반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
디자인 시스템이 필요한 이유와 핵심요소는?
[전시회] 브레인즈컴퍼니가 소프트웨이브2023에서 주목받은 이유
이화정
2023.12.14
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
클라우드 네이티브의 핵심! CNCF의 세 가지 핵심가치
지난번 시간에는
「소프트웨이브2023」
전시회에 브레인즈컴퍼니가 참가하여, 전반적인 현장 스케치를 담았었는데요.
두 번째 이야기에서는
1) 브레인즈컴퍼니와 제니우스(Zenius)를 구체적으로 어떻게 알렸는지 2) 참관객분들의 반응은 어땠는지
를 자세하
게 살펴보려고 합니다.
브레인즈컴퍼니가 참가하여
대성황을 이루었던
소프트웨이브2023
.
그날의 생생한 사진과 리얼한 후기도 있으니 주목해 주세요!
。。。。。。。。。。。。
선근님 인터뷰
국내 바이어 VIP 그룹 투어
전시회 첫날이었던 29일(수), 과기부 장관·국회의원·주요기업 임원진 등 주요 VIP 대상으로 브레인즈컴퍼니를 소개하는 시간이 있었습니다. 소개는 브레인즈 그룹 대표인 선근님께서 진행해 주셨어요!
선근님께서는 브레인즈컴퍼니·에이프리카 회사와 제품 소개를 시작으로,
“앞으로 인공지능(AI)와 클라우드 분야를 선두하는 기업으로 거듭나겠다."
라는 멋진 포부도 밝혀주셨습니다.
이번 소프트웨이브2023에서 브레인즈컴퍼니는, 다양한 콘텐츠로 참관객분들께 다가가려고 노력했는데요. 특히
프론트월, 백월 공간
으로 나누어 설명한 부분이 좋은 반응을 얻었습니다.
참관객분들의 이목을 사로잡은 대시보드
제품별 브로슈어, 대시보드, 구축사례 안내
“대시보드가 너무 예뻐요”
프론트월에서 가장 많이 언급된
Best 답변 1위
랍니다! 많은 참관객분들께서 제니우스의 통합 대시보드와 서비스 종합상황판 대시보드 등을 요리조리 살펴보셨는데요.
“통합관제는 가시성이 무엇보다 중요하다고 생각해요. 그런 의미에서 제니우스의 대시보드는 가시성도 뛰어나고, 고객사 성격에 맞는 커스터마이징도 가능하며, UI적인 면도 우수하네요. 무엇보다 대시보드가 너무 눈에 띄어서 홀린 듯 부스에 들어올 수밖에 없었어요(웃음)”
라며 브레인즈컴퍼니와 제니우스 제품에 칭찬을 아낌없이 해주셨습니다!
이처럼 제니우스의 대시보드는
고객사 IT 업무 및 서비스 운영 현황을 한눈에 파악할 수 있도록 구성하고 시각화했으며, 고객사별 최적의 관제 화면을 구현
해 드리고 있어요.
공공기관·대기업·금융권 등 1,000여 개의 성공적인 구축사례
안내를 통해 제니우스 제품에 신뢰성을 더했답니다!
제니우스 핵심제품을 한눈에
제니우스 제품별 소개, 시연 안내
백월 공간에서는 브레인즈컴퍼니의 4가지 핵심 제품을 직관적으로 확인할 수 있었는데요.
제니우스 EMS, APM, ITSM, SIEM
을 파트별 담당자 엔지니어분들께서 제품 안내를 도와드렸습니다.
제니우스 EMS 제품을 통해 참관객분들께 통합관리 관제의 중요성, 실제 사례, 각 인프라별 관제의 중요성 등을 전달드렸었는데요.
“실제 사례를 직접 눈으로 확인해 보니, 우리 회사에 도입하면 장애 예측이나 장애 시 대응에 편리할 것 같아요.”
와 같은 반응이 대부분 차지했을 정도로 호응도가 좋았습니다.
제니우스 APM 또한, 사용자 관점에서 응답 시간관리가 점점 중요해지고 있음에 따라 EMS와 연계해서 사용할 수 있다는 ‘접근성’ 면에서 좋은 반응을 보여주셨는데요.
“여러 제품을 쓰지 않아도, 제니우스 하나면 모든 관제가 가능하네요! APM을 도입해서 사용하면 한눈에 관리가 편할 것 같아요.”
와 같은 뿌듯한 피드백을 주셨답니다.
。。。。。。。。。。。。
3일 동안 소프트웨이브2023 전시회를 통해 많은 참관객·고객 사분들과 마주하고 소통하며, 브레인즈컴퍼니와 자사 제품을 더 널리 알릴 수 있던 기회였습니다. 특히 브레인즈컴퍼니와 제니우스 제품에 대해 이미 관심을 갖고 방문해 주신 참관객분들이 많다는 점에서 뿌듯하기도 했답니다.
다시 한번 브레인즈컴퍼니와 제니우스 제품에 뜨거운 관심 주셔서 감사드립니다🙇♀️ 앞으로도 브레인즈컴퍼니는 고객분들께 좀 더 적극적으로 다가가기 위한 행사, 콘텐츠 등을 보여드릴게요. 여러분들의 많은 기대와 성원 부탁드리겠습니다!
🔍더보기
소프트웨이브2023 1탄도 있어요
#소프트웨이브2023
#전시회
#브레인즈컴퍼니
#제니우스
#Zenius
#에이프리카
이화정
프리세일즈팀
프리세일즈팀에서 마케팅, 내외부 홍보, 콘텐츠 제작을 담당하고 있어요.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
쿠버네티스(K8s) 모니터링에서 가장 중요한 두 가지?!
쿠버네티스(K8s) 모니터링에서 가장 중요한 두 가지?!
