반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
무선 AP를 WNMS를 통해 올바르게 관리하는 방법
Helm과 Argo의 개념과 통합 활용법?!
강예원
2024.03.08
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
지속적인 성과를 내기 위한 첫걸음, '이것'부터 관리 하라?!
애플리케이션을 클라우드 네이티브 환경에서 효율적으로 관리하고 운영할 수 있는 플랫폼인 쿠버네티스(kubernetes)를 활용하는 기업들이 점점 더 늘어나고 있습니다.
이에 따라 효율적인 애플리케이션 관리를 통해 패키징 배포, 관리를 자동화하고 일관된 상태를 유지하는 것이 중요해지고 있습니다. 이번 글을 통해서는 애플리케이션 개발 및 도구 중 최근 많이 사용되는
Helm과 Argo
에 대해서 자세히 알아보겠습니다.
ㅣHelm의 등장
쿠버네티스를 활용한 애플리케이션 배포에 가장 기본이 되는 단위는 yaml 파일로, 주로 쿠버네티스 object(리소스)들을 정의하고 다루는데 활용됩니다.
쿠버네티스를 통해 애플리케이션을 배포하다 보면 비슷한 틀과 내용을 공유하고, 내부 값(configuration)만 일부 변경하는 작업을 하게 되는데요, 이 과정에서 애플리케이션마다 모두 yaml 파일을 만들어야 하나 보니 매우 번거로웠습니다.
위 이미지를 보면, A 애플리케이션은 정적 파일인 yaml을 오브젝트별(Service, Pod, ConfigMap)로 만들어서 생성하고 배포합니다. 그러다가 프로젝트의 확장에 따른 기능 추가로 인해 B와 C 애플리케이션으로 쪼개어 각각의 yaml 파일을 복사해서 사용합니다.
하지만, 팀 단위로 인프라가 확장될 경우는 어떻게 할까요? 개별 오브젝트에 대한 yaml 개별적으로 관리할 수 있을까요? 만약, 개별적으로 관리한다면 파일의 갯수와 코드량의 증가로 인해 개발자들은 매우 혼잡하게 될 것입니다.
이러한 문제점을 해결하기 위해, 쿠버네티스에서 애플리케이션을 배포하기 위해 사용되는 대표적인 패키징 툴인 Helm이 등장하게 됐습니다.
Helm을 활용하면 컨테이너 배포뿐 아니라 애플리케이션을 배포하기 위해 필요한 쿠버네티스 리소스를Node의 npm, Ubuntu의 APT, Mac의 Homebrew처럼 모두 패키지 형태로 배포할 수 있습니다.
ㅣHelm의 역사
Helm은 v1부터 v3에 이르기까지 아래와 같은 변화의 과정을 거쳐왔습니다.
Helm v1
◾ [2015년 11월] DEIS의 내부 프로젝트로 시작되어 KubeCon에서 발표
◾
[
2017년 04월] MS에서 DEIS를 인수
Helm v2
◾ [2016년 01월] Google 프로젝트에 합류
◾ [2016년 ~ 2018년] Helm v2 고도화, 2.15.0 릴리스 발표에서 v2 향후 계획 세부사항 공유
Helm v3
◾
[
2018년 06월] CNCF 프로젝트에 합류, MS, 삼성 SDS, IBM 및 Blood Orange의 구성원 등이 참여
◾
[
2019년 11월] 릴리스 발표
v2에서 v3로 고도화되면서 가장 눈에 띄는 변화는 Tiller(클러스터 내에서 Helm 패키지 및 배포 상태를 관리하는 서버 구성요소)의 제거입니다.
Helm v2에서는 클러스터에 Tiller를 설치하여, API Server와 REST*1 통신을 하고, Client와 gRPC*2 통신을 진행했었는데요, Helm v3부터는 Tiller가 제거되면서 Client에서 바로 REST 통신을 통해 API Server로 요청하는 방식으로 변경되었습니다.
그 외에도 Helm v3으로 업그레이드되면서 보안 취약점이 줄어들었으며, 설치 및 관리 과정이 단순화되었습니다. 또한 사용자에게 보다 더 안전하고 효율적인 배포 및 관리 환경을 제공할 수 있게 되었습니다.
