반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
카프카를 통한 로그 관리 방법
메모리 누수 위험있는 FinalReference 참조 분석하기
김진광
2023.10.12
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
[행사] 브레인즈컴퍼니 ‘가을문화행사 2023’
Java에서 가장 많이 접하는 문제는 무엇이라 생각하시나요? 바로 리소스 부족 특히 ‘JVM(Java Virtual Machine) 메모리 부족 오류’가 아닐까 생각해요.
메모리 부족 원인에는 우리가 일반적으로 자주 접하는 누수, 긴 생명주기, 다량의 데이터 처리 등 몇 가지 패턴들이 있는데요. 오늘은 좀 일반적이지 않은(?) 유형에 대해 이야기해 볼게요!
Java 객체 참조 시스템은 강력한 참조 외에도 4가지 참조를 구현해요. 바로 성능과 확장성 기타 고려사항에 대한 SoftReference, WeakReference, PhantomReference, FinalReference이죠. 이번 포스팅은
FinalReference를 대표적인 사례
로 다루어 볼게요.
PART1. 분석툴을 활용해 메모리 누수 발생 원인 파악하기
메모리 분석 도구를 통해 힙 덤프(Heap Dump)를 분석할 때, java.lang.ref.Finalizer 객체가 많은 메모리를 점유하는 경우가 있어요. 이 클래스는 FinalReference와 불가분의 관계에요. 나눌 수 없는 관계라는 의미죠.
아래 그림 사례는 힙 메모리(Heap Memory)의 지속적인 증가 후 최대 Heap에 근접 도달 시, 서비스 무응답 현상에 빠지는 분석 사례인데요. 이를 통해 FinalReference 참조가 메모리 누수를 발생시킬 수 있는 조건을 살펴볼게요!
Heap Analyzer 분석툴을 활용하여, 힙 덤프 전체 메모리 요약 현황을 볼게요. java.lang.ref.Finalizer의 점유율이 메모리의 대부분을 점유하고 있죠. 여기서 Finalizer는, 앞에서 언급된 FinalReference를 확장하여 구현한 클래스에요.
JVM은 GC(Garbage Collection) 실행 시 해제 대상 객체(Object)를 수집하기 전, Finalize를 처리해야 해요.
Java Object 클래스에는 아래 그림과 같이 Finalize 메서드(Method)가 존재하는데요. 모든 객체가 Finalize 대상은 아니에요.
JVM은 클래스 로드 시, Finalize 메서드가 재정의(Override)된 객체를 식별해요. 객체 생성 시에는 Finalizer.register() 메서드를 통해, 해당 객체를 참조하는 Finalizer 객체를 생성하죠.
그다음은 Unfinalized 체인(Chain)에 등록해요. 이러한 객체는 GC 발생 시 즉시 Heap에서 수집되진 않아요. Finalizer의 대기 큐(Queue)에 들어가 객체에 재정의된 Finalize 처리를 위해 대기(Pending) 상태에 놓여있죠.
위 그림과 같이 참조 트리(Tree)를 확인해 보면, 많은 Finalizer 객체가 체인처럼 연결되어 있어요. 그럼 Finalizer 객체가 실제 참조하고 있는 객체는 무엇인지 바로 살펴볼까요?
그림에 나온 바와 같이 PostgreSql JDBC Driver의 org.postgresql.jdbc3g.Jdbc3gPreparedStatement인 점을 확인할 수 있어요. 해당 시스템은 PostgreSql DB를 사용하고 있었네요.
이처럼 Finalizer 참조 객체 대부분은 Jdbc3gPreparedStatement 객체임을 알 수 있어요. 여기서 Statement 객체는, DB에 SQL Query를 실행하기 위한 객체에요.
그렇다면, 아직 Finalize 처리되지 않은 Statement 객체가 증가하는 이유는 무엇일까요?
먼저 해당 Statement 객체는 실제로 어디서 참조하는지 살펴볼게요. 해당 객체는 TimerThread가 참조하는 TaskQueue에 들어가 있어요. 해당 Timer는 Postgresql Driver의 CancelTimer이죠.
해당 Timer의 작업 큐를 확인해 보면 PostgreSql Statement 객체와 관련된 Task 객체도 알 수도 있어요.
그럼 org.postgresql.jdbc3g.Jdbc3gPreparedStatement 클래스가 어떻게 동작하는지 자세히 알아볼까요?
org.postgresql.jdbc3g.Jdbc3gPreparedStatement는 org.postgresql.jdbc2.AbstractJdbc2Statement의 상속 클래스이며 finalize() 메서드를 재정의한 클래스에요. Finalize 처리를 위해 객체 생성 시, JVM에 의해 Finalizer 체인으로 등록되죠.
위와 같은 코드로 보아 CancelTimer는, Query 실행 후 일정 시간이 지나면 자동으로 TimeOut 취소 처리를 위한 Timer에요.
정해진 시간 내에 정상적으로 Query가 수행되고 객체를 종료(Close) 시, Timer를 취소하도록 되어 있어요. 이때 취소된 Task는 상태 값만 변경되고, 실제로는 Timer의 큐에서 아직 사라지진 않아요.
Timer에 등록된 작업은, TimerThread에 의해 순차적으로 처리돼요. Task는 TimerThread에서 처리를 해야 비로소 큐에서 제거되거든요.
이때 가져온 Task는 취소 상태가 아니며, 처리 시간에 아직 도달하지 않은 경우 해당 Task의 실행 예정 시간까지 대기해야 돼요.
여기서 문제점이 발생해요.