2022년 CNCF의 연간 조사에 따르면 전 세계 기업의 96%가 쿠버네티스를 활용 중이거나 활용을 고려 중인 것으로 나타났습니다. 또한 가트너는 쿠버네티스(Kubernetes, K8s) 시장의 규모가 올해 1조 2천억 원대를 돌파할 것으로 내다봤습니다. 이처럼 쿠버네티스가 '대세'로 자리 잡고 있는 가운데, 쿠버네티스 활용에 대한 어려움을 겪는 기업도 많아지고 있습니다. 클러스터 내의 리소스 할당/운영과 쿠버네티스 콘솔(대시보드)의 구성이 가장 큰 어려움으로 꼽히는데요, 이러한 어려움을 극복하기 위한 첫 번째 조건은 바로 올바른 '쿠버네티스 모니터링'입니다. 효과적이고 올바른 쿠버네티스 모니터링을 위해선 두 가지를 '꼭' 기억해야 하는데요, 지금부터 그 두 가지를 자세히 알아보겠습니다. ㅣ올바른 쿠버네티스 모니터링을 위한 두 가지 조건 첫 번째, 쿠버네티스의 주요 항목을 한눈에 볼 수 있어야 합니다 쿠버네티스 환경은 규모가 크고 동적이며 복잡한 구조를 가지고 있습니다. 그렇기 때문에 리소스 사용률, 에러 로그 등의 중요 정보를 실시간으로 파악할 수 있어야 합니다. 따라서 쿠버네티스 모니터링을 효과적으로 수행하기 위해 첫 번째로 기억해야 할 것은 '쿠버네티스 환경을 한 화면에서 종합적으로 볼 수 있어야 한다는 점'입니다. 우선 종합적인 모니터링을 통해 리소스 사용률, 트래픽 패턴 등의 중요 정보를 실시간으로 파악할 수 있어 문제 발생 시 빠르게 원인을 진단하고 해결할 수 있습니다. 또한 쿠버네티스 운영의 핵심은 효율적인 리소스 관리인데, 종합적인 모니터링을 통해 리소스 낭비를 줄이고 애플리케이션의 성능을 최적화할 수 있습니다. 이와 더불어 시스템의 이상 유무를 지속적으로 모니터링함으로써, 예기치 않은 다운타임 등의 오류를 방지할 수도 있죠. 따라서 쿠버네티스 모니터링 솔루션에는 각 구성요소들 간의 관계와 영향도를 '한 눈'에 파악할 수 있는 모니터링 View가 반드시 필요합니다. 더불어 쿠버네티스 환경을 관리하는 운영자나 조직마다 중요하게 생각하는 데이터 지표가 다릅니다. 때문에 운영자가 자신의 필요에 따라 모니터링 화면을 자유롭게 구성할 수 있다면, 더욱 효과적으로 시스템을 관리할 수 있습니다. [그림1] (왼) 클러스터 상세 모니터링 View, (중) 클러스터 메인 모니터링 View, (오) 주요 Service 모니터링 View 더 자세한 설명을 위해 제니우스(Zenius)의 쿠버네티스 모니터링 솔루션인 Zenius-K8s을 예로 살펴보겠습니다. 우선 [그림1]에 나와있는 것처럼 쿠버네티스 모니터링 솔루션은 여러 클러스터 현황을 한눈에 확인할 수 있는 요약 뷰를 제공해야 합니다. 이를 통해 클러스터의 상세한 현황과 노드, 파드, 컨테이너, 서비스 등을 통합적으로 모니터링할 수 있기 때문이죠. 이러한 기능은 운영자로 하여금 시스템 전반에 대한 신속한 이해를 가능하게 하고, 업무 효율성을 크게 높여줍니다. [그림2] (왼) Zenius-K8s 운영현황 오버뷰 (오) 사용자가 직접 정보를 구성할 수 있는 컴포넌트 수정창 여기에 더해서 Zenius-K8s처럼 쿠버네티스 주요 데이터 지표를 '사용자 관제 목적'에 따라 자유롭게 구성이 가능하고 가시성 높은 다양한 차트와 컴포넌트를 포함한 오버뷰를 제공한다면, 더욱더 성공적인 쿠버네티스 활용이 가능해집니다. 두 번째, 클러스터 별로 상세한 성능을 확인할 수 있어야 합니다 효과적이고 올바른 쿠버네티스 모니터링을 위한 두 번째 조건은, '클러스터 별로 상세한 성능을 확인할 수 있어야 한다는 것'입니다. 특히 쿠버네티스 환경을 관리하고 최적화함에 있어서 핵심적인 역할을 하는 클러스터 현황(노드, 파드, 컨테이너), 성능 지표(CPU 사용량, Memory 사용량), 이벤트 현황을 연관 지어 직관적으로 모니터링할 수 있어야 합니다. 이를 통해서 운영자는 클러스터의 전반적인 상태를 실시간으로 모니터링하고, 발생 가능한 문제를 조기에 식별하여 시스템의 안정성과 성능을 지속적으로 높일 수 있기 때문이죠. 또한 클러스터의 각 구성 요소가 서로 다른 역할을 수행하기 때문에 각 노드, 파드, 컨테이너별로 상세히 모니터링하는 것도 매우 중요합니다. [그림3] 클러스터 별 상세정보 요약 뷰 지금 살펴본 내용을 Zenius-K8s 예시 화면을 통해 다시 한번 되짚어 보겠습니다. 먼저 위 [그림3]에서 보이는 것처럼 주요 클러스터 현황(노드, 파드, 컨테이너 등), 주요 성능 지표(CPU, Memory 사용률 등), 이벤트 현황 등을 한 화면에서 확인할 수 있는 요약 뷰가 있어야 합니다. [그림4] Zenius-K8s 토폴로지 맵 특히, Zenius-K8s의 경우 수집한 데이터를 기반으로 자동으로 각 구성요소 간의 연관관계와 서비스 상태를 토폴로지 맵(Topolgy Map) 형태로 구성할 수 있습니다. 또한 다양한 조회 기준(노드, 네임스페이스, 서버)과 상세 정보 조회 기능을 제공하고 있죠. 쿠버네티스 모니터링 솔루션에는, 직관적이고 효율적인 모니터링을 위해 반드시 위와 같은 기능이 포함되어 있어야 합니다. [그림5] 노드(Node) 별 상세 모니터링 [그림6] 파드(Pod) 별 상세 모니터링 [그림7] 컨테이너(Container) 별 상세 모니터링 마지막으로 위의 Zenius-K8s의 예시 화면들처럼, 클러스터 내 각각의 구성요소에 대한 상세한 모니터링이 필요합니다. 이를 통해 산재된 데이터에 대한 효율적인 관리가 가능하기 때문이죠. 。。。。。。。。。。。。 지금까지 성공적인 쿠버네티스 모니터링을 위한 두 가지 조건을 살펴봤습니다. 쿠버네티스의 활용도와 중요성이 더 커지는 가운데, 운영의 안정성과 효율성을 높여주는 쿠버네티스 모니터링 솔루션 도입은 이제 선택이 아닌 필수가 되었습니다. 쿠버네티스 현황을 한눈에 볼 수 있고, 세부 요소를 세밀하게 들여다볼 수 있는 모니터링 솔루션을 통해서 성공적으로 쿠버네티스를 활용하시기 바랍니다.
