반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
제니우스(Zenius), 웰메이드 드라마와 언론사에서도 주목하다
클라우드 전환과 하이브리드 클라우드가 성공하려면?
오다인
2024.01.18
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
가트너부터 딜로이트까지, 2024 IT트렌드 총정리
정부와 공공기관, 그리고 금융권과 대기업 등 모든 분야에서 클라우드 전환이 가속화되고 있습니다. 이에 따라서 가트너(Gartner)는 2018년 약 2.1조 원이었던 국내 클라우드 시장 규모가 2024년에는 약 '6조 원'에 이를 것으로 내다봤습니다.
。。。。。。。。。。。。
1. 클라우드 전환 단계
▪
초창기:
소규모 Workload가 시범적으로 전환되는 시기
▪
과도기:
인프라, 네이티브 앱 등 주요 Workload가 전환되는 시기
▪
정착기:
모든 Workload가 클라우드에서 개발/구축되는 시기
클라우드 전환은 크게 세 단계로 나누어서 진행됩니다. 대부분의 기업과 기관이 현재 '클라우드 전환 과도기'에 접어든 가운데, 몇 가지 작지 않은 이슈로 인한 어려움을 겪고 있습니다.
2. 클라우드 송환? 클라우드에서 On-Premise로 복귀?!
IDC는 최근, "향후 2년 내 프라이빗 클라우드(Private Cloud) 또는 비 클라우드 환경으로의 이전을 계획하고 있는 기업의 비중이 70%가 넘는 것으로 나타났으며, 이러한 현상은 더욱 심화될 전망이다"라고 발표했습니다.
'클라우드 송환(Cloud Repatriation)'이라고도 부를 수 있는 이 같은 현상은, 주로 클라우드의 높은 비용·성능 문제·보안 및 규제·공급자 Lock-in 등이 주요 원인으로 지적되고 있습니다.
이와 같은 클라우드 전환 과도기에서의 어려움을 극복하고 효율성을 높이기 위해, '하이브리드 클라우드'로의 전환이 새로운 트렌드로 자리 잡았습니다.
3. 유연하게 활용한다! ‘하이브리드 클라우드’로의 전환 트렌드
하이브리드 클라우드(Hybrid Cloud)는 퍼블릭·프라이빗 클라우드와 대형 IDC 센터와 같은, 온프레미스(On-Premise) 환경을 조합하여 사용하는 것을 말합니다.
ⓒ디지털 서비스 이용 지원 시스템
현재 87% 이상의 기업이 2가지 이상의 멀티 클라우드를 사용하며, 72% 이상은 하이브리드 클라우드를 사용하는 것으로 나타났습니다.
하이브리드 클라우드의 장점
▪
다양한 환경을 조합하여 유연하게 리소스를 확장하거나 축소 가능
▪
민감정보를 프라이빗 클라우드에 유지하여 보안성 강화
▪
서로 다른 클라우드 환경의 장점의 조합 및 활용 가능
하이브리드 클라우드는 위와 같은 분명한 장점이 있기에, 계속해서 많은 기업과 기관이 사용할 것으로 예상됩니다. 하지만 하이브리드 클라우드도 반드시 극복해야 할 한계와 문제점이 있습니다. 하이브리드 클라우드의 한계는 크게 세 가지로 나눠볼 수 있는데요.
4. 하이브리드 클라우드의 세 가지 한계, 그리고 극복 방안
관리의 복잡성
Complexity
On-Premise, 하이브리드 클라우드, 퍼블릭 클라우드 등은 모두 서로 다른 인프라 구성과 특성을 보유하고 있습니다. 따라서 다양한 CSP와 Legacy 시스템 등을 종합적으로 관제하기 위한 모니터링 기술이 필요합니다.
정책의 분산화
Decentralization
각 CSP의 독자적인 기술과 운영환경에 따라, 기업의 IT 인프라 관리 정책이 분산화될 우려가 있습니다. 따라서 서로 다른 API 환경에 대응할 수 있는 중립적인 모니터링 접근 방식이 필요합니다.
서비스 품질 이슈
Quality
이기종 환경에서의 실시간 성능 모니터링 부재로, 서비스 품질 및 성능 문제가 발생할 수 있습니다. 따라서 실시간 상태 및 성능 지표 모니터링을 통한 최적의 프로비저닝 역량 확보가 중요합니다.
결국 하이브리드 클라우드의 세 가지 한계를 극복할 수 있는 '성공적인 모니터링 전략'이 필요합니다.
5. 하이브리드 클라우드 환경에서의 성공적인 모니터링 전략
앞서 살펴본 것처럼 하이브리드 클라우드의 효율을 높이고 한계를 극복하기 위해선,
성공적인 클라우드 & On-Premise 통합 모니터링
이 필요합니다.
통합 모니터링을 통해서 다양한 관리 Point를 단일화하고, 일관된 IT 정책을 적용하며, 다양한 관점별 View를 통한 데이터 가시성을 확보할 수 있습니다.
또한 각 환경에 대한 실시간 성능 지표 모니터링과 신속한 장애 감지 및 원인 분석을 통해, 높은 서비스 품질을 유지할 수 있습니다. 주요 Point에 대해서 자세히 살펴본다면 다음과 같습니다.
l 단일 Framework 기반의 통합 모니터링 환경 구성
성공적인 모니터링을 위해서는 Public/Private 클라우드와 On-Premise를 아우르는 단일 Framework 기반의 통합 모니터링 환경을 구성해야 합니다. 다양한 환경에 대한 통합 모니터링 시스템을 구축하여, 대시보드와 토폴로지 맵 등을 통해 분산된 IT 리소스와 서비스 정보를 한눈에 볼 수 있어야 하는 것이죠.
l 퍼블릭 클라우드 모니터링: 통합 관리 및 운영 가시성 확보
제니우스(Zenius)의 클라우드 서비스 맵
이용 중인 클라우드 서비스 전체 및 개별 단위의 주요 지표 상세 모니터링으로, 가시성을 확보해야 합니다. 이를 통해서 다양한 서비스의 주요 지표를 관리, 이용 서비스 간의 연관관계 관리, 과금(Billing) 관리, 즉각적인 장애 관리를 할 수 있습니다.
l 프라이빗 클라우드 모니터링: 개별적인 구성 환경을 고려한 모니터링
각 기업과 공공기관 개별적인 클라우드 구성 환경을 고려하여, 클라우드 인프라 자원을 관리하고 활용도를 높이기 위한 모니터링 전략도 필요합니다. 위의 설명처럼 쿠버네티스(Kubernetes), 컨테이너(Container), SDN 등 프라이빗 클라우드 환경을 구성하는 요소를 다각적으로 관리하여 IT 인프라 자원의 활용도를 향상시켜야 합니다.
l MSA 기반 애플리케이션 모니터링
IDC에 따르면 2025년에 출시되는 앱의 90% 이상이 '클라우드 네이티브'로 구현될 전망이라고 합니다.
