반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
최신이야기
검색
회사이야기
브레인즈컴퍼니 ‘2023 소프트웨어대전’ 참가
회사이야기
브레인즈컴퍼니 ‘2023 소프트웨어대전’ 참가
브레인즈컴퍼니가 「2023 대한민국 소프트웨어대전」에 참가하여 IT 인프라 통합관리의 새로운 비전을 제시할 예정이에요. 자세한 내용은 다음과 같아요! 2023 대한민국 소프트웨어대전은요 2023 대한민국 소프트웨어대전은 2016년에 첫 개최된 대표적인 소프트웨어 ICT 비즈니스 박람회인데요. 올해는 총 330개사가 패키지SW·IT서비스·융합SW·인터넷SW·게임콘텐츠SW의 큰 분류에 맞춰 참가할 예정이에요(*총 570개 부스 규모) [2023 대한민국 소프트웨어대전] ▪일시: 2023년 11월 29일(수) ~ 12월 1일(금), 10:00~17:00 ▪장소: 삼성동 코엑스 A홀(*브레인즈컴퍼니 부스 C32번) ▪후원: 과학기술정보통신부, 교육부, 행정안전부, 산업통상자원부, 중소벤처기업부, 서울특별시 ▪홈페이지: 바로가기 --------------------------------------------------------------- 2023 소프트웨어대전에서 브레인즈컴퍼니는요 브레인즈컴퍼니는 이번 2023 소프트웨어대전에서 “AI, 클라우드 네이티브의 창을 열다. 디지털 플랫폼을 위한 Brainz Group”이라는 슬로건으로, 자회사인 AI전문기업 '에이프리카'와 함께 참가해요. 온프레미스, 클라우드 그 어떤 IT 환경도 완벽하게 통합관리할 수 있는 ‘제니우스(Zenius)’ 또한 선보일 예정인데요. 제니우스의 핵심 제품인 EMS·APM·ITSM·SIEM의 세부적인 특장점을 다양한 콘텐츠를 통해 직접 경험하실 수 있어요! [Brainz Group Tech Talk 2023] ▪장소: 삼성동 코엑스 A홀(*브레인즈컴퍼니 부스 C32번) ▪주제(세부내용 변동 가능) > 클라우드 네이티브 정보시스템 구축 방안 > Private LLM 모델 구축 방안 > 클라우드 네이티브 애플리케이션 구축 방안 > 성공적인 IT 인프라 모니터링 방안 --------------------------------------------------------------- 에이프리카와 함께 성공적인 AI&Cloud, 디지털 전환을 위한 'Brainz Group Tech Talk 2023' 세미나 또한 진행할 예정이에요. 2023 소프트웨어대전 참관 방법은 아래와 같아요. 2023 소프트웨어대전 참관 방법 하단 링크를 통해 [사전등록] 하시면 ‘무료’로 참관하실 수 있어요. 2023 소프트웨어대전 브레인즈컴퍼니 x 에이프리카 부스에 방문하셔서 IT 기술의 현재와 미래를 만나 보세요🙌 📌2023소프트웨어대전 무료로 참가하기
2023.11.15
회사이야기
2023년 하반기 ‘고객사 및 파트너사’ 상생 세미나
회사이야기
2023년 하반기 ‘고객사 및 파트너사’ 상생 세미나
지난 10월 25일, 브레인즈컴퍼니 본사에서 「2023 하반기 ‘고객사 및 파트너사’ 상생 세미나」를 진행했어요! 브레인즈컴퍼니는 매 반기마다 고객사 및 파트너사 분들을 대상으로 상생 세미나를 진행하고 있는데요. 저희 브레인즈컴퍼니의 제니우스 EMS를 더욱 친숙하게 사용하는 것을 돕기 위해 기획되었어요. 이번 2023 하반기 상생 세미나에서는 우진·서울바이오허브·에스이랩·마이티시스템 등 산업용 장비를 만드는 제조기업부터, 바이오산업을 투자해 주는 공공기관까지! 다양한 산업 군의 고객사분들이 적극 관심을 보여주셨는데요. 교육 내용은 제니우스 EMS 패키지 설치, 모니터링 View를 구성하는 단계, 실무적인 모니터링에 초점을 맞춰 실시했답니다. 그럼 바로 2023 하반기 상생 세미나 후기를 들려드릴게요! Zenius SMS와 Zenius NMSㅣ김선효(TC팀) ‘제니우스 SMS(서버 모니터링 솔루션)’와 ‘제니우스 NMS(네트워크 모니터링 솔루션)’부터 교육을 시작했는데요. 우선 전반적인 성능 정보 수집 방식과 설치 방식을 배웠어요. 그다음, 화면을 통해 이벤트 분석하는 방법까지 세세한 교육이 이루어졌답니다. Zenius Overviewㅣ김기현(TC팀) ‘제니우스 EMS 오버뷰’는, 고객의 니즈와 운영 환경에 최적화된 서비스 관제 환경을 구현해 드리고 있어요. 웹과 CS방식의 토폴로지 맵을 통해 관제하는 IT 인프라들 간의 상호 관계도 표현 또한 가능하죠. 이 밖에도 IT 인프라와 네트워크 연결 관계에 대한 컴포넌트 지원, 사용자 니즈에 최적화된 연결 관계도 기반의 View를 제공해 드린답니다. 마무리하며 이번 2023 ‘고객사 및 파트너사’ 상생 세미나를 통해, 핵심적인 IT 인프라인 서버와 네트워크 모니터링 방안을 소개해 드렸는데요. 고객사 및 파트너 사분들께 교육을 진행하며, 브레인즈컴퍼니 또한 ‘IT 인프라 모니터링’ 인사이트를 넓힐 수 있었어요. 오는 11월 29일부터 12월 1일까지 「소프트웨이브 2023」가 진행되는데요. 클라우드 네이티브, 쿠버네티스, MSA 등! 급변하고 있는 IT 인프라 환경 변화를 브레인즈컴퍼니는 어떻게 준비하고 있는지 함께 이야기할 수 있는 자리를 마련했어요. 여러분들의 많은 관심과 참여 부탁드릴게요. 다시 한번 참여해 주신 모든 분께 감사 인사를 드려요! 앞으로도 IT 모니터링의 최전선에서 함께 고민하고, 최적의 관제 환경을 제공하는 브레인즈컴퍼니가 될게요🙇♀️
2023.11.10
기술이야기
메모리 누수 위험있는 FinalReference 참조 분석하기
기술이야기
메모리 누수 위험있는 FinalReference 참조 분석하기
Java에서 가장 많이 접하는 문제는 무엇이라 생각하시나요? 바로 리소스 부족 특히 ‘JVM(Java Virtual Machine) 메모리 부족 오류’가 아닐까 생각해요. 메모리 부족 원인에는 우리가 일반적으로 자주 접하는 누수, 긴 생명주기, 다량의 데이터 처리 등 몇 가지 패턴들이 있는데요. 오늘은 좀 일반적이지 않은(?) 유형에 대해 이야기해 볼게요! Java 객체 참조 시스템은 강력한 참조 외에도 4가지 참조를 구현해요. 바로 성능과 확장성 기타 고려사항에 대한 SoftReference, WeakReference, PhantomReference, FinalReference이죠. 이번 포스팅은 FinalReference를 대표적인 사례로 다루어 볼게요. PART1. 분석툴을 활용해 메모리 누수 발생 원인 파악하기 메모리 분석 도구를 통해 힙 덤프(Heap Dump)를 분석할 때, java.lang.ref.Finalizer 객체가 많은 메모리를 점유하는 경우가 있어요. 이 클래스는 FinalReference와 불가분의 관계에요. 나눌 수 없는 관계라는 의미죠. 아래 그림 사례는 힙 메모리(Heap Memory)의 지속적인 증가 후 최대 Heap에 근접 도달 시, 서비스 무응답 현상에 빠지는 분석 사례인데요. 이를 통해 FinalReference 참조가 메모리 누수를 발생시킬 수 있는 조건을 살펴볼게요! Heap Analyzer 분석툴을 활용하여, 힙 덤프 전체 메모리 요약 현황을 볼게요. java.lang.ref.Finalizer의 점유율이 메모리의 대부분을 점유하고 있죠. 