2024.04.05
쿠버네티스와 Helm 등 CNCF의 주요 프로젝트
쿠버네티스와 Helm 등 CNCF의 주요 프로젝트
지난 포스팅을 통해 정리한 것처럼 CNCF는 클라우드 네이티브 생태계의 활성화를 위해, 다양한 오픈소스 프로젝트를 개발하고 공급하고 있습니다. 또한 프로젝트 채택 단계부터 사용 빈도까지의 성숙도를 관리하기 위한, 프로세스 체계를 보유하고 있는데요. 이번 시간에는 CNCF의 주요 프로세스인 쿠버네티스(K8s), Helm 등과 CNCF 프로세스에 대해서 알아보고자 합니다. 。。。。。。。。。。。。 CNCF 프로젝트 프로세스 2023년 10월 기준으로 약 170여 개의 CNCF 프로젝트가 진행 중인데요. 이들 프로젝트는 성숙도에 따라서 샌드박스(Sandbox), 인큐베이팅(Incubating), 졸업(Graduated)으로 나뉩니다. 성숙도 수준에 대한 평가는 CNCF 위원회 멤버들에 의해서 결정되며, 졸업(Graduated) 단계의 프로젝트로 인정받기 위해서는 3분의 2 이상의 찬성 표가 필요합니다. ▲프로젝트 성숙도 단계 Step1. 샌드박스(Sandbox) CNCF의 새로운 프로젝트가 채택되면 Sandbox 단계에서 시작합니다. 이 단계에서는 프로젝트가 CNCF의 가이드라인과 정책에 부합되는지를 확인하는 절차를 주로 거칩니다. Step2. 인큐베이팅(Incubating) Sandbox를 통과한 프로젝트는 Incubating 단계로 집입하며, 이 단계에서는 프로젝트의 커뮤니티와 기술적 성숙도를 더욱 강화하도록 합니다. 해당 프로젝트의 커뮤니티의 규모와 다양성을 평가하고 기능들의 안정성을 검증합니다. Step3. 졸업(Graduated) Incubating 단계를 성공적으로 통과한 프로젝트는 Graduated 단계로 올라갑니다. 높은 수준의 품질과 안정성이 보장되어야 이 단계에 올라갈 수 있는 거죠. 커뮤니티가 활발하게 유지되고 관련자의 참여가 적극적으로 이루어져야 하며, 실제 사용 사례에서 성공한 경험들이 존재해야 합니다. Step4. 사용 사례 검증 Graduated 프로젝트 중 실제로 다양한 산업에서 사용되고, 기업과 조직이 해당 프로젝트를 많이 채택하는지를 평가하여, 지속적인 성장 가능성과 성숙도를 평가합니다. CNCF에서 관리하는 프로젝트 영역은 꽤 넓고 다양한데요. 애플리케이션 개발을 위한 도구부터 컨테이너 오케스트레이션, 서비스 프로비저닝, 모니터링 도구 등 소프트웨어 개발부터 운영까지를 위한 도구들이 존재합니다. 이제부터는 가장 성공적인 프로젝트인 쿠버네티스를 포함하여, Incubating 단계 이상의 프로젝트를 알아보고자 합니다. CNCF의 주요 프로젝트 쿠버네티스(kubernetes) 쿠버네티스는 CNCF에서 최초로 Graduated 단계에 진입한 프로젝트입니다. 컨테이너 오케스트레이션 기능을 통해, 애플리케이션 컨테이너 기반으로 자동화하고 확장할 수 있는 플랫폼을 제공합니다. A. 컨테이너 오케스트레이션 기능 컨테이너화된 애플리케이션을 자동으로 배포·확장하고 관리하는 기능을 제공합니다. 애플리케이션의 변경이 필요할 경우, 개발자가 애플리케이션을 빠르게 수정 및 배포하고 운영할 수 있게 합니다. B. 스케일링 기능 리소스 사용량이나 사용자 트래픽 증가에 따라 자동으로 애플리케이션을 확장·축소하는 오토 스케일링 기능을 제공합니다. C. 롤백 기능 문제가 발생된 애플리케이션의 경우, 롤백 기능을 제공하여 서비스 장애에 신속히 대응합니다. Helm Helm은 쿠버네티스 환경에서 애플리케이션을 관리하기 위한 도구로 사용됩니다. Helm은 차트라고 불리는 패키지로 애플리케이션을 패키징 하는데요. 이 차트에는 애플리케이션의 설치부터 관리에 필요한 모든 것을 포함합니다. 쉽게 말하면 이 차트라는 기능을 통해 애플리케이션을 탬플릿화하고, 배포하며, 롤백 및 공유하는 역할을 하는 프로젝트입니다. Envoy ▲Envoy를 사용하는 주요 업체 리스트 ⓒenvoyproxy.io Envoy는 클라우드 네이티브 환경에서 애플리케이션의 네트워크 트래픽을 관리하고, 제어하기 위한 프로젝트입니다. 프록시 기능을 수행하고, 클라이언트 서버 간의 통신을 관리하며, 애플리케이션 간의 통신의 보안 향상시킵니다. 여러 애플리케이션 사이에서 부하 분산을 자동화하여 가용성과 성능을 향상시킬 수 있도록 합니다. 부하 분산을 함에도 불구하고 특정 시스템에 부하가 생겨 장애 발생이 생길 경우, 트래픽을 가중치에 따라 다른 시스템으로 분산시키는 역할을 합니다. Containerd Containerd는 쿠버네티스 환경에서 컨테이너를 만들고 실행하는 데 도움을 주는 프로젝트입니다. 개발자가 컨테이너를 만들고 실행시키는 역할을 하며, 필요할 때는 중지하거나 삭제하는 작업을 지원합니다. 컨테이너 실행에 필요한 파일과 설정을 모아 놓은 이미지를 다운로드하고, 저장하며, 불러오는 역할과 같은 이미지 관리 기능도 제공하고 있습니다. Prometheus Prometheus는 시스템이나 애플리케이션의 동작을 실시간으로 모니터링하고, 이상 상황이 발생할 경우 알림을 줄 수 있는 도구입니다. 다양한 데이터를 수집하고 기록하여 차후 분석 용도로 활용할 수 있습니다. 또한 핵심 지표들을 유형 및 종류별로 제공하여, 다각적인 관점에서의 관찰을 지원합니다. 시스템의 리소스부터 애플리케이션의 동작 및 응답 상태를 적시에 확인하게 해줍니다. Fluentd ▲Fluentd 개념 설명 ⓒfluentd.org Fluentd는 다양한 시스템에서 발생되는 로그 데이터를 수집·처리·전송하는 데이터 수집 도구로서, 스플렁크(SPLUNK)와 유사한 역할을 수행하는 프로젝트입니다. 다양한 소스에서 발생되는 로그를 수집할 수 있을 뿐만 아니라, 원하는 목적지의 저장소까지 전송하는 역할을 수행합니다. 예를 들어 Syslog 등을 실시간 수집하고, 이를 Elasticsearch나 Amazon S3 등의 원하는 저장소로 목적지를 설정할 수 있게 합니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼, CNCF에서 클라우드 네이티브 생태계 활성화를 위해 다양한 프로젝트를 진행하고 있는데요. 브레인즈컴퍼니 역시 클라우드 네이티브 모니터링을 위한 다양한 제품과 기능 등을 속속 출시하고 있습니다. 대표 제품인 제니우스(Zenius)를 통해 클라우드 네이티브의 핵심요소인 컨테이너(Docker)의 상태와 리소를 실시간으로 모니터링할 수 있습니다. MSA 환경을 만들기 위한 필수 도구인 쿠버네티스(K8s)의 Cluster·Node·Pod 등의 구성과 변화를 관찰하며, 이상 상황 알림을 통해 선제적 장애 대응 또한 가능합니다. Zenius에 대해 더 자세히 알고 싶으시다면, 바로 아래 링크를 클릭해 주세요! 🔍더보기 Zenius로 클라우드 네이티브 모니터링하기 CNCF 세 가지 핵심가치(1탄)도 있어요
2024.01.03
Helm과 Argo의 개념과 통합 활용법?!
Helm과 Argo의 개념과 통합 활용법?!
