반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
카프카를 통한 로그 관리 방법
메모리 누수 위험있는 FinalReference 참조 분석하기
김진광
2023.10.12
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
[행사] 브레인즈컴퍼니 ‘가을문화행사 2023’
Java에서 가장 많이 접하는 문제는 무엇이라 생각하시나요? 바로 리소스 부족 특히 ‘JVM(Java Virtual Machine) 메모리 부족 오류’가 아닐까 생각해요.
메모리 부족 원인에는 우리가 일반적으로 자주 접하는 누수, 긴 생명주기, 다량의 데이터 처리 등 몇 가지 패턴들이 있는데요. 오늘은 좀 일반적이지 않은(?) 유형에 대해 이야기해 볼게요!
Java 객체 참조 시스템은 강력한 참조 외에도 4가지 참조를 구현해요. 바로 성능과 확장성 기타 고려사항에 대한 SoftReference, WeakReference, PhantomReference, FinalReference이죠. 이번 포스팅은
FinalReference를 대표적인 사례
로 다루어 볼게요.
PART1. 분석툴을 활용해 메모리 누수 발생 원인 파악하기
메모리 분석 도구를 통해 힙 덤프(Heap Dump)를 분석할 때, java.lang.ref.Finalizer 객체가 많은 메모리를 점유하는 경우가 있어요. 이 클래스는 FinalReference와 불가분의 관계에요. 나눌 수 없는 관계라는 의미죠.
아래 그림 사례는 힙 메모리(Heap Memory)의 지속적인 증가 후 최대 Heap에 근접 도달 시, 서비스 무응답 현상에 빠지는 분석 사례인데요. 이를 통해 FinalReference 참조가 메모리 누수를 발생시킬 수 있는 조건을 살펴볼게요!
Heap Analyzer 분석툴을 활용하여, 힙 덤프 전체 메모리 요약 현황을 볼게요. java.lang.ref.Finalizer의 점유율이 메모리의 대부분을 점유하고 있죠. 여기서 Finalizer는, 앞에서 언급된 FinalReference를 확장하여 구현한 클래스에요.
JVM은 GC(Garbage Collection) 실행 시 해제 대상 객체(Object)를 수집하기 전, Finalize를 처리해야 해요.
Java Object 클래스에는 아래 그림과 같이 Finalize 메서드(Method)가 존재하는데요. 모든 객체가 Finalize 대상은 아니에요.
JVM은 클래스 로드 시, Finalize 메서드가 재정의(Override)된 객체를 식별해요. 객체 생성 시에는 Finalizer.register() 메서드를 통해, 해당 객체를 참조하는 Finalizer 객체를 생성하죠.
그다음은 Unfinalized 체인(Chain)에 등록해요. 이러한 객체는 GC 발생 시 즉시 Heap에서 수집되진 않아요. Finalizer의 대기 큐(Queue)에 들어가 객체에 재정의된 Finalize 처리를 위해 대기(Pending) 상태에 놓여있죠.
위 그림과 같이 참조 트리(Tree)를 확인해 보면, 많은 Finalizer 객체가 체인처럼 연결되어 있어요. 그럼 Finalizer 객체가 실제 참조하고 있는 객체는 무엇인지 바로 살펴볼까요?
그림에 나온 바와 같이 PostgreSql JDBC Driver의 org.postgresql.jdbc3g.Jdbc3gPreparedStatement인 점을 확인할 수 있어요. 해당 시스템은 PostgreSql DB를 사용하고 있었네요.
이처럼 Finalizer 참조 객체 대부분은 Jdbc3gPreparedStatement 객체임을 알 수 있어요. 여기서 Statement 객체는, DB에 SQL Query를 실행하기 위한 객체에요.
그렇다면, 아직 Finalize 처리되지 않은 Statement 객체가 증가하는 이유는 무엇일까요?
먼저 해당 Statement 객체는 실제로 어디서 참조하는지 살펴볼게요. 해당 객체는 TimerThread가 참조하는 TaskQueue에 들어가 있어요. 해당 Timer는 Postgresql Driver의 CancelTimer이죠.
해당 Timer의 작업 큐를 확인해 보면 PostgreSql Statement 객체와 관련된 Task 객체도 알 수도 있어요.