*1 REST (Representational State Transfer) : 웹 기반 애플리케이션에서 자원을 관리하기 위한 아키텍처 스타일, 데이터를 고유한 URL로 표현하고 HTTP 메서드(GET, POST, PUT, DELETE 등)를 사용하여 해당 자원에 대한 행위를 정의함
*2 gRPC (google Remote Procedure Call) : 구글에서 개발한 오픈소스 프레임워크, 원격지에 있는 다른 시스템 또는 서버에 있는 함수를 호출하는 방식
ㅣHelm의 주요 개념
Helm은 애플리케이션을 배포해 주는 툴이라고 앞서 살펴봤는데요, Helm과 같이 사용되는 주요 개념들을 살펴보겠습니다.
◾
Helm Chart:
쿠버네티스 리소스를 하나로 묶은 패키지입니다. 이는 yaml 파일의 묶음(패키지)으로, 이 묶음 public 혹은 private registry에 push 해두고, helm 명령어를 통해 Helm Chart를 설치하여 쿠버네티스 리소스를 배포하는 역할을 합니다.
◾
Repository:
Helm Chart 들의 저장소
◾
Release:
kubernetes Cluster에서 구동되는 차트 인스턴스이며, Chart는 여러 번 설치되고 새로운 인스턴스는 Release로 관리됩니다.
ㅣHelm의 주요 기능
Helm의 두 가지 주요 기능을 살펴보겠습니다.
[1] Helm Chart를 통한 손쉬운 배포
Helm을 사용하면 어떻게 되는지 그림으로 살펴보겠습니다.
개발 클러스터가 있고 앱 2개를 배포한다고 가정했을 때, Helm Chart Template을 만들면 변수 처리를 통해 yaml 파일을 하나하나 수정할 필요 없습니다. kubectl 명령어를 통해 yaml 파일의 동적 값을 치환하여 템플릿 형태로 편리하게 배포할 수 있다는 장점이 있습니다.
[2] Helm Package를 이용한 오픈소스 설치 및 배포
Helm을 통해서 쿠버네티스에서 가동할 수 있는 아래와 같은 다양한 오픈소스들의 제품들을 쉽게 설치/배포할 수 있습니다.
위제품들 외에도 Helm Chart는 총 14,376개의 패키지와 281,373개의 릴리스를 오픈소스로 제공합니다. 이를 통해 사용자들은 자신의 요구에 맞는 가장 적합한 솔루션을 선택하여 개발할 수 있습니다. 또한 많은 사용자들이 검증하고 사용함에 따라 안정성 있는 운영도 가능하죠.
다양한 Helm Chart 패키지는 커스터마이징이 가능한 경우가 많은데요, 사용자는 필요에 따라 구성을 조정하고 수정해서 사용할 수 있는 장점이 있습니다.
다음으로는 Helm 못지않게 많이 활용되는 ArgoCD에 대해서 살펴보겠습니다.
ㅣ ArgoCD란?!
기존의 kubernetes 애플리케이션을 배포하고 관리하는 방식은 수동적이었습니다. yaml 파일을 직접 편집하고, kubectl로 변경사항을 클러스터에 적용하는 수동 배포 방식은 실수를 많이 유발했죠.
또한 여러 개발자나 팀이 각자의 방식대로 배포 및 관리를 수행하는 경우, 클러스터 상태의 일관성이 저하되었는데요. 이로 인해 개발 및 운영팀 간의 협업이 어렵고 생산성이 감소되는 문제가 발생하기도 했습니다.
이러한 기존 접근 방식에 대한 대안으로 GitOps가 탄생했는데요, GitOps는 Git 저장소를 사용하는 소프트웨어 배포 접근 방식입니다. GitOps는 인프라와 소프트웨어를 함께 관리함으로써, Git 버전 관리 시스템과 운영환경 간의 일관성을 유지할 수 있도록 합니다.
ArgoCD는 GitOps를 구현하기 위한 도구 중 하나로 kubernetes 애플리케이션의 자동 배포를 위한 오픈소스 도구입니다. kubernetes 클러스터에 배포된 애플리케이션의 CI/CD 파이프라인에서 CD 부분을 담당하며, Git 저장소에서 변경사항을 감지하여 자동으로 kubernetes 클러스터에 애플리케이션을 배포할 수 있습니다.
kubernetes 애플리케이션 배포 과정을 살펴보겠습니다.