여기서 Finalizer는, 앞에서 언급된 FinalReference를 확장하여 구현한 클래스에요. JVM은 GC(Garbage Collection) 실행 시 해제 대상 객체(Object)를 수집하기 전, Finalize를 처리해야 해요. Java Object 클래스에는 아래 그림과 같이 Finalize 메서드(Method)가 존재하는데요. 모든 객체가 Finalize 대상은 아니에요. JVM은 클래스 로드 시, Finalize 메서드가 재정의(Override)된 객체를 식별해요. 객체 생성 시에는 Finalizer.register() 메서드를 통해, 해당 객체를 참조하는 Finalizer 객체를 생성하죠. 그다음은 Unfinalized 체인(Chain)에 등록해요. 이러한 객체는 GC 발생 시 즉시 Heap에서 수집되진 않아요. Finalizer의 대기 큐(Queue)에 들어가 객체에 재정의된 Finalize 처리를 위해 대기(Pending) 상태에 놓여있죠. 위 그림과 같이 참조 트리(Tree)를 확인해 보면, 많은 Finalizer 객체가 체인처럼 연결되어 있어요. 그럼 Finalizer 객체가 실제 참조하고 있는 객체는 무엇인지 바로 살펴볼까요? 그림에 나온 바와 같이 PostgreSql JDBC Driver의 org.postgresql.jdbc3g.Jdbc3gPreparedStatement인 점을 확인할 수 있어요. 해당 시스템은 PostgreSql DB를 사용하고 있었네요. 이처럼 Finalizer 참조 객체 대부분은 Jdbc3gPreparedStatement 객체임을 알 수 있어요. 여기서 Statement 객체는, DB에 SQL Query를 실행하기 위한 객체에요. 그렇다면, 아직 Finalize 처리되지 않은 Statement 객체가 증가하는 이유는 무엇일까요? 먼저 해당 Statement 객체는 실제로 어디서 참조하는지 살펴볼게요. 해당 객체는 TimerThread가 참조하는 TaskQueue에 들어가 있어요. 해당 Timer는 Postgresql Driver의 CancelTimer이죠. 해당 Timer의 작업 큐를 확인해 보면 PostgreSql Statement 객체와 관련된 Task 객체도 알 수도 있어요. 그럼 org.postgresql.jdbc3g.Jdbc3gPreparedStatement 클래스가 어떻게 동작하는지 자세히 알아볼까요? org.postgresql.jdbc3g.Jdbc3gPreparedStatement는 org.postgresql.jdbc2.AbstractJdbc2Statement의 상속 클래스이며 finalize() 메서드를 재정의한 클래스에요. Finalize 처리를 위해 객체 생성 시, JVM에 의해 Finalizer 체인으로 등록되죠. 위와 같은 코드로 보아 CancelTimer는, Query 실행 후 일정 시간이 지나면 자동으로 TimeOut 취소 처리를 위한 Timer에요. 정해진 시간 내에 정상적으로 Query가 수행되고 객체를 종료(Close) 시, Timer를 취소하도록 되어 있어요. 이때 취소된 Task는 상태 값만 변경되고, 실제로는 Timer의 큐에서 아직 사라지진 않아요. Timer에 등록된 작업은, TimerThread에 의해 순차적으로 처리돼요. Task는 TimerThread에서 처리를 해야 비로소 큐에서 제거되거든요. 이때 가져온 Task는 취소 상태가 아니며, 처리 시간에 아직 도달하지 않은 경우 해당 Task의 실행 예정 시간까지 대기해야 돼요. 여기서 문제점이 발생해요. 이 대기 시간이 길어지면 TimerThread의 처리가 지연되기 때문이죠. 이후 대기 Task들은 상태 여부에 상관없이, 큐에 지속적으로 남아있게 돼요. 만약 오랜 시간 동안 처리가 진행되지 않는다면, 여러 번의 Minor GC 발생 후 참조 객체들은 영구 영역(Old Gen)으로 이동될 수 있어요. 영구 영역으로 이동된 객체는, 메모리에 즉시 제거되지 못하고 오랜 기간 남게 되죠. 이는 Old(Full) GC를 발생시켜 시스템 부하를 유발하게 해요. 실제로 시스템에 설정된 TimeOut 값은 3,000초(50분)에요. Finalizer 참조 객체는 GC 발생 시, 즉시 메모리에서 수집되지 않고 Finalize 처리를 위한 대기 큐에 들어가요. 그다음 FinalizerThread에 의해 Finalize 처리 후 GC 발생 시 비로소 제거되죠. 때문에 리소스의 수집 처리가 지연될 수 있어요. 또한 FinalizerThread 스레드는 우선순위가 낮아요. Finalize 처리 객체가 많은 경우, CPU 리소스가 상대적으로 부족해지면 개체의 Finalize 메서드 실행을 지연하게 만들어요. 처리되지 못한 객체는 누적되게 만들죠. 요약한다면 FinalReference 참조 객체의 잘못된 관리는 1) 객체의 재 참조를 유발 2) 불필요한 객체의 누적을 유발 3) Finalize 처리 지연으로 인한 리소스 누적을 유발하게 해요. PART2. 제니우스 APM을 통해 Finalize 객체를 모니터링하는 방법 Zenius APM에서는 JVM 메모리를 모니터링하고 분석하기 위한, 다양한 데이터를 수집하고 있어요. 상단에서 보았던 FinalReference 참조 객체의 현황에 대한 항목도 확인할 수 있죠. APM 모니터링을 통해 Finalize 처리에 대한 문제 발생 가능성도 ‘사전’에 확인 할 수 있답니다! 위에 있는 그림은 Finalize 처리 대기(Pending)중인 객체의 개수를 확인 가능한 컴포넌트에요. 이외에도 영역별 메모리 현황 정보와 GC 처리 현황에 대해서도 다양한 정보를 확인 할 수 있어요! 이상으로 Finalize 처리 객체에 의한 리소스 문제 발생 가능성을, 사례를 통해 살펴봤어요. 서비스에 리소스 문제가 발생하고 있다면, 꼭 도움이 되었길 바라요! ------------------------------------------------------------ ©참고 자료 ◾ uxys, http://www.uxys.com/html/JavaKfjs/20200117/101590.html ◾ Peter Lawrey, 「is memory leak? why java.lang.ref.Finalizer eat so much memory」, stackoverflow, https://stackoverflow.com/questions/8355064/is-memory-leak-why-java-lang-ref-finalizer-eat-so-much-memory ◾ Florian Weimer, 「Performance issues with Java finalizersenyo」, enyo, https://www.enyo.de/fw/notes/java-gc-finalizers.html ------------------------------------------------------------
2023.10.12
기술이야기
카프카를 통한 로그 관리 방법
기술이야기
카프카를 통한 로그 관리 방법
