의 4가지 최신 트렌드
기술이야기
네트워크 모니터링의 4가지 최신 트렌드
클라우드와 엣지 컴퓨팅의 확산, 동영상/음악/게임 분야의 스트리밍 서비스의 성장 등으로 인해 네트워크 인프라는 점점 더 복잡해지고 있으며, 데이터 트래픽 또한 폭발적으로 증가하고 있습니다. 또한 DDoS(Distributed Denial of Service)나 스니핑(Sniffing) 공격과 같은 보안 위협도 확산되고 있습니다. 따라서 네트워크 성능을 안정적으로 유지하고 잠재적인 위협에 빠르게 대응하기 위한 네트워크 모니터링의 중요성이 더욱 커지고 있습니다. 한 조사에 따르면 네트워크 모니터링 시장 규모가 올해 29억 1천만 달러에 이른 후, 4년간 연평균 성장률(CARG) 9.7%를 기록하며 2028년에는 42억 1천만 달러까지 확대될 전망입니다. IT 기술과 서비스의 발전에 따라서 네트워크 모니터링은 구체적으로 어떻게 변화하고 있는지 네 가지로 나눠서 살펴보겠습니다. [1] 멀티 클라우드 환경에서의 네트워크 모니터링 벤더 종속성을 피하고 비용을 줄이며, 서비스의 성능을 높이기 위해 멀티 클라우드 전략이 많이 채택되고 있습니다. 하지만 멀티 클라우드를 구성하는 각 클라우드 서비스마다 네트워크 아키텍처와 성능이 다르기 때문에 안정적으로 네트워크를 관리하는 데에는 많은 어려움이 따르는 것도 사실입니다. 이러한 어려움을 극복하고, 멀티 클라우드의 운영 효율을 최대한 높이기 위한 네트워크 모니터링의 최근의 추세를 살펴보겠습니다. 가시성 높은 통합 대시보드를 통한 관리 복잡한 멀티 클라우드 환경에서 네트워크를 효율적으로 관리하기 위한 가시성 높은 통합 대시보드의 활용이 증가하고 있습니다. 통합 대시보드는 여러 클라우드에 걸쳐 발생하는 트래픽 흐름, 대역폭 사용량, 그리고 네트워크 성능 지표를 한 눈에 보기 쉽게 제공합니다. 이를 통해 관리자가 각 클라우드 서비스 간의 네트워크 상태를 실시간으로 쉽게 파악하고 문제에 빠르게 대응할 수 있게 돕고 있습니다. 특히, 통합 대시보드는 네트워크 토폴로지 맵과 성능 히트맵과 같은 세부적인 기능을 통해, 복잡하게 얽힌 클라우드 간의 트래픽 흐름을 직관적으로 분석할 수 있도록 지원하고 있습니다. 이를 통해 멀티 클라우드의 각 경로에서 발생할 수 있는 트래픽 불균형이나 병목 현상을 신속하게 감지하고 조정할 수 있습니다. 이와 더불어서 관리자가 자신이 중점적으로 모니터링해야 하는 지표들을 쉽게 확인할 수 있도록, 통합 대시보드의 관리자별 맞춤 설정 기능도 강화되고 있습니다. 이를 통해 관리자는 복잡한 멀티 클라우드 환경에서도 하나의 화면에서 리전별 트래픽, 네트워크 지연시간, 패킷 손실율 등 본인이 원하는 부분에 초점을 맞춰서 효율적으로 네트워크를 모니터링 할 수 있습니다. AI와 머신러닝을 통한 자동화된 분석 및 대응 AI와 머신러닝 기술이 적용된 네트워크 모니터링 시스템도 멀티 클라우드 운영 효율을 높이는데 크게 기여하고 있습니다. 우선 멀티 클라우드 환경의 네트워크는 멀티 클라우드 환경은 다양한 변수로 인해 네트워크 문제가 예측 불가능한 경우가 많습니다. 따라서 AI와 머신러닝 기술은 클라우드 간의 네트워크 상관관계, 트래픽 패턴, 대역폭 사용량, 성능 지표를 등을 학습하여 성능 저하나 장애의 잠재적 원인을 탐지하고 빠르게 알리고 있습니다. 또한 AI를 통해 실시간 트래픽 경로 분석하여 병목 현상이 발생하거나 리소스가 과도하게 사용될 경우 동적으로 VLAN 설정을 변경하거나, 트래픽을 다른 클라우드 인스턴스로 우회시키는 등의 자동화된 대응도 강화되고 있습니다. 이와 함께 네트워크 트래픽의 실시간 변화에 맞춰 QoS(서비스 품질) 정책을 자동으로 조정하여 중요한 애플리케이션에 우선순위를 부여하고, 비정상적인 트래픽을 즉시 차단하거나 제한하는 등의 대응도 자동으로 수행할 수 있습니다. 이 같은 자동화된 조치는 네트워크의 가용성을 높이고, 관리자의 개입 없이도 실시간으로 문제를 해결할 수 있어, 멀티 클라우드 환경에서의 네트워크 성능과 안정성을 높이고 있습니다. 시스템의 확장성 및 유연성 강화 멀티 클라우드 환경에서는 클라우드 리소스가 추가되거나 기존 리소스가 제거되면서, 네트워크의 구성과 요구사항이 빠르게 변동됩니다. 따라서 높은 유연성을 바탕으로 빠르게 변화하는 네트워크 환경에 신속하게 대응하는 것이 네트워크 모니터링 시스템의 중요한 요소로 자리잡았습니다. 구체적으로, 네트워크 모니터링 시스템을 통해 멀티 클라우드 인프라 내에서 새롭게 배포되는 서버나 애플리케이션을 자동으로 감지하고 이를 실시간으로 모니터링할 수 있는 것이 중요해지고 있습니다. 또한, 동적인 멀티 클라우드 환경에서 관리자가 특정 클라우드 서비스나 리소스에 맞춤형 모니터링 설정을 유연하게 적용할 수 있는 기능이 중요해지고 있습니다. 예를 들어, 새로운 클라우드 환경의 네트워크를 모니터링할 때, 해당 환경에 맞춘 모니터링 템플릿을 유연하게 구성하고 배포할 수 있는 기능이 점점 더 중요해지고 있습니다. 이러한 유연한 모니터링 시스템은 멀티 클라우드 인프라의 복잡성을 효과적으로 관리하고 운영 효율성을 높이는 데 중요한 역할을 하고 있습니다. 규정 준수 및 거버넌스 모니터링 멀티 클라우드 환경에서는 다양한 국가와 지역의 규제를 준수해야 합니다. 따라서 네트워크 모니터링 시스템은 네트워크 트래픽, 접근 로그, 보안 이벤트 등을 실시간으로 모니터링하여 잠재적인 규정 위반을 탐지하고 사전에 인지할 수 있도록 지원하고 있습니다. 특히 규정 준수(Compliance) 모니터링은 멀티 클라우드 환경에서 필수적입니다. 예를 들어, 한 클라우드가 유럽에 위치하고 있어 GDPR(유럽 일반 데이터 보호 규정)을 준수해야 하고, 다른 클라우드는 미국의 규제에 따라야 할 때, 네트워크 모니터링 시스템을 통해 각 클라우드에서 발생하는 네트워크 트래픽, 보안 이벤트와 접근 로그를 추적하고, 잠재적인 규정 위반을 사전에 탐지할 수 있도록 지원하고 있습니다. 또한, 거버넌스 모니터링 측면에서는 클라우드 간의 데이터 관리와 접근 통제 정책이 일관되게 적용되도록 지원합니다. 멀티 클라우드 환경에서는 다양한 클라우드 제공자 간에 민감한 데이터가 이동할 수 있기 때문에, 데이터 접근 권한을 관리하고 비인가된 접근 시도를 실시간으로 감시하는 기능이 필수적입니다. 이를 통해 기업은 데이터 유출 위험을 줄이고, 여러 규제와 거버넌스 요구 사항을 준수할 수 있습니다. [2] SDN(소프트웨어 정의 네트워킹) 모니터링 SDN(Software-Defined Networking)은 네트워크를 더 쉽게 관리할 수 있도록 설계된 기술입니다. 전통적인 네트워크는 스위치나 라우터 같은 네트워크 하드웨어 장치가 데이터의 전달 경로와 방식을 스스로 결정했습니다. 하지만 각 장비가 독립적으로 작동하다 보니 네트워크 설정을 변경하는 데 시간이 많이 걸렸고, 특히 대규모 네트워크를 통합적으로 관리하는 데 어려움이 있었습니다. 반면, SDN에서는 소프트웨어 기반의 중앙 컨트롤러(제어 평면, Control Plane)가 데이터의 전달 경로와 방식을 통합하여 결정하고 하드웨어 장치들은 이 결정에 따라 데이터를 전송하는 역할만 수행합니다. 따라서 네트워크 구성을 변경하거나 최적화하기가 쉽고, 대규모 네트워크도 효율적으로 관리할 수 있는 장점이 있습니다. 하지만 동시에 중앙 컨트롤러에 장애가 발생하거나 해킹을 당할 경우 네트워크 전체가 마비될 수 있는 위험이 있으며, 실시간으로 네트워크 상태를 모니터링하고 분석하는 것이 어려운 단점도 존재합니다. 따라서 네트워크 모니터링 시스템은 SDN의 단점을 보완하고 장점을 강화하는 방향으로 발전하고 있습니다. 실시간 데이터 수집 및 분석 실시간 데이터 분석은 네트워크 환경이 계속해서 변화하는 SDN의 특성상 매우 중요합니다. 특히 SDN에서는 스위치, 라우터, 케이블 등 네트워크 하드웨어 장치들이 정상적으로 작동하고 연결된 상태를 나타내는 '물리적 상태'와, 중앙 컨트롤러가 설정한 네트워크 경로와 적용된 정책을 의미하는 '논리적 상태'를 모두 실시간으로 정확하게 모니터링해야 합니다. 네트워크 모니터링 시스템은 이러한 물리적 상태와 논리적 상태를 추적하기 위해, 네트워크 지연 시간, 트래픽 흐름, 패킷 손실, 대역폭 사용량, 링크 상태와 같은 다양한 성능 지표를 실시간으로 수집하고 분석하는 기능을 강화하고 있습니다. 이러한 분석을 통해 네트워크 관리자가 잠재적인 문제나 성능 저하를 조기에 감지하여, 심각한 문제가 발생하기 전에 조치할 수 있도록 돕고 있습니다. 빠르고 자동화된 대응 지원 네트워크 모니터링 시스템은 네트워크 주요 데이터에 대한 수집과 분석에서 그치지 않고, SDN의 컨트롤러와 연계하여 빠르고 자동화된 대응을 지원하고 있습니다. 예를 들어, 특정 시간대에 트래픽이 과도하게 증가하면, 모니터링 시스템이 이를 실시간으로 탐지하고 SDN 컨트롤러를 통해 특정 트래픽을 다른 경로로 자동 분산시킵니다. 링크 장애가 발생하면 모니터링 시스템은 즉시 대체 경로를 설정하여 트래픽이 끊기지 않도록 조치하며, 문제가 해결되면 다시 원래의 경로로 트래픽을 재배치하는 자동 복구 기능을 수행합니다. 이처럼 네트워크 모니터링 시스템과 SDN 컨트롤러와의 연계를 통해 네트워크 운영자의 개입 없이도 스스로 문제를 해결하는 능력이 더욱 진화할 것으로 기대되고 있습니다. 보안이 강화된 모니터링 앞서 살펴본대로 SDN은 네트워크 제어를 중앙집중식으로 처리하는 구조적 특성을 가지고 있기 때문에, 중앙 컨트롤러의 보안이 매우 중요합니다. 따라서 SDN 환경에서 네트워크 모니터링 시스템은 다양한 잠재적인 보안 위협을 사전에 감지하고, 신속하게 대응할 수 있는 강화된 보안 기능을 필수적으로 갖춰가고 있습니다. 