클라우드 네이티브의 핵심은 'MSA(Micro Service Architecture)' 방법론으로의 전환입니다. 애플리케이션을 효과적으로 실행·배포·활용하기 위한 핵심요소는 'Container'이죠.
따라서 MSA 환경에서의 성공적인 애플리케이션 관리를 위해서는 실시간 모니터링, 분산 시스템 관제, 서비스 수요 변화 대응 이 세 가지가 가장 중요합니다.
위 도표에 정리된 것처럼 컨테이너 기반의 마이크로 서비스 모니터링, 복잡화된 시스템 간 트랜잭션 분석 및 가시화, 오토스케일링 자동 대응을 통한 관제 연속성 확보 전략을 구축한다면 성공적으로 MSA 기반의 애플리케이션 모니터링을 할 수 있습니다.
l 레거시 환경 모니터링
마지막으로 On-premise로 자체 보유하고 있는 레거시 장비와 프라이빗 클라우드 장비가 있는 전산실의 성공적인 모니터링을 위해서는, 먼저 On-premise 환경을 고려한 최적의 포인트 솔루션과 통합 플랫폼 기반 모니터링이 확보되어야 합니다.
또한 안정적인 On-Premise 환경 운영을 위해 전산실 부대설비(UPS, 항온 항습기 등), 환경감시(온/습도, 누수 등)에 대한 레거시 환경 맞춤형 관리가 가능해야 합니다. 물리/가상 자원 간의 그룹화 관리 기능, 다양한 자원 간의 이벤트 연관 설정 및 분석 기능도 성공적인 레거시 환경 모니터링을 위한 필수조건입니다.
6. 성공적인 모니터링 솔루션 선택 기준은?
클라우드 전환기, 하이브리드 클라우드 환경에서 성공적인 모니터링을 위한 루션 선택 기준은
1) 기술력이 있는지 2) 검증된 솔루션인지 3) 믿을 수 있는 기업인지
이렇게 세 가지로 정리할 수 있습니다.
하나, 기술력이 있는 솔루션인가?
클라우드와 레거시 통합을 위한 프레임워크 기반의 솔루션
인지, 그리고
여러 환경에 존재하는 IT 자원을 통합적으로 가시화
할 수 있는지,
변화에 쉽게 대응할 수 있는 사용자 맞춤 설계형 대시보드를 제공
하는지를 꼭 살펴봐야 합니다.
브레인즈컴퍼니 제니우스(Zenius)의 퍼블릭 클라우드 서비스 관제 예시
또한 AI 기술을 통해 장애를 사전에 예방하는 제니우스(Zenius) 처럼,
서비스 장애로 인한 손실을 방지하기 위한 사전 장애 감지 및 대응도 지원
하는지 꼭 살펴봐야 합니다. 업무 효율과 편의성을 높이기 위한
오토스케일링 자동 대응, 장애/이벤트 오토리커버리 등 운영 자동화 기능
도 필수 요소입니다.
둘, 검증된 솔루션인가?
클라우드 서비스 보안인증(CSAP), 마켓플레이스 등록 등 클라우드 환경에서의 성능 검증 절차 등 거친 솔루션
인지도 중요하게 살펴봐야 합니다. 또한 다수의 공공기관 및 다양한 산업군에서 사용되고 있는지도 중요한 판단 기준입니다.
셋, 믿을 수 있는 기업의 솔루션인가?
마지막으로
모니터링 서비스를 개발 및 운영한 업력, 재무 상태 안정성, 전문 인력 보유 등으로 지속적인 지원
이 가능한 기업의 솔루션인지를 검토해 봐야 합니다.
。。。。。。。。。。。。
브레인즈컴퍼니는 전통적인 IT 인프라 모니터링 시장에서의 경험을 바탕으로, 하이브리드 환경에서의 성공적인 모니터링을 수행하고 있습니다. 이제 필수가 된 클라우드 전환, 제대로 된 솔루션 선택을 통해 성공적으로 진행하시기 바랍니다!