안녕하세요! 저는 개발4그룹에서 제니우스(Zenius) SIEM의 로그 관리 기능 개발을 담당하고 있는 김채욱 입니다. 제가 하고 있는 일은 실시간으로 대용량 로그 데이터를 수집하여 분석 후, 사용자에게 가치 있는 정보를 시각화하여 보여주는 일입니다. 이번 글에서 다룰 내용은 1) 그동안 로그(Log)에 대해 조사한 것과 2) 최근에 CCDAK 카프카 자격증을 딴 기념으로, 카프카(Kafka)를 이용하여 어떻게 로그 관리를 하는지에 대해 이야기해 보겠습니다. PART1. 로그 1. 로그의 표면적 형태 로그(Log)는 기본적으로 시스템의 일련된 동작이나 사건의 기록입니다. 시스템의 일기장과도 같죠. 로그를 통해 특정 시간에 시스템에서 ‘어떤 일’이 일어났는지 파악할 수도 있습니다. 이렇게 로그는 시간에 따른 시스템의 동작을 기록하고, 정보는 순차적으로 저장됩니다. 이처럼 로그의 핵심 개념은 ‘시간’입니다. 순차적으로 발생된 로그를 통해 시스템의 동작을 이해하며, 일종의 생활기록부 역할을 하죠. 시스템 내에서 어떤 행동이 발생하였고, 어떤 문제가 일어났으며, 유저와의 어떤 교류가 일어났는지 모두 알 수 있습니다. 만약 시간의 개념이 없다면 어떻게 될까요? 발생한 모든 일들이 뒤섞이며, 로그 해석을 하는데 어려움이 생기겠죠. 이처럼 로그를 통해 시스템은 과거의 변화를 추적합니다. 똑같은 상황이 주어지면 항상 같은 결과를 내놓는 ‘결정론적’인 동작을 보장할 수 있죠. 로그의 중요성, 이제 조금 이해가 되실까요? 2. 로그와 카프카의 관계 자, 그렇다면! 로그(Log)와 카프카(Kafka)는 어떤 관계일까요? 우선 카프카는 분산 스트리밍 플랫폼으로서, 실시간으로 대용량의 데이터를 처리하고 전송하는데 탁월한 성능을 자랑합니다. 그 중심에는 바로 ‘로그’라는 개념이 있는데요. 좀 더 자세히 짚고 넘어가 보겠습니다. 3. 카프카에서의 로그 시스템 카프카에서의 로그 시스템은, 단순히 시스템의 에러나 이벤트를 기록하는 것만이 아닙니다. 연속된 데이터 레코드들의 스트림을 의미하며, 이를 ‘토픽(Topic)’이라는 카테고리로 구분하죠. 각 토픽은 다시 *파티션(Partition)으로 나누어, 단일 혹은 여러 서버에 분산 저장됩니다. 이렇게 분산 저장되는 로그 데이터는, 높은 내구성과 가용성을 보장합니다. *파티션(Partition): 하드디스크를 논리적으로 나눈 구역 4. 카프카가 로그를 사용하는 이유 로그의 순차적인 특성은 카프카의 ‘핵심 아키텍처’와 깊게 연결되어 있습니다. 로그를 사용하면, 데이터의 순서를 보장할 수 있어 대용량의 데이터 스트림을 효율적으로 처리할 수 있기 때문이죠. 데이터를 ‘영구적’으로 저장할 수 있어, 데이터 손실 위험 또한 크게 줄어듭니다. 로그를 사용하는 또 다른 이유는 ‘장애 복구’입니다. 서버가 장애로 인해 중단되었다가 다시 시작되면, 저장된 로그를 이용하여 이전 상태로 복구할 수 있게 되죠. 이는 ‘카프카가 높은 가용성’을 보장하는 데 중요한 요소입니다. ∴ 로그 요약 로그는 단순한 시스템 메시지를 넘어 ‘데이터 스트림’의 핵심 요소로 활용됩니다. 카프카와 같은 현대의 데이터 처리 시스템은 로그의 이러한 특성을 극대화하여, 대용량의 실시간 데이터 스트림을 효율적으로 처리할 수 있는 거죠. 로그의 중요성을 다시 한번 깨닫게 되는 순간이네요! PART2. 카프카 로그에 이어 에 대해 설명하겠습니다. 들어가기에 앞서 가볍게 ‘구조’부터 알아가 볼까요? 1. 카프카 구조 · 브로커(Broker) 브로커는 *클러스터(Cluster) 안에 구성된 여러 서버 중 각 서버를 의미합니다. 이러한 브로커들은, 레코드 형태인 메시지 데이터의 저장과 검색 및 컨슈머에게 전달하고 관리합니다. *클러스터(Cluster): 여러 대의 컴퓨터들이 연결되어 하나의 시스템처럼 동작하는 컴퓨터들의 집합 데이터 분배와 중복성도 촉진합니다. 브로커에 문제가 발생하면, 데이터가 여러 브로커에 데이터가 복제되어 데이터 손실이 되지 않죠. · 프로듀서(Producer) 프로듀서는 토픽에 레코드를 전송 또는 생성하는 *엔터티(Entity)입니다. 카프카 생태계에서 ‘데이터의 진입점’ 역할도 함께 하고 있죠. 레코드가 전송될 토픽 및 파티션도 결정할 수 있습니다. *엔터티(Entity): 업무에 필요한 정보를 저장하고 관리하는 집합적인 것 · 컨슈머(Consumer) 컨슈머는 토픽에서 레코드를 읽습니다. 하나 이상의 토픽을 구독하고, 브로커로부터 레코드를 소비합니다. 데이터의 출구점을 나타내기도 하며, 프로듀서에 의해 전송된 메시지를 최종적으로 읽히고 처리되도록 합니다. · 토픽(Topic) 토픽은 프로듀서로부터 전송된 레코드 카테고리입니다. 각 토픽은 파티션으로 나뉘며, 이 파티션은 브로커 간에 복제됩니다. 카프카로 들어오는 데이터를 조직화하고, 분류하는 방법을 제공하기도 합니다. 파티션으로 나눔으로써 카프카는 ‘수평 확장성과 장애 허용성’을 보장합니다. · 주키퍼(ZooKeeper) 주키퍼는 브로커를 관리하고 조정하는 데 도움을 주는 ‘중앙 관리소’입니다. 클러스터 노드의 상태, 토픽 *메타데이터(Metadata) 등의 상태를 추적합니다. *메타데이터(Metadata): 데이터에 관한 구조화된 데이터로, 다른 데이터를 설명해 주는 데이터 카프카는 분산 조정을 위해 주키퍼에 의존합니다. 주키퍼는 브로커에 문제가 발생하면, 다른 브로커에 알리고 클러스터 전체에 일관된 데이터를 보장하죠. ∴ 카프카 구조 요약 요약한다면 카프카는 1) 복잡하지만 견고한 아키텍처 2) 대규모 스트림 데이터를 실시간으로 처리하는 데 있어 안정적이고 장애 허용성이 있음 3) 고도로 확장 가능한 플랫폼을 제공으로 정리할 수 있습니다. 이처럼 카프카가 큰 데이터 환경에서 ‘어떻게’ 정보 흐름을 관리하고 최적화하는지 5가지의 구조를 통해 살펴보았습니다. 이제 카프카에 대해 조금 더 명확한 그림이 그려지지 않나요? 2. 컨슈머 그룹과 성능을 위한 탐색 카프카의 가장 주목할 만한 특징 중 하나는 ‘컨슈머 그룹의 구현’입니다. 이는 카프카의 확장성과 성능 잠재력을 이해하는 데 중심적인 개념이죠. 컨슈머 그룹 이해하기 카프카의 핵심은 ‘메시지를 생산하고 소비’ 하는 것입니다. 그런데 수백만, 심지어 수십억의 메시지가 흐르고 있을 때 어떻게 효율적으로 소비될까요? 여기서 컨슈머 그룹(Consumer Group)이 등장합니다. 컨슈머 그룹은, 하나 또는 그 이상의 컨슈머로 구성되어 하나 또는 여러 토픽에서 메시지를 소비하는데 협력합니다. 그렇다면 왜 효율적인지 알아보겠습니다. · 로드 밸런싱: 하나의 컨슈머가 모든 메시지를 처리하는 대신, 그룹이 부하를 분산할 수 있습니다. 토픽의 각 파티션은 그룹 내에서 정확히 하나의 컨슈머에 의해 소비됩니다. 이는 메시지가 더 빠르고 효율적으로 처리된다는 것을 보장합니다. · 장애 허용성: 컨슈머에 문제가 발생하면, 그룹 내의 다른 컨슈머가 그 파티션을 인수하여 메시지 처리에 차질이 없도록 합니다. · 유연성: 데이터 흐름이 변함에 따라 그룹에서 컨슈머를 쉽게 추가하거나 제거합니다. 이에 따라 증가하거나 감소하는 부하를 처리할 수 있습니다. 여기까지는 최적의 성능을 위한 ‘카프카 튜닝 컨슈머 그룹의 기본 사항’을 다루었으니, 이와 관련된 ‘성능 튜닝 전략’에 대해 알아볼까요? 성능 튜닝 전략 · 파티션 전략: 토픽의 파티션 수는, 얼마나 많은 컨슈머가 활성화되어 메시지를 소비할 수 있는지 영향을 줍니다. 더 많은 파티션은 더 많은 컨슈머가 병렬로 작동할 수 있음을 의미하는 거죠. 그러나 너무 많은 파티션은 *오버헤드를 야기할 수 있습니다. *오버헤드: 어떤 처리를 하기 위해 간접적인 처리 시간 · 컨슈머 구성: *fetch.min.bytes 및 *fetch.max.wait.ms와 같은 매개변수를 조정합니다. 그다음 한 번에 얼마나 많은 데이터를 컨슈머가 가져오는지 제어합니다. 