애플리케이션을 클라우드 네이티브 환경에서 효율적으로 관리하고 운영할 수 있는 플랫폼인 쿠버네티스(kubernetes)를 활용하는 기업들이 점점 더 늘어나고 있습니다. 이에 따라 효율적인 애플리케이션 관리를 통해 패키징 배포, 관리를 자동화하고 일관된 상태를 유지하는 것이 중요해지고 있습니다. 이번 글을 통해서는 애플리케이션 개발 및 도구 중 최근 많이 사용되는 Helm과 Argo에 대해서 자세히 알아보겠습니다. ㅣHelm의 등장 쿠버네티스를 활용한 애플리케이션 배포에 가장 기본이 되는 단위는 yaml 파일로, 주로 쿠버네티스 object(리소스)들을 정의하고 다루는데 활용됩니다. 쿠버네티스를 통해 애플리케이션을 배포하다 보면 비슷한 틀과 내용을 공유하고, 내부 값(configuration)만 일부 변경하는 작업을 하게 되는데요, 이 과정에서 애플리케이션마다 모두 yaml 파일을 만들어야 하나 보니 매우 번거로웠습니다. 위 이미지를 보면, A 애플리케이션은 정적 파일인 yaml을 오브젝트별(Service, Pod, ConfigMap)로 만들어서 생성하고 배포합니다. 그러다가 프로젝트의 확장에 따른 기능 추가로 인해 B와 C 애플리케이션으로 쪼개어 각각의 yaml 파일을 복사해서 사용합니다. 하지만, 팀 단위로 인프라가 확장될 경우는 어떻게 할까요? 개별 오브젝트에 대한 yaml 개별적으로 관리할 수 있을까요? 만약, 개별적으로 관리한다면 파일의 갯수와 코드량의 증가로 인해 개발자들은 매우 혼잡하게 될 것입니다. 이러한 문제점을 해결하기 위해, 쿠버네티스에서 애플리케이션을 배포하기 위해 사용되는 대표적인 패키징 툴인 Helm이 등장하게 됐습니다. Helm을 활용하면 컨테이너 배포뿐 아니라 애플리케이션을 배포하기 위해 필요한 쿠버네티스 리소스를Node의 npm, Ubuntu의 APT, Mac의 Homebrew처럼 모두 패키지 형태로 배포할 수 있습니다. ㅣHelm의 역사 Helm은 v1부터 v3에 이르기까지 아래와 같은 변화의 과정을 거쳐왔습니다. Helm v1 ◾ [2015년 11월] DEIS의 내부 프로젝트로 시작되어 KubeCon에서 발표 ◾ [2017년 04월] MS에서 DEIS를 인수 Helm v2 ◾ [2016년 01월] Google 프로젝트에 합류 ◾ [2016년 ~ 2018년] Helm v2 고도화, 2.15.0 릴리스 발표에서 v2 향후 계획 세부사항 공유 Helm v3 ◾ [2018년 06월] CNCF 프로젝트에 합류, MS, 삼성 SDS, IBM 및 Blood Orange의 구성원 등이 참여 ◾ [2019년 11월] 릴리스 발표 v2에서 v3로 고도화되면서 가장 눈에 띄는 변화는 Tiller(클러스터 내에서 Helm 패키지 및 배포 상태를 관리하는 서버 구성요소)의 제거입니다. Helm v2에서는 클러스터에 Tiller를 설치하여, API Server와 REST*1 통신을 하고, Client와 gRPC*2 통신을 진행했었는데요, Helm v3부터는 Tiller가 제거되면서 Client에서 바로 REST 통신을 통해 API Server로 요청하는 방식으로 변경되었습니다. 그 외에도 Helm v3으로 업그레이드되면서 보안 취약점이 줄어들었으며, 설치 및 관리 과정이 단순화되었습니다. 또한 사용자에게 보다 더 안전하고 효율적인 배포 및 관리 환경을 제공할 수 있게 되었습니다. *1 REST (Representational State Transfer) : 웹 기반 애플리케이션에서 자원을 관리하기 위한 아키텍처 스타일, 데이터를 고유한 URL로 표현하고 HTTP 메서드(GET, POST, PUT, DELETE 등)를 사용하여 해당 자원에 대한 행위를 정의함 *2 gRPC (google Remote Procedure Call) : 구글에서 개발한 오픈소스 프레임워크, 원격지에 있는 다른 시스템 또는 서버에 있는 함수를 호출하는 방식 ㅣHelm의 주요 개념 Helm은 애플리케이션을 배포해 주는 툴이라고 앞서 살펴봤는데요, Helm과 같이 사용되는 주요 개념들을 살펴보겠습니다. ◾ Helm Chart: 쿠버네티스 리소스를 하나로 묶은 패키지입니다. 이는 yaml 파일의 묶음(패키지)으로, 이 묶음 public 혹은 private registry에 push 해두고, helm 명령어를 통해 Helm Chart를 설치하여 쿠버네티스 리소스를 배포하는 역할을 합니다. ◾ Repository: Helm Chart 들의 저장소 ◾ Release: kubernetes Cluster에서 구동되는 차트 인스턴스이며, Chart는 여러 번 설치되고 새로운 인스턴스는 Release로 관리됩니다. ㅣHelm의 주요 기능 Helm의 두 가지 주요 기능을 살펴보겠습니다. [1] Helm Chart를 통한 손쉬운 배포 Helm을 사용하면 어떻게 되는지 그림으로 살펴보겠습니다. 개발 클러스터가 있고 앱 2개를 배포한다고 가정했을 때, Helm Chart Template을 만들면 변수 처리를 통해 yaml 파일을 하나하나 수정할 필요 없습니다. kubectl 명령어를 통해 yaml 파일의 동적 값을 치환하여 템플릿 형태로 편리하게 배포할 수 있다는 장점이 있습니다. [2] Helm Package를 이용한 오픈소스 설치 및 배포 Helm을 통해서 쿠버네티스에서 가동할 수 있는 아래와 같은 다양한 오픈소스들의 제품들을 쉽게 설치/배포할 수 있습니다. 위제품들 외에도 Helm Chart는 총 14,376개의 패키지와 281,373개의 릴리스를 오픈소스로 제공합니다. 이를 통해 사용자들은 자신의 요구에 맞는 가장 적합한 솔루션을 선택하여 개발할 수 있습니다. 또한 많은 사용자들이 검증하고 사용함에 따라 안정성 있는 운영도 가능하죠. 