#클라우드
#하이브리드클라우드
#프라이빗클라우드
#Cloud
오다인
프리세일즈팀
프리세일즈팀에서 사업 수주를 위한 업무를 수행하며 Zenius의 위닝 포인트를 만들어 갑니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
앞선 글들을 통해서 NMS의 기본 개념, 구성요소와 기능, 정보 수집 프로토콜에 대해서 알아봤었는데요. 이번 글에서는 NMS의 역사와 진화 과정, 그리고 최근 트렌드에 대해서 자세히 알아보겠습니다. EMS, NPM, 그리고 AIOps에 이르기까지 네트워크의 빠른 변화에 발맞추어 진화하고 있는 NMS에 대해서 하나씩 하나씩 살펴보겠습니다. ㅣNMS의 역사와 진화 과정 우선 NMS의 전반적인 역사와 진화 과정을 살펴보겠습니다. [1] 초기 단계 (1980년대 이전) 초기에는 네트워크 관리가 수동적이었습니다. 네트워크 운영자들은 네트워크를 모니터링하고 문제를 해결하기 위해 로그 파일을 수동으로 분석하고 감독했습니다. [2] SNMP의 등장 (1988년) SNMP(Simple Network Management Protocol)의 등장으로 네트워크 장비에서 데이터를 수집하고 이를 중앙 집중식으로 관리하는 표준 프로토콜을 통해 네트워크 관리자들이 네트워크 장비의 상태를 실시간으로 모니터링하고 제어할 수 있게 됐습니다. [3] 네트워크 관리 플랫폼의 출현 (1990년대 중후반) 1990년대 후반부에는 상용 및 오픈 소스 기반의 통합된 네트워크 관리 플랫폼이 등장했습니다. 이러한 플랫폼들은 다양한 네트워크 장비와 프로토콜을 지원하고, 시각화된 대시보드와 경고 기능 등을 제공하여 네트워크 관리의 편의성을 높였습니다. [4] 웹 기반 NMS (2000년대 중반) 2000년대 중반에는 웹 기반의 NMS가 등장했습니다. 이러한 시스템은 사용자 친화적인 웹 인터페이스를 통해 네트워크 상태를 모니터링하고 관리할 수 있게 했습니다. [5] 클라우드 기반 NMS (2010년대 이후) 최근 몇 년간 클라우드 기반 NMS의 등장으로 네트워크 관리의 패러다임이 변화하고 있습니다. 또한 빅데이터 기술과 인공지능(AI) 기술을 활용하여 네트워크 성능을 최적화하고, 향후 성능을 예측할 수 있는 성능 예측 기능까지 NMS에서 제공하고 있습니다. ㅣNMS에서 EMS로의 진화 네트워크 환경은 빠르게 변화하게 되고, 이에 따라서 NMS도 EMS로 진화하게 됩니다. NMS의 진화는 총 세 가지 세대로 나눌 수 있습니다. 1세대: 디바이스 관리 시스템 기존의 NMS는 외산 제조사에서 제공하는 전용 네트워크 솔루션이 주를 이루었습니다. CISCO의 시스코웍스(CiscoWorks), IBM의 넷뷰(NetView) HP의 네트워크 노드 매니저(Network Node Manager) 등 다양한 벤더들이 자사의 제품에 대한 모니터링 서비스를 제공하기 위해 특화된 디바이스 관리 솔루션을 내놓았죠. HP Network Node Manager 예시 화면(출처ⓒ omgfreeet.live) 물론 자사의 제품을 관리하기 위한 목적에서 출발한 솔루션이었기에, 대규모 이기종 IT 인프라 환경에 대한 모니터링 기능은 제공하지 못했습니다. 2세대: IT 인프라 관리 시스템 EMS의 등장 1세대의 NMS의 경우 빠르게 급변하는 네트워크 트렌드를 따라갈 수 없었습니다. 가상랜(VLAN), 클라이언트-서버 기술이 발달하게 되자, IP 네트워크 관계만으로 실제 토폴로지를 파악하기 어려웠습니다. 또한 네트워크장비 및 회선의 상태뿐 아니라, 서버 등의 이기종 IT 인프라 통합 모니터링에 대한 니즈와 함께 EMS(Enterprise Management System)의 시대가 시작됩니다. 이에 따라 서비스 관리 차원의 통합 관제 서비스가 등장합니다. 기존의 네트워크 모니터링뿐 아니라 서버, DBMS, WAS 등 IT 서비스를 이루고 있는 모든 인프라들에 대한 통합 모니터링에 대한 관심과 니즈가 증가했기 때문입니다. 3세대: 클라우드 네이티브 환경의 EMS 2010년 중 이후 서버, 네트워크 등 IT 인프라에 대한 클라우드 네이티브로의 전환이 가속화되었습니다. 기존의 레거시 환경에 대한 모니터링과 함께 퍼블릭, 프라이빗 클라우드에 대한 모니터링 니즈가 증가하면서 모든 환경에 대한 통합적인 가시성을 제공해 줄 수 있는 EMS가 필요하게 되었죠. 이외에도 AI의 발전을 통해 AIOps, Observability라는 이름으로 인프라에 대한 장애를 사전적으로 예측할 수 있는 기능이 필요하게 됐습니다. ㅣ네트워크 환경 변화(가상화)와 NMS의 변화 이번에는 네트워크 환경 변화에 따른 NMS의 변화에 대해서 알아보겠습니다. 네트워크 환경 변화(네트워크 가상화) 네트워크 구성 방식은 지속적으로 변화해왔습니다. 클라이언트-서버 모델부터 중앙 집중식 네트워크, MSA 환경에서의 네트워크 구성까지 이러한 변화는 기술 발전, 비즈니스 요구 사항, 보안 요구 사항 등 다양한 요인에 의해 영향을 받았는데요. 무엇보다 가장 중요한 변화는 전통적인 온 프레미스 네트워크 구조에서 네트워크 자원이 더 이상 물리적인 장비 기반의 구성이 아닌 가상화 환경에서 구성된다는 점입니다. ▪소프트웨어 정의 네트워킹(SDN, 2000년대 후반 - 현재): 네트워크 관리와 제어를 분리하고 소프트웨어로 정의하여 유연성과 자동화를 향상시키는 접근 방식입니다. SDN은 네트워크 관리의 복잡성을 줄이고 가상화, 클라우드 컴퓨팅 및 컨테이너화와 같은 새로운 기술의 통합을 촉진시켰습니다. ▪네트워크 가상화 (NFV, 현재): 기존 하드웨어 기반 전용 장비에서 수행되던 네트워크 기능을 소프트웨어로 가상화하여 하드웨어 의존성과 장비 벤더에 대한 종속성을 배제하고, 네트워크 오케스트레이션을 통해 네트워크 환경 변화에 민첩한 대응을 가능하게 합니다. ㅣ클라우드, AI 등의 등장에 따른 NMS의 방향 클라우드 네이티브가 가속화되고, AI를 통한 인프라 관리가 주요 화두로 급부상하면서 네트워크 구성과 이를 모니터링하는 NMS의 환경 역시 급변하고 있습니다. 