반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
카프카를 통한 로그 관리 방법
메모리 누수 위험있는 FinalReference 참조 분석하기
김진광
2023.10.12
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
[행사] 브레인즈컴퍼니 ‘가을문화행사 2023’
Java에서 가장 많이 접하는 문제는 무엇이라 생각하시나요? 바로 리소스 부족 특히 ‘JVM(Java Virtual Machine) 메모리 부족 오류’가 아닐까 생각해요.
메모리 부족 원인에는 우리가 일반적으로 자주 접하는 누수, 긴 생명주기, 다량의 데이터 처리 등 몇 가지 패턴들이 있는데요. 오늘은 좀 일반적이지 않은(?) 유형에 대해 이야기해 볼게요!
Java 객체 참조 시스템은 강력한 참조 외에도 4가지 참조를 구현해요. 바로 성능과 확장성 기타 고려사항에 대한 SoftReference, WeakReference, PhantomReference, FinalReference이죠. 이번 포스팅은
FinalReference를 대표적인 사례
로 다루어 볼게요.
PART1. 분석툴을 활용해 메모리 누수 발생 원인 파악하기
메모리 분석 도구를 통해 힙 덤프(Heap Dump)를 분석할 때, java.lang.ref.Finalizer 객체가 많은 메모리를 점유하는 경우가 있어요. 이 클래스는 FinalReference와 불가분의 관계에요. 나눌 수 없는 관계라는 의미죠.
아래 그림 사례는 힙 메모리(Heap Memory)의 지속적인 증가 후 최대 Heap에 근접 도달 시, 서비스 무응답 현상에 빠지는 분석 사례인데요. 이를 통해 FinalReference 참조가 메모리 누수를 발생시킬 수 있는 조건을 살펴볼게요!
Heap Analyzer 분석툴을 활용하여, 힙 덤프 전체 메모리 요약 현황을 볼게요. java.lang.ref.Finalizer의 점유율이 메모리의 대부분을 점유하고 있죠. 여기서 Finalizer는, 앞에서 언급된 FinalReference를 확장하여 구현한 클래스에요.
JVM은 GC(Garbage Collection) 실행 시 해제 대상 객체(Object)를 수집하기 전, Finalize를 처리해야 해요.
Java Object 클래스에는 아래 그림과 같이 Finalize 메서드(Method)가 존재하는데요. 모든 객체가 Finalize 대상은 아니에요.
JVM은 클래스 로드 시, Finalize 메서드가 재정의(Override)된 객체를 식별해요. 객체 생성 시에는 Finalizer.register() 메서드를 통해, 해당 객체를 참조하는 Finalizer 객체를 생성하죠.
그다음은 Unfinalized 체인(Chain)에 등록해요. 이러한 객체는 GC 발생 시 즉시 Heap에서 수집되진 않아요. Finalizer의 대기 큐(Queue)에 들어가 객체에 재정의된 Finalize 처리를 위해 대기(Pending) 상태에 놓여있죠.
위 그림과 같이 참조 트리(Tree)를 확인해 보면, 많은 Finalizer 객체가 체인처럼 연결되어 있어요. 그럼 Finalizer 객체가 실제 참조하고 있는 객체는 무엇인지 바로 살펴볼까요?
그림에 나온 바와 같이 PostgreSql JDBC Driver의 org.postgresql.jdbc3g.Jdbc3gPreparedStatement인 점을 확인할 수 있어요. 해당 시스템은 PostgreSql DB를 사용하고 있었네요.
이처럼 Finalizer 참조 객체 대부분은 Jdbc3gPreparedStatement 객체임을 알 수 있어요. 여기서 Statement 객체는, DB에 SQL Query를 실행하기 위한 객체에요.
그렇다면, 아직 Finalize 처리되지 않은 Statement 객체가 증가하는 이유는 무엇일까요?
먼저 해당 Statement 객체는 실제로 어디서 참조하는지 살펴볼게요. 해당 객체는 TimerThread가 참조하는 TaskQueue에 들어가 있어요. 해당 Timer는 Postgresql Driver의 CancelTimer이죠.
해당 Timer의 작업 큐를 확인해 보면 PostgreSql Statement 객체와 관련된 Task 객체도 알 수도 있어요.