이러한 최적화를 통해 브로커에게 요청하는 횟수를 줄이고, 처리량을 높입니다. *fetch.min.bytes: 한 번에 가져올 수 있는 최소 데이터 사이즈 *fetch.max.wait.ms: 데이터가 최소 크기가 될 때까지 기다릴 시간 · 메시지 배치: 프로듀서는 메시지를 함께 배치하여 처리량을 높일 수 있게 구성됩니다. *batch.size 및 *linger.ms와 같은 매개변수를 조정하여, 대기 시간과 처리량 사이의 균형을 찾을 수 있게 되죠. *batch.size: 한 번에 모델이 학습하는 데이터 샘플의 개수 *linger.ms: 전송 대기 시간 · 압축: 카프카는 메시지 압축을 지원하여 전송 및 저장되는 데이터의 양을 줄입니다. 이로 인해 전송 속도가 빨라지고 전체 성능이 향상될 수 있습니다. · 로그 정리 정책: 카프카 토픽은, 설정된 기간 또는 크기 동안 메시지를 유지할 수 있습니다. 보존 정책을 조정하면, 브로커가 저장 공간이 부족해지는 점과 성능이 저하되는 점을 방지할 수 있습니다. 3. 컨슈머 그룹과 성능을 위한 실제 코드 예시 다음 그림과 같은 코드를 보며 조금 더 자세히 살펴보겠습니다. NodeJS 코드 중 일부를 발췌했습니다. 카프카 설치 시에 사용되는 설정 파일 *server.properties에서 파티션의 개수를 CPU 코어 수와 같게 설정하는 코드입니다. 이에 대한 장점들을 쭉 살펴볼까요? *server.properties: 마인크래프트 서버 옵션을 설정할 수 있는 파일 CPU 코어 수에 파티션 수를 맞추었을 때의 장점 · 최적화된 리소스 활용: 카프카에서는 각 파티션이 읽기와 쓰기를 위한 자체 *I/O(입출력) 스레드를 종종 운영합니다. 사용 가능한 CPU 코어 수와 파티션 수를 일치시키면, 각 코어가 특정 파티션의 I/O 작업을 처리합니다. 이 동시성은 리소스에서 최대의 성능을 추출하는 데 도움 됩니다. · 최대 병렬 처리: 카프카의 설계 철학은 ‘병렬 데이터 처리’를 중심으로 합니다. 코어 수와 파티션 수 사이의 일치는, 동시에 처리되어 처리량을 높일 수 있습니다. · 간소화된 용량 계획: 이 접근 방식은, 리소스 계획에 대한 명확한 기준을 제공합니다. 성능 병목이 발생하면 CPU에 *바인딩(Binding)되어 있는지 명확하게 알 수 있습니다. 인프라를 정확하게 조정할 수도 있게 되죠. *바인딩(Binding): 두 프로그래밍 언어를 이어주는 래퍼 라이브러리 · 오버헤드 감소: 병렬 처리와 오버헤드 사이의 균형은 미묘합니다. 파티션 증가는 병렬 처리를 촉진할 수 있습니다. 하지만 더 많은 주키퍼 부하, 브로커 시작 시간 연장, 리더 선거 빈도 증가와 같은 오버헤드도 가져올 수도 있습니다. 파티션을 CPU 코어에 맞추는 것은 균형을 이룰 수 있게 합니다. 다음은 프로세스 수를 CPU 코어 수만큼 생성하여, 토픽의 파티션 개수와 일치시킨 코드에 대한 장점입니다. 파티션 수와 컨슈머 프로세스 수 일치의 장점 · 최적의 병렬 처리: 카프카 파티션의 각각은 동시에 처리될 수 있습니다. 컨슈머 수가 파티션 수와 일치하면, 각 컨슈머는 특정 파티션에서 메시지를 독립적으로 소비할 수 있게 되죠. 따라서 병렬 처리가 향상됩니다. · 리소스 효율성: 파티션 수와 컨슈머 수가 일치하면, 각 컨슈머가 처리하는 데이터의 양이 균등하게 분배됩니다. 이로 인해 전체 시스템의 리소스 사용이 균형을 이루게 되죠. · 탄력성과 확장성: 트래픽이 증가하면, 추가적인 컨슈머를 컨슈머 그룹에 추가하여 처리 능력을 증가시킵니다. 동일한 방식으로 트래픽이 감소하면 컨슈머를 줄여 리소스를 절약할 수 있습니다. · 고가용성과 오류 회복: 컨슈머 중 하나가 실패하면, 해당 컨슈머가 처리하던 파티션은 다른 컨슈머에게 자동 재분배됩니다. 이를 통해 시스템 내의 다른 컨슈머가 실패한 컨슈머의 작업을 빠르게 인수하여, 메시지 처리가 중단되지 않습니다. 마지막으로 각 프로세스별 컨슈머를 생성해서 토픽에 구독 후, 소비하는 과정을 나타낸 소스코드입니다. ∴ 컨슈머 그룹 요약 컨슈머 그룹은 높은 처리량과 장애 허용성 있는 메시지 소비를 제공하는 능력이 핵심입니다. 카프카가 어떤 식으로 운영되는지에 대한 상세한 부분을 이해하고 다양한 매개변수를 신중하게 조정한다면, 어떠한 상황에서도 카프카의 최대 성능을 이끌어낼 수 있습니다! ------------------------------------------------------------ ©참고 자료 · Jay Kreps, “I Hearts Logs”, Confluent · 위키피디아, “Logging(computing)” · Confluent, “https://docs.confluent.io/kafka/overview.html” · Neha Narkhede, Gwen Shapira, Todd Palino, “Kafka: The Definitive Guide” ------------------------------------------------------------
2023.09.19
기술이야기
[브레인저가 알려주는 IT#1] 네트워크 관리, SNMP가 뭔가요?
기술이야기
[브레인저가 알려주는 IT#1] 네트워크 관리, SNMP가 뭔가요?
1. SNMP(Simple Network Management Protocol)란? 컴퓨터 네트워크 장치를 관리하고 모니터링하기 위해 사용되는 네트워크 관리 프로토콜이에요. 네트워크 장치, 서버, 라우터, 스위치, 프린터 등과 같은 네트워크 장치들의 상태를 모니터링하고 구성할 수 있는 표준 방법 또한 제공하고 있어요. 요약한다면 네트워크에 있는 장비들을 관리하기 위한 프로토콜이라고 이해하시면 된답니다! (1) SNMP의 역사 • SNMPv1(1988)초기 SNMP 버전으로 RFC 1067에 정의되었어요. 간단한 모니터링과 설정 변경 기능을 제공했으나, 보안 측면에서 취약점이 있었어요. 커뮤니티 문자열(Community String)을 사용하여 인증을 수행했어요. • SNMPv2(1993) SNMPv1의 한계와 보안 이슈를 개선하기 위해 개발되었어요. 여러 개의 추가 기능을 제공하려 했으나, 규격이 복잡해졌고 보안 문제로 인해 널리 채택되지 않았어요. • SNMPv2c(1996) SNMPv2의 복잡성을 줄이고 보안을 개선한 버전이에요. 커뮤니티 문자열을 계속 사용하여 보안적인 취약성은 여전히 존재했어요. • SNMPv3(1998) 현재까지 널리 사용되고 있는 최신 버전이에요. 보안 기능을 크게 강화하여 데이터 암호화, 사용자 인증, 데이터 무결성 검사 등을 제공하고 있어요. 비동기적인 알림 메커니즘으로 Trap 메시지와 함께 메시지의 암호화 및 보안 기능을 지원해요. • SNMPv3의 보안 개선(2002 이후~) SNMPv3에서 시작된 보안 향상이 계속 발전되어 왔어요. 데이터 암호화와 사용자 인증 등의 기능이 더욱 강화되고, 다양한 보안 솔루션과 표준이 제안되었어요. 2. SNMP의 주요 특징과 역할 (1) 클라이언트-서버 모델 SNMP는 관리자의 명령을 수행하는 에이전트와, 에이전트의 정보를 수집하는 매니저 간의 통신을 기반으로 해요. (2) MIB(Management Information Base) 네트워크 장치의 정보를 계층 구조로 정의한 데이터베이스입니다. 