① 사용자가 개발한 내용을 Git 저장소에 Push(이때, kubernetes 배포 방식인 Helm 배포 방식의 구조로 Git 저장소에 Push 할 수 있습니다.)
② ArgoCD가 Git 저장소의 변경 상태를 감지
③ Git 저장소의 변경된 내용을 kubernetes에 배포하여 반영
ㅣ ArgoCD의 주요 기능
◾ 애플리케이션을 지정된 환경에 자동으로 배포
◾
멀티 클러스터 관리기능 제공
◾
OCI, OAuth2, LDAP 등 SSO 연동
◾
멀티 테넌시와 자체적인 RBAC 정책 제공
◾
애플리케이션 리소스 상태 분석
◾
애플리케이션 자동 및 수동 동기화 기능 제공
◾
Argo가 관리하고 있는 쿠버네티스 리소스 시각화 UI 제공
◾
자동화 및 CI 통합을 위한 CLI 제공
위 내용은 ArgoCD가 제공하는 주요 기능을 나열한 것인데요, 이 중에서도 대표적인 다섯 가지 기능에 대해서 자세히 살펴보겠습니다.
① 쿠버네티스 모니터링
ArgoCD는 쿠버네티스를 항상 추적하고 있다가 저장소의 변경사항이 감지되면, 자동으로 클러스터의 상태를 저장소의 상태와 동기화합니다. 또한 문제가 생기면 이전 상태로 롤백 할 수 있으며, 이를 통해 시스템 복구 및 문제 해결을 용이하게 합니다.
② 멀티 클러스터 관리
다중 클러스터 환경에서도 배포를 관리할 수 있어 복잡한 인프라 환경에서의 효율적인 작업을 가능하게 합니다.
③ ArgoCD 대시보드
Argo에서는 클러스터 상태를 효과적으로 관리하고 모니터링할 수 있는 대시보드를 제공합니다.
ArgoCD 대시보드를 통해 애플리케이션의 실시간 상태와 동기화 상태와 같은 전체적인 배포 파이프라인을 자동화하여 시각적으로 확인할 수 있고, 롤백 및 이력 추적 기능도 동시에 제공하고 있습니다.
④ 안전한 인증 및 권한 관리
역할 기반 액세스 제어(RBAC) 및 권한 제어기능을 통해 민감한 정보에 대한 접근을 제어할 수 있습니다.
⑤ GitOps 지원
ArgoCD는 GitOps 방법론을 따르므로 애플리케이션의 배포를 Git Repository와 동기화할 수 있습니다. 이를 통해 코드와 인프라의 일관성을 유지하고 변경사항을 추적할 수 있습니다.
ㅣ Helm과 ArgoCD의 통합 활용 프로세스
Helm과 Argo를 함께 사용하면 개발, 테스트, 배포 프로세스를 효과적으로 관리할 수 있습니다. Helm으로 애플리케이션을 패키징하고 버전을 관리하며, Argo를 활용하여 GitOps 워크플로우를 통해 지속적인 통합 및 배포를 자동화할 수 있습니다.
① develop:
Helm을 사용하여 애플리케이션을 Helm Chart로 패키징 합니다. 이후 개발된 Helm Chart를 저장하기 위한 Git 저장소를 설정합니다. ArgoCD에서 저장한 저장소를 특정 배포 대상 Kubernetes 클러스터와 연결하여, Git 저장소의 변경사항을 감지하고 새로운 배포를 시작하여 클러스터에 적용합니다.
② git push:
개발자가 로컬 저장소 내용을 원격 저장소에 배포합니다.
③ Observe(GitOps):
ArgoCD는 Git 저장소의 변경 사항을 감지하여, 변경사항이 발생하면 새로운 버전의 애플리케이션을 배포하여 자동화 및 일관성을 유지합니다.