클라우드 내의 네트워크: VPC VPC(Virtual Private Cloud)는 퍼블릭 클라우드 환경에서 사용할 수 있는 전용 사설 네트워크입니다. VPC 개념에 앞서 VPN에 대한 개념을 단단히 잡고 넘어가야 합니다. VPN(Virtual Private Network)은 가상사설망으로 '가상'이라는 단어에서 유추할 수 있듯이 실제 사설망이 아닌 가상의 사설망입니다. VPN을 통해 하나의 네트워크를 가상의 망으로 분리하여, 논리적으로 다른 네트워크인 것처럼 구성할 수 있습니다. VPC도 이와 마찬가지로 클라우드 환경을 퍼블릭과 프라이빗의 논리적인 독립된 네트워크 영역으로 분리할 수 있게 해줍니다. VPC가 등장한 후 클라우드 내에 있는 여러 리소스를 격리할 수 있게 되었는데요. 예를 들어 'IP 주소 간에는 중첩되는 부분이 없었는지', '클라우드 내에 네트워크 분리 방안' 등 다양한 문제들을 VPC를 통해 해결할 수 있었습니다. ▪서브넷(Subnet): 서브넷은 서브 네트워크(Subnetwork)의 줄임말로 IP 네트워크의 논리적인 영역을 부분적으로 나눈 하위망을 말합니다. AWS, Azure, KT클라우드, NHN 등 다양한 퍼블릭 클라우드의 VPC 서브넷을 통해 네트워크를 분리할 수 있습니다. ▪서브넷은 크게 퍼블릿 서브넷과 프라이빗 서브넷으로 나눌 수 있습니다. 말 그대로 외부 인터넷 구간과 직접적으로 통신할 수 있는 공공, 폐쇄적인 네트워크 망입니다. VPC를 이용하면 Public subnet, Private subnet, VPN only subnet 등 필요에 따라 다양한 서브넷을 생성할 수 있습니다. ▪가상 라우터와 라우트 테이블(routing table): VPC를 통해 가상의 라우터와 라우트 테이블이 생성됩니다. NPM(Network Performance Monitoring) 네트워크 퍼포먼스 모니터링(NPM)은 전통적인 네트워크 모니터링을 넘어 사용자가 경험하는 네트워크 서비스 품질을 측정, 진단, 최적화하는 프로세스입니다. NPM 솔루션은 다양한 유형의 네트워크 데이터(ex: packet, flow, metric, test result)를 결합하여 네트워크의 성능과 가용성, 그리고 사용자의 비즈니스와 연관된 네트워크 지표들을 분석합니다. 단순하게 네트워크 성능 데이터(Packet, SNMP, Flow 등)를 수집하는 수동적인 과거의 네트워크 모니터링과는 다릅니다. 우선 NPM은 네트워크 테스트(Synthetic test)를 통해 수집한 데이터까지 활용하여, 실제 네트워크 사용자가 경험하는 네트워킹 서비스 품질을 높이는데 그 목적이 있습니다. NPM 솔루션은 NPMD라는 이름으로 불리기도 합니다. Gartner는 네트워크 성능 모니터링 시장을 NPMD 시장으로 명명하고 다양한 데이터를 조합하여 활용하는 솔루션이라고 정의했습니다. 즉 기존의 ICMP, SNMP 활용 및 Flow 데이터 활용과 패킷 캡처(PCAP), 퍼블릭 클라우드에서 제공하는 네트워크 데이터 활용까지 모든 네트워크 데이터를 조합하는 것이 핵심이라 할 수 있습니다. AIOps: AI를 활용한 네트워크 모니터링 AI 모델을 활용한 IT 운영을 'AIOps'라고 부릅니다. 2014년 Gartner를 통해 처음으로 등장한 이 단어는 IT 인프라 운영에 머신러닝, 빅데이터 등 AI 모델을 활용하여 리소스 관리 및 성능에 대한 예측 관리를 실현하는 것을 말합니다. 가트너에서는 AIOps에 대한 이해를 위해 관제 서비스, 운영, 자동화라는 세 가지 영역으로 분류해서 설명하고 있습니다. ▪관제(Observe): AIOps는 장애 이벤트가 발생할 때 분석에 필요한 로그, 성능 메트릭 정보 및 기타 데이터를 자동으로 수집하여 모든 데이터를 통합하고 패턴을 식별할 수 있는 관제 단계가 필요합니다. ▪운영(Engine): 수집된 데이터를 분석하여 장애의 근본 원인을 판단하고 진단하는 단계로, 장애 해결을 위해 상황에 맞는 정보를 IT 운영 담당자에게 전달하여 반복적인 장애에 대한 조치 방안을 자동화하는 과정입니다. ▪자동화(Automation): 장애 발생 시 적절한 해결책을 제시하고 정상 복구할 수 있는 방안을 제시하여, 유사 상황에도 AIOps가 자동으로 조치할 수 있는 방안을 마련하는 단계입니다. 위의 세 단계를 거쳐 AIOps를 적용하면 IT 운영을 사전 예방의 성격으로 사용자가 이용하는 서비스, 애플리케이션, 그리고 인프라까지 전 구간의 사전 예방적 모니터링을 가능하게 합니다. 또한 구축한 데이터를 기반으로 AI 알고리즘 및 머신 러닝을 활용하여 그 어떠한 장애에 대한 신속한 조치와 대응도 자동으로 가능하게 합니다. Zenius를 통한 클라우드 네트워크 모니터링 참고로 Zenius를 통해 각 퍼블릭 클라우드 별 VPC 모니터링이 가능합니다. VPC의 상태 정보와 라우팅 테이블, 서브넷 목록 및 서브넷 별 상세 정보 (Subnet ID, Available IP, Availability Zone 등)에 대한 모니터링 할 수 있습니다. Zenius-CMS를 통한 AWS VPC 모니터링 이외에도 각 클라우드 서비스에 대한 상세 모니터링을 통해 클라우드 모니터링 및 온 프레미스를 하나의 화면에서 모니터링하실 수 있습니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼, 네트워크의 변화에 따라서 NMS는 계속해서 진화하고 있습니다. 현재의 네트워크 환경과 변화할 환경을 모두 완벽하게 관리할 수 있는 NMS 솔루션을 통해 안정적으로 서비스를 운영하시기 바랍니다.
2024.04.03
쿠버네티스(K8s) 모니터링에서 가장 중요한 두 가지?!
쿠버네티스(K8s) 모니터링에서 가장 중요한 두 가지?!