그럼 org.postgresql.jdbc3g.Jdbc3gPreparedStatement 클래스가 어떻게 동작하는지 자세히 알아볼까요?
org.postgresql.jdbc3g.Jdbc3gPreparedStatement는 org.postgresql.jdbc2.AbstractJdbc2Statement의 상속 클래스이며 finalize() 메서드를 재정의한 클래스에요. Finalize 처리를 위해 객체 생성 시, JVM에 의해 Finalizer 체인으로 등록되죠.
위와 같은 코드로 보아 CancelTimer는, Query 실행 후 일정 시간이 지나면 자동으로 TimeOut 취소 처리를 위한 Timer에요.
정해진 시간 내에 정상적으로 Query가 수행되고 객체를 종료(Close) 시, Timer를 취소하도록 되어 있어요. 이때 취소된 Task는 상태 값만 변경되고, 실제로는 Timer의 큐에서 아직 사라지진 않아요.
Timer에 등록된 작업은, TimerThread에 의해 순차적으로 처리돼요. Task는 TimerThread에서 처리를 해야 비로소 큐에서 제거되거든요.
이때 가져온 Task는 취소 상태가 아니며, 처리 시간에 아직 도달하지 않은 경우 해당 Task의 실행 예정 시간까지 대기해야 돼요.
여기서 문제점이 발생해요.
이 대기 시간이 길어지면 TimerThread의 처리가 지연되기 때문이죠. 이후 대기 Task들은 상태 여부에 상관없이, 큐에 지속적으로 남아있게 돼요.
만약 오랜 시간 동안 처리가 진행되지 않는다면, 여러 번의 Minor GC 발생 후 참조 객체들은 영구 영역(Old Gen)으로 이동될 수 있어요.
영구 영역으로 이동된 객체는, 메모리에 즉시 제거되지 못하고 오랜 기간 남게 되죠. 이는 Old(Full) GC를 발생시켜 시스템 부하를 유발하게 해요. 실제로 시스템에 설정된 TimeOut 값은 3,000초(50분)에요.
Finalizer 참조 객체는 GC 발생 시, 즉시 메모리에서 수집되지 않고 Finalize 처리를 위한 대기 큐에 들어가요. 그다음 FinalizerThread에 의해 Finalize 처리 후 GC 발생 시 비로소 제거되죠. 때문에 리소스의 수집 처리가 지연될 수 있어요.
또한 FinalizerThread 스레드는 우선순위가 낮아요. Finalize 처리 객체가 많은 경우, CPU 리소스가 상대적으로 부족해지면 개체의 Finalize 메서드 실행을 지연하게 만들어요. 처리되지 못한 객체는 누적되게 만들죠.
요약한다면 FinalReference 참조 객체의 잘못된 관리는
1) 객체의 재 참조를 유발 2) 불필요한 객체의 누적을 유발 3) Finalize 처리 지연으로 인한 리소스 누적을 유발
하게 해요.
PART2.
제니우스 APM을 통해 Finalize 객체를 모니터링하는 방법
Zenius APM에서는 JVM 메모리를 모니터링하고 분석하기 위한, 다양한 데이터를 수집하고 있어요. 상단에서 보았던
FinalReference 참조 객체의 현황에 대한 항목도 확인
할 수 있죠.
APM 모니터링을 통해 Finalize 처리에 대한 문제 발생 가능성도
‘사전’
에 확인
할 수 있답니다!
위에 있는 그림은 Finalize 처리 대기(Pending)중인 객체의 개수를 확인 가능한 컴포넌트에요.
이외에도 영역별 메모리 현황 정보와 GC 처리 현황에 대해서도 다양한 정보를 확인 할 수 있어요!
이상으로 Finalize 처리 객체에 의한 리소스 문제 발생 가능성을, 사례를 통해 살펴봤어요. 서비스에 리소스 문제가 발생하고 있다면, 꼭 도움이 되었길 바라요!