각 정보 항목은 OID(Object Identifier)로 식별되며, 매니저는 OID를 통해 특정 정보를 요청하고 수집할 수 있어요. (3) 동작 방식 • GET: 매니저가 에이전트에게 특정 정보의 값을 요청해요. • SET: 매니저가 에이전트에게 특정 정보의 값을 변경하도록 요청합니다. • TRAP: 에이전트가 이벤트 발생 시 매니저에게 알림을 보내요. (4) 보안 • SNMPv1: 초기 버전으로, 보안에 취약한 프로토콜이었어요. • SNMPv2c: SNMPv1을 확장한 버전으로, 여전히 보안에 취약했어요. • SNMPv3: 보안 강화 버전으로 데이터 암호화, 사용자 인증, 데이터 무결성 검사 등을 지원하여 보안을 강화했어요. (5) 확장 가능성 SNMP는 다양한 버전과 확장 프로토콜을 지원하여 새로운 기능을 추가하거나 보완할 수 있어요. (6) 주요 용도 • 네트워크 장치 모니터링: 장비의 성능, 상태, 트래픽 등 정보를 수집하여 네트워크를 모니터링해요. • 구성 관리: 장치의 설정 변경 및 관리를 원격으로 수행할 수 있어요. • 이벤트 알림: 장애나 이상 상태가 발생하면 즉시 알림을 받을 수 있어요. 이처럼 SNMP는 네트워크 관리에 필수적인 프로토콜 중 하나로, 네트워크의 안정성과 성능을 유지하며 문제를 신속하게 해결하는 데 도움을 준답니다! 3. Zenius에서의 SNMP 활용 안내 (1) NMS 모니터링 SNMP GET 방식으로 데이터를 수집할 수 있어요. SNMP를 활용하여 장비모니터링 화면, 등록된 장비의 장비명, IP, 성능데이터 등을 확인 할 수 있어요. 장비의 상세한 데이터를 모니터링 할 수 있어요. IF 포트의 UP/DOWN과 트래픽 데이터를 수집하여 확인 가능해요. • NMS in/out bps 전일 대비 In/Out bps의 데이터 확인 및 추이 분석기능도 제공하고 있어요. 사진과 같이 초 단위 실시간 데이터를 통한 상세 트랙픽 분석도 가능하답니다! 성능 데이터를 수집하여 그래프 형태로 보관하고 제공하고 있어요. 수집 시간대별 데이터도 제공해요. 해당 데이터를 통하여, 트래픽사용량이 많이 발생한 시간을 찾을수 있어요. • 장비등록 화면 SNMP 모든 버전에 대해서 모니터링을 제공하고 있어요. 장비 설정에 따라서, 버전 및 정보 입력하여 등록하여 모니터링 할 수 있어요. (2) TRAP 모니터링 • 네트워크 장비와 시스템에서 발생하는 이벤트나 상태 변화를 실시간으로 알려주기 위한 SNMP의 비동기적인 메시지에요. 이벤트 발생 시, 장치가 주도적으로 SNMP 매니저에게 알림을 보내는 방식으로 작동해요. Trap은 장애 상황이나 경고 상태 등에 대한 신속한 대응을 가능하게 해요. • Trap은 네트워크 관리자에게 실시간 정보를 제공해요. 장비나 시스템의 이상 상태를 빠르게 감지하고 대응하여, 서비스의 가용성과 신뢰성을 유지하는 데 중요한 역할을 하고 있죠. • Trap의 활용✅ 장애 관리: 장비나 시스템의 고장이나 다운 상태 등의 이벤트가 발생하면 즉시 Trap이 생성되어 매니저에게 알려줘요.✅ 경고 및 알림: 주의가 필요한 상황에서도 Trap을 활용하여 관리자에게 알림을 제공해요.✅ 보안 이벤트: 불법 로그인 시도나 보안 위반 등의 이벤트가 발생하면, 해당 정보를 Trap으로 매니저에게 전송하여 보안 조치를 취할 수 있어요. Trap 발생시, 모니터링 화면을 통해서 내용을 확인 할 수 있어요. Trap 받은 내역을 저장하여, 기간 검색 등을 통하여 활용할 수 있어요. 이제 Zenius를 활용하여 네트워크 장비를 모니터링 해보는 것은 어떨까요?
2023.09.05
회사이야기
'Zenius-SIEM v2.0' GS인증 1등급 획득
회사이야기
'Zenius-SIEM v2.0' GS인증 1등급 획득
브레인즈컴퍼니는 지난 8월 22일 한국정보통신기술협회(TTA)로부터 Zenius-SIEM v2.0에 대한 GS인증 1등급을 획득했습니다. GS인증은 Good Software의 약자로 양질의 품질을 갖춘 SW 제품에 국가가 부여하는 인증 제도 입니다. ISO 국제표준을 기반으로 기능 적합성, 성능 효율성, 보안성 등 여러 테스트를 거쳐 결과가 우수한 제품에 인증이 부여됩니다. GS인증을 받은 제품은 공공기관 우선 구매 대상으로 지정할 수 있습니다. 이번에 GS인증 1등급을 받은 Zenius-SIEM v2.0은 다양한 대용량 로그의 수집, 분석 및 통합 관리 시스템으로, 컴플라이언스(Compliance)를 준수하고 보안 위협에 대한 감시 · 대응 체계를 수립할 수 있는 통합로그 관리 시스템입니다. CC인증에 이어 GS인증 1등급을 획득한 Zenius-SIEM v2.0은 제품의 보안성이 강화되고 안정성을 검증받아 제주특별자치도청과 한국금형산업진흥회에 구축을 완료하였습니다. Zenius-SIEM v2.0은 SaaS(Software as a Service) 형태의 서비스를 제공하기 위해 개발 중에 있으며, On-Premise와 클라우드 환경에서 더 많은 고객들이 안정적으로 대용량 로그를 관리하고 보안 환경을 유지하도록 지원할 예정입니다.
2023.08.30
회사이야기
[브레인즈 소식] 브레인즈컴퍼니, ‘REST API 클라이언트 개발을 위한 가상 REST API 서비스 자동 생성 서버 및 방법’ 특허 취득
회사이야기
[브레인즈 소식] 브레인즈컴퍼니, ‘REST API 클라이언트 개발을 위한 가상 REST API 서비스 자동 생성 서버 및 방법’ 특허 취득
지난 6월에는 브레인즈컴퍼니가 '원격 서비스 응답 블로킹 대기 상태의 트랜잭션 제어 시스템 및 방법' 특허를 획득한 사실을 알려드렸습니다. 이번 7월 31일 'REST API 클라이언트 개발을 위한 가상 REST API 서비스 자동 생성 서버 및 방법' 특허도 취득했어요. 이번에 출원한 특허의 핵심은 AWS나 GCP와 같은 클라우드 서비스를 활용하는 개발 과정에서 가상 REST API 서비스를 자동으로 생성하는 소스 자동 제너레이션 기술입니다. 클라우드 환경을 이용한 개발 과정에서는 주로 REST API(Application Program Interface)를 주로 사용하는데, 이는 웹의 컴퓨터 시스템 간에 표준을 제공하여 시스템이 서로 쉽게 통신할 수 있도록 하는 아키텍처의 하나로, 현재는 공기업 및 사기업의 대부분이 API 서비스를 제공하고 있어, 웹 서비스의 표준 기술로 자리 잡고 있습니다. 클라이언트 개발자들은 개발 단계에서 REST API 서비스를 통해 데이터를 수시로 요청하고 테스트하는 과정을 필수적으로 거치게 되는데, 이 과정에서 서버 개발자들은 각 API에 대한 소스 파일을 일일이 작성하고 추가하는 등의 업무가 가중되고 있습니다. 브레인즈컴퍼니는 이러한 과정에서 특허 기술인 소스 자동 생성 기능을 적용하여, 개발 환경을 개선시키는 데 중점을 두었습니다. 소스 코드의 작성·빌드·배포 과정에서 반복되는 단순 작업들을 절감시키고, API를 이용하는 데 소요되는 비용을 최소화하여 결과적으로는 개발 경쟁력을 확보할 수 있기 때문입니다. 이번에 취득한 특허 기술은 클라우드 서비스 모니터링 시스템인 Zenius-CMS 개발 과정에서 이미 적용되어 성공적으로 검증되었습니다. 이번 특허 기술을 통해 클라우드 환경에서의 개발 속도를 높일 수 있었고, 브레인즈 개발자들은 더욱 효율적이게 업무에 몰두할 수 있는 환경이 마련된 상태입니다. 또한, 향후 REST API를 활용하는 프로젝트가 있을 때에도 신속하고 쉽게 개발이 이루어지고 효율적인 개발과 비용 부담 없는 테스트 과정을 거쳐 기능의 안정성을 확보할 것으로 전망하고 있습니다. 그리고 궁극적으로는 신규 기능을 빠르고 안정적으로 배포하여 고객 만족도가 향상될 것으로 기대하고 있습니다.