2022년 CNCF의 연간 조사에 따르면 전 세계 기업의 96%가 쿠버네티스를 활용 중이거나 활용을 고려 중인 것으로 나타났습니다. 또한 가트너는 쿠버네티스(Kubernetes, K8s) 시장의 규모가 올해 1조 2천억 원대를 돌파할 것으로 내다봤습니다. 이처럼 쿠버네티스가 '대세'로 자리 잡고 있는 가운데, 쿠버네티스 활용에 대한 어려움을 겪는 기업도 많아지고 있습니다. 클러스터 내의 리소스 할당/운영과 쿠버네티스 콘솔(대시보드)의 구성이 가장 큰 어려움으로 꼽히는데요, 이러한 어려움을 극복하기 위한 첫 번째 조건은 바로 올바른 '쿠버네티스 모니터링'입니다. 효과적이고 올바른 쿠버네티스 모니터링을 위해선 두 가지를 '꼭' 기억해야 하는데요, 지금부터 그 두 가지를 자세히 알아보겠습니다. ㅣ올바른 쿠버네티스 모니터링을 위한 두 가지 조건 첫 번째, 쿠버네티스의 주요 항목을 한눈에 볼 수 있어야 합니다 쿠버네티스 환경은 규모가 크고 동적이며 복잡한 구조를 가지고 있습니다. 그렇기 때문에 리소스 사용률, 에러 로그 등의 중요 정보를 실시간으로 파악할 수 있어야 합니다. 따라서 쿠버네티스 모니터링을 효과적으로 수행하기 위해 첫 번째로 기억해야 할 것은 '쿠버네티스 환경을 한 화면에서 종합적으로 볼 수 있어야 한다는 점'입니다. 우선 종합적인 모니터링을 통해 리소스 사용률, 트래픽 패턴 등의 중요 정보를 실시간으로 파악할 수 있어 문제 발생 시 빠르게 원인을 진단하고 해결할 수 있습니다. 또한 쿠버네티스 운영의 핵심은 효율적인 리소스 관리인데, 종합적인 모니터링을 통해 리소스 낭비를 줄이고 애플리케이션의 성능을 최적화할 수 있습니다. 이와 더불어 시스템의 이상 유무를 지속적으로 모니터링함으로써, 예기치 않은 다운타임 등의 오류를 방지할 수도 있죠. 따라서 쿠버네티스 모니터링 솔루션에는 각 구성요소들 간의 관계와 영향도를 '한 눈'에 파악할 수 있는 모니터링 View가 반드시 필요합니다. 더불어 쿠버네티스 환경을 관리하는 운영자나 조직마다 중요하게 생각하는 데이터 지표가 다릅니다. 때문에 운영자가 자신의 필요에 따라 모니터링 화면을 자유롭게 구성할 수 있다면, 더욱 효과적으로 시스템을 관리할 수 있습니다. [그림1] (왼) 클러스터 상세 모니터링 View, (중) 클러스터 메인 모니터링 View, (오) 주요 Service 모니터링 View 더 자세한 설명을 위해 제니우스(Zenius)의 쿠버네티스 모니터링 솔루션인 Zenius-K8s을 예로 살펴보겠습니다. 우선 [그림1]에 나와있는 것처럼 쿠버네티스 모니터링 솔루션은 여러 클러스터 현황을 한눈에 확인할 수 있는 요약 뷰를 제공해야 합니다. 이를 통해 클러스터의 상세한 현황과 노드, 파드, 컨테이너, 서비스 등을 통합적으로 모니터링할 수 있기 때문이죠. 이러한 기능은 운영자로 하여금 시스템 전반에 대한 신속한 이해를 가능하게 하고, 업무 효율성을 크게 높여줍니다. [그림2] (왼) Zenius-K8s 운영현황 오버뷰 (오) 사용자가 직접 정보를 구성할 수 있는 컴포넌트 수정창 여기에 더해서 Zenius-K8s처럼 쿠버네티스 주요 데이터 지표를 '사용자 관제 목적'에 따라 자유롭게 구성이 가능하고 가시성 높은 다양한 차트와 컴포넌트를 포함한 오버뷰를 제공한다면, 더욱더 성공적인 쿠버네티스 활용이 가능해집니다. 두 번째, 클러스터 별로 상세한 성능을 확인할 수 있어야 합니다 효과적이고 올바른 쿠버네티스 모니터링을 위한 두 번째 조건은, '클러스터 별로 상세한 성능을 확인할 수 있어야 한다는 것'입니다. 특히 쿠버네티스 환경을 관리하고 최적화함에 있어서 핵심적인 역할을 하는 클러스터 현황(노드, 파드, 컨테이너), 성능 지표(CPU 사용량, Memory 사용량), 이벤트 현황을 연관 지어 직관적으로 모니터링할 수 있어야 합니다. 이를 통해서 운영자는 클러스터의 전반적인 상태를 실시간으로 모니터링하고, 발생 가능한 문제를 조기에 식별하여 시스템의 안정성과 성능을 지속적으로 높일 수 있기 때문이죠. 또한 클러스터의 각 구성 요소가 서로 다른 역할을 수행하기 때문에 각 노드, 파드, 컨테이너별로 상세히 모니터링하는 것도 매우 중요합니다. [그림3] 클러스터 별 상세정보 요약 뷰 지금 살펴본 내용을 Zenius-K8s 예시 화면을 통해 다시 한번 되짚어 보겠습니다. 먼저 위 [그림3]에서 보이는 것처럼 주요 클러스터 현황(노드, 파드, 컨테이너 등), 주요 성능 지표(CPU, Memory 사용률 등), 이벤트 현황 등을 한 화면에서 확인할 수 있는 요약 뷰가 있어야 합니다. [그림4] Zenius-K8s 토폴로지 맵 특히, Zenius-K8s의 경우 수집한 데이터를 기반으로 자동으로 각 구성요소 간의 연관관계와 서비스 상태를 토폴로지 맵(Topolgy Map) 형태로 구성할 수 있습니다. 또한 다양한 조회 기준(노드, 네임스페이스, 서버)과 상세 정보 조회 기능을 제공하고 있죠. 쿠버네티스 모니터링 솔루션에는, 직관적이고 효율적인 모니터링을 위해 반드시 위와 같은 기능이 포함되어 있어야 합니다. [그림5] 노드(Node) 별 상세 모니터링 [그림6] 파드(Pod) 별 상세 모니터링 [그림7] 컨테이너(Container) 별 상세 모니터링 마지막으로 위의 Zenius-K8s의 예시 화면들처럼, 클러스터 내 각각의 구성요소에 대한 상세한 모니터링이 필요합니다. 이를 통해 산재된 데이터에 대한 효율적인 관리가 가능하기 때문이죠. 。。。。。。。。。。。。 지금까지 성공적인 쿠버네티스 모니터링을 위한 두 가지 조건을 살펴봤습니다. 쿠버네티스의 활용도와 중요성이 더 커지는 가운데, 운영의 안정성과 효율성을 높여주는 쿠버네티스 모니터링 솔루션 도입은 이제 선택이 아닌 필수가 되었습니다. 쿠버네티스 현황을 한눈에 볼 수 있고, 세부 요소를 세밀하게 들여다볼 수 있는 모니터링 솔루션을 통해서 성공적으로 쿠버네티스를 활용하시기 바랍니다.