④ 운영/테스트/개발
ㅣ마무리
오늘 함께 살펴본 Helm과 ArgoCD 두 가지 강력한 도구를 함께 이용한다면 CI/CD 통합, 버전 관리, 자동화 등의 이점을 활용해서 kubernetes 환경에서 애플리케이션을 더 효율적으로 관리할 수 있습니다.
한편 애플리케이션을 효과적으로 개발하는 것도 중요하지만, kubernetes 환경의 프로세스를 실시간 모니터링하고 추적하여 관리하는 것도 매우 중요합니다.
브레인즈컴퍼니의 kubernetes 모니터링 솔루션 Zenius-K8s는 다양한 CI/CD 도구를 이용하여 개발한 kubernetes 애플리케이션의 전체 클러스터 및 구성요소에 대한 상세 성능 정보를 모니터링하고, 리소스를 추적함으로써 시스템의 안정성과 성능을 높여주고 있습니다.
#쿠버네티스
#Helm
#Argo
#K8s
#kubernetes
#ArgoCD
#ZeniusK8s
강예원
프리세일즈팀
고객에게 특화된 Zenius를 제공하기 위해, 비즈니스 요구에 알맞은 전략적 컨설팅을 제안합니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
브레인즈컴퍼니, 에이프리카 인수로 클라우드∙AI 사업 강화
브레인즈컴퍼니, 에이프리카 인수로 클라우드∙AI 사업 강화
클라우드 네이티브 인프라 환경에서 사업 시너지 극대화할 것 브레인즈컴퍼니(099390)는 클라우드 및 인공지능 사업 강화를 위해 에이프리카의 경영권 인수 계약을 체결했다고 2일 밝혔다. 이번 인수는 브레인즈컴퍼니의 기존 사업에 에이프리카의 인공지능과 클라우드 기술을 더해 클라우드 네이티브 인프라 환경에서 사업적 시너지를 극대화한다는 전략이다. 2000년 설립한 브레인즈컴퍼니는 21년 기준 공공분야 관제 소프트웨어 점유율(24.06%) 1위 기업이다. ▲다양한 IT 인프라를 단일 플랫폼에서 통합관리하는 지능형 모니터링 소프트웨어(EMS, Enterprise Management Software) ▲웹 애플리케이션의 지연시간을 실시간으로 관제하는 어플리케이션 성능 모니터링 소프트웨어(APM, Application Performance Management) ▲대용량 로그관리 소프트웨어 및 인공지능 소프트웨어 ▲IT서비스 통합관리(ITSM, IT Service Management) 소프트웨어 등을 주된 사업으로 하고 있다. 2011년에 설립된 에이프리카는 ▲인공지능 개발 클라우드 플랫폼(MLOps, Machine Learning Operations) ▲클라우드 매니지먼트 플랫폼(CMP, Cloud Management Platform) ▲클라우드 구축 컨설팅 및 서비스 사업을 주요 사업으로 한다. 강선근 브레인즈컴퍼니 대표이사는 “시장 초기부터 클라우드 네이티브 환경의 구축, 운영관리, 인공지능 등의 분야에서 착실히 다져온 에이프리카의 기술력을 높이 평가해 인수하게 됐다”며, “양사는 상호 협력으로 클라우드 및 인공지능 인프라에 관한 고객 수요를 충족시키며 사업 확장을 함께 도모해, 향후 에이프리카를 클라우드 네이티브 인프라 관리와 인공지능 개발 관리를 위한 솔루션 및 서비스 분야의 국내 대표주자로 육성할 계획”이라고 밝혔다.
2022.12.02
'대한민국 SW기업경쟁력 대상' 우수상 수상
'대한민국 SW기업경쟁력 대상' 우수상 수상
브레인즈컴퍼니가 22일 서울 역삼동 삼정호텔에서 열린 '제22회 대한민국 SW기업 경쟁력 대상 시상식'에서 우수상을 수상했습니다. 대한민국 SW기업 경쟁력 대상은 인적자원·기술력·시장가치국제화 등 다각적으로 기업 역량을 평가해, 국내 SW산업 수준을 향상시킨 우수 SW기업에 수여하는 상입니다. 브레인즈컴퍼니는 IT솔루션 부분에서 자사 제품인 Zenius(제니우스)의 기술력을 인정받아 우수상을 수상했습니다. Zenius는 다양한 이기종 IT 인프라에 대한 통합관리 시스템 Zenius EMS, 웹 애플리케이션 실시간 성능 관리 시스템 Zenius APM, 분산된 대용량 로그에 대한 통합관리 시스템 Zenius LogManager 등으로 구성된 소프트웨어입니다. 이번 행사는 전자신문·한국소프트웨어산업협회·연세대 기업정보화연구센터·소프트웨어공제조합이 공동주최하고 과학기술정보통신부가 후원하며, 연세대 기업정보화연구센터가 개발한 SW기업 전문평가시스템을 적용해 수상자를 선발했습니다.