2023.08.28
기술이야기
시련이 많았던 경험자의 CI/CD 간략 소개
기술이야기
시련이 많았던 경험자의 CI/CD 간략 소개
과거에는 근로자 1명이 기획/설계/구현 테스트까지 진행이 가능했다고 합니다. 하지만 최근에는 근로자 1명이 기획부터 테스트까지 진행하는 일은 거의 드물다고 볼 수 있습니다. OLD SCHOOL 지금 이 시간에도 많은 회사 내의 개발자들은 자신에게 주어진 기능 구현을 훌륭하게 완수하기 위해서 모니터를 째려보고 있습니다. 모니터를 째려보다가 자신이 작성한 내용을 다른 팀원에게 공유하고자 혹은 반대로 다른 팀원이 작성한 내용을 공유받고자 '형상 관리 시스템'을 사용하고 있습니다. CVS와 SVN으로 대표되는 이 시스템은 최근들어 Git을 많이 사용하는 추세라고 합니다. 필자 역시 여러 프로젝트에서 해당 시스템을 사용도 해보았고, 연동하여 다른 시스템을 구현한 경험이 있습니다. 하지만 프로젝트 마다 해당 시스템 사용에 있어서 몇몇 시련이 있었습니다. "차주에 전체 기능 리뷰가 있습니다. 각 파트 별로 코드 커밋해주세요." 라고 PM(Project Manager) 또는 PL(Project Leader)이 요청을 하면, 각 하위 PL(Part Leader)은 파트(Part)에 돌아가 파트원들에게 이 내용을 공유하고, 개별 개발자들은 자신이 작성한 코드를 관리 시스템에 커밋하게 됩니다. 잠시 후 형상 관리 시스템에서 작성 코드를 내려 받은 PL(Part Leader)은 아래와 같은 상황에 직면하게 됩니다. - 동료의 작성 코드에는 관심 없이, 본인의 작성물만 커밋하는 경우 - 별도의 공지 없이 이미 작성된 파일 등을 삭제하여 커밋하는 경우 - 약속되지 않은 환경이나 lib으로 작성한 코드를 커밋하는 경우 프로젝트에 따라 기간이 길어지거나 다른 여러 상황이 발생하면 위의 문제보다 더 많은 문제를 경험하게 됩니다. 각 파트 단위로 위와 같은 문제가 해결되고 정상적으로 컴파일, 빌드까지 완료되면, PL(Part Leader)들은 파트별로 단위테스트를 완료하고 결과가 정상적이면 결과를 품질관리자에게 통보합니다. 각 파트별로 완료 통보를 받은 품질관리자는 다시 관리 시스템에서 전체 작성물을 수동으로 내려받아 통합테스트를 진행합니다. 통합테스트까지 완료되었다면 해당 내용을 릴리즈관리자에게 통보합니다. 릴리즈관리자는 바뀐 부분만 찾아서 변경하면 시간적으로 적용이 빠르겠지만 '바뀐 부분만 변경하면 될까?'라는 의심으로 전체 작성물을 수작업으로 전처리(컴파일 & 빌드)하고 다시 수작업으로 릴리즈하게 됩니다. 만약 진행상의 이슈가 없다면 이제 기능 리뷰 준비가 완료됩니다. 단계별로 문제 없이 진행되고 모든 기능을 확인하였다고 하지만 기능 리뷰 혹은 데모만하면 꼭! 오류가 발생하여 난처한 상황이 종종 발생하곤 합니다. 필자 역시 이런 경우가 많았으며 그때마다 문제 부분을 찾기 위해 많이 고생했습니다. 아래의 개념은 아마도 저 같은 경험을 하고 있는 많은 사람들을 위한 것이 아닌가 싶습니다. CI (Continuous Integration, 지속적인 통합) '지속적인 통합'이란 개발 과정에서 생산되는 코드의 관리와 코드의 문법적인 오류 확인 및 기능 점검(=테스트)을 특정한 일정에 진행하는 것이 아니라 날마다 혹은 특정 시간마다 진행하여 코드 및 기능에 대한 품질을 유지하는 개념이라고 말할 수 있을 것입니다. 앞에서 언급했던 과거 모습을 개선하는 노력은 CI 라는 개념이 나오기 이전부터 많은 개발사 혹은 팀에서 그들만의 문화나 관습으로 처리하는 경우가 있었을 것입니다. 하지만 문제는 새로운 구성원이 생겼을 때 입니다. 조직 문화를 새로이 접하는 이들에게는 이를 설명하고 이해시키는 일은 시간과 노력이 드는 일이니까요. 하지만 이젠 일반적인 Java 개발팀에서는 SVN(or GitHub)+Jenkins+Maven+JUnit으로 구성하는 개발 환경을 사용하고 있습니다. 다만, 프로젝트 목표나 목적되는 환경에 따라 약간씩 다른 환경을 구성하기도 합니다. 그러나 대부분의 경우 Open Source 기반으로 CI 개념을 구성하는 경우가 많습니다. 이는 일단 무료라는 큰 장점과 많은 레퍼런스가 있어 구성하기 편리하고 "우린 Open Source인 SVN과 Jenkins를 사용합니다. 일단 자세한 개념과 동작 원리는 너트뷰 선생님께..." 라고 하며 짧은 노력으로 교육을 끝낼 수 있어 그런 것이 아닌가 합니다. CI 개념을 활용하는 개발 프로젝트에서는 UI 메뉴 혹은 구현 단위 기준으로 구분하여 개발파트나 개발자를 할당하고는 합니다. 각각의 개발자는 할당받은 구현 범위에 대한 문제를 개별적으로 개발 도구를 활용하여 구현하고 구현 내용을 형상 관리 시스템에 커밋합니다. 이런 과정을 다른 개발자들도 같이 수행한 후에 빌드 자동화 환경에서 컴파일 및 빌드 스크립트에 맞춰서 문법적으로 확인된 결과물을 만들고 이를 다시 기능이 확인이 가능한 테스트 스크립트에 맞춰서 테스까지 진행합니다. 만약 테스트 과정에서 비정상적인 결과가 발생할 경우, 해당 내용 수정 후 위의 작업을 다시 진행하게 됩니다. 이런 일련의 절차는 일정 시간 준위 단위로 수행되어 구현하고 있는 기능을 주기적으로 확인하는 과정을 수행합니다. 올바른 진행을 위하여 개발자 개개인에게 분장되는 업무의 크기가 비슷해야 한다고 생각됩니다. 개발자별로 업무의 크기가 서로 다른 겨우, 결과물이 정상적이라고 볼 수 없게 될 것이고 그렇게 된다면 테스트 결과 역시 믿을 수 없는 경우가 발생할 것입니다. CD (Continuous Delivery/Deploy, 지속적 제공/배포) 지속적인 통합(CI)을 사용하던, 기존의 개발 환경을 사용하던, 결국 작성된 결과물은 최종적으로 운영환경에 적용되어 사용작 혹은 타 시스템과 연결되어야 합니다. 그래야 제품 개발 또는 프로젝트가 완료됩니다. CD는 결과물을 운영환경에 적용하는 방식을 나타내는 환경으로써 결과물 적용 여부를 판단하는 행위를 담당하는 주체가 누구냐에 따라, Continuous Delivery와 Continuous Deploy로 구분됩니다. Continuous Delivery는 CI 환경을 통하여 자동으로 컴파일 및 빌드가 되고, 테스트된 결과물에 대해서 릴리즈 관리자가 적용 시점마다 테스트 결과 및 서비스 영향도를 판단하여 수동으로 적용하는 방식이며, Continuous Deploy는 결과물은 항상 옳고 서비스 영향도는 없다고 미리 판단하여 자동으로 적용하는 방식입니다. 아마도 대부분의 개발 환경에서는 Continuous Delivery로 적용하고 있기에 CD라고 표기되는 경우 Continuous Delivery를 의미하는 경우가 많을 것입니다. 소프트웨어 솔루션을 제작하는 개발팀에서는 아마도 Continuous Delivery로 또한 MSA 기반의 서비스를 제공하는 개발팀에서는 Continuous Deploy를 사용하는 편이 여러 관계를 보았을 때 유리하다고 판단합니다. 하지만, 개발팀의 업무 성격과 제품 혹은 서비스의 출시 시기 등이 CD 방식을 결정하는 가장 중요한 요소가 될 것입니다. 지금까지 CI/CD 도입 배경과 내용을 필자의 경험을 바탕으로 간략하게 정리하였습니다. 개발자들이 자기가 맡은 기능 혹은 프로세스에만 전념할 수 있는 훌륭하고 편리한 개발 환경 및 적용 환경이 언제 어떻게 나타나게 될지 궁금합니다. 가능하다면, 많이 바꿔서 따라가기 귀찮은 시니어들과 새롭게 따라가야하는 주니어 개발자 모두에게 즐거운 환경이 등장했으면 합니다. 감사합니다.