그럼 org.postgresql.jdbc3g.Jdbc3gPreparedStatement 클래스가 어떻게 동작하는지 자세히 알아볼까요?
org.postgresql.jdbc3g.Jdbc3gPreparedStatement는 org.postgresql.jdbc2.AbstractJdbc2Statement의 상속 클래스이며 finalize() 메서드를 재정의한 클래스에요. Finalize 처리를 위해 객체 생성 시, JVM에 의해 Finalizer 체인으로 등록되죠.
위와 같은 코드로 보아 CancelTimer는, Query 실행 후 일정 시간이 지나면 자동으로 TimeOut 취소 처리를 위한 Timer에요.
정해진 시간 내에 정상적으로 Query가 수행되고 객체를 종료(Close) 시, Timer를 취소하도록 되어 있어요. 이때 취소된 Task는 상태 값만 변경되고, 실제로는 Timer의 큐에서 아직 사라지진 않아요.
Timer에 등록된 작업은, TimerThread에 의해 순차적으로 처리돼요. Task는 TimerThread에서 처리를 해야 비로소 큐에서 제거되거든요.
이때 가져온 Task는 취소 상태가 아니며, 처리 시간에 아직 도달하지 않은 경우 해당 Task의 실행 예정 시간까지 대기해야 돼요.
여기서 문제점이 발생해요.
이 대기 시간이 길어지면 TimerThread의 처리가 지연되기 때문이죠. 이후 대기 Task들은 상태 여부에 상관없이, 큐에 지속적으로 남아있게 돼요.
만약 오랜 시간 동안 처리가 진행되지 않는다면, 여러 번의 Minor GC 발생 후 참조 객체들은 영구 영역(Old Gen)으로 이동될 수 있어요.
영구 영역으로 이동된 객체는, 메모리에 즉시 제거되지 못하고 오랜 기간 남게 되죠. 이는 Old(Full) GC를 발생시켜 시스템 부하를 유발하게 해요. 실제로 시스템에 설정된 TimeOut 값은 3,000초(50분)에요.
Finalizer 참조 객체는 GC 발생 시, 즉시 메모리에서 수집되지 않고 Finalize 처리를 위한 대기 큐에 들어가요. 그다음 FinalizerThread에 의해 Finalize 처리 후 GC 발생 시 비로소 제거되죠. 때문에 리소스의 수집 처리가 지연될 수 있어요.
또한 FinalizerThread 스레드는 우선순위가 낮아요. Finalize 처리 객체가 많은 경우, CPU 리소스가 상대적으로 부족해지면 개체의 Finalize 메서드 실행을 지연하게 만들어요. 처리되지 못한 객체는 누적되게 만들죠.
요약한다면 FinalReference 참조 객체의 잘못된 관리는
1) 객체의 재 참조를 유발 2) 불필요한 객체의 누적을 유발 3) Finalize 처리 지연으로 인한 리소스 누적을 유발
하게 해요.
PART2.
제니우스 APM을 통해 Finalize 객체를 모니터링하는 방법
Zenius APM에서는 JVM 메모리를 모니터링하고 분석하기 위한, 다양한 데이터를 수집하고 있어요. 상단에서 보았던
FinalReference 참조 객체의 현황에 대한 항목도 확인
할 수 있죠.
APM 모니터링을 통해 Finalize 처리에 대한 문제 발생 가능성도
‘사전’
에 확인
할 수 있답니다!
위에 있는 그림은 Finalize 처리 대기(Pending)중인 객체의 개수를 확인 가능한 컴포넌트에요.
이외에도 영역별 메모리 현황 정보와 GC 처리 현황에 대해서도 다양한 정보를 확인 할 수 있어요!
이상으로 Finalize 처리 객체에 의한 리소스 문제 발생 가능성을, 사례를 통해 살펴봤어요. 서비스에 리소스 문제가 발생하고 있다면, 꼭 도움이 되었길 바라요!
