반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
디자인 시스템이 필요한 이유와 핵심요소는?
[전시회] 브레인즈컴퍼니가 소프트웨이브2023에서 주목받은 이유
이화정
2023.12.14
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
클라우드 네이티브의 핵심! CNCF의 세 가지 핵심가치
지난번 시간에는
「소프트웨이브2023」
전시회에 브레인즈컴퍼니가 참가하여, 전반적인 현장 스케치를 담았었는데요.
두 번째 이야기에서는
1) 브레인즈컴퍼니와 제니우스(Zenius)를 구체적으로 어떻게 알렸는지 2) 참관객분들의 반응은 어땠는지
를 자세하
게 살펴보려고 합니다.
브레인즈컴퍼니가 참가하여
대성황을 이루었던
소프트웨이브2023
.
그날의 생생한 사진과 리얼한 후기도 있으니 주목해 주세요!
。。。。。。。。。。。。
선근님 인터뷰
국내 바이어 VIP 그룹 투어
전시회 첫날이었던 29일(수), 과기부 장관·국회의원·주요기업 임원진 등 주요 VIP 대상으로 브레인즈컴퍼니를 소개하는 시간이 있었습니다. 소개는 브레인즈 그룹 대표인 선근님께서 진행해 주셨어요!
선근님께서는 브레인즈컴퍼니·에이프리카 회사와 제품 소개를 시작으로,
“앞으로 인공지능(AI)와 클라우드 분야를 선두하는 기업으로 거듭나겠다."
라는 멋진 포부도 밝혀주셨습니다.
이번 소프트웨이브2023에서 브레인즈컴퍼니는, 다양한 콘텐츠로 참관객분들께 다가가려고 노력했는데요. 특히
프론트월, 백월 공간
으로 나누어 설명한 부분이 좋은 반응을 얻었습니다.
참관객분들의 이목을 사로잡은 대시보드
제품별 브로슈어, 대시보드, 구축사례 안내
“대시보드가 너무 예뻐요”
프론트월에서 가장 많이 언급된
Best 답변 1위
랍니다! 많은 참관객분들께서 제니우스의 통합 대시보드와 서비스 종합상황판 대시보드 등을 요리조리 살펴보셨는데요.
“통합관제는 가시성이 무엇보다 중요하다고 생각해요. 그런 의미에서 제니우스의 대시보드는 가시성도 뛰어나고, 고객사 성격에 맞는 커스터마이징도 가능하며, UI적인 면도 우수하네요. 무엇보다 대시보드가 너무 눈에 띄어서 홀린 듯 부스에 들어올 수밖에 없었어요(웃음)”
라며 브레인즈컴퍼니와 제니우스 제품에 칭찬을 아낌없이 해주셨습니다!
이처럼 제니우스의 대시보드는
고객사 IT 업무 및 서비스 운영 현황을 한눈에 파악할 수 있도록 구성하고 시각화했으며, 고객사별 최적의 관제 화면을 구현
해 드리고 있어요.
공공기관·대기업·금융권 등 1,000여 개의 성공적인 구축사례
안내를 통해 제니우스 제품에 신뢰성을 더했답니다!
제니우스 핵심제품을 한눈에
제니우스 제품별 소개, 시연 안내
백월 공간에서는 브레인즈컴퍼니의 4가지 핵심 제품을 직관적으로 확인할 수 있었는데요.
제니우스 EMS, APM, ITSM, SIEM
을 파트별 담당자 엔지니어분들께서 제품 안내를 도와드렸습니다.
제니우스 EMS 제품을 통해 참관객분들께 통합관리 관제의 중요성, 실제 사례, 각 인프라별 관제의 중요성 등을 전달드렸었는데요.
“실제 사례를 직접 눈으로 확인해 보니, 우리 회사에 도입하면 장애 예측이나 장애 시 대응에 편리할 것 같아요.”
와 같은 반응이 대부분 차지했을 정도로 호응도가 좋았습니다.
제니우스 APM 또한, 사용자 관점에서 응답 시간관리가 점점 중요해지고 있음에 따라 EMS와 연계해서 사용할 수 있다는 ‘접근성’ 면에서 좋은 반응을 보여주셨는데요.
“여러 제품을 쓰지 않아도, 제니우스 하나면 모든 관제가 가능하네요! APM을 도입해서 사용하면 한눈에 관리가 편할 것 같아요.”