예를 들어 네트워크 상에서 발생하는 다양한 이벤트를 실시간으로 감시하고 분석하여, 비정상적인 트래픽 흐름, 의심스러운 로그인 시도, 네트워크 장치 간의 비정상적인 통신 행위 등에 대한 탐지가 가능합니다. 또한 보안을 강화하기 위해서 네트워크 모니터링 시스템과 SIEM(보안 정보 및 이벤트 관리 시스템), IPS(침입 방지 시스템), IDS(침입 탐지 시스템)의 통합이나 연계도 활발하게 이루어지고 있습니다. 분산형 SDN 컨트롤러 모니터링 SDN 환경에서 중앙 컨트롤러 하나에 의존하는 방식의 리스크를 줄이기 위해, 많은 네트워크 운영자들이 분산형 SDN 컨트롤러 아키텍처를 채택하고 있습니다. 분산형 컨트롤러는 각기 독립적으로 운영되면서도 상호 간에 정보와 상태를 동기화하여 안정적인 네트워크 운영이 가능합니다. 따라서 최근 네트워크 모니터링 시스템은 각 컨트롤러의 상태와 성능을 실시간으로 추적하고, 컨트롤러 간 협력 상태를 감시하여 과부하나 장애 발생 시 즉시 다른 컨트롤러로 트래픽을 자동 분산하거나 대체 컨트롤러를 할당하는 기능을 지원하고 있습니다. 또한, 분산된 컨트롤러 간의 상태 동기화 여부를 실시간으로 확인하여, 동기화 문제로 인한 비효율적인 경로 설정이나 보안 취약점을 방지하고, 문제 발생 시 즉각적인 경고 및 자동 수정 기능을 제공합니다. 장애 복구와 복원 기능 또한 필수적으로 강화되어, 장애 발생 시 대체 컨트롤러가 즉각적으로 운영을 이어받고, 문제가 해결된 후에는 트래픽을 원래 컨트롤러로 복원하는 기능도 제공하고 있습니다. [3] 엣지컴퓨팅 환경의 네트워크 모니터링 엣지 컴퓨팅(Edge Computing)은 데이터를 중앙의 대형 데이터센터나 클라우드 서버에서 처리하는 기존 방식과 달리, 데이터를 생성하는 디바이스나 그와 가까운 위치에서 처리하는 기술입니다. 예를 들어 스마트폰, IoT 기기, 자율주행차, 또는 공장 내의 다양한 장비들이 데이터를 스스로 처리하고, 필요한 경우에만 중앙 서버나 클라우드로 데이터를 전송하는 방식입니다. 네트워크 대역폭을 절약할 수 있고, 빠른 서비스 제공이 가능해서 다양한 분야에서 활용이 증가하고 있습니다. 엣지 디바이스들이 데이터를 처리하는 위치가 분산되어 있고, 시스템이 유연하게 확장될 수 있기 때문에, 이러한 환경에 맞춰 각 디바이스와 네트워크의 상태를 실시간으로 모니터링할 수 있는 엣지컴퓨팅 맞춤형 네트워크 모니터링이 필요합니다. 엣지 노드별 모니터링 엣지 컴퓨팅 환경에서는 엣지 노드에서 발생하는 데이터를 실시간으로 정확하게 감지하고 관리해야 합니다. 따라서 네트워크 모니터링 시스템은 각 엣지 노드에 경량화된 에이전트를 배치하거나 에이전트리스 모니터링 방식 등을 활용하여 모니터링을 진행합니다. 이를 통해 엣지 노드의 주요 상태(네트워크 대역폭 소비, 지연 시간 등)를 정확히 분석하고, 비정상적인 상태를 감지하면 중앙 서버에 즉시 알림을 보내고 있습니다. 이때 엣지 노드에서 생성되는 모든 데이터를 중앙 서버로 전송하는 것은 네트워크 대역폭에 큰 부담을 줄 수 있습니다. 따라서 네트워크 모니터링 시스템은 데이터 샘플링을 통해 필수적인 데이터를 효율적으로 선택하고, 데이터 필터링을 통해 불필요한 데이터를 제거하고 전체 네트워크의 부하를 줄이면서 성능을 최적화할 수 있도록 돕고 있습니다. AI/ML 기반의 자동화된 대응 엣지 컴퓨팅의 특성상 문제 발생 시 네트워크 운영자가 모든 노드에 직접 접근해 수동으로 대응하는 것이 현실적으로 어렵습니다. 따라서 운영자의 개입 없이도 엣지 디바이스가 문제를 자율적으로 감지하고 해결할 수 있는 자동화된 대응 시스템이 중요합니다. 네트워크 모니터링 시스템에도 자동화된 대응 기능이 강화되고 있습니다. 자동화된 대응 시스템은 네트워크 모니터링과 관리의 자동화를 통해 분산된 엣지 노드에서 발생하는 문제를 실시간으로 감지하고, 즉각적인 대응을 가능하게 합니다. 특히 AI 및 ML 기술이 이러한 자동화된 대응 시스템의 핵심 기술로 작용하고 있습니다. 예를 들어 정상적인 트래픽 흐름과 비정상적인 트래픽 흐름을 구분하기 위해 각 노드의 트래픽 데이터를 분석하여, 평상시 패턴과 다른 변화를 신속히 감지하고, 이때 이상 징후가 발견되면 트래픽 차단, 리소스 재분배, 또는 네트워크 경로 변경 등의 대응 조치를 자동으로 실행함으로써 네트워크 전체의 안정성을 높이고 있습니다. 확장에 대한 원활한 지원 5G 네트워크의 확산과 IoT 디바이스의 확산등으로 엣지 노드의 수가 폭발적으로 증가하면서 각 노드에서 생성되는 데이터의 양도 기하급수적으로 늘어나고 있습니다. 이러한 환경에서 네트워크 모니터링 시스템은 더 많은 노드를 빠르고 효율적으로 처리할 수 있는 능력을 가져야 하며, 노드 간 상호 연결성을 포함해 분산된 네트워크 전반에 걸쳐 일관된 성능을 유지해야 합니다. 이를 위해 네트워크 모니터링 시스템은 새로운 엣지 노드가 네트워크에 추가될 때마다 별도의 수작업 설정 없이 자동으로 노드를 인식하고, 모니터링을 즉시 시작할 수 있도록 기능이 강화되고 있습니다. 또한 자동 스케일링 기능을 통해 엣지 노드가 증가하면 모니터링 시스템의 리소스를 동적으로 확장하여, 성능 저하 없이 모든 노드를 관리하고 모니터링할 수 있도록 지원하고 있습니다. [4] 네트워크 보안 강화 네트워크 모니터링 분야에서 '보안'은 항상 중요한 주제였지만, 최근 IT 기술의 발전과 빈번한 보안사고 등으로 인해 그 중요성이 더 커지고 있습니다. 네트워크 보안 강화와 관련한 주요 이슈들을 살펴보겠습니다. 제로 트러스트(Zero Trust) 보안 모델의 확산 "절대 신뢰하지 말고, 항상 검증하라"는 원칙에 기반한 제로 트러스트 보안 모델은 내부와 외부를 구분하지 않고, 모든 사용자와 장치의 접근을 철저히 검증하는 접근법입니다. 클라우드 서비스의 확산으로 인해 기업 네트워크의 경계가 모호해지면서 더욱 중요해지고 있습니다. 제로 트러스트 모델을 올바르게 구현하기 위해서는 네트워크의 모든 트래픽을 실시간으로 모니터링하고 비정상적인 활동을 자동으로 탐지하고 즉각적으로 대응할 수 있는 시스템이 필요합니다. 이는 기존 보안 시스템이 단순히 알려진 위협을 차단하는 것에 그쳤다면, 제로 트러스트 모델에서는 잠재적인 위협까지도 감지하고 대응할 수 있어야 한다는 것을 의미합니다. 이를 위해, 최근 네트워크 모니터링 시스템은 AI 기술을 활용하여 자동으로 이상 징후를 탐지하고, 보안 위협에 신속하게 대응하는 능력을 강화하고 있습니다. 예를 들어, AI 기반 모니터링 시스템은 평소와 다른 사용자 행동 패턴을 감지하고, 이를 바탕으로 잠재적인 보안 위협을 조기에 차단하고 있습니다. SASE(Secure Access Service Edge)의 부상 SASE는 네트워크와 보안 기능을 통합하여 클라우드 환경에서 제공하는 혁신적인 보안 모델입니다. VPN, 방화벽, 침입 탐지 시스템, 데이터 손실 방지 등을 하나의 통합 솔루션으로 제공하며, 특히 외부에서 중앙 데이터센터로의 안전한 접근을 보장하는 데 최적화되어 있습니다. SASE는 전통적인 네트워크 보안 솔루션이 클라우드 환경에서 가지는 한계를 극복하고, 어디서든 동일한 보안 수준을 유지할 수 있게 하는 장점이 있습니다. SASE의 핵심은 네트워킹과 보안 기능을 통합하여, 기업이 네트워크와 보안을 하나의 솔루션으로 관리할 수 있도록 하는 것입니다. SASE를 도입하면 방화벽, 클라우드 접근 보안 브로커(CASB), 보안 웹 게이트웨이(SWG) 등 다양한 보안 기능을 단일 플랫폼에서 통합 관리할 수 있어, IT 팀이 더 효율적이고 일관된 보안 정책을 실행할 수 있습니다. 또한, SASE는 네트워크 모니터링 시스템을 진화시켜, 다양한 보안 기능(예: 방화벽, CASB, 보안 웹 게이트웨이 등)을 실시간으로 모니터링하고 관리할 수 있게 합니다. 이를 통해 네트워크 가시성을 높이고, 비정상적인 활동에 대한 즉각적인 대응이 가능해지며, 궁극적으로 조직의 보안을 강화하고 있습니다. XDR(Extended Detection and Response) 도입 XDR은 전통적인 EDR(Endpoint Detection and Response)을 확장하여, 네트워크, 엔드포인트, 서버, 클라우드 환경 등에서 발생하는 보안 위협을 통합적으로 탐지하고 대응하는 기술입니다. XDR은 다양한 보안 도구와 데이터를 통합하여 상관관계를 분석함으로써, 보안 운영 팀이 위협을 보다 쉽게 이해하고 신속하게 대응할 수 있도록 지원하기 때문에 많은 주목을 받고 있습니다. XDR을 활용하려면 상당한 초기 비용이 들고 관리에 어려움이 있기 때문에 많은 기업들이 XDR 전문 관리 솔루션을 도입하고 있습니다. 이에 따라 네트워크 모니터링 시스템도 단순히 네트워크 트래픽을 모니터링하는 것에서 나아가, XDR 전문 관리 솔루션과의 긴밀한 협력을 통해 통합된 보안 운영과 모니터링을 서비스로 제공하는 방향으로 발전하고 있습니다. 예를 들어, 기업은 네트워크 모니터링 시스템을 통해 다양한 보안 데이터를 실시간으로 수집하고 분석하며, 이를 XDR 솔루션과 통합하여 종합적인 보안 상태를 한눈에 파악할 수 있습니다. 이로 인해 보안 위협에 대한 대응 속도를 높이고, 더욱 정교한 보안 전략을 구현할 수 있게 됩니다. 멀티 클라우드와 SDN, 엣지 컴퓨팅 환경에서 네트워크 모니터링은 가시성, 유연성, 그리고 자동화된 대응 능력을 갖춘 시스템으로 진화하고 있습니다. 특히 AI와 머신러닝 기술을 활용한 자동화된 분석은 네트워크 성능 저하나 장애를 사전에 예측하고 대응하는 데 중요한 역할을 합니다. 기술의 발전에 맞추어 발전하는 네트워크 모니터링 시스템의 사용을 통해 기업은 더욱 복잡해지는 네트워크 환경에서 잠재적 위협을 신속히 탐지하고 대응할 수 있습니다.