------------------------------------------------------------
©참고 자료
◾ uxys, http://www.uxys.com/html/JavaKfjs/20200117/101590.html
◾ Peter Lawrey, 「is memory leak? why java.lang.ref.Finalizer eat so much memory」, stackoverflow, https://stackoverflow.com/questions/8355064/is-memory-leak-why-java-lang-ref-finalizer-eat-so-much-memory
◾ Florian Weimer, 「Performance issues with Java finalizersenyo」, enyo,
https://www.enyo.de/fw/notes/java-gc-finalizers.html
------------------------------------------------------------
#APM
#Finalize
#제니우스
#메모리 누수
#Zenius
#FinalReference
#제니우스 APM
김진광
APM팀(개발3그룹)
개발3그룹 APM팀에서 제품 개발과 기술 지원을 담당하고 있습니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
[행사] 브레인저의 행복한 시간, '브행시'
[행사] 브레인저의 행복한 시간, '브행시'
브레인즈컴퍼니는 지난 BB데이(보러가기) 외에도 다양한 사내 행사를 통해 소통하고 있습니다. 그 중 하나인 '브행시'라는 행사로 부서 및 신규 직원 간 교류를 하고 있는데요. 브행시는 '브레인저의 행복한 시간'의 줄임말로, 매달 둘째주 월요일에는 부서 간 교류를, 분기별 넷째주 월요일에는 신규 직원 간 점심 식시를 하는 행사입니다. 그동안의 브행시 행사들, 함께 둘러볼까요? Welcome, New Brainzer! 지난 4월, 코로나로 인해 한 동안 교류가 없었던 신규 입사자들부터 선근님과 함께 즐거운 시간을 보냈습니다. 신규 입사자들이 어색하지 않도록 사수와 함께 참석하고 있습니다. :) 2분기에도 새로운 브레인저들이 입사해 브행시를 진행했습니다! "음식은 항상 부족하지 않아야 한다"는 선근님의 따뜻한 마음♥ 덕분에, 남은 피자는 오후에 브레인저들 간식으로 활용됐습니다. 그리고 지난 10월에 진행된 3분기 신규 입사자 환영회! 입담이 좋고 직원들과 수다떠는 것을 좋아하는 선근님은 20대 직원들과도 격의없이 이런저런 이야기를 나누며 화기애애한 분위기를 만들었습니다. >_< 친해지길 바라! 다음으로, 부서 간에 진행했던 브행시! 영업그룹과 TC팀, 개발5그룹이 한 자리에 모여, 평소 나누지 못했던 이야기들을 나눴습니다. 다음으로는 개발4그룹과 프리세일즈팀, 영업그룹, TC팀이 모여, 로그매니저 사업과 관련해 협력 방안을 논의하는 시간을 가졌습니다. 업무적으로 교류가 많이 없는 부서끼리도 한 자리에 모였습니다. 경영지원실과 경영기획실의 경우, 개발 부서와 협업할 일이 많지 않다보니, 차세대 제니우스(Zenius)를 개발하고 있는 개발3그룹과 함께 식사하고 서로에 대해 궁금했던 점을 물어보는 시간을 가졌습니다! 마지막으로 지난달에 진행했던 부서 간 교류! 같은 층에 근무하고 있지만, 교류가 많이 없는 인프라코어팀과 인프라웹팀이 한데 모였습니다. 이번에는 한 브레인저의 요청으로 특별히 피자가 아닌 햄버거를 준비했습니다. 핫한 버거집 다운타우너가 성수에도 있어 시그니처 메뉴인 아보카도 버거를 구입해봤어요. :) 협업에 어려움을 느끼던 두 부서가 브행시를 통해 관계가 개선돼, 다음에 한 번 더 브행시를 진행하기로 한 경우도 있었습니다. 이처럼 브레인즈컴퍼니는 일회성이 아닌 지속적인 교류를 통해 서로를 이해하기 위해 노력하고 있습니다. :)