------------------------------------------------------------
©참고 자료
◾ uxys, http://www.uxys.com/html/JavaKfjs/20200117/101590.html
◾ Peter Lawrey, 「is memory leak? why java.lang.ref.Finalizer eat so much memory」, stackoverflow, https://stackoverflow.com/questions/8355064/is-memory-leak-why-java-lang-ref-finalizer-eat-so-much-memory
◾ Florian Weimer, 「Performance issues with Java finalizersenyo」, enyo,
https://www.enyo.de/fw/notes/java-gc-finalizers.html
------------------------------------------------------------
#APM
#Finalize
#제니우스
#메모리 누수
#Zenius
#FinalReference
#제니우스 APM
김진광
APM팀(개발3그룹)
개발3그룹 APM팀에서 제품 개발과 기술 지원을 담당하고 있습니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
옵저버빌리티 향상을 위한 제니우스 대표 기능들
옵저버빌리티 향상을 위한 제니우스 대표 기능들
이번 블로그에서는 지난 블로그에서 다루었던 옵저버빌리티를 구현하기 위한 오픈 소스들은 어떤 것들이 있는지 간략히 알아보고, 제니우스(Zenius-EMS)에서는 옵저버빌리티 향상을 위해서 어떤 제품들을 제공하고 있는 지 살펴보겠습니다. 옵저버빌리티 구현을 위해 널리 활용되는 대표적인 오픈소스로는 아래 네 가지 정도를 들 수 있습니다. l Prometheus: 메트릭 수집 및 저장을 전문으로 하는 도구입니다. Prometheus는 강력한 쿼리 기능을 가지고 있으며, 다양한 기본 메트릭을 제공하며 데이터 시각화를 위해 Grafana와 같은 도구와 통합될 수 있습니다. 또한 이메일, Slack 및 PagerDuty와 같은 다양한 채널을 통해 알림을 보낼 수 있습니다. l OpenTelemetry: 에이전트 추가 없이 원격으로 클라우드 기반의 애플리케이션이나 인프라에서 측정한 데이터, 트레이스와 로그를 백엔드에 전달하는 기술을 제공합니다. Java, Go, Python 및 .NET을 포함한 다양한 언어를 지원하며 추적 및 로그에 대한 통합 API를 제공합니다. l Jaeger: 분산 서비스 환경에서는 한번의 요청으로 서로 다른 마이크로서비스가 실행될 수 있습니다. Jaeger는 서비스 간 트랜잭션을 추적하는 기능을 가지고 있는 오픈 소스 소프트웨어입니다. 이 기능을 통해 애플리케이션 속도를 저해하는 병목지점을 찾을 수 있으며 동작에 문제가 있는 애플리케이션에서 문제의 시작점을 찾는데 유용합니다. l Grafana: 시계열 메트릭 데이터를 시각화 하는데 필요한 도구를 제공하는 툴킷입니다. 다양한 DB를 연결하여 데이터를 가져와 시각화 할 수 있으며, 그래프를 그릴 수도 있습니다. 시각화한 그래프에서 특정 수치 이상일 때 알람 기능을 제공하며 다양한 플러그인으로 기능확장이 가능합니다. ------------------------------------------------- 오픈 기술을 이용해 Do It Yourself 방식으로 옵저버빌리티를 구현한다면 어떨까요? 직접 옵저버빌리티를 구현하기 위해서는 먼저 필요한 데이터를 수집해야 합니다. 필요한 데이터가 무엇인지, 어떤 방식으로 수집할지 결정하고 Prometheus, OpenTelemetry 같은 도구들을 이용해 설치 및 설정합니다. 이 단계는 시간이 가장 오래 걸리고, 나중에 잘못된 구성이나 누락이 발견되기도 합니다. 다음 단계는 데이터 저장입니다. 