2024.04.05
금융권에서 꾸준히 각광받는 제니우스(Zenius)
금융권에서 꾸준히 각광받는 제니우스(Zenius)
지난해 10월 일본의 은행 간 결제 시스템이 이틀간 '먹통'이 된 사태가 발생했었습니다. 그리고 한 달 후에는 카드 결제 데이터를 처리하는 일본 카드 네트워크의 시스템 오류로 인해 일본 각지에서 7시간 넘게 시민들이 카드 사용을 못 하는 불편이 발생하기도 했죠. 일본의 사례와 같이 은행이나 카드회사 등의 금융회사에서 네트워크/서버의 장애가 발생할 경우 궁극적으로 이익과 신뢰도의 급감으로 이어질 수 있습니다. 그렇기 때문에 '사고 없는' IT 인프라 환경 운영을 위한 노력을 이어가는 가운데, 브레인즈컴퍼니의 제니우스(Zenius)을 활용하는 금융기관이 꾸준히 증가하고 있습니다. ㅣ제니우스, 금융기관에서 꾸준히 각광받다 앞서 언급한 대로, 제니우스를 도입하고 활용하는 금융기관이 꾸준히 늘고 있습니다. 최근 수협중앙회는 '통합관제 및 운영 자동화'를 위해, 그리고 새마을금고는 '빅데이터 플랫폼 고도화'를 위해 제니우스를 도입했습니다. 또한 한국수출입은행과 한국 주택금융공사도 서버와 네트워크 관리를 위해 제니우스를 활용하고 있습니다. 이 밖에도 NH 뱅크, 신협중앙회, 광주은행, IBK 투자증권, DB손해보험 등에서도 꾸준히 제니우스를 활용하고 있습니다. 그렇다면 금융기관에서 제니우스를 꾸준히 사용하고 있는 이유는 무엇일까요? ㅣ제니우스의 네 가지 강점 금융기관에서 꾸준히 각광받는 제니우스는 크게 네 가지의 강점이 있습니다. [1] IT 인프라에 대한 통합 관리 제니우스는 금융기관의 복잡한 IT 환경을 통합 관리할 수 있는 기능들을 제공합니다. 이를 통해 IT 인프라의 성능 및 장애 정보를 빠르게 파악할 수 있어서, 운영 효율성과 안정성을 크게 높을 수 있습니다. [2] 보안 강화 금융기관에 필수적인 높은 수준의 보안을 유지할 수 있도록 제니우스는 통합 로그 관리, 보안 취약점 점검 등의 보안 기능을 제공합니다. 이를 통해 보안 위협에 대응하고 사전에 예방할 수 있습니다. [그림] 제니우스(Zenius) 오버뷰 예시화면 [3] 장애 대응 및 예방 실시간 모니터링과 자동 장애 복구 기능으로 시스템 장애에 대한 신속한 예방과 대응이 가능합니다. 이를 통해 서비스 중단을 최소화하고, 고객 만족도를 높일 수 있습니다. [4] 클라우드 서비스 지원 쿠버네티스 활용을 비롯한 클라우드 환경으로의 전환은 금융기관의 중요한 이슈로 떠오르고 있습니다. 제니우스는 모든 클라우드 환경(퍼블릭, 프라이빗, 하이브리드)에 대한 모니터링이 가능하여, 클라우드 서비스 안정성과 효율성을 크게 높여줍니다. 제니우스(Zenius)는 앞서 살펴 본 금융기관뿐 아니라, 공공기관과 기업을 포함한 1,000곳 이상에서 활발히 활용되고 있습니다. CSAP 인증과 GS 인증 1등급도 획득한 제니우스를 통해 성공적인 IT 인프라를 관리하시기 바랍니다.
2024.04.16
SDN(소프트웨어 정의 네트워크)의 주요 특징과 성공사례는?!
SDN(소프트웨어 정의 네트워크)의 주요 특징과 성공사례는?!