2023.02.23
옵저버빌리티 확보를 위한 대표 정보 소스 3가지
옵저버빌리티 확보를 위한 대표 정보 소스 3가지
지난 블로그에서는 옵저버빌리티가 기존 모니터링과 어떻게 다른지 비교해봤습니다. 간략히 되짚어보면, 옵저버빌리티란 IT 환경이 다양해지고 기업의 서비스가 점점 복잡해짐에 따라 빠르게 문제를 찾아 해결하기 위해 서비스의 내부 상태와 동작을 이해하는 능력입니다. 옵저버빌리티는 IT 인프라별로 어떤 것이 문제라는 기준을 중심으로 모니터링하는 기존 방식에서 벗어나 모든 데이터를 실시간으로 수집하고 분석하여 IT시스템의 근본 원인에 접근하고, IT 운영 전문가의 노하우를 바탕으로 각 메트릭별 상관관계를 분석해 미래의 장애를 예측하는 인사이트를 강조합니다. 이번 블로그에서는 옵저버빌리티 확보에 가장 기본이자 중요한 정보 소스인 로깅, 메트릭, 트레이싱을 중심으로 알아보겠습니다. 이 세가지 소스는 시스템의 정확한 모니터링을 보장하고, 문제가 발생할 때 무엇이 잘못됐는지 근본원인을 추적하고, 전체 기능을 개선하는 데 도움이 되는 방법들입니다. 물론 이 세가지 방법만으로 옵저버빌리티가 확보됐다고 할 수는 없습니다. 옵저버빌리티 확보를 위해서는 로깅, 메트릭, 트레이싱을 통합해 이벤트의 상관관계를 분석하고, 데이터 시각화로 사용자에게 인사이트를 제공하는 능력이 추가돼야 합니다. l Logging : 시스템 내에서 발생하는 이벤트를 인지하고 향후 분석을 위해 저장하는 프로세스 l Metric : 응답 시간 또는 오류율과 같은 시스템 성능을 설명하는 숫자 값 l Tracing: 개발자가 병목 현상과 성능 문제를 식별할 수 있도록 서비스 호출 경로와 시간을 추적하는 프로세스 Logging 로깅은 로그를 남기는 것으로 로그를 수집하고, 저장하는 프로세스입니다. 로깅은 시스템 동작을 이해하고 문제를 진단하는 데 필요한 것으로, 향후 분석을 위해 저장하는 데이터인 만큼 올바른 세부 기준에 따라 의미가 있는 로그를 추출하는 것이 필요합니다. 그리고 예를 들어 웹 애플리케이션에 문제가 발생한 경우 로그를 남기는데, 메트릭을 통해서는 이 문제를 발견할 수 없으므로 그래서 로그는 중요합니다. 로그의 수집은 간단한 텍스트 파일에서 ELK(Elasticsearch, Logstash, Kibana)처럼 정교한 프레임워크에 이르기까지 다양한 형태를 취할 수 있습니다. 그래서 로그는 정형화하기 어렵고 그 양이 방대함으로 로그를 수집, 저장하고 분석할 때 다음과 같은 사항을 유의해야 합니다. l 과도한 로깅은 스토리지 비용을 증가시키고 로그의 검색 효율을 떨어뜨릴 수 있습니다. 따라서 어떤 데이터를 기록하고, 어떤 데이터를 기록하지 않을지 필터링하는 것이 중요합니다. l 장기간 보관할 필요가 없는 로그 효율적인 로깅 시스템을 위한 로그 보관 정책이 필요합니다. l 로그에는 인사이트를 제공할 수 있는 모든 컨텍스트 정보가 포함돼야 합니다. l 로깅은 다른 프로세스에 영향을 미치지 않도록 비동기 방식이어야 합니다. l 민감한 데이터가 로그에 남겨지지 않도록 마스킹을 해야 합니다. 