다양한 Helm Chart 패키지는 커스터마이징이 가능한 경우가 많은데요, 사용자는 필요에 따라 구성을 조정하고 수정해서 사용할 수 있는 장점이 있습니다. 다음으로는 Helm 못지않게 많이 활용되는 ArgoCD에 대해서 살펴보겠습니다. ㅣ ArgoCD란?! 기존의 kubernetes 애플리케이션을 배포하고 관리하는 방식은 수동적이었습니다. yaml 파일을 직접 편집하고, kubectl로 변경사항을 클러스터에 적용하는 수동 배포 방식은 실수를 많이 유발했죠. 또한 여러 개발자나 팀이 각자의 방식대로 배포 및 관리를 수행하는 경우, 클러스터 상태의 일관성이 저하되었는데요. 이로 인해 개발 및 운영팀 간의 협업이 어렵고 생산성이 감소되는 문제가 발생하기도 했습니다. 이러한 기존 접근 방식에 대한 대안으로 GitOps가 탄생했는데요, GitOps는 Git 저장소를 사용하는 소프트웨어 배포 접근 방식입니다. GitOps는 인프라와 소프트웨어를 함께 관리함으로써, Git 버전 관리 시스템과 운영환경 간의 일관성을 유지할 수 있도록 합니다. ArgoCD는 GitOps를 구현하기 위한 도구 중 하나로 kubernetes 애플리케이션의 자동 배포를 위한 오픈소스 도구입니다. kubernetes 클러스터에 배포된 애플리케이션의 CI/CD 파이프라인에서 CD 부분을 담당하며, Git 저장소에서 변경사항을 감지하여 자동으로 kubernetes 클러스터에 애플리케이션을 배포할 수 있습니다. kubernetes 애플리케이션 배포 과정을 살펴보겠습니다. ① 사용자가 개발한 내용을 Git 저장소에 Push(이때, kubernetes 배포 방식인 Helm 배포 방식의 구조로 Git 저장소에 Push 할 수 있습니다.) ② ArgoCD가 Git 저장소의 변경 상태를 감지 ③ Git 저장소의 변경된 내용을 kubernetes에 배포하여 반영 ㅣ ArgoCD의 주요 기능 ◾ 애플리케이션을 지정된 환경에 자동으로 배포 ◾ 멀티 클러스터 관리기능 제공 ◾ OCI, OAuth2, LDAP 등 SSO 연동 ◾ 멀티 테넌시와 자체적인 RBAC 정책 제공 ◾ 애플리케이션 리소스 상태 분석 ◾ 애플리케이션 자동 및 수동 동기화 기능 제공 ◾ Argo가 관리하고 있는 쿠버네티스 리소스 시각화 UI 제공 ◾ 자동화 및 CI 통합을 위한 CLI 제공 위 내용은 ArgoCD가 제공하는 주요 기능을 나열한 것인데요, 이 중에서도 대표적인 다섯 가지 기능에 대해서 자세히 살펴보겠습니다. ① 쿠버네티스 모니터링 ArgoCD는 쿠버네티스를 항상 추적하고 있다가 저장소의 변경사항이 감지되면, 자동으로 클러스터의 상태를 저장소의 상태와 동기화합니다. 또한 문제가 생기면 이전 상태로 롤백 할 수 있으며, 이를 통해 시스템 복구 및 문제 해결을 용이하게 합니다. ② 멀티 클러스터 관리 다중 클러스터 환경에서도 배포를 관리할 수 있어 복잡한 인프라 환경에서의 효율적인 작업을 가능하게 합니다. ③ ArgoCD 대시보드 Argo에서는 클러스터 상태를 효과적으로 관리하고 모니터링할 수 있는 대시보드를 제공합니다. ArgoCD 대시보드를 통해 애플리케이션의 실시간 상태와 동기화 상태와 같은 전체적인 배포 파이프라인을 자동화하여 시각적으로 확인할 수 있고, 롤백 및 이력 추적 기능도 동시에 제공하고 있습니다. ④ 안전한 인증 및 권한 관리 역할 기반 액세스 제어(RBAC) 및 권한 제어기능을 통해 민감한 정보에 대한 접근을 제어할 수 있습니다. ⑤ GitOps 지원 ArgoCD는 GitOps 방법론을 따르므로 애플리케이션의 배포를 Git Repository와 동기화할 수 있습니다. 이를 통해 코드와 인프라의 일관성을 유지하고 변경사항을 추적할 수 있습니다. ㅣ Helm과 ArgoCD의 통합 활용 프로세스 Helm과 Argo를 함께 사용하면 개발, 테스트, 배포 프로세스를 효과적으로 관리할 수 있습니다. Helm으로 애플리케이션을 패키징하고 버전을 관리하며, Argo를 활용하여 GitOps 워크플로우를 통해 지속적인 통합 및 배포를 자동화할 수 있습니다. ① develop: Helm을 사용하여 애플리케이션을 Helm Chart로 패키징 합니다. 이후 개발된 Helm Chart를 저장하기 위한 Git 저장소를 설정합니다. ArgoCD에서 저장한 저장소를 특정 배포 대상 Kubernetes 클러스터와 연결하여, Git 저장소의 변경사항을 감지하고 새로운 배포를 시작하여 클러스터에 적용합니다. ② git push: 개발자가 로컬 저장소 내용을 원격 저장소에 배포합니다. ③ Observe(GitOps): ArgoCD는 Git 저장소의 변경 사항을 감지하여, 변경사항이 발생하면 새로운 버전의 애플리케이션을 배포하여 자동화 및 일관성을 유지합니다. ④ 운영/테스트/개발 ㅣ마무리 오늘 함께 살펴본 Helm과 ArgoCD 두 가지 강력한 도구를 함께 이용한다면 CI/CD 통합, 버전 관리, 자동화 등의 이점을 활용해서 kubernetes 환경에서 애플리케이션을 더 효율적으로 관리할 수 있습니다. 한편 애플리케이션을 효과적으로 개발하는 것도 중요하지만, kubernetes 환경의 프로세스를 실시간 모니터링하고 추적하여 관리하는 것도 매우 중요합니다. 브레인즈컴퍼니의 kubernetes 모니터링 솔루션 Zenius-K8s는 다양한 CI/CD 도구를 이용하여 개발한 kubernetes 애플리케이션의 전체 클러스터 및 구성요소에 대한 상세 성능 정보를 모니터링하고, 리소스를 추적함으로써 시스템의 안정성과 성능을 높여주고 있습니다.
2024.03.08
오픈소스 APM만으로 완벽한 웹 애플리케이션 관리, 가능할까?
오픈소스 APM만으로 완벽한 웹 애플리케이션 관리, 가능할까?