2023.08.22
기술이야기
[Zenius Case#2] 서버관리, 서버가 왜 이렇게 느리지?
기술이야기
[Zenius Case#2] 서버관리, 서버가 왜 이렇게 느리지?
평온한 오후 퇴근 준비가 한창인데 불길한 전화가 걸려 옵니다. “서비스가 먹통이어서 확인 좀 해야 하는데 서버가 엄청 버벅거리고 반응이 느려요!! 이거 왜 이러죠??” 왜!! 도대체 왜!! 한 번쯤은 겪어보았을 급작스러운 Linux 서버의 상태 이슈! 불행하게도 무척이나 다양한 원인으로 인해 발생하게 됩니다. 우리의 목표는 이 다양한 원인 중 실제 발생 원인을 빠르게 특정하는 것! 기본적인 항목들의 체크리스트를 통해 빠르게 원인을 파악 해 봅시다. Linux 서버 상태 이슈 체크리스트 1. 서버의 CPU 부하 확인하기 2. BUFFER, CACHE, SWAP 상태 확인하기 3. 디스크 상태 확인하기 Zenius를 통한 데이터 추이 분석!! 장애의 발생은 순식간에 일어나지만, 장애 발생 시점의 데이터만을 확인해서는 원인을 파악하기가 쉽지 않은 경우가 많습니다. Zenius를 활용하여 앞서 정한 체크리스트를 빠르게 확인해 봅시다. 1. 서버의 CPU 부하 확인하기 - CPU 부하 확인의 Point는 Load Average Load Average는 CPU 사용 대기 중인 프로세스와 I/O 완료를 대기하고 있는 프로세스의 수를 의미합니다. 따라서, Load Average가 높다는 것은 CPU가 바쁘며 시스템에 걸리는 부하가 있다는 뜻입니다. 화면과 같이 1분, 5분, 15분의 로드 평균을 확인 해 보도록 합시다. 1분 로드 평균은 순간적으로 증가하는 경우가 있지만, 5분 15분 데이터상에도 이전과 비교하였을 때 높은 수치를 보인다면, CPU의 부하가 의심스러운 상황입니다. 그렇다면 CPU의 사용률과 I/O 대기율은 어떨까요? user가 사용한 CPU 사용률은 일정하지만, Iowait 수치가 올라간 것을 볼 수 있습니다. 이 경우 CPU의 리소스 부족이기보다는 I/O로 인한 부하로 판단할 수 있고, 자세히는 메모리나 프로세스의 현황 확인이 필요한 경우입니다. 반대로 user 수치가 높은 경우에는 물리적인 CPU 자체의 리소스 부족이라 볼 수 있습니다. 2. BUFFER, CACHE, SWAP 상태 확인하기 - 메모리 사용률과 Swap, Buffer, Cache 메모리 사용률이 높다 = 서버에 부하가 있다?? 답은 No !! Linux 서버의 메모리 사용률은 Buffer/Cache의 사용량이 포함되어 표현되게 됩니다. 따라서, 우리는 그 추이를 통하여 이슈를 확인하는 것이 중요합니다. 위의 검은 바탕의 그래프는 메모리 사용률이 높지만, 일정한 수치를 유지하고 있습니다. 이런 경우 서버의 메모리 사용은 안정적인 영역에서 이루어진다고 판단이 가능합니다. 그 이유는 실제 메모리 사용량과 Buffer/Cache에 할당량의 수치가 할당 가능한 수치 내에서 이루어지기 때문에 사용률이 유지된다고 볼 수 있기 때문입니다. 반면 흰 바탕의 그래프는 메모리 사용률이 점차 증가하며 결국 100%까지 도달한 것을 확인할 수 있는데요, 이경우에는 프로세스가 연산에 필요한 공간을 할당받지 못하여 프로세스 행이 발생하게 됩니다. 그렇다면 Buffer Cache Swap은 어떨까요? 먼저 Buffer Cache에 관해 확인 해 보도록 하겠습니다. *Buffer – 메타데이터를 메모리에 저장. *Cache – Page Cache, Slab을 메모리에 저장. 쉽게 말해, 둘 다 용도에 맞는 정보를 저장하여 수행 속도에 도움을 주는 영역입니다. 메모리 사용량이 늘어나면 이 Buffer, Cache 영역이 줄어들게 되고, 저장 영역이 줄어든다는 것은 속도가 떨어져 성능 저하로 이어지게 됩니다. 아래 그래프는 메모리 사용률이 올라가고 있는 상태의 서버 데이터입니다. 다음으로 이 시점의 Buffer, Cache의 영역을 확인해 보겠습니다. 추이 그래프를 통해 메모리 사용률이 올라갈수록 Buffer, Cache 영역이 줄어드는 것을 확인할 수 있습니다. 그렇다면 이 시점의 I/O는 어떨까요? 보시는 바와 같이 Iowait 수치가 급격히 올라갔음을 확인 할 수 있으므로, “메모리 사용률의 상승은 Buffer, Cache 영역을 줄어들게 하여 속도 저하를 발생시킨다.” 라는 결론을 도출할 수 있습니다. 또한, 메모리 사용률의 상승은 Swap에도 영향을 끼치게 됩니다. *Swap – 디스크 공간에 할당하여 메모리 역할로 사용하는 공간. 따라서, Swap 영역의 사용은 실제 메모리가 아닌 디스크를 사용하기 때문에 속도 저하가 발생 됩니다. 위 그래프는 Swap 사용률이 증가하고 있는 서버의 데이터입니다. 이 시점의 디스크의 상태를 보면 Read와 Write가 점차 Swap과 동일하게 상승하는 것을 볼 수 있습니다. 이렇게 메모리 대신 디스크 영역을 사용하면서 속도가 저하하게 되는 것입니다. 3. 디스크, 확인하기 - Mount Point 별 디스크 사용량, 작업량 추이 확인 디스크의 여유 공간이 없으면 시스템이 파일 생성을 못 하게 되고 결국엔 서버의 운영에 영향을 끼치게 됩니다. 각각의 마운트 지점의 사용률을 체크하여 여유 공간을 확보하는 것이 필요합니다. 디스크의 사용량이 급작스럽게 늘어난 경우는 신규 파일이 업로드되었다거나, 로그파일이 급작스럽게 많이 쌓이는 경우가 있습니다. 그렇기에 각 Mount Point의 사용률을 확인하고 해당 지점의 이슈 사항을 파악하는 것이 가장 좋습니다. 위 그래프와 같이 1시간 이내에 /data 지점의 사용률이 급등하였다면, 해당 지점에 쌓이는 데이터나 로그파일이 급격하게 증가한 것이므로 확인이 필요합니다. 다음으로는 디스크 사용 추이를 확인 해 보도록 하겠습니다. 서버에서 사용하는 물리 디스크는 각각의 성능의 한계가 있습니다. 이 한계를 직관적으로 확인할 수 있는 데이터로는 Disk Busy Rate(작업률)와 Disk Wait Rate(대기율)이 있는데요, Read 및 Write의 양이 한계치까지 치솟게 된다면 Busy Rate 값이 증가하게 되고, 이에 따른 Wait Rate 가 늘어나면서 서버의 성능 저하를 불러오게 됩니다. 어떻게 관리해야 할까? 앞서 확인한 서버의 상태 이슈들, 물론 급작스럽게 발생하는 경우는 어쩔 수 없지만 미리 대비가 가능한 것들은 Zenius-EMS를 이용하여 임계치 기반의 사전 모니터링과, 모니터링 페이지를 통한 직관적인 관리가 가능합니다. 각각의 항목들에 세부적으로 단계별 임계치를 걸어서 서버의 상태 이슈를 사전에 인지하고, 요약 페이지를 통해 빠르게 상태를 파악하여 우리의 퇴근 시간을 사수해 보는 건 어떨까요?