와 같은 뿌듯한 피드백을 주셨답니다.
。。。。。。。。。。。。
3일 동안 소프트웨이브2023 전시회를 통해 많은 참관객·고객 사분들과 마주하고 소통하며, 브레인즈컴퍼니와 자사 제품을 더 널리 알릴 수 있던 기회였습니다. 특히 브레인즈컴퍼니와 제니우스 제품에 대해 이미 관심을 갖고 방문해 주신 참관객분들이 많다는 점에서 뿌듯하기도 했답니다.
다시 한번 브레인즈컴퍼니와 제니우스 제품에 뜨거운 관심 주셔서 감사드립니다🙇♀️ 앞으로도 브레인즈컴퍼니는 고객분들께 좀 더 적극적으로 다가가기 위한 행사, 콘텐츠 등을 보여드릴게요. 여러분들의 많은 기대와 성원 부탁드리겠습니다!
🔍더보기
소프트웨이브2023 1탄도 있어요
#소프트웨이브2023
#전시회
#브레인즈컴퍼니
#제니우스
#Zenius
#에이프리카
이화정
프리세일즈팀
프리세일즈팀에서 마케팅, 내외부 홍보, 콘텐츠 제작을 담당하고 있어요.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
카프카를 통한 로그 관리 방법
카프카를 통한 로그 관리 방법
안녕하세요! 저는 개발4그룹에서 제니우스(Zenius) SIEM의 로그 관리 기능 개발을 담당하고 있는 김채욱 입니다. 제가 하고 있는 일은 실시간으로 대용량 로그 데이터를 수집하여 분석 후, 사용자에게 가치 있는 정보를 시각화하여 보여주는 일입니다. 이번 글에서 다룰 내용은 1) 그동안 로그(Log)에 대해 조사한 것과 2) 최근에 CCDAK 카프카 자격증을 딴 기념으로, 카프카(Kafka)를 이용하여 어떻게 로그 관리를 하는지에 대해 이야기해 보겠습니다. PART1. 로그 1. 로그의 표면적 형태 로그(Log)는 기본적으로 시스템의 일련된 동작이나 사건의 기록입니다. 시스템의 일기장과도 같죠. 로그를 통해 특정 시간에 시스템에서 ‘어떤 일’이 일어났는지 파악할 수도 있습니다. 이렇게 로그는 시간에 따른 시스템의 동작을 기록하고, 정보는 순차적으로 저장됩니다. 이처럼 로그의 핵심 개념은 ‘시간’입니다. 순차적으로 발생된 로그를 통해 시스템의 동작을 이해하며, 일종의 생활기록부 역할을 하죠. 시스템 내에서 어떤 행동이 발생하였고, 어떤 문제가 일어났으며, 유저와의 어떤 교류가 일어났는지 모두 알 수 있습니다. 만약 시간의 개념이 없다면 어떻게 될까요? 발생한 모든 일들이 뒤섞이며, 로그 해석을 하는데 어려움이 생기겠죠. 이처럼 로그를 통해 시스템은 과거의 변화를 추적합니다. 똑같은 상황이 주어지면 항상 같은 결과를 내놓는 ‘결정론적’인 동작을 보장할 수 있죠. 로그의 중요성, 이제 조금 이해가 되실까요? 2. 로그와 카프카의 관계 자, 그렇다면! 로그(Log)와 카프카(Kafka)는 어떤 관계일까요? 우선 카프카는 분산 스트리밍 플랫폼으로서, 실시간으로 대용량의 데이터를 처리하고 전송하는데 탁월한 성능을 자랑합니다. 그 중심에는 바로 ‘로그’라는 개념이 있는데요. 좀 더 자세히 짚고 넘어가 보겠습니다. 3. 카프카에서의 로그 시스템 카프카에서의 로그 시스템은, 단순히 시스템의 에러나 이벤트를 기록하는 것만이 아닙니다. 연속된 데이터 레코드들의 스트림을 의미하며, 이를 ‘토픽(Topic)’이라는 카테고리로 구분하죠. 각 토픽은 다시 *파티션(Partition)으로 나누어, 단일 혹은 여러 서버에 분산 저장됩니다. 이렇게 분산 저장되는 로그 데이터는, 높은 내구성과 가용성을 보장합니다. *파티션(Partition): 하드디스크를 논리적으로 나눈 구역 4. 