2024.09.23
기술이야기
서버 모니터링 솔루션의 필수조건과 최신 트렌드
기술이야기
서버 모니터링 솔루션의 필수조건과 최신 트렌드
안정적인 IT 서비스 운영을 위해서 서버 모니터링 솔루션을 도입, 운영하는 경우가 많습니다. 디지털 전환과 클라우드 컴퓨팅의 확산, IoT와 AI 기술의 발전으로 인해서 더욱 다양한 IT 서비스가 운용되고 그를 뒷받침할 서버 시스템의 수도 점증하면서 서버 모니터링 솔루션의 중요성은 더욱 높아질 것으로 예상됩니다. │서버 모니터링 솔루션이 갖춰야 할 필수조건은? 서버 모니터링 솔루션 활용의 가장 큰 목적은 서버의 성능, 안정성을 실시간으로 파악해서 이상 상황이나 장애를 사전에 예방하거나 빠르게 대응하는 것입니다. 그리고 이 목적을 이루기 위해서는 아래와 같은 조건을 반드시 갖추고 있어야 합니다. · 실시간 모니터링 서버의 성능, 가용성, 보안 상태를 실시간으로 모니터링할 수 있는 기능은 서버 모니터링 솔루션의 핵심 요소입니다. 실시간 모니터링을 통해 관리자는 서버의 현재 상태를 즉시 파악하고, 시스템에서 발생하는 문제를 조기에 발견할 수 있습니다. 예를 들어, CPU 사용률이 급격히 증가하거나 네트워크 트래픽이 비정상적으로 많아지는 경우, 실시간 모니터링을 통해 문제를 즉시 감지하고 대응할 수 있습니다. 이를 통해 다운타임을 최소화하고, 서비스를 중단없이 제공할 수 있습니다. · 광범위한 성능 데이터 수집 서버 모니터링 솔루션은 다양한 성능 지표를 수집할 수 있어야 합니다. 여기에는 CPU 사용률, 메모리 사용량, 디스크 I/O, 네트워크 트래픽 등의 하드웨어관련 데이터뿐만 아니라 애플리케이션과 관련한 데이터도 포함됩니다. 예를 들어, 데이터베이스 쿼리 응답 시간, 웹 서버의 요청 처리 시간 등 애플리케이션의 성능을 상세히 분석할 수 있는 데이터가 여기에 포함됩니다. 이러한 데이터를 통해 시스템의 전반적인 상태를 정확히 파악하고, 서버의 병목 현상을 식별하며 성능을 최적화할 수 있습니다. · 경고 및 알림 기능 서버 모니터링 솔루션은 설정된 임계 값을 초과하거나 이상 징후가 발견되었을 때 즉시 관리자에게 알림을 보내는 기능을 갖춰야 합니다. 이메일, SMS, 푸시 알림 등 다양한 경고 수단을 지원하여, 문제가 발생했을 때 신속하게 대응할 수 있도록 해야 합니다. 예를 들어, 서버의 디스크 사용량이 90%를 초과하거나 네트워크 지연 시간이 급격히 증가할 때, 서버 모니터링 시스템의 경고 알림을 통해 관리자는 즉시 문제를 인지하고 조치를 취할 수 있습니다. 이를 통해 심각한 장애로 발전하기 전에 문제를 해결할 수 있습니다. · 확장성과 유연성 기업의 성장에 따라 추가되는 서버와 애플리케이션을 신속히 모니터링할 수 있도록 확장성이 있어야 합니다. 이는 특히 클라우드 환경에서 중요합니다. 클라우드 인프라를 사용 중인 기업이 수시로 서버를 추가하거나 제거하는 상황이 빈번하게 발생하기 때문입니다. 또한, 대규모 환경에서도 안정적으로 작동하며, 여러 데이터 센터와 클라우드 리전에서 발생하는 데이터도 효율적으로 처리할 수 있어야 합니다. · 대시보드 및 시각화 도구 서버의 상태를 직관적으로 이해할 수 있도록 다양한 대시보드와 시각화 도구를 제공해야 합니다. 이는 관리자가 시스템 상태를 한눈에 파악하고, 문제의 원인과 영향을 빠르게 분석할 수 있게 합니다. 예를 들어, 실시간 대시보드를 통해 서버의 현재 상태를 모니터링하고, 트렌드 분석을 통해 장기적인 성능 변화를 파악할 수 있습니다. 세부적이고 다양한 차트와 그래프는 데이터를 시각적으로 표현하여, 복잡한 데이터를 쉽게 이해하고 분석할 수 있도록 도와줍니다. 대시보드 및 시각화도구 예시(Zenius SMS) · 로그 관리 및 분석 서버와 애플리케이션 로그를 수집하고 분석할 수 있는 기능은 문제의 근본 원인을 파악하고 보안 위협을 탐지하는 데 필수적입니다. 로그 데이터는 실시간 모니터링과 보완되어, 시스템 이벤트의 연속성과 이슈 발생의 맥락을 이해하는 데 도움을 줍니다. 예를 들어, 서버의 로그를 통해 특정 시간에 발생한 오류를 분석하고, 이를 통해 시스템의 취약점을 식별하고 개선할 수 있습니다. 또한, 로그 데이터를 기반으로 보안 위협을 탐지하고 대응할 수 있습니다. · 자동화된 대응 서버 모니터링 솔루션은 문제가 발생했을 때 자동으로 대응하는 기능을 제공해야 합니다. 예를 들어, 서버 재부팅, 서비스 재시작, 자원 확장 등의 자동화된 조치를 지원하여, 인적 오류를 줄이고 문제 해결 시간을 단축할 수 있습니다. 이러한 자동화된 대응은 설정된 조건에 따라 다양한 조치를 자동으로 수행하여, 관리자의 개입 없이도 문제를 해결할 수 있도록 합니다. 이는 시스템의 안정성과 신뢰성을 높이는 데 기여합니다. · 유연한 통합 서버 모니터링 솔루션은 다른 IT 관리 도구와 쉽게 통합할 수 있어야 합니다. 예를 들어, CI(지속적 통합)/CD(지속적 배포) 프로세스, ITSM(Information Technology Service Management), 클라우드나 마이크로 서비스 아키텍처 관리 솔루션 등과의 연동이 필요합니다. 이는 모니터링 데이터의 활용 범위를 넓히고, 전체 IT 환경의 효율성을 높이는 데 도움을 줍니다. 또한 서버 뿐 아니라 네트워크, DB, 애플리케이션 모니터링 툴과의 통합도 가능해야 합니다. · 보안 서버 모니터링 솔루션을 통해 비정상적인 활동을 실시간으로 감지하여 보안위협을 예방할 수 있어야 합니다. 이와 동시에 서버 모니터링 솔루션 자체의 보안도 중요합니다. 데이터 암호화, 접근 제어, 감사 로그 등의 보안 기능을 갖추고 있어야 합니다. 이를 통해 모니터링 시스템이 외부 위협으로 부터 안전하게 운영될 수 있습니다. 이와 더불어 각 사용자의 필요에 맞추어 세부적인 기능을 조정할 수 있는 기능과 지속적인 원활한 업그레이드와 기술 지원도 서버 모니터링 솔루션이 갖춰야할 중요한 조건입니다. │서버 모니터링 솔루션의 최신 트렌드는? 서버 모니터링 솔루션은 기술의 발전과 변화하는 비즈니스 요구에 발맞추어 빠르게 진화하고 있습니다. 대표적인 최근의 변화와 트렌드를 알아보겠습니다. · 클라우드 네이티브 기반 모니터링 클라우드 네이티브 기반의 서버 모니터링 솔루션은 클라우드 인프라의 복잡성과 변화하는 특성을 효과적으로 관리할 수 있습니다. 클라우드 서비스 제공업체의 API와 통합되어 인프라 상태를 실시간으로 파악하고 자동으로 조정할 수 있어, 서비스 중단을 최소화하고 사용자 경험을 높여주기 때문에, 많은 기업이 클라우드 네이티브 기반의 서버 모니터링 솔루션을 채택하고 있습니다. · 인공지능 및 머신러닝 기반 모니터링 인공지능과 머신러닝 기술이 서버 모니터링 솔루션에 적용되고 있습니다. 이를 통해 대용량 로그 데이터를 빠르게 분석하여 문제의 근본 원인을 빠르게 파악하고 자동으로 대응할 수 있습니다. 서버 모니터링 솔루션은 AI와 ML을 기반으로 정확하고 자동화된 예측과 분석, 대응이 가능한 효과적이고 신뢰도 높은 IT 인프라 관리 솔루션으로 발전하고 있습니다. · 마이크로서비스 아키텍처(MSA) 환경 모니터링 MSA 환경에서의 서버 모니터링 솔루션은 분산 시스템 내 각 마이크로서비스를 개별적으로 모니터링하고, 실시간 데이터 수집 및 분석을 통해 문제를 즉시 발견 및 대응하며, 자동화된 경고 시스템으로 빠른 문제 해결을 지원하고 있습니다. 또한 Docker와 Kubernetes 같은 컨테이너 및 오케스트레이션 도구와의 통합도 중요한 트렌드로 자리잡고 있습니다. · 자동화된 대응 및 자가 치유 문제가 발생했을 때 자동으로 대응하는 시스템이 도입되고 있습니다. 예를 들어, 서버가 과부하 상태일 때 자동으로 서버를 확장하거나, 특정 오류가 발생했을 때 자동으로 재부팅하는 등의 기능이 포함됩니다. 이러한 자동화된 대응은 시스템의 가용성과 안정성을 높이는 데 기여합니다. 또한 자가 치유 기능은 시스템이 자동으로 문제를 감지하고 수정하는 능력을 갖추게 하여, 관리자의 개입 없이도 안정적인 운영을 가능하게 합니다. · 통합 모니터링 다양한 모니터링 툴과 시스템을 통합하여 중앙 집중형 대시보드에서 모든 인프라와 애플리케이션을 모니터링하는 것이 중요해지고 있습니다. 따라서 통합된 뷰를 통한 모니터링의 효율성이 높아지고 있습니다. 예를 들어 관리자는 다양한 모니터링 솔루션에서 수집된 데이터를 통합된 대시보드에서 한눈에 확인할 수 있습니다. 이러한 대시보드는 문제 발생 시 원인을 신속히 파악하고, 적합한 조치를 취할 수 있도록 도와줍니다. · 비용 및 자원 최적화 비용 및 자원 최적화는 지속해서 서버 모니터링 솔루션의 핵심 요소로 꼽히고 있습니다. 따라서 서버 모니터링 솔루션은 서버 자원의 사용 패턴을 분석하고, 불필요한 자원 낭비를 줄이며, 자원을 효율적으로 배분할 수 있는 기능에 중점을 맞춰서 발전하고 있습니다. · 보안 중심 모니터링 보안 위협이 증가함에 따라 보안 중심의 모니터링이 중요해지고 있습니다. 따라서 서버 모니터링 솔루션 자체의 기능을 강화하거나, SIEM(Security Information and Event Management)과 같은 보안전문 솔루션과의 연동을 통해 보안 로그와 이벤트 데이터를 분석하여 잠재적인 보안 위협에 빠르게 대처하는 사례가 늘고 있습니다. 이와 같이 서버 모니터링 솔루션은 클라우드나 마이크로 시스템 아키텍처와 같은 시스템의 환경의 변화에 따라, 인공지능과 같은 기술적 진화에 따라, 또한 보안이나 비용절감과 같은 사용자들의 니즈의 변화에 따라 다양한 방향으로 진화, 발전하고 있습니다. 고객 서버 시스템 환경이나 서비스의 특성이나 고객의 특정 니즈에 따라 최신 트랜드를 잘 반영한 솔루션을 선택하여 서버 시스템의 운용 효율과, IT 서비스의 안정성을 제고하는 것이 IT 운용 부서의 주요 과제 중의 하나가 되고 있습니다.