2023.08.08
회사이야기
[브레인즈 소식] ‘원격 서비스 응답 블로킹 대기 상태의 트랜잭션 제어 시스템 및 방법’ 특허 취득
회사이야기
[브레인즈 소식] ‘원격 서비스 응답 블로킹 대기 상태의 트랜잭션 제어 시스템 및 방법’ 특허 취득
브레인즈컴퍼니는 지난 6월 27일, APM(Application Performance Management) 관련 특허를 취득했습니다. 2022년 12월에 출원 신청한 것으로, 명칭은 ‘원격 서비스 응답 블로킹 대기 상태의 트랜잭션 제어 시스템 및 방법’입니다. 이번에 출원한 특허는 기존 Zenius APM에서 트랜잭션을 추적하고, 처리 중인 트랜잭션을 종료시키는 기능을 고도화한 기술인데요. 특히 MSA(Micro Service Architecture) 환경에서 애플리케이션 성능을 모니터링하고 안정적인 서비스 운영 환경을 만들기 위해 개발되었습니다. IT 서비스 구조가 Monolithic에서 MSA 형태로 변화함에 따라, IT 서비스를 구성하는 환경은 점점 복잡해지고 있습니다. 이전에는 단순히 하나의 큰 애플리케이션으로 서비스를 구성하고 있었다면, 현재는 여러 개의 작은 애플리케이션으로 서비스가 나뉘어 있고, 또 각각의 서비스들은 네트워크를 통해 복잡하게 연결되어 있는 형태죠. 이런 구조에서는 서비스 간 연계 구간에서의 지연이 전체 서비스의 장애를 유발할 가능성이 높아집니다. APM에서는 웹 애플리케이션에서 병목을 일으키는 트랜잭션을 모니터링하고 제어할 수 있는 기능을 제공합니다. 하지만 WAS 영역보다 확장된 네트워크 측면에서의 응답 지연이 발생하는 경우에는 해당 트랜잭션을 중지시킬 수 없어 병목을 유발하고 전체 서비스의 성능 저하로 이어질 수 있죠. 이번에 취득한 특허 기술은 이런 이슈에 대한 즉각적인 병목 해소를 통해, 실질적인 서비스 품질을 향상시킬 수 있습니다. 또한, Micro Service Architecture 시대에 IT 서비스를 영위하는 기업에 더욱 효과적인 모니터링 환경을 제공하게 됩니다. Zenius APM은 이번에 취득한 특허 기술을 통해 MSA 구조의 분산된 환경에서 최적화되어, 애플리케이션 품질을 향상시키고 IT 서비스 연속성을 확보해 고객 만족도가 높아질 것으로 기대됩니다. 브레인즈컴퍼니는 앞으로도 지속적인 기술 개발을 통해 레거시는 물론, 클라우드 네이티브 환경에서의 모니터링 툴 활용도를 극대화하고, IT 인프라 관리자의 고민을 덜 수 있는 서비스를 만들기 위해 끊임없이 노력하겠습니다.
2023.07.19
회사이야기
[행사] 2023년 상반기 간담회
회사이야기
[행사] 2023년 상반기 간담회
2023년 상반기 간담회가 6월 29일 브레인즈컴퍼니 본사 8층 라운지에서 열렸습니다. 신년회 이후 오랜만에 브레인저들이 한 자리에 모였습니다. 오후 4시가 되어 행사가 시작되었습니다. 먼저 선근님이 간략히 자회사 에이프리카의 실적 전망에 대해 언급하면서 브레인즈컴퍼니와의 시너지 극대화를 위해 모든 동료들이 비즈니스에 더 집중하길 당부했습니다. 다음으로 각 부서장들이 2023년 상반기 사업실적 및 하반기 사업 계획을 발표했습니다. 전략사업본부장인 은숙님을 시작으로 연구개발본부장 자환님, 경영지원실장 현보님이 상반기의 굵직한 성과들을 정리해 주었습니다. 먼저 은숙님은 새로운 브레인저들을 위해 전략 사업 본부의 팀들과 업무에 대해 소개해 주었고, 23년 상반기의 TOP 5 프로젝트와 하반기 다양한 팀의 공조가 필요한 프로젝트 5가지를 설명해주었습니다. 자환님은 차세대 제니우스의 개발 상황 및 SIEM, ITSM의 상반기 실적을 설명해 주고, 하반기의 개발 계획과 개발 조직 개편에 대해 안내해 주었습니다. 현보님은 상반기 자회사 에이프리카의 합류로 많은 일이 새로 생겼으나, 회사가 성장하는 기쁨도 커지고 있다고 언급해 주었습니다. 또 상반기의 큰 행사 중 하나였던 창립기념 해외 연수 설문조사의 결과를 설명해 주었습니다. 부사장인 재걸님은 “고객이 우리를 신뢰해서 손 잡아준 만큼 우리는 더 큰 책임감을 가져야 한다”며 “하반기에도 동업자 정신으로 서로 똘똘 뭉치자”고 상반기 총평을 하며 간담회를 마무리하였습니다. 이후 근처 고깃집으로 이동해 단체 회식을 가졌습니다. 고깃집 대관 시간이 지나가도록 오래 이야기를 나누고, 고기를 먹으며 즐거운 시간을 보냈습니다. 2023년 상반기 모두들 수고 많으셨습니다. 브레인즈컴퍼니 화이팅!
2023.06.30
회사이야기
2023년 상반기 협력업체 상생 세미나 성료…”신규 기능 소개, 상생 지속 도모”
회사이야기
2023년 상반기 협력업체 상생 세미나 성료…”신규 기능 소개, 상생 지속 도모”
지난 21일 본사 8층 대회의실에서 ‘2023년 상반기 협력업체 상생 세미나’를 진행했습니다. 브레인즈컴퍼니는 급변하는 IT인프라 시장 환경에 적극 대응하고 협력사와의 협력을 더욱 강화하기 위해 협력업체 상생 세미나를 운영하고 있습니다. 올해부터 세미나를 상, 하반기 2회 실시하기로 하였는데요, 기존에 EMS를 설치 및 활용하는 교육 중심에서 제니우스의 새로운 기능을 소개하는 중심으로 세미나에 변화를 주었습니다. 이날 행사는 먼저 프리세일즈팀에서 회사 소개를 하였고, 이어서 Technical Consulting 팀 정채린 차장이 제니우스 8.0의 신규 기능을 소개하였는데요, 20개 이상의 신규 기능에는 WNMS, ERMS, 웹토폴로지 등이 포함되어 있습니다. 그리고 막간을 이용해 통합로그관리, Zenius LogManager을 소개하는 시간도 가졌습니다. WNMS는 분산된 AP 장비의 상태를 한 곳에서 통합 모니터링할 수 있을 뿐만 아니라, AP 장비의 Up/Down 링크, WAN Traffic 등을 실시간으로 모니터링하고, AP 장비의 부하를 효율적으로 컨트롤하도록 접속자 수, 사용자 수, 최대 동시접속자 수 등의 근거데이터를 모니터링하고 자료로 확보할 수 있습니다. ERMS(Event Relation Management System)은 문제 원인 추적을 위한 이벤트의 연관성을 분석하는 기능입니다. 기존 서비스맵의 기능에 AND/OR, 이상 등의 다양한 연산조건 및 통보기능을 추가하여 개별적 이벤트가 아닌 복합적인 이상 상황을 감지할 수 있습니다. 웹토폴로지는 기존에는 CS 형식으로 제공되었던 토폴로지맵의 활용도를 높이기 위해 Web기반으로 구현하여 오버뷰와 함께 활용할 수 있도록 구현하였습니다. 마지막은 클라우드 모니터링을 소개하고 시현을 통해 클라우드 가상화 자원을 모니터링하여 가상 자원의 적절한 운영 효율성을 향상시킬 수 있는지 선 보였습니다. 이번 세미나에는 영진인포텍, 한신정보, 시원 등 협력업체 관계자뿐만 아니라 디와이, 더존비즈온 같은 고객사에서도 참여했습니다. 참여한 협력업체는 이런 형식의 세미나가 자주 있었으면 좋겠다, 그리고 정기적인 온라인 교육을 희망한다는 의견을 주셨습니다. 반면 참여한 고객사는 제니우스 8.0으로 업그레이드를 결정하는 데 많은 도움이 되었다고 합니다. 세미나를 주관한 소감은 “제품 중심으로 소개하는 세미나는 처음인데 예상보다 질문이 많았고 관심이 뜨거운 것을 보고 앞으로 제품을 소개하는 기회를 자주 가지면 좋겠다”입니다. 참여해 주신 모든 분께 감사 인사 전합니다.
2023.06.23
1
2
3
4
5
6
7
8