그럼 로그 분석을 통해 알 수 있는 정보는 무엇이 있을까요? l 시스템의 상태: 로그에는 어떤 액션을 수행했는지, 어떤 데이터가 처리됐는지, 또 어떤 오류가 발생했는지 등의 정보가 담겨 있으므로 이러한 정보를 분석해 시스템의 상태를 파악할 수 있습니다. l 이슈 파악: 로그에는 어떤 오류가 발생했고, 어떤 요청이 실패했는지, 어떤 리소스가 부족한지 등의 정보가 담겨 있으므로 이러한 정보를 분석해 이슈를 파악하고, 빠르게 대응할 수 있습니다. l 보안성 강화: 로그에는 로그인 시도, 권한 부여, 보안 이벤트 발생 등의 정보가 담겨 있으므로 이러한 정보를 분석해 보안 이슈를 파악하고, 보안성을 강화할 수 있습니다. Metric 로그가 텍스트라면 메트릭은 단순한 수치입니다. 메트릭은 시스템의 상태를 측정하고, 모니터링하는데 사용되는 숫자 측정값입니다. 조금 더 자세히 설명하면, 메트릭은 측정 항목을 정의하고 해당 항목을 수치로 측정해, 그 결과를 보고하고 시스템이 정상적으로 동작하는지 확인하거나 장애를 빠르게 감지하기 위한 소스입니다. 메트릭의 측정 대상은 CPU 사용률, 메모리 사용률, 네트워크 트래픽 등 인프라의 성능이나 초당 수신하는 요청수, 응답에 걸린 시간, 사용자에게 오류를 다시 보낸 응답 수 등 애플리케이션의 상태와 관련돼 있습니다. 메트릭을 통한 수집 가능한 범위는 모니터링 도구 사용 여부에 따라 달라집니다. 일반적인 방식은 에이전트를 이용해 모니터링 대상으로부터 데이터를 수집하는 것으로, 수집할 메트릭을 정의하기가 유연하고 성능이나 안정성 등의 이슈에 대한 정보도 수집할 수 있는 장점이 있습니다. 에이전트를 사용하지 않고 운영 체제나 애플리케이션에서 제공하는 메트릭 수집 API를 사용하는 방식도 있는데, 수집하는 메트릭이 비교적 제한적입니다. 단순히 메트릭을 수집하는 것만으로 시스템을 모니터링하기에 충분하지 않습니다. 메트릭 데이터를 잘 활용하기 위해서는 분석 방법이 중요한데, 분석을 위해서는 몇가지 단계를 거쳐야 합니다. l 먼저, 데이터를 시각화하여 쉽게 이해할 수 있는 형태로 변환해야 합니다. 차트나 그래프, 대시보드 등을 통해 데이터의 패턴과 추세를 파악할 수 있으며, 시스템의 상태를 실시간으로 모니터링할 수 있습니다. l 다음으로, 데이터를 분석하여 시스템의 문제를 식별합니다. 예를 들어, 응답 시간이 지연되는 경우, 이를 발생시키는 주요 요인을 파악하여 시스템을 개선해야 합니다. 이를 위해 데이터를 세분화하여 요소를 파악하고, 문제를 식별하는 데 도움이 되는 경향성을 찾아야 합니다. l 마지막으로 이전 데이터와 비교하고 평가에 활용합니다. Metric 데이터를 분석할 때는 이전 데이터와 비교하여 시스템의 개선 정도를 파악하는 것이 중요하고, 이를 통해 시스템의 성능 개선 여부를 판단하고, 추가적인 개선 방안을 모색할 수 있습니다. Tracing 트레이싱은 분산 시스템에서의 서비스 호출 경로와 시간을 추적하는 기술입니다. 즉, 서비스 간의 호출 관계와 시간 정보를 추적해 각 서비스의 응답 시간을 파악하고, 이를 시각화해 병목 현상을 파악할 수 있습니다. 트레이싱은 크게 세 가지 구성 요소로 이뤄져 있습니다. l Trace: Trace는 서비스 간의 호출 경로와 시간 정보를 담고 있는 데이터 레코드입니다. Trace는 Span과 Trace ID, Parent Span ID 등의 정보를 가지며, 각 Span은 서비스 내부에서의 호출 관계와 시간 정보를 담고 있습니다. l Span: 분산 추적에서 가장 기본이 되는 논리 단위로 여러 개의 span 이 모여 trace를 완성한다는 개념입니다. 