2022.11.02
2025 상반기 영업그룹 워크숍 후기
2025 상반기 영업그룹 워크숍 후기
브레인즈컴퍼니의 영업그룹이 지난주 강원도 양양으로 1박 2일 워크숍을 다녀왔습니다. 영업, 프리세일즈, 마케팅 파트로 구성된 영업그룹 구성원이 함께 모여 올해의 전략을 점검하고, 영업 및 마케팅 방향을 논의하며, 팀워크를 강화하는 의미 있는 시간을 가졌습니다. 새로운 목표를 달성하기 위해 더 단합할 수 있었던 영업그룹의 이번 워크숍을 자세히 돌아보겠습니다. │2025년 목표 달성을 위한 실행 전략 논의 이번 워크숍의 메인 순서는 올해 영업그룹의 목표를 함께 공유하고 구체적인 실행 전략을 논의하는 시간이었습니다. 우선 영업그룹이 속한 전략사업본부 전체의 운영을 총괄하고 있는 은숙 님의 발표가 진행됐습니다. 은숙 님은, "지난 신년회에서도 언급했듯이, 올해 시장 전망이 밝지만은 않다. 그러나 Zenius K8s와 AI를 중심으로 신규 고객을 적극 확보하고, 기존 고객사와의 관계를 강화한다면 2024년에 버금가는 성과를 달성할 수 있을 것으로 확신한다. 특히 영업/프리세일즈/마케팅파트가 유기적으로 협력해 멋진 결과물을 만들어 내기를 기대한다"라고 발표를 마무리했습니다. 은숙 님의 발표에 이어, 영업, 프리세일즈, 마케팅 각 파트별로 구체적인 시장의 상황과 올해 목표를 달성하기 위한 실행 계획을 공유했습니다. 이를 통해 각 팀이 서로의 방향성을 더욱 명확하게 이해하고, 실행 전략을 현실적으로 다듬으며 보다 효과적인 협업 방안도 모색할 수 있었습니다. │다양한 경험 공유를 통한 팀워크 강화 이번 워크숍에서는 함께 즐거운 경험을 나누며 유대감을 더욱 강화할 수 있는 시간도 가졌습니다. 우선 제철을 맞은 신선한 해산물을 비롯해 다양한 음식을 즐기며 자연스럽게 이야기를 나눌 수 있었습니다. 맛있는 음식을 함께하며 업무적인 이야기뿐만 아니라 개인적인 관심사나 일상에 대한 대화도 오갔고, 덕분에 한층 더 친밀해질 수 있었습니다. 워크숍 둘째 날에는 다 함께 일출을 보는 시간도 가졌습니다. 다소 쌀쌀한 날씨 속에서도 함께 일출을 바라보며 각자의 목표를 돌아보고, 한 해를 어떻게 만들어갈지 생각해 보는 시간을 가졌습니다. 조용히 떠오르는 해를 보며 자연스럽게 새로운 에너지도 얻을 수 있었습니다. 영업파트 석빈 님은, "개인적으로 일출을 보는 게 정말 오랜만이라 신선했다. 무엇보다 다 함께 이른 아침에 일어나 같은 풍경을 바라보는 시간을 가질 수 있어 더 뜻깊었다. 연초부터 바쁜 일정이 계속되고 있지만 잠시나마 여유를 갖고 앞으로의 목표를 생각해 볼 수 있는 의미 있는 순간이었다"라고 소감을 전했습니다. 프리세일즈 파트의 다인 님은, "회의실에서 미팅을 하는 것보다 이렇게 공기도 많은 곳에서 바다를 보며 의견을 나누니 집중도 잘 되고, 아이디어도 더 잘 떠오르는 것 같다. 앞으로도 이런 기회가 자주 있길 바란다"라고 소감을 전했습니다. 영업그룹은 이번 워크숍을 통해 올해의 목표와 방향을 공유하며 의미 있는 시간을 보냈습니다. 서로의 의견을 나누고 공감대를 형성하면서 더욱 끈끈한 팀워크를 다질 수 있었으며, 협업의 가치를 다시 한번 되새기는 계기가 되었습니다. 이번 워크숍을 계기로 더욱 효과적인 협력을 이어가며, 올해도 큰 성과를 만들어낼 수 있기를 기대합니다.