2024.08.05
기술이야기
SIEM을 도입해야 하는 5가지 이유
기술이야기
SIEM을 도입해야 하는 5가지 이유
IT 산업의 발전에 따라 다양한 장비와 시스템에서 매일 엄청난 양의 로그가 만들어지고 있습니다. 보안 장비, 서버, 미들웨어 등에서 생성되는 로그들이 대표적입니다. 이러한 로그들을 모두 취합하여 관리하게 되면, 1년 동안 저장되는 데이터는 테라바이트(TB) 단위의 디스크 용량이 필요한데요. 이는 인프라 관리에 있어 큰 부담이 될 수 있겠죠. 이때 통합 로그 관리 시스템인 SIEM(Security Information and Event Management)이 해결책이 될 수 있습니다. 그렇다면 SIEM은 무엇일까요? SIEM은 보안 정보 관리(SIM, Security Information Management)와 보안 이벤트 관리(SEM, Security Event Management)의 이점을 결합한 로그 관리 도구입니다. 즉 수집한 로그를 통해 정보를 분석하여 보안상 위협이 되는 이벤트를 실시간으로 감지하는 솔루션이라고 할 수 있죠. 그래서 이번 시간에는 SIEM이 왜 필요한지, 그리고 어떤 특장점이 있는지 알아보도록 하겠습니다. │SIEM, 왜 필요할까? SIEM이 필요한 가장 큰 이유는 빅데이터 처리와 보안적 측면에서 설명할 수 있습니다. 빅데이터 로그는 보안 사고가 발생한 근거를 찾아내는 중요한 증거 자료로 활용됩니다. 예를 들어 대형 온라인 쇼핑몰에서는 수많은 거래가 이루어지며 해커의 침입 시도가 발생할 수 있는데요. 이러한 기록이나 비정상적인 접근을 실시간으로 감지하여 문제가 생기기 전에 미리 대응할 수 있습니다. 이처럼 보안 위협에 효과적으로 대응하려면, 수집한 로그 데이터에 대한 체계적인 분석이 필요합니다. 관리되지 않은 로그는 IT 시스템의 장애나 문제 발생 시 원인을 찾아내기 어렵기 때문이죠. 따라서 로그 분석을 위해 로그를 정규화하여 저장하고, 효율적으로 관리하기 위한 로그 압축 보관 툴이 필요합니다. 또한 시스템 로그와 애플리케이션 로그 등 각 IT 인프라에서 발생하는 수많은 로그들은 빅데이터의 영역에 속합니다. 따라서 이를 중앙집중적으로 처리하여 효과적으로 분석하고 관리하는 도구가 필요하죠. │SIEM의 주요구성 SIEM은 네트워크 범위의 로그를 수집하고, 저장하며, 분석하는 기능을 갖고 있는데요. SIEM의 구성도 그림을 통해 좀 더 자세히 살펴보겠습니다. 로그 수집 SIEM은 서버, 네트워크, 보안장비, 클라우드 등 다양한 IT 인프라에서 발생하는 로그 데이터를 Syslog나 SNMP 등을 이용해 로그와 이벤트를 모아 Collector에 수집합니다. 이를 위해 직접 대상 장비에 Agent/Agentless 방식을 활용하거나, 클라우드의 경우 API 연동을 통해 다양한 방식으로 로그를 수집하죠. 실시간으로 발생되는 로그 수집은 물론, 방화벽/IDS/IPS 등 다양한 보안 장비에 대한 로그 데이터 수집이 필요합니다. 로그 저장 로그 수집뿐만 아니라 로그 저장 역시 중요합니다. 주로 ELK Stack을 활용하거나 수집 로그에 대한 분산 처리/저장 엔진을 활용하여, 로그를 저장하게 되는데요. 주로 관계형 데이터베이스에 자제적으로 저장하는 경우가 많습니다. 인덱싱 속도와 효율을 높이기 위해 ELK Stack을 활용하여, 로그를 저장하는 것 역시 좋은 대안이 될 수 있죠. 로그 분석 로그를 수집하고 저장한 다음 단계는 로그를 분석하는 것입니다. 이때 중요한 과정이 '파싱(Parsing)'입니다. 파싱은 비정형 로그 데이터를 쿼리가 가능한 구조화된 형태로 변환하는 과정입니다. 쉽게 말해, 파싱은 비정형 로그 데이터를 자르고 인덱스를 추가하여(key-value 형식으로) 보다 쉽게 식별할 수 있습니다. 이처럼 파싱을 통해 로그를 유형별로 분류하고, 정규화 및 표준화 작업을 거쳐, 분석에 필요한 정제된 로그를 추출합니다. 이렇나 정제된 로그는 분석 과정에서 매우 유용하게 사용됩니다. 시각화 및 리포팅 수집된 로그의 핵심 지표와 요약 이벤트를 설정하여, 시각화해서 볼 수 있습니다. 또한 사용자 정의 기반의 대시보드를 통해, 다양한 컴포넌트를 활용한 로그 데이터의 시각화와 리포팅 기능 역시 제공해야 합니다. │SIEM 도입 시 얻을 수 있는 5가지 앞에서도 SIEM에 대한 이점을 잠깐 언급했지만, 사실 이밖에도 여러 특장점이 있는데요. 그 중 대표적으로 5가지를 소개해 드릴게요. 첫째, 보안 수준의 강화 기존의 ESM(Enterprise Security Management)과는 다르게 SIEM은, 많은 양의 로그 데이터를 상관 분석하여 보안 위협을 찾아낼 수 있습니다. 기업 내 정보시스템의 보안 이벤트를 관리해서, 내부와 외부를 가리지 않고 기업 전반의 통합 보안 관리가 가능해지죠. 둘째, 통합 로그 관리 [그림] Zenius SIEM : 요약뷰 다양한 레거시 인프라와 클라우드에서 발생하는 로그를 하나의 플랫폼으로 일원화하여, 로그 관리가 훨씬 쉬워집니다. 장기간 데이터를 저장하고 모든 인프라에서 발생하는 로그를 파싱하여 관리하면, 관리 포인트를 한 곳으로 모을 수 있어 기업에서는 비용과 시간을 크게 절약할 수 있습니다. 셋째, 인덱싱을 통한 로그 검색 [그림] Zenius SIEM : 호스트 및 로그유형 트리 검색 기능 호스트 및 로그 유형 별로 검색어와 조건을 설정해서 로그를 검색할 수 있습니다. 특정 시간대나 특정 검색어를 통해, 대용량의 로그 중 일부만을 추출하여 분석할 수 있어 로그 분석이 훨씬 용이해집니다. 넷째, 보안 감시 설정 및 상관 분석 [그림] Zenius SIEM : 상관분석 감시설정 수집된 다양한 로그들의 상관관계를 분석하면 더 가치 있고 유의미한 이벤트를 확인할 수 있습니다. 예를 들어 방화벽 접속 로그에서 유해 IP나 등록되지 않은 IP로의 접근을 이벤트로 설정하면, 유해 IP를 실시간으로 확인할 수 있습니다. 또한 보안 위협 상황과 거래 이상 탐지 등 시나리오 기반으로 이벤트를 정의하고 자동으로 탐지할 수 있는 상관 분석 기능도 사용할 수 있습니다. 다섯째, 컴플라이언스 준수를 위한 측면 최근 몇 년간 기업들이 고객의 개인정보를 더 잘 보호하도록 법이 강화되었습니다. 특히 해킹과 개인정보 침해 사건이 늘어나면서 기업들이 보안을 철저히 해야 할 필요성이 커졌는데요. SIEM을 이용하면 이러한 보안 요구사항을 충족하는 데 큰 도움이 됩니다. KISA에서 권고하는 정보보호 및 개인정보보호 관리체계(ISMS-P)에서는 서버, 보안 시스템 등에 대한 사용자 접속 기록과 시스템 로그를 6개월 이상 저장하고, 이를 안전하게 관리해야 한다고 명시하고 있습니다. 또한 개인정보보호법과 정보통신망법에 따르면 로그는 1년 이상 보관해야 하고, 위조나 변조를 막기 위해 물리적인 서버에 저장하고 정기적으로 백업을 해야 하죠. 하지만 SIEM 시스템을 도입하면 이러한 법적 요구사항을 쉽게 준수할 수 있습니다. 따라서, 기업은 고객의 개인정보를 안전하게 보호하고, 침해사고 발생 시 빠르게 대응할 수 있습니다. 이번 시간에는 SIEM이 왜 중요하고, 어떤 특장점이 있는지 자세히 알아보았습니다. 요즘 기업에서는 보안 관련 요소들을 각각 관리하는 것이 쉽지 않습니다. 특히 규모가 큰 기업이나 보안이 중요한 공공기관의 경우에는 통합 관리 시스템이 꼭 필요하죠. 따라서, Zenius SIEM과 같은 솔루션을 통해 로그 관리를 안정적이고 효율적으로 해보는 건 어떨까요? 🔍더보기 Zenius SIEM으로 로그 관리하기
2024.07.29
기술이야기
Fluentd vs Logstash vs Filebeat, 어떤 로그 수집기를 선택할까?