각각의 Span은 작업이름, 시작 시간과 종료 시간, key value 형태의 tags 와 Logs, span contexts를 가지고 있습니다. Span contexts는 분산추적을 하기위해 Trace 구간에서 종속된 Span을 구별할 수 있는 Span id와 Trace id를 말합니다. l Collector: Collector는 Trace 정보를 수집하고 저장하는 역할로, Trace 정보를 수집하기 위한 에이전트와 수집된 Trace 정보를 저장하고 분석하기 위한 Backend로 이뤄져 있습니다. (출처: [MSA] OpenTracing, 분산추적(Distributed Tracing) 과 Span context, KSR의 저장소) 이렇게 옵저버빌리티를 구현하기 위한 로깅, 매트릭, 트레이싱 등 세 가지의 중요한 정보 소스들을 다루기 위해서는 여러가지 기술들이 조합되어야 합니다. 다음 블로그에서는 그와 같은 정보 소스들을 다루어 옵저버빌리티를 구현하기 위해서 널리 사용되는 대표적인 오픈 소스들을 알아보고 Zenius-EMS에서는 옵저버빌리티 향상을 위해서 어떤 기능들을 제공하고 있는지 살펴보겠습니다.
2023.04.19
서버 모니터링, 서버 관리, 서버 관리자
서버 모니터링, 서버 관리, 서버 관리자
서버는 기업의 IT 인프라를 구성하는 필수 요소입니다. 서버는 클라이언트에게 네트워크를 통해 정보나 서비스를 제공하는 컴퓨터 시스템으로, ▲파일 저장 및 공유 ▲웹사이트 및 애플리케이션 호스팅 ▲프린터 및 스캐너와 같은 네트워크 리소스 관리 ▲이메일 서비스 제공 등 다양한 기능을 수행합니다. 일반적으로 Microsoft Windows Server, Linux 또는 Unix와 같은 다양한 운영 체제를 실행하며, 가동 중지 시간을 최소화하면서 지속적으로 실행되도록 설계됐습니다. 오늘날과 같이 급변하는 비즈니스 환경에서의 서버 중단은 상당한 수익 손실과 평판 손상으로 이어질 수 있습니다. 이에 따라 기업은 서버 모니터링 및 관리를 위해 문제를 신속하게 식별하고 해결할 수 있는 강력한 서버 모니터링 시스템을 필수적으로 갖춰야합니다. 서버 모니터링과 서버 관리는 서버의 성능을 최적화하고 가용성을 보장하는데 중요한 관련이 있습니다. 이 블로그에서는 서버 모니터링과 서버 관리에 대해서 알아보고, 마지막으로 서버관리자가 어떤 일을 하는지 논의해 보고자 합니다. 먼저, 서버 모니터링과 서버 관리의 차이점은 다음과 같습니다. ------------------------------------------ 서버 모니터링이란? 서버 모니터링에는 도구와 소프트웨어를 사용해 서버의 성능, 상태 및 가용성을 추적하는 작업이 포함됩니다. 여기에는 CPU 사용량, 메모리 사용량, 디스크 공간, 네트워크 트래픽 및 애플리케이션 성능과 같은 모니터링 지표가 포함됩니다. 서버 모니터링의 목표는 문제가 발생하기 전에 잠재적인 문제를 감지하고, 문제가 발생할 때 문제 해결을 위한 데이터를 제공하는 것입니다. 서버 모니터링은 일반적으로 특수 도구를 사용해 자동화되는 프로세스입니다. 서버 관리란? 서버 관리는 서버가 최적으로 작동하도록 서버를 능동적으로 유지∙관리하고 구성하는 프로세스입니다. 