2025.02.27
쿠버네티스 모니터링 툴 선택 시 필수 고려사항 4가지
쿠버네티스 모니터링 툴 선택 시 필수 고려사항 4가지
쿠버네티스(K8s, Kubernetes)는 IT 인프라에서 필수적인 컨테이너 오케스트레이션 플랫폼으로 자리 잡았습니다. 하지만 구성 요소가 복잡하고 변화가 빠른 환경이기 때문에, 안정적인 운영과 장애 대응을 위한 모니터링 툴을 필요로 합니다. 이를 통해 클러스터 상태를 실시간으로 파악하고, 장애를 신속히 감지하며, 운영을 효율적으로 최적화할 수 있습니다. 하지만 모든 쿠버네티스 모니터링 툴이 동일한 수준의 기능과 성능을 제공하는 것은 아닙니다. 운영 환경에 적합하지 않은 툴을 선택하면 오히려 관리가 더 어려워지고, 비용이 증가하며, 장애 발생 시 신속한 대응도 어려워집니다. 효과적인 쿠버네티스 관리 체계를 구축하기 위해 쿠버네티스 모니터링 툴을 선택할 때 고려해야 할 네 가지 핵심 요소를 살펴보겠습니다. 쿠버네티스 모니터링 툴의 핵심 요소① 멀티 클러스터 및 하이브리드 클라우드 환경 지원 많은 기업이 쿠버네티스를 멀티 클러스터 환경에서 운영하고 있으며, 특히 하이브리드 및 멀티 클라우드 환경에서는 개별 클러스터를 따로 관리하는 방식이 운영 복잡성을 증가시키고 효율성을 저하시킬 수 있습니다. 따라서, 클러스터 간 연계성을 강화하고 중앙 집중형 관리 체계를 구축하는 것이 중요합니다. - 통합 대시보드를 통한 멀티 클러스터 관리 개별 클러스터 단위로 모니터링하면 운영이 복잡해지므로, 모든 클러스터의 상태를 단일 인터페이스에서 통합적으로 관리할 수 있어야 합니다. 이를 통해 개별 확인이 아닌 전체 운영 상황을 한눈에 파악하고, 클러스터 간 리소스를 효율적으로 관리할 수 있으며 장애 대응 속도도 향상시킬 수 있습니다. - 클라우드별 성능 모니터링 지원 AWS EKS, Azure AKS, GCP GKE, OpenShift 등 다양한 클라우드 환경에서 운영되는 쿠버네티스 클러스터의 특성을 고려한 솔루션이 필요합니다. 각 클라우드의 성능 모니터링 기능을 지원해야 하며, 이기종 클러스터 간 일관된 관리가 가능해야 합니다. - 클러스터 간 네트워크 및 서비스 연관성 분석 기능 단일 클러스터 내부의 리소스 모니터링을 넘어, 클러스터 간 통신 및 애플리케이션 트랜잭션 흐름을 분석할 수 있는 기능이 중요합니다. 서비스 연결 상태, 분산된 애플리케이션의 성능 이상 징후를 조기에 감지할 수 있습니다. 쿠버네티스 모니터링 툴의 핵심 요소② 실시간 장애 탐지 및 장애 자동 대응 지원 쿠버네티스는 장애 발생 시 자동 복구(Self-Healing) 메커니즘을 통해 파드(Pod)를 복구합니다. 그러나 장애 감지와 복구에는 일정 시간이 소요되며, 복구 지연, 리소스 불균형, 네트워크 라우팅 지연 등의 문제가 발생할 수 있습니다. 특히, 노드 장애 시 새로운 노드로 파드를 재배치하는 과정에서 리소스 부족이나 스케줄링 지연이 발생할 수 있으며, 서비스 연결이 일시적으로 영향을 받을 수도 있습니다. 따라서 실시간 장애 감지 및 자동 대응 체계를 구축하는 것이 중요합니다. - 정교한 장애 감지 시스템 단순히 CPU 및 메모리 사용률을 모니터링하는 수준을 넘어, 서비스 응답 지연, 애플리케이션 장애, 네트워크 이상 징후 등을 탐지할 수 있는 복합 장애 감지 기능이 필요합니다. 이를 통해 성능 저하가 발생하기 전에 조기에 문제를 인지하고 대응할 수 있어야 합니다. - 다양한 알림 및 대응 체계 장애가 발생했을 때 단순한 로그 기록만 남기는 것이 아니라, 이메일, SMS, 푸시 알림 등 다양한 채널을 활용한 즉각적인 경고 전송이 가능해야 합니다. 이를 통해 운영자는 실시간으로 문제를 인지하고 신속하게 대응할 수 있습니다. - 자동화된 장애 대응 지원 쿠버네티스의 자동 복구 및 오토스케일링(Auto-Scaling) 기능이 원활히 작동하도록 지원해야 합니다. 장애 발생 시 실시간 탐지 및 원인 분석을 통해 자동 복구를 트리거하고, 사전 정의된 정책에 따라 적절한 조치를 수행할 수 있어야 합니다.