이 단계에서 주의할 점은 예전처럼 여러 소스에서 수집한 데이터를 단순하게 저장하는 것이 아니라, 전체적인 관점에서 어떤 이벤트가 일어나는지를 추적이 가능하도록 데이터 간의 연결과 선후 관계를 설정하는 것입니다. 어려운 점은 새로운 클라우드 기술을 도입하거나 기존의 인프라나 애플리케이션에서 변경이 발생할 때마다 데이터를 계속해서 정리를 해야 하는데, 이를 위해 플랫폼을 지속적으로 수정하고 구성을 추가해야 한다는 것입니다. 마지막으로 부정확한 경고들은 제거해야 합니다. 비즈니스 상황과 데이터는 계속해서 변화하기 때문에 이에 맞게 베이스 라인을 지속적으로 확인하고, 임계치를 조정해서 불필요한 알람이나 노이즈 데이터가 생기는 것을 방지해야 합니다. 결론적으로 직접 옵저버빌리티를 구현하는 것은 처음에는 쉬워 보여도 고급 인력과 많은 시간을 확보해야 하며, 별개로 시간이 지남에 따라서 효율성과 확장성이 떨어진다는 점을 감안하면 대부분의 기업은 감당하기 어렵다고 할 수 있습니다. 그렇다면, Zenius(제니우스) EMS는 옵저버빌리티를 어떻게 확보하고 있을까요? 옵저버빌리티 향상을 위한 가장 기본적인 기능은 토폴로지맵 또는 대시보드입니다. 다양한 인프라의 물리적 논리적 연결구조들을 한 눈에 시각적으로 파악할 수 있도록 해야 합니다. Zenius는 각 인프라별 상황을 한 눈에 볼 수 있는 오버뷰와 시스템 전체를 조망할 수 있는 토폴로지맵, 그리고 서비스 별 상황들을 감시할 수 있는 대시보드 등 크게 세가지의 뷰어(Viewer)를 제공합니다. 인프라의 구성 상황에 따라 다층적으로 구성되어 고객들이 인프라에서 일어나는 상황을 즉각 알 수 있도록 해 줍니다. 이러한 뷰어들은 기존 ‘모니터링’의 개념에서 ‘옵저버빌리티’ 개념으로 진화화면서 좀 더 다층적, 다양화되는 형태로 진화하고 있습니다. 또한, Zenius는 기존의 각 인프라별로 단순히 감시를 설정하는 방식이 아닌 다양한 인프라로부터의 로그와 메트릭 정보를 이용해 어떤 상관관계가 있는지 분석하는 ‘복합감시’라는 서비스가 기본적으로 탑재돼 있습니다. 복합감시를 대표 기능에는 ERMS(Event Relation Management System), 스냅샷 그리고 조치 자동화 등을 들 수 있습니다. l ERMS 기능은 로깅, 메트릭 정보와 장비의 상태를 이용해 새로운 감시 기준을 만들어, 의미있는 이벤트를 생성해 사용자에게 개별 장비 수준이 아닌 서비스 관점에서 정확한 상황 정 보를 제공합니다. l 스냅샷은 서비스 동작에서 이벤트가 발생했을 때, 당시 상황을 Rawdata 기반으로 그대로 재현하는 기능으로 SMS, DBMS, APM, NMS 등 모든 인프라를 동시에 볼 수 있습니다. l 조치 자동화는 ERMS를 자동운영시스템과 연동해, 특정 상황에서 자동으로 스크립트를 실행해 제어하는 기능입니다. 트레이싱 기능은 APM에서 제공하는 기능으로, WAS(Web Application Server)에 인입되고 처리되는 모든 트랜잭션들을 실시간으로 모니터링하고 지연되고 있는 상황을 토폴로지 뷰를 통해 가시적으로 분석할 수 있습니다. 사용자는 토폴로지 뷰를 통해 수행 중인 액티브 트랜잭션의 상세정보와 WAS와 연결된 DB, 네트워크 등 여러 노드들 간의 응답속도 및 시간들을 직관적으로 파악할 수 있습니다. 제니우스의 또 다른 옵저버빌리티는 인공지능 기반의 미래 예측 기능으로 미래 상황을 시각적으로 보여줍니다. 인프라 종류에 상관없이 인공신경망 등 다양한 알고리즘을 통해 미래 데이터를 생성하고, 장애발생 가능성을 빠르게 파악해 서비스 다운타임이 없도록 도와줍니다. 또한 이상 탐지 기능은 보안 침해 또는 기타 비정상적인 활동을 나타낼 수 있는 시스템 로그, 메트릭 및 네트워크 트래픽의 비정상적인 패턴을 식별할 수 있습니다. 이상탐지 알고리즘은 시간이 지남에 따라 시스템 동작의 변화에 적응하고 새로운 유형의 위협을 식별하는 방법을 학습할 수 있습니다. 이상과 같이 Zenius(제니우스) EMS는 최고의 옵저버빌리티를 제공하기 위해서 연구개발에 매진하고 있습니다. 옵저버빌리티 향상을 위한 다양한 기능/제품들은 고객의 시스템과 조직 상황에 맞게 선별적으로 사용될 수 있습니다.