지난 글을 통해 옵저버빌리티(Observability) 중요성과 APM 차이점을 자세히 살펴보았습니다(자세히 보기). 옵저버빌리티는 APM 한계성을 극복하는 방법은 맞지만, 어느 하나가 더 나은 방법이라기 보단 조직이나 사용자 상황에 따라 적합한 선택해야 하는 것이 주요 포인트였습니다. 하지만 상용 APM 제품은 다소 높은 구매 비용으로 인해, 규모가 작은 기업의 경우 부담이 될 수 있는데요. 이 때 오픈소스 APM 솔루션이 효과적인 대안이 될 수 있는데요. 따라서 이번 시간에는 주요 오픈소스 APM 알아보고, APM 상용 제품과는 어떤 차이점이 있는지 살펴보겠습니다. │오픈소스(Open Source) 소프트웨어란? 오픈소스(Open Source)란 개발 핵심 소스 코드를 공개하여 누구나 접근하고, 수정하여, 배포할 수 있는 소프트웨어를 말합니다. 얼핏 자유 소프트웨어와 비슷하게 느껴질 수 있지만 조금 다른 의미를 가지는데요. 자유 소프트웨어는 사용자의 '자유'를 강조하지만, 오픈소스는 소스 코드의 '접근성과 협업'을 중시합니다. 대표적으로 관계형 데이터베이스인 MySQL, 웹 브라우저인 Firefox, 컨테이너 가상화 플랫폼인 Docker가 대표적인 오픈소스 소프트웨어라고 할 수 있습니다. 현재 국내 디지털플랫폼 정부 구축 정책 기조에 따르면, 오픈소스 소프트웨어는 여러가지 장점을 갖고 있는데요. 오픈소스 장점 오픈소스의 첫번 째 장점은 진입 비용이 낮다는 점입니다. 공개된 소스를 기반으로 수정과 배포가 가능하기 때문에 새로운 기반 기술을 만들어 갈 경우, 비용을 줄일 수 있습니다. 두 번째 장점은 MSA 아키텍처의 기술적 토대가 오픈소스에 기반한다는 점입니다. 최근 소프트웨어 개발 환경은 오픈소스 의존도가 높아지고 있는데요. 이는 오픈소스가 특정 벤더에 종속되지 않아 독립성을 보장한다는 점에서, 오픈소스의 가장 큰 장점이라고 할 수 있습니다. 그에 반해 오픈소스 단점도 명확한데요. 오픈소스 단점 첫 번째 단점은 상용 소프트웨어와 비교해 매뉴얼이 빈약한 경우가 많다는 점입니다. 이에 따라 실제 개발 단계에서 운영이 지연될 가능성이 높아지죠. 두 번째 단점으로는 기술 지원 체계는 오픈소스 커뮤니티에 의존하고 있기 때문에, 유지보수에 큰 어려움이 따른다는 점입니다. 물론 특정 벤더에 종속되지 않는 독립성을 취할 수 있지만, 지속적인 기술지원은 어렵죠. 그렇다면 현재 국내에서 가장 많이 사용하는 오픈소스 APM 소프트웨어는 무엇인지, 자세히 살펴보겠습니다. │오픈소스 APM 종류 오픈소스 APM 종류는 다양하지만 대표적으로 Scouter, Pinpoint, Prometheus & Grafana에 대해 알아보겠습니다. 1. Scouter 첫 번째로 소개해 드릴 오픈소스 APM은 스카우터(Scouter)입니다. 스카우터는 LG CNS에서 만든 오픈소스 APM 소프트웨어로, 자바를 사용하는 애플리케이션과 컴퓨터 시스템 성능을 모니터링합니다. 이 소프트웨어는 Window, Linux, Mac 등 다양한 운영체제(OS)에서 사용할 수 있으며, 주로 이클립스 플랫폼에서 개발되었습니다. 즉 여러 환경에서 자바 애플리케이션 데이터를 수집하고, 성능 상태를 효과적으로 할 수 있다는 점이 스카우터의 주요 기능입니다. 1-1. Scouter 아키텍처 Scouter는 주로 네 가지 주요 컴포넌트로 구성되어 있는데요. 자세히 살펴보도록 하겠습니다. Java Agent Java 기반의 웹 애플리케이션(예: Tomcat, JBoss, Resin)과 스탠드얼론 Java 애플리케이션을 모니터링하는 모듈입니다. 이 에이전트는 웹 애플리케이션 서버(WAS)에 설치되어 애플리케이션 성능 정보(예: 메소드 실행 시간, 사용자 요청 처리 시간 등)를 수집하고 Scouter 서버로 전송합니다. Host Agent 이 에이전트는 운영 체제(예: Linux, Unix, Windows 등)에 설치되어 시스템 하드웨어 리소스 사용 상태를 모니터링합니다. CPU 사용률, 메모리 사용량, 디스크 I/O와 같은 정보를 수집하여 Scouter Server로 보내주는 역할을 합니다. Scouter Server(Collector) 이 서버는 Java Agent와 Host Agent로부터 데이터를 수집해 저장합니다. 사용자는 클라이언트를 통해 이 데이터에 접근할 수 있으며, 이를 통해 애플리케이션의 성능을 모니터링하고 분석할 수 있습니다. Scouter Client 사용자는 Scouter Client를 통해 서버에 접속하여, 서버로부터 수집된 데이터를 조회할 수 있습니다. 이 클라이언트는 다양한 성능 지표를 기반으로 한 시각적인 대시보드를 제공하여, 애플리케이션과 시스템 성능 상태를 효과적으로 모니터링할 수 있게 도와줍니다. 1-2. Scouter 주요기능 출처ⓒ tistory_chanchan-father Scouter의 주요기능 중 하나는 'XLog'인데요. 이 기능은 트랜잭션 응답 시간을 시각적으로 표현하여 시스템 성능을 모니터링하는 데 유용합니다. 액티브 서비스가 종료될 때마다 XLog 차트에 점으로 나타나기 때문에, 개발자는 트랜잭션 처리 시간을 간편하게 확인할 수 있습니다. 각 점을 클릭하여 관련 트랜잭션의 자세한 정보를 얻을 수 있으며, 시스템 분석과 성능 개선 작업에도 도움을 줍니다. 2. Pinpoint 두 번째로 소개해 드릴 오픈소스 APM는 '핀포인트(Pinpoint)'입니다. 핀포인트는 네이버에서 2012년 7월부터 개발을 시작해, 15년 초에 배포한 오픈소스 APM 솔루션입니다. 핀포인트는 MSA를 위한 국산 오픈소스 APM으로 각광 받아왔습니다. 2-1. Pinpoint 아키텍처 핀포인트 아키텍처는 다음과 같은 네 가지 주요 구성요소는 이루어져 있는데요. 아래 내용을 통해 자세히 살펴보겠습니다. Agent 핀포인트의 에이전트는 애플리케이션 서버에 java-agent 형태로 추가되어, 애플리케이션 성능 데이터를 실시간으로 수집합니다. 이 에이전트는 수집한 데이터를 Collector로 전송하며, 이 과정을 통해 성능 모니터링과 문제 해결에 필요한 중요 정보를 제공합니다. Collector Agent로부터 받은 프로파일링 데이터를 수집하고 처리하는 역할을 합니다. Collector는 이 데이터를 구조화하여 빅데이터 데이터베이스인 HBase로 전송합니다. 이를 통해 데이터가 안정하게 저장되고 필요할 때 쉽게 접근할 수 있습니다. HBase Hbase는 분산 데이터베이스로서, 핀포인트 시스템에서 성능 데이터를 저장하고 검색하는 중심적인 역할을 합니다. 