또한, 리소스 부족 감지 시 오토 스케일링이 정상적으로 작동하는지 모니터링하고, 운영자가 신속하게 대응할 수 있도록 인사이트를 제공해야 합니다. 쿠버네티스 모니터링 툴의 핵심 요소③ 서비스 관점까지 고려한 모니터링 지원 쿠버네티스 환경에서는 노드, 파드, 컨테이너 등의 인프라 리소스를 모니터링하는 것만으로는 운영의 안정성을 보장할 수 없습니다. 실제 애플리케이션의 성능과 서비스 품질을 측정하고 분석하는 것이 더욱 중요합니다. 특히, 애플리케이션 레벨에서의 성능 저하 원인을 신속하게 파악하고 대응할 수 있는 모니터링 체계가 필요합니다. - 애플리케이션 성능 모니터링 툴과의 연계 지원 애플리케이션 성능 모니터링(APM, Application Performance Monitoring)과의 연계를 통해 애플리케이션 트랜잭션, 데이터베이스 쿼리 지연 시간 등을 분석할 수 있어야 합니다. 이를 통해 서비스 성능 병목을 신속하게 식별하고 최적화할 수 있습니다. - 서비스 흐름에 대한 분석 기능 쿠버네티스 환경에서는 마이크로서비스 아키텍처(MSA) 기반의 서비스 간 호출 관계가 복잡하게 이루어집니다. 따라서, 서비스 간 트랜잭션 흐름을 실시간으로 추적하고 분석할 수 있는 기능이 필요합니다. 이를 통해 특정 서비스의 성능 저하가 전체 시스템에 미치는 영향을 정확히 파악하고 최적화할 수 있습니다. - 네트워크 성능까지 포함한 모니터링 지원 클러스터 내부 네트워크뿐만 아니라, 외부 시스템과의 연결 상태까지 모니터링하여 지연(Latency)이나 패킷 손실(Packet Loss) 발생 원인을 추적할 수 있어야 합니다. 이를 통해 네트워크 장애가 애플리케이션 성능에 미치는 영향을 분석하고, 최적의 대응 방안을 마련할 수 있습니다. 쿠버네티스 모니터링 툴의 핵심 요소④ 효율적인 운영을 위한 자동화 및 확장성 쿠버네티스 환경에서는 클러스터 크기와 워크로드가 지속적으로 증가할 가능성이 높습니다. 이에 따라, 모니터링 솔루션이 점진적인 확장성을 고려하여 설계되었는지 확인하는 것이 필요합니다. 특히, 대규모 환경에서도 안정적인 성능을 유지하고, 운영 자동화를 통해 관리 부담을 최소화할 수 있는 기능이 중요합니다. - 대규모 환경에서도 원활한 모니터링 지원 쿠버네티스 환경이 확장되더라도 모니터링 솔루션 자체가 과도한 리소스를 소비하지 않고, 성능 저하 없이 운영될 수 있어야 합니다. 이를 위해 대규모 클러스터에서도 효율적인 데이터 수집 및 분석이 가능하도록 설계된 분산 아키텍처와 최적화된 리소스 사용 전략이 필요합니다. - 자동화된 감시 템플릿 및 운영 정책 지원 새로운 노드 또는 클러스터가 추가될 때, 일일이 개별 설정을 변경할 필요 없이 사전 정의된 감시 정책이 자동으로 적용될 수 있어야 합니다. 이를 통해 운영자의 개입 없이도 일관된 모니터링 체계를 유지하고, 관리 효율성을 극대화할 수 있습니다. - 사용자 정의 모니터링 기능이 제공 조직마다 중요한 모니터링 지표가 다를 수 있으므로, 필요한 지표를 직접 설정하고 대시보드를 맞춤 구성할 수 있어야 합니다. 특정 애플리케이션 또는 서비스의 핵심 성능 지표(KPI)를 집중적으로 모니터링할 수 있도록 유연한 사용자 정의 기능을 제공하는지 확인해야 합니다. 쿠버네티스 관리에서 궁극적으로 중요한 것은 운영 환경의 가시성을 확보하고, 문제 발생 시 신속하게 대응할 수 있는 체계를 구축하는 것입니다. 이를 위해서는 앞서 언급한 네 가지 요소를 기준으로 쿠버네티스 모니터링 툴의 기능을 평가하고, 현재 운영 방식과 비교하여 실질적인 개선이 가능한지를 검토하는 과정이 필요합니다. 쿠버네티스 환경이 점점 더 복잡해지고 있는 만큼, 멀티 클러스터 운영 지원, 실시간 장애 감지 및 자동 대응, 애플리케이션 중심의 모니터링, 운영 자동화 및 확장성 확보와 같은 요소를 충족하는 관리 툴을 선택하는 것이 중요합니다. Zenius K8s는 복잡한 쿠버네티스 환경을 효율적으로 관리할 수 있도록 필수적인 기능을 갖춘 솔루션입니다. 다양한 고객 사이트에서 안정성을 검증받았으며, 쿠버네티스 운영을 보다 예측 가능하고 안정적으로 유지하는 데 효과적인 대안이 될 수 있습니다.