지메일, 유튜브, 구글맵스, 구글 클라우드까지.. 구글은 자사의 다양한 서비스들이 어디에서나 원활하게 돌아갈 수 있도록, 전 세계 곳곳의 수많은 데이터 센터를 운영하고 있습니다. 구글의 한 데이터 센터 전경(출처ⓒ google.com) 그리고 이 데이터 센터간의 효율적이고 안정적인 '네트워크' 구축을 위해, 다양한 노력을 펼치고 있습니다. 사용자에게 빠른 서비스를 제공하기 위해선 데이터 센터간의 높은 연결성과 효율성이 필수조건이기 때문이죠. 구글의 네트워크 운영은 2012년에 큰 전환점을 맞이합니다. 이 변화의 중심에는 SDN(Software Defined Network, 소프트웨어 정의 네트워크)이란 기술이 있는데요. 구글의 네트워크 운영 효율과 안정성을 극적으로 개선시킨 SDN은 과연 무엇일까요? 우선 SDN의 주요 특징부터 살펴보겠습니다. ㅣSDN의 두 가지 핵심특징 SDN은 네트워크 관리를 간소화하고 네트워크 구성의 유연성을 높이기 위해 고안된 기술입니다. SDN에는 두 가지 핵심적인 특징이 있는데요. 첫 번째 특징, 컨트롤 플레인과 데이터 플레인의 분리 SDN을 대표하는 첫 번째 특징은, 네트워크 장비의 전반적인 데이터를 중앙 집중적으로 관리할 수 있는 컨트롤 플레인(Control Plane)과, 트래픽 전송 역할을 하는 데이터 플레인(Data Plane)이 분리된 것입니다. 이러한 분리에 따른 두 가지 효과를 살펴보겠습니다. (1) 최적의 로드밸런싱이 가능해짐 기존에는 라우터와 스위치 등의 네트워크 장비가 경로를 결정했었습니다. 이 장비들은 주로 최단 경로 알고리즘을 통해 패킷을 전달하기 때문에, 네트워크 관리자가 특정 경로를 원하는대로 설정하기엔 어려움이 있었습니다. 즉 '로드밸런싱'이 어려웠었죠. 하지만 SDN은 이러한 상황의 변화를 가져왔습니다. [그림] SDN 로드밸런싱 예를 들어 보겠습니다. 기존에는 경로 정보가 있을 때 U에서 나가는 트래픽을 V와 X에 각각 분산시키고 싶을 경우, 기존의 최단 알고리즘을 통하면 항상 최단의 경로로만 라우팅할 수 있었습니다. 하지만 위 [그림]처럼 SDN을 사용하면 네트워크 관리자는 전체 네트워크의 상태를 실시간으로 파악하고, 트래픽을 V와 X로 균등하게 분산시키는 등 세밀한 조정을 할 수 있습니다. 이를 통해 네트워크의 효율성을 극대화하고, 트래픽 과부하나 장애 발생 시 빠르게 대응할 수 있게 되었죠. (2) 비용 절감과 효율성 증대 SDN을 통해 기업들은 고가의 전용 네트워크 장비를 사용하지 않고도, 필요한 네트워크 기능을 구현할 수 있게 되었습니다. 이에 따라서 초기 장비 투자 비용(CapEx)과 네트워크의 운영 비용(OpEx)을 모두 줄일 수 있습니다. 또한 네트워크 관리의 자동화와 최적화로 운영의 효율성을 높여주며, 장기적으로는 인적 자원에 대한 비용 절감으로도 이어집니다. 두 번째 특징, 중앙 집중식 관리 시스템 SDN을 대표하는 또다른 특징은 소프트웨어(SDN 컨트롤러)가 중앙에서 제어한다는 것입니다. 이 소프트웨어가 네트워크의 '두뇌' 역할을 하며, 네트워크의 각 기능이 어떻게 동작할지 지시합니다. 이러한 특징으로 인한 대표적인 효과를 살펴보겠습니다. (1) 유연성과 신속한 대응 기존 네트워크 시스템은 하드웨어 중심으로 돌아가기 때문에, 이 변화에 적응하기 위해선 실제 장비를 교체하거나 수동으로 설정을 변경해야 했습니다. 하지만 SDN에서는 모든 제어 기능이 '중앙'에서 소프트웨어로 이루어지기 때문에, 변경 사항이나 새로운 요구 사항이 발생했을 경우 관리자는 물리적 장비에 접근하거나 개별 설정을 조정할 필요없이 소프트웨어를 통해 네트워크를 즉시 업데이트할 수 있게 되었습니다. 이 덕분에 기존에 며칠이나 몇 주가 걸리던 네트워크 변경 작업을 몇 분 안에 할 수 있게 됐습니다. (2) 보안과 성능 최적화 기존의 전통적인 네트워크 관리 방식에서는, 네트워크의 각 부분에 대해서 심층적으로 들여다 보는 것이 어려웠습니다. 네트워크 장비와 시스템이 서로 다른 플랫폼과 프로토콜을 사용했기 때문에, 전체적인 네트워크 상태의 모니터링이 사실상 불가능했었죠. 하지만 SDN은 소프트웨어를 통한 중앙집중식 관리 시스템으로 이루어져 있기에, 네트워크의 모든 부분에 대한 실시간 통합 관리가 가능합니다. 이를 통해서 보안 위협을 빠르게 식별하고 대응할 수 있게 되었죠. 또한 트래픽 패턴을 정밀하게 분석하여 재분배하고, 트래픽 병목 현상을 예방하여 전반적인 네트워크 성능도 개선할 수 있게 됐습니다. SDN의 두 가지 특징과 그로 인한 효과를 알아봤는데요. 이제 SDN의 아키텍처와 구현 방식에 대해서도 한번 살펴보겠습니다. ㅣSDN의 아키텍처와 구현 방식 SDN 아키텍처: 세 가지 주요 계층 SDN은 네트워크 관리를 더 유연하고 효율적으로 만들기 위해, '세 가지' 주요 계층으로 구성되어 있습니다. 세 가지 계층은 앞서 언급했던 Control Plane(컨트롤 플레인)과 Data Plane(데이터 플레인), 그리고 Application Plane(응용 프로그램 계층)입니다. 각 계층은 네트워크를 관리하고 운영하는데 있어 중요한 역할을 하는데요. 각 계층별 역할과 연관성에 대해서 알아보겠습니다. 우선 아래 [그림]에 가장 하단에 위치한 Data Plane(데이터 플레인)은 Control Plane(컨트롤 플레인)이 내린 결정에 따라 실제 데이터 패킷(Data packet)을 전송하는 역할을 합니다. 데이터 플레인은 스위치, 라우터 같은 물리적 장비를 통해 구현되며, 이들 장비는 데이터 패킷을 처리하고 전달하죠. [그림] SDN 아키텍처 중간에 위치한 Control Plane(컨트롤 플레인)은 네트워크에서 어떤 데이터가 어디로 가야 하는지 결정하는 역할을 합니다. 