카프카가 로그를 사용하는 이유 로그의 순차적인 특성은 카프카의 ‘핵심 아키텍처’와 깊게 연결되어 있습니다. 로그를 사용하면, 데이터의 순서를 보장할 수 있어 대용량의 데이터 스트림을 효율적으로 처리할 수 있기 때문이죠. 데이터를 ‘영구적’으로 저장할 수 있어, 데이터 손실 위험 또한 크게 줄어듭니다. 로그를 사용하는 또 다른 이유는 ‘장애 복구’입니다. 서버가 장애로 인해 중단되었다가 다시 시작되면, 저장된 로그를 이용하여 이전 상태로 복구할 수 있게 되죠. 이는 ‘카프카가 높은 가용성’을 보장하는 데 중요한 요소입니다. ∴ 로그 요약 로그는 단순한 시스템 메시지를 넘어 ‘데이터 스트림’의 핵심 요소로 활용됩니다. 카프카와 같은 현대의 데이터 처리 시스템은 로그의 이러한 특성을 극대화하여, 대용량의 실시간 데이터 스트림을 효율적으로 처리할 수 있는 거죠. 로그의 중요성을 다시 한번 깨닫게 되는 순간이네요! PART2. 카프카 로그에 이어 에 대해 설명하겠습니다. 들어가기에 앞서 가볍게 ‘구조’부터 알아가 볼까요? 1. 카프카 구조 · 브로커(Broker) 브로커는 *클러스터(Cluster) 안에 구성된 여러 서버 중 각 서버를 의미합니다. 이러한 브로커들은, 레코드 형태인 메시지 데이터의 저장과 검색 및 컨슈머에게 전달하고 관리합니다. *클러스터(Cluster): 여러 대의 컴퓨터들이 연결되어 하나의 시스템처럼 동작하는 컴퓨터들의 집합 데이터 분배와 중복성도 촉진합니다. 브로커에 문제가 발생하면, 데이터가 여러 브로커에 데이터가 복제되어 데이터 손실이 되지 않죠. · 프로듀서(Producer) 프로듀서는 토픽에 레코드를 전송 또는 생성하는 *엔터티(Entity)입니다. 카프카 생태계에서 ‘데이터의 진입점’ 역할도 함께 하고 있죠. 레코드가 전송될 토픽 및 파티션도 결정할 수 있습니다. *엔터티(Entity): 업무에 필요한 정보를 저장하고 관리하는 집합적인 것 · 컨슈머(Consumer) 컨슈머는 토픽에서 레코드를 읽습니다. 하나 이상의 토픽을 구독하고, 브로커로부터 레코드를 소비합니다. 데이터의 출구점을 나타내기도 하며, 프로듀서에 의해 전송된 메시지를 최종적으로 읽히고 처리되도록 합니다. · 토픽(Topic) 토픽은 프로듀서로부터 전송된 레코드 카테고리입니다. 각 토픽은 파티션으로 나뉘며, 이 파티션은 브로커 간에 복제됩니다. 카프카로 들어오는 데이터를 조직화하고, 분류하는 방법을 제공하기도 합니다. 파티션으로 나눔으로써 카프카는 ‘수평 확장성과 장애 허용성’을 보장합니다. · 주키퍼(ZooKeeper) 주키퍼는 브로커를 관리하고 조정하는 데 도움을 주는 ‘중앙 관리소’입니다. 클러스터 노드의 상태, 토픽 *메타데이터(Metadata) 등의 상태를 추적합니다. *메타데이터(Metadata): 데이터에 관한 구조화된 데이터로, 다른 데이터를 설명해 주는 데이터 카프카는 분산 조정을 위해 주키퍼에 의존합니다. 주키퍼는 브로커에 문제가 발생하면, 다른 브로커에 알리고 클러스터 전체에 일관된 데이터를 보장하죠. ∴ 카프카 구조 요약 요약한다면 카프카는 1) 복잡하지만 견고한 아키텍처 2) 대규모 스트림 데이터를 실시간으로 처리하는 데 있어 안정적이고 장애 허용성이 있음 3) 고도로 확장 가능한 플랫폼을 제공으로 정리할 수 있습니다. 이처럼 카프카가 큰 데이터 환경에서 ‘어떻게’ 정보 흐름을 관리하고 최적화하는지 5가지의 구조를 통해 살펴보았습니다. 이제 카프카에 대해 조금 더 명확한 그림이 그려지지 않나요? 2. 