2023.04.19
APM 솔루션의 필수 조건 4가지
APM 솔루션의 필수 조건 4가지
클라우드, 마이크로서비스, 컨테이너 기반 아키텍처가 확산되면서 기존의 단순한 인프라 모니터링 방식으로는 애플리케이션 성능을 효과적으로 관리하기 어려운 상황입니다. 따라서 서비스 운영의 가시성을 확보하고, 실시간 성능 분석 및 장애 예측이 가능한 애플리케이션 성능 모니터링(APM, Application Performance Monitoring) 솔루션의 중요성이 더욱 커지고 있습니다. 애플리케이션의 안정적인 운영과 최적의 성능 유지를 지원하기 위한 APM 솔루션(툴)의 필수 조건을 4가지로 나누어 자세히 살펴보겠습니다. 1. 쿠버네티스 환경에 대한 모니터링 마이크로서비스 아키텍처(MSA)와 컨테이너 기반 운영 방식이 확산되면서, 이를 효과적으로 관리하기 위한 쿠버네티스 도입이 증가하고 있습니다. 개별 서버의 리소스(CPU, 메모리, 네트워크) 관리에 초점을 맞춘 VM중심의 모니터링 방식과는 달리, 쿠버네티스 환경에서는 컨테이너 기반의 애플리케이션 트랜잭션 흐름과 마이크로서비스 간 호출 관계를 분석하는 것이 더욱 중요합니다. 이에 따라 APM 솔루션은 Prometheus, OpenTelemetry, Zenius K8s 등의 모니터링 도구와 연계하여, 쿠버네티스 환경의 주요 데이터를 실시간으로 수집·분석하고 서비스 지연이나 장애 발생 구간을 정확히 파악할 수 있어야 합니다. 구체적으로는 클러스터 상태 모니터링을 통해 노드 및 네트워크 리소스 사용량을 추적하고, CPU·메모리 활용률을 분석하여 리소스 과부하나 불균형을 조기에 감지해야 합니다. 또한, Pod 및 컨테이너 성능 분석을 통해 배포 상태, 재시작 횟수, 요청 처리량(TPS), 응답 지연 시간(Latency), 리소스 사용량 등을 실시간으로 추적하여, 특정 컨테이너의 과부하나 반복적인 장애를 신속하게 감지하고 원인을 분석할 수 있어야 합니다. 특히, 컨테이너 기반 애플리케이션은 서비스 간 동적 확장과 배포가 빈번하게 이루어지므로, 단순한 개별 리소스 모니터링을 넘어 컨텍스트 기반의 성능 분석이 요구됩니다. 이와 함께, 서비스 호출 관계 및 트랜잭션 흐름 분석을 지원하여 마이크로서비스 간 API 호출 패턴, 응답 시간, 실패율을 추적하고 트랜잭션 병목 구간을 분석해야 합니다. 이를 통해 서비스 간 통신에서 발생하는 성능 저하나 장애 원인을 효과적으로 파악하고 대응할 수 있어야 합니다. 2. 애플리케이션 성능 데이터에 대한 상세한 모니터링 APM 솔루션은 단순한 시스템 리소스 모니터링을 넘어, 애플리케이션 성능을 종합적으로 분석하고 최적화할 수 있는 정밀한 모니터링 기능을 갖춰야 합니다. 특히 트랜잭션 성능, 데이터베이스 최적화, 애플리케이션 내부 리소스 활용도까지 심층적으로 분석함으로써, 성능 병목을 사전에 감지하고 신속한 대응이 가능해야 합니다. 이를 위해 APM 솔루션은 TPS(초당 트랜잭션 처리량), 응답 지연 시간(Latency), 트랜잭션 대기 시간(Queueing Time), 슬로우 쿼리 탐지, GC(Garbage Collection) 활동, 코드 실행 시간 등 핵심 지표를 실시간으로 모니터링해야 합니다. 이러한 데이터 분석을 통해 애플리케이션의 특정 구간에서 발생하는 성능 저하 문제를 빠르게 식별하고, 최적의 성능을 유지할 수 있도록 지원해야 합니다. APM 솔루션은 또한, 실시간 트랜잭션 추적(Distributed Tracing), 마이크로서비스 간 호출 관계 분석, 데이터베이스 성능 최적화, JVM 메모리 사용량 및 GC 상태 모니터링, 네트워크 I/O 추적 등의 기능을 제공하여 애플리케이션의 운영 환경을 종합적으로 분석할 수 있어야 합니다. 