여기에는 운영 체제, 소프트웨어 및 응용 프로그램의 설치 및 구성, 사용자 계정 및 사용 권한 관리, 백업 및 복원 수행, 서버 환경의 보안 및 규정 준수 보장 등의 작업이 포함됩니다. 서버 관리의 목표는 서버가 최고의 효율성으로 실행되고 안전하며, 사용자에게 필요한 서비스를 제공할 수 있도록 하는 것입니다. 요약하면, 서버 모니터링은 관찰 및 경고에 중점을 두는 반면, 서버 관리는 성능을 최적화하고 가용성을 보장하기 위해 서버를 능동적으로 구성하고 유지∙관리하는데 중점을 둡니다. 서버 모니터링은기업의 서버 관리자가 담당합니다. 서버 관리자는 기업의 비전과 전략을 달성하기 위해 서버를 비롯한 IT 시스템의 방향을 수립하는 IT 전문가입니다. 서버 관리자는 높은 수준의 가동 시간과 가용성을 보장하고 서버, 시스템 및 애플리케이션의 소프트웨어 및 하드웨어 기능과 같은 구성 요소를 평가합니다. 서버 관리자의 주요 업무는 조직의 규모와 특정 요구 사항에 따라 다를 수 있지만, 일반적으로 아래와 같습니다. 서버 관리자의 주요 업무 1. 서버 설치 및 구성 서버 설치 및 구성은 서버 관리자의 필수 업무로, 서버 하드웨어, 소프트웨어 및 네트워크 인프라에 대한 기술적 전문 지식, 세부 사항에 대한 주의 및 철저한 이해가 필요한 복잡한 작업입니다. 서버 관리자는 최적의 성능, 보안 및 안정성을 제공하는 동시에 서버가 조직의 요구사항을 충족하도록 올바르게 설치 및 구성됐는지 확인해야 합니다. 2. 서버 모니터링 및 유지보수 서버의 안정성과 성능을 유지하기 위한 핵심 업무입니다. 서버 관리자는 서버 하드웨어 및 소프트웨어를 유지∙관리해, 서버가 효율적이고 안전하게 실행되도록 하고 시스템 성능을 모니터링해 잠재적인 문제를 식별합니다. 3. 서버 보안 서버 보안 관리는 서버에 저장된 데이터의 기밀성, 무결성 및 가용성을 손상시킬 수 있는 잠재적인 보안 위협으로부터 서버를 보호하는 것과 관련된 업무입니다. 서버 관리자는 서버가 잠재적인 보안 위협으로부터 보호되고 서버가 관련 규정 및 표준을 준수하는지 확인하기 위해 적극적으로 노력합니다. 4. 서비스 제공 및 지원 서비스 제공 및 지원은 서버 서비스 및 응용 프로그램의 배포, 유지 및 지원 관리와 관련 있습니다. 이 업무는 서버 가용성을 유지하고 사용자 요구 사항을 충족하는데 중요하며, 서버 관리자는 사용자가 필요할 때 시기 적절하고 효과적인 지원을 받을 수 있도록 합니다. ------------------------------------------ 이처럼 서버 관리자는 서버가 원활하고 안전하며 효율적으로 실행되도록 하는데 중요한 역할을 합니다. 서버 관리자는 복잡한 기술적 지식을 보유해야 하고 빠른 대처 능력을 요구받으며, 보안 대응 및 최적화 작업 등에서 많은 어려움을 겪습니다. 더욱이 서버가 기능에 따라 세분화돼 일반 서버, 웹 어플리케이션 서버, 데이터베이스 서버 등으로 나뉘게 되면 각 기능별로 웹 애플리케이션 서버관리자나 데이터베이스 서버관리자 등으로 관리자의 역할이 세분화되기도 합니다. 서버의 수나 종류가 많아지고 구성이 복잡해지면 모니터링과 관리가 어려워집니다. 이를 돕기 위해 브레인즈컴퍼니의 Zenius(제니우스)와 같은 통합 서버 모니터링 및 관리 소프트웨어가 필요하게 됩니다.
2023.05.09
다음 슬라이드 보기