기술이야기
Fluentd vs Logstash vs Filebeat, 어떤 로그 수집기를 선택할까?
이전 시간에는 Fluentd라는 로그 수집기에 대해 자세히 알아보았습니다(이전 글 보기). 이와 더불어 Logstash, Filebeat가 로그 데이터를 수집하고 처리하는 도구로 많이 쓰이고 있는데요. 이번 시간에는 이 세 가지 도구가 어떤 점에서 비슷하고, 어떤 점에서 다른지 살펴보겠습니다. │Fluentd vs Logstash, Filebeat 로그 데이터 수집 및 처리 Fluentd, Logstash, Filebeat는 모두 다양한 소스에서 로그 데이터를 수집하고 처리하는데요. 파일, 데이터베이스, 네트워크 프로토콜, 메세지 큐 등 다양한 입력 소스를 지원합니다. 수집된 로그 데이터를 분석하기 좋은 형태로 변환하고 필터링해주죠. 처리된 로그 데이터는 Elasticsearch, Kafka, HDFS, S3 같은 다양한 저장소와 분석 시스템으로 전송할 수 있습니다. ▷ Fluentd는 JSON 형식을 주로 사용해서 데이터를 처리합니다. 다양한 소스에서 데이터를 수집하고 변환할 수 있으며, 특히 쿠버네티스 같은 클라우드 네이티브 환경에서 최적화되어 있습니다. 또한 다양한 컨테이너와 마이크로서비스로부터 로그를 모아서 중앙에서 관리하죠. ▷ Logstash는 Elashtic Stack에서 로그 데이터를 수집, 변환, 전송하는데 주로 사용됩니다. 복잡한 데이터 변환과 필터링을 위한 강력한 기능을 제공하고 다양한형식으로 로그 데이터를 변환할 수 있죠. Elasticsearch와 Kibana와의 통합 덕분에 강력한 검색과 시각화 기능을 사용할 수 있습니다. ▷ Filebeat는 경량의 로그 수집기로 설계되어 있고, 주로 로그 파일을 모니터링하고 수집하는 데 최적화되어 있습니다. 서버 리소스를 거의 사용하지 않으면서도 효율적으로 로그 데이터를 수집할 수 있죠. 주로 Logstash나 Elasticsearch로 데이터를 전송해서 중앙에서 분석할 수 있게 해줍니다. 플러그인 시스템 Fluentd와 Logstash는 플러그인 시스템을 통해 기능을 확장할 수 있는데요. 다양한 입력, 필터, 출력, 플러그인을 제공해서 필요에 따라 시스템을 유연하게 구성할 수 있습니다. ▷ Fluentd는 500개 이상의 플러그인을 통해 다양한 데이터 소스와 목적지에 대한 통합을 지원합니다. 그래서 사용자는 다양한 요구에 맞춰 시스템을 쉽게 구성할 수 있죠. ▷ Logstash도 200개 이상의 플러그인을 통해, 다양한 입력 소스와 출력 목적지에 맞춤형 데이터 파이프라인을 구성할 수 있는데요. 복잡한 데이터 처리와 분석 요구 사항을 충족할 수 있습니다. ▷ Filebeat는 모듈 기반 아키텍처를 통해 특정 로그 파일 형식에 맞춘 구성을 제공합니다. 설정이 간단하고 빠르게 배포할 수 있는 것이 장점이죠. 플러그인 대신 모듈을 통해 다양한 로그 형식에 대응할 수 있습니다. 실시간 데이터 처리 세 도구 모두 실시간으로 로그 데이터를 수집하고 처리할 수 있습니다. 이는 급변하는 환경에서 로그 데이터를 즉시 분석하고 대응하는 데 매우 중요하죠. ▷ Fluentd와 Logstash는 실시간으로 수집된 데이터를 변환하고 필터링해서, 필요한 데이터를 즉시 사용할 수 있는 형태로 만들어줍니다. 이를 통해 실시간 모니터링 시스템에서 발생하는 로그 데이터를 빠르게 처리하고 문제를 신속히 해결할 수 있습니다. ▷ Filebeat는 경량화된 설계 덕분에 실시간 로그 수집에 최적화되어 있는데요. 서버 리소스를 최소화하면서도 안정적으로 데이터를 전송할 수 있습니다. 어떤 로그 수집기를 선택하면 좋을까요? 그렇다면 Fluentd, Logstash, Filebeat 중 우리 기업에 맞는 로그 수집기는 무엇인지 핵심만 정리한다면 다음과 같습니다. Fluentd ✔️ 다양한 소스에서 데이터를 수집하고 통합하는 경우 ✔️ 특히 클라우드 네이티브 환경에서 운영되는 경우 ✔️ 유연성과 확장성이 중요하고, 다양한 플러그인을 통해 쉽게 확장할 수 있는 도구가 필요한 경우 ✔️ 쿠버네티스와 같은 컨테이너화된 환경에서 로그를 수집하는 경우 Logstash ✔️ Elastic Stack을 사용해서 강력한 검색 및 시각화 기능을 필요한 경우 ✔️ 복잡한 데이터 변환과 필터링이 필요한 환경에서 로그 데이터를 처리하는 경우 ✔️ 다양한 입력 소스와 출력 목적지에 맞춤형 데이터 파이프라인을 구성하는 경우 Filebeat ✔️ 경량의 로그 수집기가 필요한 경우 ✔️ 서버 리소스를 최소화하면서 로그 데이터를 수집하고 전송해야 하는 경우 ✔️ 설치와 설정이 간단하고 빠르게 배포할 수 있는 도구가 필요한 경우 ✔️ 주로 로그 파일을 모니터링하고 수집하는 작업이 주된 경우 이처럼 각 도구는 기업 또는 사용자의 환경과 요구 사항에 맞춰, 적절한 도구를 선택하는 것이 중요한데요. 브레인즈컴퍼니의 경우는 높은 성능과 유연한 로그 데이처 처리를 위해 Logstash와 Filebeat를 사용하고 있습니다. 이번 시간에 살펴본 내용처럼 Fluentd와 Logstash, Filebeat는 모두 로그 데이터를 효과적으로 수집하는 강력한 도구입니다. 하지만 로그는 수집에서 끝나는 것이 아닌, 어떻게 안정적으로 관리하느냐도 중요합니다. 이때 로그를 수집부터 관리까지 할 수 있는 통합로그관리가 필요한데요. Zenius SIEM과 같은 솔루션을 통해 로그를 수집부터 관리까지 할 수 있고, 보안 위협에 대비하는 것이 정말 중요합니다. 데이터의 중요성이 더욱더 커지는 상황에서, 효과적인 로그 수집 및 관리를 통해 비즈니스 경쟁력을 높이시길 바랍니다. 🔍더보기 Zenius SIEM 더 자세히 보기 📝함께 읽으면 더 좋아요 • 로그 수집기 Fluentd에 대해 알아야 할 5가지!
2024.07.28
회사이야기
제니우스 SIEM(통합로그관리 시스템), 클라우드 서비스 확산 사업 서비스로 선정
회사이야기
제니우스 SIEM(통합로그관리 시스템), 클라우드 서비스 확산 사업 서비스로 선정
브레인즈컴퍼니의 IT 인프라 통합로그관리 시스템인 '제니우스 SIEM'이 과기부와 정보통신산업진흥원이 주관하는 '2024년 중소기업 클라우드 서비스 보급 확산 사업'의 공급 서비스로 선정됐습니다! ㅣ중소기업 클라우드 서비스 보급 확산 사업이란? 이 사업은 국내 중소기업들이 클라우드 기반의 디지털 서비스를 더 활발하게 사용하게 되는 것이 가장 큰 목적입니다. 위 이미지 상의 '수요기업'이 공급 서비스를 선택하여 이용 신청을 하면, 운영 기관에서 수요기업의 환경(산업 분야, 기업 규모 등)를 고려하여 도입 컨설팅 및 이용료를 지원합니다. 지원은 크게 두 가지 부문으로 일반지원과 집중 지원으로 나누어 진행되는데요. 일반지원으로 신청하여 최종 선정되면 최대 1,550만 원을, 집중 지원은 최대 5,000만 원을 지원받을 수 있습니다. (단, 자부담금은 20%) 브레인즈컴퍼니는 이번 사업에서 재무 건정성과, 통합로그관리 시장에서의 Zenius(제니우스) SIEM의 영향도를 높이 평가받아 제공기업으로 선정될 수 있었습니다. ㅣ제니우스(Zenius) SIEM은? 이번 사업의 공급 서비스로 등록된 제니우스 SIEM은, 이기종의 다양한 장비에서 발생되는 로그(Log)를 수집 및 분석하고 모니터링할 수 있는 솔루션입니다. AI 기술을 기반으로 한 SIEM을 통해 효율적인 실시간 모니터링과 컴플라이언스 준수, 그리고 보안 위협에 대한 대응 체계를 수립할 수 있어 시장에서 좋은 평가를 받고 있습니다. [그림] 제니우스 SIEM 예시 화면 높은 기술력과 품질을 인정받아 2023년에 CC 인증과 GS 인증 1등급을 획득하기도 한 SIEM은, 현재 인천공항공사를 비롯한 다수의 공공기관 및 기업에서 도입 후 사용 중에 있습니다. 제니우스 SIEM의 주요 특정점은 빠른 인덱싱 및 검색 속도, 무중단 스테일 아웃, 복합 이벤트 처리(CEP), 그리고 사용자 상황에 맞춘 사용자 정의 대시보드, 강력한 통계 분석 기능 등이 있습니다. 결과적으로 제니우스 SIEM을 통해 대용량 로그에 대한 통합 관리, 사이버 침해 위협에 대한 보안 대응 체계 마련, 컴플라이언스 준수 등의 목적을 이룰 수 있습니다. 다양한 기능을 탑재한 제니우스 SIEM을 통해, 대용량 로그에 대한 실시간 통합 모니터링 체계 구축하고 보안 위협에도 효과적으로 대응하시기 바랍니다.