즉 Control Plane(컨트롤 플레인)은 네트워크 트래픽을 어디로 보낼지 결정하는 역할을 합니다. 가장 위에 위치한 Application Plane(응용 프로그램 계층)은 사용자에게 서비스를 제공하는 소프트웨어 애플리케이션을 말합니다. 이 계층은 SDN의 나머지 두 계층 위에 있으며, 네트워크의 다양한 리소스를 활용해 실제 사용자에게 서비스를 제공합니다. 클라우드 스토리지 서비스나 스트리밍 서비스 같은 것이 여기에 해당됩니다. 이 서비스들은 Control Plane(컨트롤 플레인)과 Data Plane(데이터 플레인)을 통해 데이터를 주고 받으며, 사용자에게 콘텐츠를 제공하죠. 이처럼 세 계층은 서로 밀접하게 연결되어 있습니다. 다시 말해 Control Plane(컨트롤 플레인)이 네트워크의 전반적인 관리와 결정을 담당하면, Data Plane(데이터 플레인)은 그 결정을 바탕으로 실제 데이터를 전송하죠. 그리고 Application Plane(응용 프로그램 계층)은 이 모든 네트워크 인프라 위에서 동작하며, 최종 사용자에게 서비스를 제공합니다. SDN의 구현 방식 위에서 살펴본 것 처럼 SDN은 세 개의 층으로 이루어져 있는데요. 이 각각의 층이 '제대로' 역할을 수행하기 위해서 꼭 필요한 것이 SDN Controller, OpenFlow 프로토콜입니다. OpenFlow 프로토콜은 SDN 컨트롤러와 네트워크 장비 사이에서 동작하는 프로토콜입니다. 컨트롤 플레인과 데이터 플레인 사이의 소통을 담당하고 있죠. OpenFlow 프로토콜은 컨트롤 플레인이 네트워크 장비에 구체적인 지시를 내리고, 그 지시에 따라 트래픽을 어디로 보낼지 결정할 수 있게 해줍니다. [그림] SDN 컨트롤러, OpenFlow 프로토콜 SDN 컨트롤러는 이 모든 과정을 조율하는 '중앙 집중식 지휘소'라 할 수 있는데요. 컨트롤러는 네트워크의 전반적인 상황을 파악하고, 데이터 플로우를 최적화하기 위한 결정을 내리며, OpenFlow를 통해 그 결정을 네트워크 장비에 전달합니다. 컨트롤러가 없다면 마치 중앙 교통 관리 시스템이 없이 각자의 판단에 따라 움직이는 차량들처럼 혼란스러워 지겠죠. 이처럼 SDN 컨트롤러와 OpenFlow 프로토콜을 통해 구현된 중앙 집중식 네트워크 관리는 효율적이고 유연한 트래픽 조정을 가능하게 합니다. 이제 마지막으로 맨 앞에서 잠시 살펴 본 구글(Google)의 사례를 자세히 들여다보겠습니다. ㅣ사례를 통해 보는 SDN: 구글의 G-Scale 구글의 'G-Scale SDN 프로젝트(2012)'는 SDN을 가장 효과적으로 활용한 대표적인 사례입니다. 이 프로젝트는 구글이 2010년부터 진행한 OpenFlow 프로젝트의 일환으로, 구글 데이터센터 백본(BackBone)1 구간을 SDN 기반으로 전환하는 대담한 시도였죠. 구글 이 프로젝트를 통해 성취한 결과는 인상적인 수준을 넘어, 네트워크 관리 방식에 혁신을 일으켰다고 평가받고 있습니다. 구글은 얻은 대표적인 세 가지 이득을 살펴보겠습니다. *1: 백본: 전산망 속에서 근간이 되는 네트워크를 연결시켜주는 대규모 전송회선 [그림] 구글 G-Scale 프로젝트를 통해 구축된 데이터 센터(2012) 1. 인프라 리소스의 최적 활용 구글은 OpenFlow를 기반으로 한 SDN을 적용해 기존에 40~50% 수준에 머물렀던 네트워크 인프라의 활용도를 거의 100% 가까이 끌어올렸습니다. 기존 네트워크 시스템에서는 다양한 벤더의 장비들이 서로 완벽하게 호환되지 않은 문제로 인해, 전체 네트워크 장비의 효율성이 제한되곤 했었죠. 하지만 구글의 SDN 구현은 이러한 한계를 넘어서, 네트워크 자원을 훨씬 유연하게 관리할 수 있는 방법을 제시할 수 있게 했습니다. 2. WAN 대역의 경로 최적화 WAN(Wide Area Network)에서의 데이터 전송 속도와 효율성은, 전 세계 사용자들에게 고품질의 서비스를 제공하는 데 핵심적인 요소인데요. 구글은 SDN을 통해 이러한 WAN 대역의 데이터 전송 경로를 최적화하여, 사용자 경험을 크게 향상시킬 수 있었습니다. 이는 전 세계 서비스를 제공하는 구글에게 있어 대단히 중요한 성과였죠. 3. 네트워크 구축 비용의 절감 구글은 SDN 컨트롤러와 화이트박스 스위치의 조합을 통해, 데이터센터 내 네트워크 구축 비용을 대폭 낮출 수 있었습니다. 화이트박스 스위치는 사용자가 네트워크 장비의 동작방식을 직접 결정할 수 있게 하는 개방형 장비로, 구글은 이를 통해 더 효율적이고 경제적인 네트워크 인프라를 구축할 수 있게 됐습니다. 또한 구축 비용의 절감 뿐 아니라 전반적인 서비스 품질의 향상 효과도 거둘 수 있었습니다. [그림] 구글의 다양한 SDN 기술 이처럼 구글의 'G-Scale SDN 프로젝트'는 단순히 기술적 성공을 넘어서, 전 세계 통신사와 네트워크 장비 제조사들이 SDN을 도입하고 네트워크 가상화에 뛰어들게 만든 결정적 계기가 되었습니다. 구글은 여기서 한 발자국 더 나아가 BGP, Espresso, B4, Andromeda, Jupiter 등 다양한 SDN 기술을 적극적으로 활용하고 있습니다. 이러한 노력은 네트워크의 효율성을 극대화하고, 비용을 최적화하여, 데이터 중심의 세계에서 경쟁력을 유지하고, 사용자에게 더 나은 서비스를 제공하는 성과를 만들어내고 있습니다. 구글의 G-Scale 프로젝트라는 큰 성공을 만들어낸 SDN도 '어떻게 하면 안정적으로 네트워크를 관리하고 운영할 수 있을까?'라는 고민에서 시작됐습니다. 네트워크 관리의 중요성은 더욱 더 커지고 있습니다. SDN이라는 혁신적인 기술을 바로 도입하는 것도 물론 좋지만, 그 전에 현재의 네트워크를 제대로 모니터링 하고 있는지 부터 점검해봐야 합니다. 여러분의 네트워크는 제대로 관리되고 있나요?
2024.05.09
다음 슬라이드 보기