대규모 데이터 볼륨을 효율적으로 처리할 수 있는 구조로 설계되어 있으며, 수집된 데이터의 신속한 처리와 안정적인 저장을 보장합니다. Web UI 웹 인터페이스를 통해 사용자에게 데이터를 시각적으로 제공하는 구성 요소입니다. 이 데이터는 핀포인트 에이전트가 애플리케이션 서버에서 수집한 정보를 기반으로 생성됩니다. 이렇게 수집된 데이터는 서버를 통해 Web UI로 전송되면, 사용자는 UI를 통해 다양한 형태의 성능 지표를 조회하고 분석할 수 있습니다. 이러한 구성을 통해 네이버 핀포인트는 애플리케이션 성능 문제를 진단하고 해결하는 데 필요한 정보를 제공합니다. 2-2. Pinpoint 주요기능 그 다음으로 핀포인트의 대표적인 주요 기능에 대해 자세히 알아보겠습니다. 서버맵 이 기능은 분산 환경에서 각 노드 간의 트랜잭션 흐름을 시각적으로 표현하여, 트랜잭션 성공/실패와 응답 시간 분포를 실시간으로 모니터링할 수 있습니다. 이를 통해 시스템 부하 상태와 성능 병목 지점을 식별할 수 있죠. 콜스택 콜스택(Call Stack) 기능은 트랜잭션의 세부 실행 과정을 추적하여, 성능 문제 원인을 분석하고, 코드 최적화를 지원합니다. 이 기능은 각 콜스택에서 소요되는 시간과 발생하는 예외 상황까지 자세히 보여주어, 성능 병목 현상 진단에 도움을 줍니다. 트랜잭션 필터 사용자는 트랜잭션 필터 기능을 이용해 응답 시간이 긴 트랜잭션, 특정 사용자나 IP 주소에서 발생한 트랜잭션 등을 세부적으로 필터링하여 분석할 수 있습니다. 이는 특정 조건에 따른 트랜잭션의 세부 사항을 더 깊이 이해하는 데 유용합니다. Application Inspector 이 기능은 애플리케이션 성능 지표를 시간별/일별로 분석하며 CPU 사용률, 메모리 사용량, JVM 상태 등을 체계적으로 관리하는 기능을 제공합니다. 이를 통해 애플리케이션의 전반적인 성능 관리가 가능합니다. 3. Prometheus 세 번째로 소개해 드릴 오픈소스 APM는 '프로메테우스(Prometheus)'입니다. 프로메테우스는 관제 대상으로부터 모니터링 메트릭 데이터를 저장하고, 검색할 수 있는 시스템인데요. 무엇보다 CNCF 재단으로부터 '클라우드 네이티브에 적합한 오픈소스 모니터링'으로 각광 받아 쿠버네티스(Kubernetes, K8s) 이후 두번째로 졸업한 프로젝트입니다. 프로메테우스는 CNCF 졸업 인증서를 받은 이후 시장에서 많은 주목을 받았습니다. 구조가 간단해서 운영이 쉽고, 다양한 모니터링 시스템과 연계할 수 있는 여러 플러그인을 보유하고 있기 때문이죠. 이러한 장점은 클라우드 네이티브를 위한 기초적인 오픈소스로 각광 받게 되었습니다. 3-1. Prometheus 아키텍처 프로메테우스에서 가장 큰 특징은 에이전트(Agent)가 아닌, 메트릭(Metric)을 통해 데이터를 수집한다는 점입니다. 메트릭이란 이전 시간에도 살펴봤듯이, 현재 상태를 보기 위한 시계열 데이터를 의미합니다. 프로메테우스는 이러한 메트릭 수집을 위해 다양한 수집 도구를 사용하는데요. 좀 더 자세히 살펴보도록 하겠습니다. Application 위 아키텍처에서 수집하고자 하는 대상은, 애플리케이션으로 표현됩니다. 주로 MySQL DB과 Tomcat과 같은 웹 서버까지 다양한 서버와 WAS가 모니터링 대상이 됩니다. 프로메테우스는 이를 주로 Target System으로 표현하고 있습니다. Pulling 프로메테우스에서는 각 Target System에 대한 메트릭 데이터 수집을 풀링(Pulling) 방식을 통해 데이터를 수집합니다. 프로메테우스는 앞서 언급했듯 별도의 에이전트로 데이터를 수집하지 않습니다. Prometheus Server에서 자체적인 Exporter를 통해 메트릭 읽는 방식을 사용하죠. 보통 모니터링 시스템 에이전트는, 모니터링 시스템으로 메트릭을 보내는 푸쉬(Push) 방식을 사용합니다. 특히 푸쉬 방식은 서비스가 오토 스케일링 등과 같이 환경이 가변적일 경우 유리한데요. 풀링 방식의 경우 모니터링 대상이 가변적으로 변경될 경우, 모니터링 대상의 IP 주소를 알 수 없기 때문에 정확한 데이터 수집이 어려워집니다. Service Discovery 이처럼 정확한 데이터 수집을 해결하기 위한 방안이 서비스 디스커버리(Service Discovery) 방식입니다. 서비스 디스커버리는 현재 운영 중인 대상 목록과 IP 주소를 동적으로 수집하는 프로세스입니다. 예를 들어 file_sd, http_sd 방식부터 디스커버리 전용 솔루션인 Consul을 사용하죠. Exporter Exporter는 모니터링 대상 시스템에서 데이터를 수집하는 역할을 합니다. 별도의 에이전트는 아니지만, 에이전트와 비슷하게 데이터를 수집하는 역할을 합니다. HTTP 통신을 통해 메트릭 데이터를 수집하며, Exporter를 사용하기 어려울 경우 별도 Push gateway를 사용합니다. Prometheus Server 프로메테우스 서버는 데이터 수집, 저장, 쿼리를 담당하는 중앙 구성 요소입니다. HTTP 프로토콜을 사용하는 것이 특징이며, Exporter가 제공하는 HTTP 엔드포인트에 접속해 메트릭 데이터를 수집합니다. Alert Manager 사용자에게 알람을 주는 역할을 담당합니다. Prometheus는 타 오픈소스 모니터링 솔루션과 달리 Alert Manager UI 기능을 제공하여 일부 제한된 데이터를 시각화할 수 있습니다. 하지만 시각화 기능이 제한적이므로, 보통 Grafana라는 오픈소스 대시보드 툴을 사용하여 UI를 보완합니다. 3-2. Grafana '그라파나(Grafana)'에 좀 더 자세히 설명한다면, 데이터 분석을 시각화하기 위한 오픈소스 대시보드 도구입니다. 다양한 플러그인을 이용해 프로메테우스와 같은 모니터링 툴과 *그라파이트(Graphite)1, *엘라스틱서치(Elasticsearch)2, *인플럭스DB(InfluxDB)3 와 같은 데이터베이스와 연동하여 사용자 맞춤형 UI를 제공합니다. 특히 방대한 데이터를 활용해 맞춤형 대시보드를 쉽게 만들 수 있는 것이 그라파나의 큰 장점이죠. *1. Graphite: 시계열 데이터를 수집하고 저장하며, 이를 그래프로 시각화하는 모니터링 도구 *2. Elasticsearch: 다양한 유형의 문서 데이터를 실시간으로 검색하고 분석하는 분산형 검색 엔진 *3. InfluxDB: 시계열 데이터의 저장과 조회에 특화된 고성능 데이터베이스 그라파나의 주요 특징은 플러그인 확장을 통한 데이터 시각화와 템플릿 지원으로, 다른 사용자 대시보드 템플릿을 쉽게 가져와 사용할 수 있다는 점입니다. 