특히, AI 기반 이상 탐지 및 머신러닝 기반의 패턴 분석 기능을 활용하면 성능 저하나 장애 발생 가능성을 조기에 감지하고 사전 대응이 가능해집니다. 이러한 애플리케이션 성능과 관련한 세부 데이터 모니터링 기능은 단순한 장애 감지를 넘어, 애플리케이션 성능을 지속적으로 최적화하고 운영 안정성을 유지하는 중요한 요소입니다. 3. 사용자 맞춤형 실시간 대시보드 제공 애플리케이션 성능을 효과적으로 분석하려면, 방대한 데이터를 직관적으로 시각화할 수 있는 맞춤형 실시간 대시보드가 필요합니다. APM 솔루션의 대시보드는 단순한 데이터 시각화를 넘어, 운영자가 핵심 성능 지표를 실시간으로 분석하고 신속한 의사 결정을 내릴 수 있도록 지원해야 합니다. 이를 위해 APM 솔루션은 운영자의 필요에 맞게 대시보드를 자유롭게 구성할 수 있는 맞춤형 실시간 모니터링 기능을 제공해야 합니다. 트랜잭션 지연 현황, 오류 발생률, 서비스 응답 시간 등을 실시간으로 시각화하고, 필요한 데이터를 운영자가 직접 선택하여 배치할 수 있도록 커스터마이징 기능을 지원해야 합니다. 또한, Real-Time Topology Map을 활용하여 마이크로서비스 간 트랜잭션 흐름과 네트워크 관계를 시각적으로 표현함으로써, 특정 서비스 장애가 연관 서비스에 미치는 영향을 한눈에 파악할 수 있어야 합니다. Dual Monitoring View 기능을 통해 애플리케이션 서비스 레벨과 개별 인프라 리소스 레벨을 동시에 모니터링함으로써, 장애 원인을 신속하게 진단할 수 있도록 지원해야 합니다. 더 나아가, 성능 이상이 감지될 경우 자동으로 경고를 표시하고, 운영자가 우선적으로 대응해야 할 항목을 강조하여 실시간 대응력을 높일 수 있어야 합니다. WYSIWYG 방식의 Drag & Drop 기반 대시보드 구성 기능을 제공하면, 운영자가 필요에 따라 주요 성능 지표를 자유롭게 배치하고, 이를 템플릿으로 저장하여 운영 효율을 높일 수 있습니다. 4. 효과적인 장애 사전 방지 및 분석 기능 최근 IT 환경에서는 장애를 사전에 감지하고 대응하는 능력의 중요성이 부각되고 있습니다. APM 솔루션은 AI 및 머신러닝 기반 분석 등을 활용해 성능 저하와 장애를 조기에 탐지하고 자동 대응할 수 있어야 합니다. 먼저, 이상 탐지(Anomaly Detection) 기능을 통해 트랜잭션 응답 시간, CPU 사용량, SQL 실행 속도, 네트워크 레이턴시, API 오류율 등 주요 지표의 급격한 변화를 실시간으로 감지해야 합니다. 머신러닝 기반 분석을 적용하면 정적인 임계값 설정을 넘어 비정상적인 패턴을 조기에 탐지하여 운영자의 대응 시간을 단축할 수 있습니다. 또한, 장애 패턴 학습 기능을 통해 트랜잭션 흐름, 리소스 사용 패턴, 서비스 호출 빈도 변화 등을 분석하고 유사한 조건이 감지될 경우 사전 경고를 제공해야 합니다. 이를 통해 운영자는 반복적인 장애를 예방하고 선제적으로 대응할 수 있습니다. 그리고Snapshot 기반 장애 분석 기능을 활용하여 장애 발생 시점의 리소스 사용량, 실행 중이던 SQL 쿼리, 트랜잭션 상태 등을 저장하고 재현(Replay)하여 근본 원인을 분석해야 합니다. 이를 통해 운영자는 장애 발생 원인을 명확히 파악하고, 재발 방지를 위한 최적화 전략을 수립할 수 있습니다. 이와 같이, APM 솔루션이 AI 기반의 패턴 학습과 자동 대응 기능을 갖춘다면, 장애를 사전에 감지하고 예방하여 운영 안정성을 높일 수 있습니다. 효과적인 APM 솔루션은 단순한 성능 모니터링을 넘어, 다양한 환경을 아우르는 가시성과 세부적인 성능 분석, 실시간 대시보드, 그리고 사전 장애 예방 기능을 갖춰야 합니다. 기업이 복잡한 IT 환경에서도 안정적인 서비스를 제공하려면, 이러한 핵심 요건을 충족하는 APM 솔루션을 도입하는 것이 꼭 필요합니다.
2025.02.18
다음 슬라이드 보기