2024.04.16
회사이야기
[전시회] 브레인즈컴퍼니가 소프트웨이브2023에서 주목받은 이유
회사이야기
[전시회] 브레인즈컴퍼니가 소프트웨이브2023에서 주목받은 이유
지난번 시간에는 「소프트웨이브2023」 전시회에 브레인즈컴퍼니가 참가하여, 전반적인 현장 스케치를 담았었는데요. 두 번째 이야기에서는 1) 브레인즈컴퍼니와 제니우스(Zenius)를 구체적으로 어떻게 알렸는지 2) 참관객분들의 반응은 어땠는지를 자세하게 살펴보려고 합니다. 브레인즈컴퍼니가 참가하여 대성황을 이루었던 소프트웨이브2023. 그날의 생생한 사진과 리얼한 후기도 있으니 주목해 주세요! 。。。。。。。。。。。。 선근님 인터뷰 국내 바이어 VIP 그룹 투어 전시회 첫날이었던 29일(수), 과기부 장관·국회의원·주요기업 임원진 등 주요 VIP 대상으로 브레인즈컴퍼니를 소개하는 시간이 있었습니다. 소개는 브레인즈 그룹 대표인 선근님께서 진행해 주셨어요! 선근님께서는 브레인즈컴퍼니·에이프리카 회사와 제품 소개를 시작으로, “앞으로 인공지능(AI)와 클라우드 분야를 선두하는 기업으로 거듭나겠다."라는 멋진 포부도 밝혀주셨습니다. 이번 소프트웨이브2023에서 브레인즈컴퍼니는, 다양한 콘텐츠로 참관객분들께 다가가려고 노력했는데요. 특히 프론트월, 백월 공간으로 나누어 설명한 부분이 좋은 반응을 얻었습니다. 참관객분들의 이목을 사로잡은 대시보드 제품별 브로슈어, 대시보드, 구축사례 안내 “대시보드가 너무 예뻐요” 프론트월에서 가장 많이 언급된 Best 답변 1위랍니다! 많은 참관객분들께서 제니우스의 통합 대시보드와 서비스 종합상황판 대시보드 등을 요리조리 살펴보셨는데요. “통합관제는 가시성이 무엇보다 중요하다고 생각해요. 그런 의미에서 제니우스의 대시보드는 가시성도 뛰어나고, 고객사 성격에 맞는 커스터마이징도 가능하며, UI적인 면도 우수하네요. 무엇보다 대시보드가 너무 눈에 띄어서 홀린 듯 부스에 들어올 수밖에 없었어요(웃음)” 라며 브레인즈컴퍼니와 제니우스 제품에 칭찬을 아낌없이 해주셨습니다! 이처럼 제니우스의 대시보드는 고객사 IT 업무 및 서비스 운영 현황을 한눈에 파악할 수 있도록 구성하고 시각화했으며, 고객사별 최적의 관제 화면을 구현해 드리고 있어요. 공공기관·대기업·금융권 등 1,000여 개의 성공적인 구축사례 안내를 통해 제니우스 제품에 신뢰성을 더했답니다! 제니우스 핵심제품을 한눈에 제니우스 제품별 소개, 시연 안내 백월 공간에서는 브레인즈컴퍼니의 4가지 핵심 제품을 직관적으로 확인할 수 있었는데요. 제니우스 EMS, APM, ITSM, SIEM을 파트별 담당자 엔지니어분들께서 제품 안내를 도와드렸습니다. 제니우스 EMS 제품을 통해 참관객분들께 통합관리 관제의 중요성, 실제 사례, 각 인프라별 관제의 중요성 등을 전달드렸었는데요. “실제 사례를 직접 눈으로 확인해 보니, 우리 회사에 도입하면 장애 예측이나 장애 시 대응에 편리할 것 같아요.”와 같은 반응이 대부분 차지했을 정도로 호응도가 좋았습니다. 제니우스 APM 또한, 사용자 관점에서 응답 시간관리가 점점 중요해지고 있음에 따라 EMS와 연계해서 사용할 수 있다는 ‘접근성’ 면에서 좋은 반응을 보여주셨는데요. “여러 제품을 쓰지 않아도, 제니우스 하나면 모든 관제가 가능하네요! APM을 도입해서 사용하면 한눈에 관리가 편할 것 같아요.”와 같은 뿌듯한 피드백을 주셨답니다. 。。。。。。。。。。。。 3일 동안 소프트웨이브2023 전시회를 통해 많은 참관객·고객 사분들과 마주하고 소통하며, 브레인즈컴퍼니와 자사 제품을 더 널리 알릴 수 있던 기회였습니다. 특히 브레인즈컴퍼니와 제니우스 제품에 대해 이미 관심을 갖고 방문해 주신 참관객분들이 많다는 점에서 뿌듯하기도 했답니다. 다시 한번 브레인즈컴퍼니와 제니우스 제품에 뜨거운 관심 주셔서 감사드립니다🙇♀️ 앞으로도 브레인즈컴퍼니는 고객분들께 좀 더 적극적으로 다가가기 위한 행사, 콘텐츠 등을 보여드릴게요. 여러분들의 많은 기대와 성원 부탁드리겠습니다! 🔍더보기 소프트웨이브2023 1탄도 있어요
2023.12.14
회사이야기
[전시회] 브레인즈컴퍼니 ‘소프트웨이브 2023’에서 새로운 비전 제시
회사이야기
[전시회] 브레인즈컴퍼니 ‘소프트웨이브 2023’에서 새로운 비전 제시
브레인즈컴퍼니가 11월 29일(수)부터 12월 1일(금)까지 삼성동 코엑스에서 국내 최대 소프트웨어(SW) 전시회인 「소프트웨이브 2023(소프트웨어 대전)」에 참가했어요. 자회사인 AI 전문기업 ‘에이프리카’와 함께 “AI, 클라우드 네이티브의 창을 열다. 디지털 플랫폼을 위한 Brainz Group”이라는 슬로건 아래 IT 분야의 새로운 비전을 제시하기 위해 참가한 것인데요. 「소프트웨이브 2023」 전시회는 참관객 3만 명, 국내외를 대표하는 320개 사, 557개 홍보 부스가 참가할 정도로 뜨거운 관심 아래 진행되었어요. 브레인즈컴퍼니와 에이프리카는 참관객분들께 자사 핵심 제품을 다채롭고 직관적으로 보여드리기 위해 세미나, 이벤트, 이 밖에도 다양한 콘텐츠를 마련했답니다. 3일 동안 많은 참관객분들과 마주하는 자리여서 더더욱 설레었던 소프트웨이브 2023 전시회. 그 현장감을 담은 후기 바로 시작할게요! 。。。。。。。。。。。。 브레인즈컴퍼니 부스 탐험 브레인즈컴퍼니와 에이프리카의 부스는 멀리서 봐도 한눈에 띨 정도로 웅장했는데요! 부스 곳곳에 브레인즈컴퍼니와 에이프리카의 제품을 다양한 형태로 구성해 보았어요. 참관객분들과 가장 처음 마주하는 안내데스크, 핵심 제품인 데모 영상과 대시보드 영상, 세미나 공간까지! 무엇보다 브레인저가 여러분들을 기다리고 있었답니다😌 특히 데모 영상과 대시보드 영상을 통해 제니우스(Zenius)의 핵심제품인 EMS·APM·ITSM·SIEM을 직관적으로 소개해 드릴 수 있었는데요. 제품별 담당 엔지니어가 제니우스를 데모화면과 함께 직접 설명해 드리고 시연해 드리는 자리를 마련해서, 참관객 분들께 좋은 반응을 얻었어요! 브레인즈컴퍼니 x 에이프리카 세미나 Brainz Group Tech Talk 2023 브레인즈컴퍼니는 에이프리카와 함께 「Brainz Group Tech Talk 2023」 이름으로 세미나를 진행하기도 했는데요. ‘인공지능(AI) & 클라우드(Cloud)’를 성공적으로 디지털 전환하기 위한 네 가지 주제를 선보여드렸습니다. ▲광주과학기술원 사례로 본 대규모 AI 플랫폼 구축방안 ▲MLOps와 DevOps를 활용한 프라이빗 LLM 구축방안 ▲클라우드 전환기의 성공적인 IT 인프라 모니터링 방안 ▲디지털 플랫폼 정부의 클라우드 네이티브 구현 사례를 참관객분들께 보여드리는 자리를 가졌답니다. 이 밖에도 QR코드를 통해 온라인 설문 참여를 해주신 참관객분들에 한해, 스타벅스 커피 쿠폰 이벤트도 진행했어요. 이처럼 다양한 콘텐츠로 채워진 브레인즈컴퍼니 부스에 많은 참관객들이 몰리며 대 성황을 이루었습니다! 。。。。。。。。。。。。 소프트웨이브 2023 전시회를 통해 많은 고객분들과 마주하고, 저희 제품을 다양한 각도에서 알릴 수 있어 뿌듯하고 행복했던 시간이었어요. 자회사인 에이프리카와 함께해서 더더욱 뜻깊었답니다. 3일 동안 브레인즈컴퍼니와 에이프리카 큰 관심 보내주셔서 감사드리며, 앞으로도 IT 인프라 통합모니터링 분야뿐만 아니라 인공지능(AI) & 클라우드(Cloud) 분야에서 지속적으로 차별화된 서비스를 보여드릴게요! PS. 3일 동안 진행한 소프트웨이브 2023 전시회인 만큼 아직도 못다 한 얘기가 아직도 많아요. 다음에는 소프트웨이브 2023 못다 한 이야기 시즌2 콘텐츠로 돌아올게요-! To be continued…
2023.12.06
회사이야기
[전시회] ‘CDA 컨퍼런스’를 통해 해법을 제시한 브레인즈컴퍼니
회사이야기
[전시회] ‘CDA 컨퍼런스’를 통해 해법을 제시한 브레인즈컴퍼니