2025.02.28
브레인즈컴퍼니, KB저축은행에 '제니우스 ITSM 3.0' 구축
브레인즈컴퍼니, KB저축은행에 '제니우스 ITSM 3.0' 구축
‘Zenius ITSM 3.0’ 성공적 시장 진입 향후 ITAM, PMS로 도메인 확장 브레인즈컴퍼니(대표 강선근)는 KB저축은행 차세대 시스템 구축 프로젝트에서 자사 ‘제니우스(Zenius) ITSM 3.0’으로 IT 서비스 체계 표준화 및 IT 관리업무 자동화 시스템을 구축했다고 3일 밝혔다. 이번 ITSM(IT Service Management) 구축으로 KB저축은행은 차세대 IT 서비스 플랫폼을 통해 IT 서비스에 대한 사용자 요청을 접수하고, 처리하는 과정과 그 이력을 단일 시스템에서 관리할 수 있게 됐다. 또 방화벽, 원장, 형상관리 등 10개의 시스템과 연동해 IT 관리업무를 자동화할 수 있게 됐다. Zenius ITSM 3.0은 로우코드 기반의 워크플로우 엔진과 구성정보데이터베이스(CMDB) 엔진을 탑재했으며, 워크플로우를 쉽게 생성하고 수정할 수 있는 프로세스 및 폼 디자이너를 포함하고 있다. 워크플로우는 기업마다 다른 IT 서비스를 각자 환경에 맞게 일의 순서와 역할을 손쉽게 편집할 수 있으며, 코딩없이 15개 이상의 다양한 폼 컴포넌트를 통해 업무 신청서를 쉽게 디자인할 수 있다. CMDB 엔진은 IT 서비스와 연관된 인프라, 소프트웨어, 다양한 문서 등을 생명주기에 따라 다양한 세부 항목으로 관리할 수 있다. 정희찬 ITSM 개발팀장은 “Zenius ITSM 3.0은 ITSM 구축 프로젝트 특성상 갖게 되는 시스템 통합(SI) 사업의 한계를 극복하기 위해 관리 프로세스를 모듈화함으로써 필요한 프로세스를 선택적으로 도입할 수 있다. 향후 유연하게 프로세스를 확장할 수 있는 플랫폼 개발에 역량을 집중한 제품”이라며 “다음 목표는 사용자 편의를 위한 부가기능을 강화하면서 Zenius ITSM의 워크플로우 엔진을 기반으로 ITAM(IT Asset Management), PMS(Projenct Management System) 등을 통해 도메인을 확장하는 것”이라고 말했다. 브레인즈컴퍼니는 올해를 기점으로 ITSM 수요가 가파르게 증가할 것으로 예상하고 있다. 2018년 신외감법 개정으로 내부회계관리제도가 감사로 상향 조정돼 많은 기업들이 내부회계관리제도의 '정보기술일반통제(ITGC)' 위험요소에 대응하기 위해 ITSM 도입을 고려하기 때문이다. 그러나 기업들이 ITSM 도입에 있어 도입 및 관리 비용에 부담을 느끼고 있는 실정이다. 이 가운데 이번 KB저축은행의 차세대 ITSM의 성공적인 공급은 Zenius ITSM 3.0이 다양한 고객의 요구사항을 보다 넓은 관점에서 충족시킬 수 있는 솔루션임을 입증한 것이다. 강선근 브레인즈컴퍼니 대표는 “2005년 첫 출시된 Zenius ITSM은 최근 로우코드 기반으로 고객이 직접 커스터마이징하고, 기존 제품 대비 쉽고 빠르게 고객의 요구를 반영할 수 있도록 업그레이드한 제품”이라며, “그 결과 수익성을 확보하면서 고객 편의성을 제고시킨 Zenius ITSM 3.0을 출시했고, 향후 소규모 기업이나 스타트업 등에서도 적은 비용으로 ITSM 솔루션 도입이 가능한 SaaS(Software as a Service, 서비스형 소프트웨어) 형태의 서비스 출시를 계획하고 있다”고 밝혔다.
2022.11.03
다음 슬라이드 보기