컨슈머 그룹과 성능을 위한 탐색 카프카의 가장 주목할 만한 특징 중 하나는 ‘컨슈머 그룹의 구현’입니다. 이는 카프카의 확장성과 성능 잠재력을 이해하는 데 중심적인 개념이죠. 컨슈머 그룹 이해하기 카프카의 핵심은 ‘메시지를 생산하고 소비’ 하는 것입니다. 그런데 수백만, 심지어 수십억의 메시지가 흐르고 있을 때 어떻게 효율적으로 소비될까요? 여기서 컨슈머 그룹(Consumer Group)이 등장합니다. 컨슈머 그룹은, 하나 또는 그 이상의 컨슈머로 구성되어 하나 또는 여러 토픽에서 메시지를 소비하는데 협력합니다. 그렇다면 왜 효율적인지 알아보겠습니다. · 로드 밸런싱: 하나의 컨슈머가 모든 메시지를 처리하는 대신, 그룹이 부하를 분산할 수 있습니다. 토픽의 각 파티션은 그룹 내에서 정확히 하나의 컨슈머에 의해 소비됩니다. 이는 메시지가 더 빠르고 효율적으로 처리된다는 것을 보장합니다. · 장애 허용성: 컨슈머에 문제가 발생하면, 그룹 내의 다른 컨슈머가 그 파티션을 인수하여 메시지 처리에 차질이 없도록 합니다. · 유연성: 데이터 흐름이 변함에 따라 그룹에서 컨슈머를 쉽게 추가하거나 제거합니다. 이에 따라 증가하거나 감소하는 부하를 처리할 수 있습니다. 여기까지는 최적의 성능을 위한 ‘카프카 튜닝 컨슈머 그룹의 기본 사항’을 다루었으니, 이와 관련된 ‘성능 튜닝 전략’에 대해 알아볼까요? 성능 튜닝 전략 · 파티션 전략: 토픽의 파티션 수는, 얼마나 많은 컨슈머가 활성화되어 메시지를 소비할 수 있는지 영향을 줍니다. 더 많은 파티션은 더 많은 컨슈머가 병렬로 작동할 수 있음을 의미하는 거죠. 그러나 너무 많은 파티션은 *오버헤드를 야기할 수 있습니다. *오버헤드: 어떤 처리를 하기 위해 간접적인 처리 시간 · 컨슈머 구성: *fetch.min.bytes 및 *fetch.max.wait.ms와 같은 매개변수를 조정합니다. 그다음 한 번에 얼마나 많은 데이터를 컨슈머가 가져오는지 제어합니다. 이러한 최적화를 통해 브로커에게 요청하는 횟수를 줄이고, 처리량을 높입니다. *fetch.min.bytes: 한 번에 가져올 수 있는 최소 데이터 사이즈 *fetch.max.wait.ms: 데이터가 최소 크기가 될 때까지 기다릴 시간 · 메시지 배치: 프로듀서는 메시지를 함께 배치하여 처리량을 높일 수 있게 구성됩니다. *batch.size 및 *linger.ms와 같은 매개변수를 조정하여, 대기 시간과 처리량 사이의 균형을 찾을 수 있게 되죠. *batch.size: 한 번에 모델이 학습하는 데이터 샘플의 개수 *linger.ms: 전송 대기 시간 · 압축: 카프카는 메시지 압축을 지원하여 전송 및 저장되는 데이터의 양을 줄입니다. 이로 인해 전송 속도가 빨라지고 전체 성능이 향상될 수 있습니다. · 로그 정리 정책: 카프카 토픽은, 설정된 기간 또는 크기 동안 메시지를 유지할 수 있습니다. 보존 정책을 조정하면, 브로커가 저장 공간이 부족해지는 점과 성능이 저하되는 점을 방지할 수 있습니다. 3. 컨슈머 그룹과 성능을 위한 실제 코드 예시 다음 그림과 같은 코드를 보며 조금 더 자세히 살펴보겠습니다. NodeJS 코드 중 일부를 발췌했습니다. 카프카 설치 시에 사용되는 설정 파일 *server.properties에서 파티션의 개수를 CPU 코어 수와 같게 설정하는 코드입니다. 이에 대한 장점들을 쭉 살펴볼까요? *server.properties: 마인크래프트 서버 옵션을 설정할 수 있는 파일 CPU 코어 수에 파티션 수를 맞추었을 때의 장점 · 최적화된 리소스 활용: 카프카에서는 각 파티션이 읽기와 쓰기를 위한 자체 *I/O(입출력) 스레드를 종종 운영합니다. 