지난 11월 29일, 브레인즈컴퍼니가 잠실 롯데호텔에서 열린 「CDA컨퍼런스」에 참가했어요. 브레인즈컴퍼니는 이번 컨퍼런스를 통해 성공적인 클라우드 전환을 위한 비전과 해법을 제시했는데요. 자세한 후기를 바로 들려드릴게요! CDA컨퍼런스는 「클라우드 데이터센터 협의회(이하 CDA)」에서 주관한 이번 컨퍼런스는, '클라우드 네이티브 및 SaaS 전환을 위한 클라우드 데이터 센터의 첫걸음'이라는 주제로 클라우드 분야별(SaaS, Cloud, Infra) 전문기업 30개사가 참여했는데요. ▲CDA 컨퍼런스 2023 개회식 ▲CDA 컨퍼런스 2023 기조강연 이번 컨퍼런스는 기업·공공·의료·교육 등 다양한 영역에서 디지털 서비스/솔루션/인프라를 제공하는 많은 회원사들이 참가하여, 클라우드에 대한 비전과 서비스의 우수성을 소개했어요. 총 천명 이상이 참가한 이번 컨퍼런스는 크게 기조강연·주제별강연·전시부스로 나누어 진행됐어요. 성공적인 클라우드 전환을 위한 모니터링 방안 강연 브레인즈컴퍼니는 강연과 부스 운영을 통해, 클라우드 전환기의 성공적인 모니터링에 대한 비전을 제시했는데요. 먼저 '성공적인 클라우드 전환을 위한 효율적인 모니터링 방안'이라는 주제로 강연을 진행했어요. 브레인즈컴퍼니의 오다인 님께서 과도기에 봉착한 클라우드 전환 현황, 클라우드 전환 과도기 하이브리드 환경에서의 모니터링 전략, 성공적인 모니터링 솔루션 선택 기준 이렇게 세 가지 이슈를 중심으로 구성하여 강연을 진행하셨어요. 이날 강연을 통해 브레인즈컴퍼니는, 과도기에 봉착한 클라우드 전환기에서 성공적으로 모니터링할 수 있는 명확한 해법을 제시해 드렸어요. 총 이백여 명 이상의 참관객들이 브레인즈컴퍼니의 강연을 경청해 주셨는데요. 강연의 뜨거운 열기는 브레인즈컴퍼니의 부스에 대한 관심으로 이어졌어요. 열띤 관심이 이어진 브레인즈컴퍼니의 부스 브레인즈컴퍼니 부스에선, 브로슈어와 제품데모(Demo) 시연을 통해 제니우스(Zenius)에 대해 자세히 알리는 시간을 가졌는데요. ▲큰 관심을 끌었던 브레인즈컴퍼니의 부스 부스에 방문한 참관객분들은 클라우드뿐 아니라, 온프레미스 환경도 모니터링이 가능한 점과 EMS·APM·SIEM·ITSM 등 핵심제품들의 기능을 모듈화하여 사용할 수 있는 부분에도 큰 관심을 보여주셨어요. 브레인즈컴퍼니의 심재걸, 김선효, 오다인, 최승훈 님께서 Zenius 제품에 대한 구체적인 설명을 진행해 주셨는데요. 기본적인 설명 이후에 참관객분들의 상황별로 다양한 문의가 이어졌어요. 이에 대해 막힘없이 답변을 해드리며 열띤 분위기를 이어갔답니다! 부스에 방문하신 한 참관객분은 "지금 회사가 클라우드로의 전환기에 있어, 모니터링 서비스가 필요했었어요. 오늘 설명을 들어보니 Zenius가 적합하다고 판단되어 도입에 대해 긍정적으로 검토할 계획이에요"라며 만족감을 나타내셨어요. 브레인즈컴퍼니는 이번 CDA 컨퍼런스를 통해, 새로운 비전을 제시하고 많은 분들께 Zenius를 알릴 수 있었어요. 앞으로 CDA 컨퍼런스뿐만 아니라 다양한 온·오프라인을 통해 IT 인프라 모니터링의 새로운 비전을 제시하고, Zenius의 우수성을 알릴 예정인데요. 여러분들의 많은 관심과 응원 부탁드릴게요🙌
2023.12.05
회사이야기
브레인즈컴퍼니 ‘2023 소프트웨어대전’ 참가
회사이야기
브레인즈컴퍼니 ‘2023 소프트웨어대전’ 참가
브레인즈컴퍼니가 「2023 대한민국 소프트웨어대전」에 참가하여 IT 인프라 통합관리의 새로운 비전을 제시할 예정이에요. 자세한 내용은 다음과 같아요! 2023 대한민국 소프트웨어대전은요 2023 대한민국 소프트웨어대전은 2016년에 첫 개최된 대표적인 소프트웨어 ICT 비즈니스 박람회인데요. 올해는 총 330개사가 패키지SW·IT서비스·융합SW·인터넷SW·게임콘텐츠SW의 큰 분류에 맞춰 참가할 예정이에요(*총 570개 부스 규모) [2023 대한민국 소프트웨어대전] ▪일시: 2023년 11월 29일(수) ~ 12월 1일(금), 10:00~17:00 ▪장소: 삼성동 코엑스 A홀(*브레인즈컴퍼니 부스 C32번) ▪후원: 과학기술정보통신부, 교육부, 행정안전부, 산업통상자원부, 중소벤처기업부, 서울특별시 ▪홈페이지: 바로가기 --------------------------------------------------------------- 2023 소프트웨어대전에서 브레인즈컴퍼니는요 브레인즈컴퍼니는 이번 2023 소프트웨어대전에서 “AI, 클라우드 네이티브의 창을 열다. 디지털 플랫폼을 위한 Brainz Group”이라는 슬로건으로, 자회사인 AI전문기업 '에이프리카'와 함께 참가해요. 온프레미스, 클라우드 그 어떤 IT 환경도 완벽하게 통합관리할 수 있는 ‘제니우스(Zenius)’ 또한 선보일 예정인데요. 제니우스의 핵심 제품인 EMS·APM·ITSM·SIEM의 세부적인 특장점을 다양한 콘텐츠를 통해 직접 경험하실 수 있어요! [Brainz Group Tech Talk 2023] ▪장소: 삼성동 코엑스 A홀(*브레인즈컴퍼니 부스 C32번) ▪주제(세부내용 변동 가능) > 클라우드 네이티브 정보시스템 구축 방안 > Private LLM 모델 구축 방안 > 클라우드 네이티브 애플리케이션 구축 방안 > 성공적인 IT 인프라 모니터링 방안 --------------------------------------------------------------- 에이프리카와 함께 성공적인 AI&Cloud, 디지털 전환을 위한 'Brainz Group Tech Talk 2023' 세미나 또한 진행할 예정이에요. 2023 소프트웨어대전 참관 방법은 아래와 같아요. 2023 소프트웨어대전 참관 방법 하단 링크를 통해 [사전등록] 하시면 ‘무료’로 참관하실 수 있어요. 2023 소프트웨어대전 브레인즈컴퍼니 x 에이프리카 부스에 방문하셔서 IT 기술의 현재와 미래를 만나 보세요🙌 📌2023소프트웨어대전 무료로 참가하기
2023.11.15
기술이야기
카프카를 통한 로그 관리 방법
기술이야기
카프카를 통한 로그 관리 방법
안녕하세요! 저는 개발4그룹에서 제니우스(Zenius) SIEM의 로그 관리 기능 개발을 담당하고 있는 김채욱 입니다. 제가 하고 있는 일은 실시간으로 대용량 로그 데이터를 수집하여 분석 후, 사용자에게 가치 있는 정보를 시각화하여 보여주는 일입니다. 이번 글에서 다룰 내용은 1) 그동안 로그(Log)에 대해 조사한 것과 2) 최근에 CCDAK 카프카 자격증을 딴 기념으로, 카프카(Kafka)를 이용하여 어떻게 로그 관리를 하는지에 대해 이야기해 보겠습니다. PART1. 로그 1. 로그의 표면적 형태 로그(Log)는 기본적으로 시스템의 일련된 동작이나 사건의 기록입니다. 시스템의 일기장과도 같죠. 로그를 통해 특정 시간에 시스템에서 ‘어떤 일’이 일어났는지 파악할 수도 있습니다. 이렇게 로그는 시간에 따른 시스템의 동작을 기록하고, 정보는 순차적으로 저장됩니다. 이처럼 로그의 핵심 개념은 ‘시간’입니다. 순차적으로 발생된 로그를 통해 시스템의 동작을 이해하며, 일종의 생활기록부 역할을 하죠. 시스템 내에서 어떤 행동이 발생하였고, 어떤 문제가 일어났으며, 유저와의 어떤 교류가 일어났는지 모두 알 수 있습니다. 만약 시간의 개념이 없다면 어떻게 될까요? 발생한 모든 일들이 뒤섞이며, 로그 해석을 하는데 어려움이 생기겠죠. 이처럼 로그를 통해 시스템은 과거의 변화를 추적합니다. 똑같은 상황이 주어지면 항상 같은 결과를 내놓는 ‘결정론적’인 동작을 보장할 수 있죠. 로그의 중요성, 이제 조금 이해가 되실까요? 2. 로그와 카프카의 관계 자, 그렇다면! 로그(Log)와 카프카(Kafka)는 어떤 관계일까요? 우선 카프카는 분산 스트리밍 플랫폼으로서, 실시간으로 대용량의 데이터를 처리하고 전송하는데 탁월한 성능을 자랑합니다. 그 중심에는 바로 ‘로그’라는 개념이 있는데요. 좀 더 자세히 짚고 넘어가 보겠습니다. 3. 카프카에서의 로그 시스템 카프카에서의 로그 시스템은, 단순히 시스템의 에러나 이벤트를 기록하는 것만이 아닙니다. 연속된 데이터 레코드들의 스트림을 의미하며, 이를 ‘토픽(Topic)’이라는 카테고리로 구분하죠. 각 토픽은 다시 *파티션(Partition)으로 나누어, 단일 혹은 여러 서버에 분산 저장됩니다. 이렇게 분산 저장되는 로그 데이터는, 높은 내구성과 가용성을 보장합니다. *파티션(Partition): 하드디스크를 논리적으로 나눈 구역 4. 카프카가 로그를 사용하는 이유 로그의 순차적인 특성은 카프카의 ‘핵심 아키텍처’와 깊게 연결되어 있습니다. 로그를 사용하면, 데이터의 순서를 보장할 수 있어 대용량의 데이터 스트림을 효율적으로 처리할 수 있기 때문이죠. 데이터를 ‘영구적’으로 저장할 수 있어, 데이터 손실 위험 또한 크게 줄어듭니다. 로그를 사용하는 또 다른 이유는 ‘장애 복구’입니다. 서버가 장애로 인해 중단되었다가 다시 시작되면, 저장된 로그를 이용하여 이전 상태로 복구할 수 있게 되죠. 이는 ‘카프카가 높은 가용성’을 보장하는 데 중요한 요소입니다. ∴ 로그 요약 로그는 단순한 시스템 메시지를 넘어 ‘데이터 스트림’의 핵심 요소로 활용됩니다. 카프카와 같은 현대의 데이터 처리 시스템은 로그의 이러한 특성을 극대화하여, 대용량의 실시간 데이터 스트림을 효율적으로 처리할 수 있는 거죠. 로그의 중요성을 다시 한번 깨닫게 되는 순간이네요! PART2. 카프카 로그에 이어 에 대해 설명하겠습니다. 들어가기에 앞서 가볍게 ‘구조’부터 알아가 볼까요? 1. 카프카 구조 · 브로커(Broker) 브로커는 *클러스터(Cluster) 안에 구성된 여러 서버 중 각 서버를 의미합니다. 이러한 브로커들은, 레코드 형태인 메시지 데이터의 저장과 검색 및 컨슈머에게 전달하고 관리합니다. *클러스터(Cluster): 여러 대의 컴퓨터들이 연결되어 하나의 시스템처럼 동작하는 컴퓨터들의 집합 데이터 분배와 중복성도 촉진합니다. 브로커에 문제가 발생하면, 데이터가 여러 브로커에 데이터가 복제되어 데이터 손실이 되지 않죠. · 프로듀서(Producer) 프로듀서는 토픽에 레코드를 전송 또는 생성하는 *엔터티(Entity)입니다. 