이처럼 Promeheus 장점은 Exporter를 통한 다양한 메트릭 데이터 수집과 3rd Party 솔루션과 연계가 수월하다는 점입니다. 오픈소스로 IT 인프라를 구성하는 기업의 경우 Prometheus와 Grafana를 연계하여, 서비스 운영현황을 모니터링 할 수 있습니다. 지금까지 오픈소스 APM가 무엇이고, 각각의 아키텍처와 주요 기능은 무엇인지 살펴보았는데요. 그렇다면 상용 APM 제품과, 오픈소스 APM는 어떤 차이점이 있을까요? │상용 APM 제품 vs 오픈소스 APM 제품 앞에서 소개해 드린 오픈소스 APM 중, 대표적으로 프로메테우스와 핀포인트를 상용 APM 제품과 비교해 보겠습니다. Prometheus vs 상용 APM 제품 우선 프로메테우스를 대표하는 장점은 유연한 통합성입니다. 마이크로서비스가 대세 기술로 자리 잡으면서, 인스턴스를 자주 확장하거나 축소하는 것이 자유로운 요즘인데요. 만약 이 작업을 수동으로 관리한다면 매우 어려울 수 있습니다. 하지만 프로메테우스를 사용하면 이런 문제를 해결할 수 있죠. 프로메테우스는 쿠버네티스와 같은 여러 서비스 디스커버리 시스템과 통합되어, 쿠버네티스 클러스터 내의 모든 노드와 파드에 발생하는 매트릭을 자동으로 수집할 수 있습니다. 이러한 기능은 마이크로서비스 환경에서 효율적으로 모니터링 할 수 있습니다. 하지만 한계점도 있는데요. 바로 실시간 데이터 확인이 어렵다는 점입니다. 프로메테우스는 풀링(Pulling) 주기를 기반으로 메트릭 데이터를 수집하기 때문에, 순간적인 스냅샷 기능이 없습니다. 수집된 데이터는 풀링하는 순간 스냅샷 데이터라고 볼 수 있죠. 이러한 단점은 APM에서 일반적으로 지원하는 실시간성 트랜잭션 데이터를 대체하기 어렵습니다. 반면에 상용 APM 제품은 어떨까요? 대표적으로 Zenius APM 사례를 통해 살펴보겠습니다. Zenius APM은 에이전트가 자동으로 메트릭을 수집하여 서버로 전송하여, 데이터를 실시간으로 처리할 수 있습니다. 또한 에이전트가 푸쉬(Push) 방식이기 때문에, 데이터의 지연이 풀링 방식에 비해 적고 데이터가 더 정확하게 수집되죠. 또한 Raw Data 기반의 실시간 과거 데이터를 통해 정밀한 장애 원인 분석이 가능합니다. 과거 시점 스냅샷 기능도 있어 문제 발생 시점을 정확히 파악하여, 문제 해결 시간을 단축시킬 수 있죠. Pinpoint 장단점 vs 상용 APM 제품 그 다음으로는 핀포인트를 대표하는 장점에 대해 알아 보겠습니다. 핀포인트 장점으로는 클라우드 환경에서 뛰어난 가시성을 보여준다는 점입니다. 클라우드에서의 웹 애플리케이션 서버(WAS)는 유연성과 확장성이 뛰어나지만, 복잡한 시스템 구조로 인해 모니터링이 어려울 수 있는데요. 핀포인트는 이러한 환경에서, 각 가상 서버의 성능을 실시간으로 파악하고 문제를 신속하게 진단하는데 큰 도움을 줍니다. 그에 반해 핀포인트에 단점은 다양한 기능이 부족합니다. 핀포인트는 JVM 기반 데이터의 모니터링이 일부 제한되는데요. 대시보드의 'Inspector'와 같은 일부 기능이 지원되지 않아, 이용에 어려움이 있습니다. 또한 다수 트랜잭션이 동시에 실행될 때 특정 트랜잭션이 오래 걸리거나 에러가 발생할 경우, 그 원인을 파악하기 어렵습니다. 이는 세부적인 콜백 정보를 충분히 제공하지 않았기 때문이죠. 그렇다면 상용 APM 제품은 어떨까요? 이번에도 Zenius APM를 통해 자세히 살펴보겠습니다. Zenius APM은 다양한 트랜잭션 모니터링 기능을 제공하는데요. 이를 통해 사용자는 트랜잭션 성능을 실시간으로 파악하고, 잠재적 문제를 빠르게 진단할 수 있습니다. 또한 이 시스템은 대량으로 동시 접속자를 대량으로 관리할 수 있어, 피크 타임에 발생할 수 있는 성능 저하를 사전에 감지하고 대응할 수 있도록 지원합니다. 비교표 구분 Zenius APM Prometheus Pinpoint Scouter 기술지원 벤더 지원을 통한 빠른 초기 설정, 기술지원 용이 오픈소스 기반의 기술지원 불가로 초기 학습 필요 오픈소스 기반의 기술 지원 불가로 초기 학습 필요 오픈소스 기반의 기술 지원 불가로 초기 학습 필요 사용자 인터페이스 실시간 트랜잭션 처리, 액티브 서비스 모니터링, 동시 접속 사용자 수 등, 사용자 정의 실시간 모니터링 상황판 구성 Grafana 플러그인 연계로 다양한 컴포넌트 모니터링 가능 토폴로지 일부 모니터링 불가, 제한적으로 사용자 동시 접속자 수 모니터링 가능, 사용자 정의 기반 모니터링 불가 기능 제한에 따른 간소화된 UI 제공, 사용자 정의 기반 모니터링 불가 컨테이너 모니터링 가능 가능 가능 불가 쿠버네티스 모니터링 가능 가능 불가 불가 연관 인프라 정보 모니터링 연관된 WAS 서버, DB서버, DB확인, 해당 인프라 상세 정보 제공 불가 재한적으로 연관 인프라 모니터링 제공 불가 Raw Data 과거 시점 재현 초 단위 데이터를 기준으로 장애 발생시점 등 과거 상황을 그대로 재현함 불가 불가 불가 리포팅 사용자 정의 기반 리포팅 서비스 제공 써드 파티를 이용한 제한적인 리포팅 기능 제공 불가 불가 이번 시간에는 주요 오픈소스 APM와 상용 APM 차이점을 살펴보았습니다. 각 솔루션은 분명한 장단점을 갖고 있으며, 모든 상황에 완벽한 솔루션은 없습니다. 그러나 여기서 주목해야 할 것은, APM의 핵심이 '트랜잭션을 얼마나 효과적으로 모니터링할 수 있는가'라는 점입니다. 이 측면에서 오픈소스 APM은 한계가 있으나, 상용 APM 제품은 이를 효과적으로 수행할 수 있습니다. 물론 비용 면에서 오픈소스 APM와 비교해, 상용 APM 제품이 부담스러울 순 있습니다. 하지만 트랜잭션 모니터링 관리의 중요성을 고려한다면, 이러한 투자는 가치가 있습니다. 더 나아가 심층적인 실시간 데이터 모니터링, 신속한 데이터 처리, 전문적인 기술적인 기술 지원, 보다 복잡한 시스템 환경에서 효과적인 트랜잭션 관리를 우선시 한다면 Zenius APM 제품이 더더욱 적합할 것입니다. 🔍더보기 Zenius APM 더 자세히 보기 📝함께 읽으면 더 좋아요 • APM에서 꼭 관리해야 할 주요 지표는? • APM의 핵심요소와 주요기능은? • 옵저버빌리티 vs APM, 우리 기업에 맞는 솔루션은?
2024.07.26
다음 슬라이드 보기