사용 가능한 CPU 코어 수와 파티션 수를 일치시키면, 각 코어가 특정 파티션의 I/O 작업을 처리합니다. 이 동시성은 리소스에서 최대의 성능을 추출하는 데 도움 됩니다. · 최대 병렬 처리: 카프카의 설계 철학은 ‘병렬 데이터 처리’를 중심으로 합니다. 코어 수와 파티션 수 사이의 일치는, 동시에 처리되어 처리량을 높일 수 있습니다. · 간소화된 용량 계획: 이 접근 방식은, 리소스 계획에 대한 명확한 기준을 제공합니다. 성능 병목이 발생하면 CPU에 *바인딩(Binding)되어 있는지 명확하게 알 수 있습니다. 인프라를 정확하게 조정할 수도 있게 되죠. *바인딩(Binding): 두 프로그래밍 언어를 이어주는 래퍼 라이브러리 · 오버헤드 감소: 병렬 처리와 오버헤드 사이의 균형은 미묘합니다. 파티션 증가는 병렬 처리를 촉진할 수 있습니다. 하지만 더 많은 주키퍼 부하, 브로커 시작 시간 연장, 리더 선거 빈도 증가와 같은 오버헤드도 가져올 수도 있습니다. 파티션을 CPU 코어에 맞추는 것은 균형을 이룰 수 있게 합니다. 다음은 프로세스 수를 CPU 코어 수만큼 생성하여, 토픽의 파티션 개수와 일치시킨 코드에 대한 장점입니다. 파티션 수와 컨슈머 프로세스 수 일치의 장점 · 최적의 병렬 처리: 카프카 파티션의 각각은 동시에 처리될 수 있습니다. 컨슈머 수가 파티션 수와 일치하면, 각 컨슈머는 특정 파티션에서 메시지를 독립적으로 소비할 수 있게 되죠. 따라서 병렬 처리가 향상됩니다. · 리소스 효율성: 파티션 수와 컨슈머 수가 일치하면, 각 컨슈머가 처리하는 데이터의 양이 균등하게 분배됩니다. 이로 인해 전체 시스템의 리소스 사용이 균형을 이루게 되죠. · 탄력성과 확장성: 트래픽이 증가하면, 추가적인 컨슈머를 컨슈머 그룹에 추가하여 처리 능력을 증가시킵니다. 동일한 방식으로 트래픽이 감소하면 컨슈머를 줄여 리소스를 절약할 수 있습니다. · 고가용성과 오류 회복: 컨슈머 중 하나가 실패하면, 해당 컨슈머가 처리하던 파티션은 다른 컨슈머에게 자동 재분배됩니다. 이를 통해 시스템 내의 다른 컨슈머가 실패한 컨슈머의 작업을 빠르게 인수하여, 메시지 처리가 중단되지 않습니다. 마지막으로 각 프로세스별 컨슈머를 생성해서 토픽에 구독 후, 소비하는 과정을 나타낸 소스코드입니다. ∴ 컨슈머 그룹 요약 컨슈머 그룹은 높은 처리량과 장애 허용성 있는 메시지 소비를 제공하는 능력이 핵심입니다. 카프카가 어떤 식으로 운영되는지에 대한 상세한 부분을 이해하고 다양한 매개변수를 신중하게 조정한다면, 어떠한 상황에서도 카프카의 최대 성능을 이끌어낼 수 있습니다! ------------------------------------------------------------ ©참고 자료 · Jay Kreps, “I Hearts Logs”, Confluent · 위키피디아, “Logging(computing)” · Confluent, “https://docs.confluent.io/kafka/overview.html” · Neha Narkhede, Gwen Shapira, Todd Palino, “Kafka: The Definitive Guide” ------------------------------------------------------------
2023.09.19
다음 슬라이드 보기