카프카 생태계에서 ‘데이터의 진입점’ 역할도 함께 하고 있죠. 레코드가 전송될 토픽 및 파티션도 결정할 수 있습니다. *엔터티(Entity): 업무에 필요한 정보를 저장하고 관리하는 집합적인 것 · 컨슈머(Consumer) 컨슈머는 토픽에서 레코드를 읽습니다. 하나 이상의 토픽을 구독하고, 브로커로부터 레코드를 소비합니다. 데이터의 출구점을 나타내기도 하며, 프로듀서에 의해 전송된 메시지를 최종적으로 읽히고 처리되도록 합니다. · 토픽(Topic) 토픽은 프로듀서로부터 전송된 레코드 카테고리입니다. 각 토픽은 파티션으로 나뉘며, 이 파티션은 브로커 간에 복제됩니다. 카프카로 들어오는 데이터를 조직화하고, 분류하는 방법을 제공하기도 합니다. 파티션으로 나눔으로써 카프카는 ‘수평 확장성과 장애 허용성’을 보장합니다. · 주키퍼(ZooKeeper) 주키퍼는 브로커를 관리하고 조정하는 데 도움을 주는 ‘중앙 관리소’입니다. 클러스터 노드의 상태, 토픽 *메타데이터(Metadata) 등의 상태를 추적합니다. *메타데이터(Metadata): 데이터에 관한 구조화된 데이터로, 다른 데이터를 설명해 주는 데이터 카프카는 분산 조정을 위해 주키퍼에 의존합니다. 주키퍼는 브로커에 문제가 발생하면, 다른 브로커에 알리고 클러스터 전체에 일관된 데이터를 보장하죠. ∴ 카프카 구조 요약 요약한다면 카프카는 1) 복잡하지만 견고한 아키텍처 2) 대규모 스트림 데이터를 실시간으로 처리하는 데 있어 안정적이고 장애 허용성이 있음 3) 고도로 확장 가능한 플랫폼을 제공으로 정리할 수 있습니다. 이처럼 카프카가 큰 데이터 환경에서 ‘어떻게’ 정보 흐름을 관리하고 최적화하는지 5가지의 구조를 통해 살펴보았습니다. 이제 카프카에 대해 조금 더 명확한 그림이 그려지지 않나요? 2. 컨슈머 그룹과 성능을 위한 탐색 카프카의 가장 주목할 만한 특징 중 하나는 ‘컨슈머 그룹의 구현’입니다. 이는 카프카의 확장성과 성능 잠재력을 이해하는 데 중심적인 개념이죠. 컨슈머 그룹 이해하기 카프카의 핵심은 ‘메시지를 생산하고 소비’ 하는 것입니다. 그런데 수백만, 심지어 수십억의 메시지가 흐르고 있을 때 어떻게 효율적으로 소비될까요? 여기서 컨슈머 그룹(Consumer Group)이 등장합니다. 컨슈머 그룹은, 하나 또는 그 이상의 컨슈머로 구성되어 하나 또는 여러 토픽에서 메시지를 소비하는데 협력합니다. 그렇다면 왜 효율적인지 알아보겠습니다. · 로드 밸런싱: 하나의 컨슈머가 모든 메시지를 처리하는 대신, 그룹이 부하를 분산할 수 있습니다. 토픽의 각 파티션은 그룹 내에서 정확히 하나의 컨슈머에 의해 소비됩니다. 이는 메시지가 더 빠르고 효율적으로 처리된다는 것을 보장합니다. · 장애 허용성: 컨슈머에 문제가 발생하면, 그룹 내의 다른 컨슈머가 그 파티션을 인수하여 메시지 처리에 차질이 없도록 합니다. · 유연성: 데이터 흐름이 변함에 따라 그룹에서 컨슈머를 쉽게 추가하거나 제거합니다. 이에 따라 증가하거나 감소하는 부하를 처리할 수 있습니다. 여기까지는 최적의 성능을 위한 ‘카프카 튜닝 컨슈머 그룹의 기본 사항’을 다루었으니, 이와 관련된 ‘성능 튜닝 전략’에 대해 알아볼까요? 성능 튜닝 전략 · 파티션 전략: 토픽의 파티션 수는, 얼마나 많은 컨슈머가 활성화되어 메시지를 소비할 수 있는지 영향을 줍니다. 더 많은 파티션은 더 많은 컨슈머가 병렬로 작동할 수 있음을 의미하는 거죠. 그러나 너무 많은 파티션은 *오버헤드를 야기할 수 있습니다. *오버헤드: 어떤 처리를 하기 위해 간접적인 처리 시간 · 컨슈머 구성: *fetch.min.bytes 및 *fetch.max.wait.ms와 같은 매개변수를 조정합니다. 그다음 한 번에 얼마나 많은 데이터를 컨슈머가 가져오는지 제어합니다. 이러한 최적화를 통해 브로커에게 요청하는 횟수를 줄이고, 처리량을 높입니다. *fetch.min.bytes: 한 번에 가져올 수 있는 최소 데이터 사이즈 *fetch.max.wait.ms: 데이터가 최소 크기가 될 때까지 기다릴 시간 · 메시지 배치: 프로듀서는 메시지를 함께 배치하여 처리량을 높일 수 있게 구성됩니다. *batch.size 및 *linger.ms와 같은 매개변수를 조정하여, 대기 시간과 처리량 사이의 균형을 찾을 수 있게 되죠. *batch.size: 한 번에 모델이 학습하는 데이터 샘플의 개수 *linger.ms: 전송 대기 시간 · 압축: 카프카는 메시지 압축을 지원하여 전송 및 저장되는 데이터의 양을 줄입니다. 이로 인해 전송 속도가 빨라지고 전체 성능이 향상될 수 있습니다. · 로그 정리 정책: 카프카 토픽은, 설정된 기간 또는 크기 동안 메시지를 유지할 수 있습니다. 보존 정책을 조정하면, 브로커가 저장 공간이 부족해지는 점과 성능이 저하되는 점을 방지할 수 있습니다. 3. 컨슈머 그룹과 성능을 위한 실제 코드 예시 다음 그림과 같은 코드를 보며 조금 더 자세히 살펴보겠습니다. NodeJS 코드 중 일부를 발췌했습니다. 카프카 설치 시에 사용되는 설정 파일 *server.properties에서 파티션의 개수를 CPU 코어 수와 같게 설정하는 코드입니다. 이에 대한 장점들을 쭉 살펴볼까요? *server.properties: 마인크래프트 서버 옵션을 설정할 수 있는 파일 CPU 코어 수에 파티션 수를 맞추었을 때의 장점 · 최적화된 리소스 활용: 카프카에서는 각 파티션이 읽기와 쓰기를 위한 자체 *I/O(입출력) 스레드를 종종 운영합니다. 사용 가능한 CPU 코어 수와 파티션 수를 일치시키면, 각 코어가 특정 파티션의 I/O 작업을 처리합니다. 이 동시성은 리소스에서 최대의 성능을 추출하는 데 도움 됩니다. · 최대 병렬 처리: 카프카의 설계 철학은 ‘병렬 데이터 처리’를 중심으로 합니다. 코어 수와 파티션 수 사이의 일치는, 동시에 처리되어 처리량을 높일 수 있습니다. · 간소화된 용량 계획: 이 접근 방식은, 리소스 계획에 대한 명확한 기준을 제공합니다. 성능 병목이 발생하면 CPU에 *바인딩(Binding)되어 있는지 명확하게 알 수 있습니다. 인프라를 정확하게 조정할 수도 있게 되죠. *바인딩(Binding): 두 프로그래밍 언어를 이어주는 래퍼 라이브러리 · 오버헤드 감소: 병렬 처리와 오버헤드 사이의 균형은 미묘합니다. 파티션 증가는 병렬 처리를 촉진할 수 있습니다. 하지만 더 많은 주키퍼 부하, 브로커 시작 시간 연장, 리더 선거 빈도 증가와 같은 오버헤드도 가져올 수도 있습니다. 파티션을 CPU 코어에 맞추는 것은 균형을 이룰 수 있게 합니다. 다음은 프로세스 수를 CPU 코어 수만큼 생성하여, 토픽의 파티션 개수와 일치시킨 코드에 대한 장점입니다. 파티션 수와 컨슈머 프로세스 수 일치의 장점 · 최적의 병렬 처리: 카프카 파티션의 각각은 동시에 처리될 수 있습니다. 컨슈머 수가 파티션 수와 일치하면, 각 컨슈머는 특정 파티션에서 메시지를 독립적으로 소비할 수 있게 되죠. 따라서 병렬 처리가 향상됩니다. · 리소스 효율성: 파티션 수와 컨슈머 수가 일치하면, 각 컨슈머가 처리하는 데이터의 양이 균등하게 분배됩니다. 이로 인해 전체 시스템의 리소스 사용이 균형을 이루게 되죠. · 탄력성과 확장성: 트래픽이 증가하면, 추가적인 컨슈머를 컨슈머 그룹에 추가하여 처리 능력을 증가시킵니다. 동일한 방식으로 트래픽이 감소하면 컨슈머를 줄여 리소스를 절약할 수 있습니다. · 고가용성과 오류 회복: 컨슈머 중 하나가 실패하면, 해당 컨슈머가 처리하던 파티션은 다른 컨슈머에게 자동 재분배됩니다. 이를 통해 시스템 내의 다른 컨슈머가 실패한 컨슈머의 작업을 빠르게 인수하여, 메시지 처리가 중단되지 않습니다. 마지막으로 각 프로세스별 컨슈머를 생성해서 토픽에 구독 후, 소비하는 과정을 나타낸 소스코드입니다. ∴ 컨슈머 그룹 요약 컨슈머 그룹은 높은 처리량과 장애 허용성 있는 메시지 소비를 제공하는 능력이 핵심입니다. 카프카가 어떤 식으로 운영되는지에 대한 상세한 부분을 이해하고 다양한 매개변수를 신중하게 조정한다면, 어떠한 상황에서도 카프카의 최대 성능을 이끌어낼 수 있습니다! ------------------------------------------------------------ ©참고 자료 · Jay Kreps, “I Hearts Logs”, Confluent · 위키피디아, “Logging(computing)” · Confluent, “https://docs.confluent.io/kafka/overview.html” · Neha Narkhede, Gwen Shapira, Todd Palino, “Kafka: The Definitive Guide” ------------------------------------------------------------
2023.09.19
1
2