이 대기 시간이 길어지면 TimerThread의 처리가 지연되기 때문이죠. 이후 대기 Task들은 상태 여부에 상관없이, 큐에 지속적으로 남아있게 돼요.
만약 오랜 시간 동안 처리가 진행되지 않는다면, 여러 번의 Minor GC 발생 후 참조 객체들은 영구 영역(Old Gen)으로 이동될 수 있어요.
영구 영역으로 이동된 객체는, 메모리에 즉시 제거되지 못하고 오랜 기간 남게 되죠. 이는 Old(Full) GC를 발생시켜 시스템 부하를 유발하게 해요. 실제로 시스템에 설정된 TimeOut 값은 3,000초(50분)에요.
Finalizer 참조 객체는 GC 발생 시, 즉시 메모리에서 수집되지 않고 Finalize 처리를 위한 대기 큐에 들어가요. 그다음 FinalizerThread에 의해 Finalize 처리 후 GC 발생 시 비로소 제거되죠. 때문에 리소스의 수집 처리가 지연될 수 있어요.
또한 FinalizerThread 스레드는 우선순위가 낮아요. Finalize 처리 객체가 많은 경우, CPU 리소스가 상대적으로 부족해지면 개체의 Finalize 메서드 실행을 지연하게 만들어요. 처리되지 못한 객체는 누적되게 만들죠.
요약한다면 FinalReference 참조 객체의 잘못된 관리는
1) 객체의 재 참조를 유발 2) 불필요한 객체의 누적을 유발 3) Finalize 처리 지연으로 인한 리소스 누적을 유발
하게 해요.
PART2.
제니우스 APM을 통해 Finalize 객체를 모니터링하는 방법
Zenius APM에서는 JVM 메모리를 모니터링하고 분석하기 위한, 다양한 데이터를 수집하고 있어요. 상단에서 보았던
FinalReference 참조 객체의 현황에 대한 항목도 확인
할 수 있죠.
APM 모니터링을 통해 Finalize 처리에 대한 문제 발생 가능성도
‘사전’
에 확인
할 수 있답니다!
위에 있는 그림은 Finalize 처리 대기(Pending)중인 객체의 개수를 확인 가능한 컴포넌트에요.
이외에도 영역별 메모리 현황 정보와 GC 처리 현황에 대해서도 다양한 정보를 확인 할 수 있어요!
이상으로 Finalize 처리 객체에 의한 리소스 문제 발생 가능성을, 사례를 통해 살펴봤어요. 서비스에 리소스 문제가 발생하고 있다면, 꼭 도움이 되었길 바라요!
------------------------------------------------------------
©참고 자료
◾ uxys, http://www.uxys.com/html/JavaKfjs/20200117/101590.html
◾ Peter Lawrey, 「is memory leak? why java.lang.ref.Finalizer eat so much memory」, stackoverflow, https://stackoverflow.com/questions/8355064/is-memory-leak-why-java-lang-ref-finalizer-eat-so-much-memory
◾ Florian Weimer, 「Performance issues with Java finalizersenyo」, enyo,
https://www.enyo.de/fw/notes/java-gc-finalizers.html
------------------------------------------------------------
#APM
#Finalize
#제니우스
#메모리 누수
#Zenius
#FinalReference
#제니우스 APM
김진광
APM팀(개발3그룹)
개발3그룹 APM팀에서 제품 개발과 기술 지원을 담당하고 있습니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
무선 AP를 WNMS를 통해 올바르게 관리하는 방법
무선 AP를 WNMS를 통해 올바르게 관리하는 방법
이제 어디서나 인터넷을 빠르고 쉽게 이용하는 것은 '기본'이 되었습니다. 우리나라 정부와 지차체는 공공장소에서의 무료 와이파이(WiFi) 접근성을 높이기 위해, 공공와이파이 확대 프로젝트를 진행하고 있습니다. 한국 지능정보사회진흥원(NIA)에서는 23년에 공공와이파이를 4,400개소에 신규 구축하여 총 5만 8000개소의 공공장소에서 이용할 수 있게 된 것이죠. 또한 교육부에서는 디지털뉴딜 사업의 일환으로 「전교실 무선망 구축 사업」을 크게 확대시켜, 약 21만 개의 무선 AP(Access Points)를 교실에 설치했습니다. 이를 통해 온라인 학습 자료의 접근성을 높이고, 디지털 콘텐츠의 활용을 원활하게 하고 있습니다. 이 밖에도 대형 쇼핑몰, 카페 체인점, 호텔 등 무선 AP의 활용 범위가 지속적으로 확대되고 있는데요. 하지만 여러 장소에서 더 많은 무선 AP들이 설치됨에 따라, AP를 감지하고 관리하는 부분의 필요성이 커지고 있습니다. 이에 따라 AP를 중앙에서 관리할 수 있는 WLC(Wireless LAN Controller, 무선랜 컨트롤러)나 WNMS(Wireless Network Management System)의 중요성도 점점 더 커지고 있습니다. 이 중에서도 광범위한 네트워크 관리 기능을 제공하는 WNMS를 활용하는 사례가 많은데요. 오늘은 WNMS를 통해 '제대로' 무선 AP를 관리할 수 있는 방법을 알아보겠습니다. ㅣ무선 AP를 효과적으로 관리하는 법 WNMS는 AP 장비와 컨트롤러에 수집된 데이터를 바탕으로, 다양한 View를 통해 실시간으로 성능을 모니터링하고, 개선할 수 있도록 돕는 시스템입니다. 즉 무선 네트워크의 '눈'이 되어, 사용자들이 일상생활이나 업무에서 끊김 없이 높은 품질의 무선 인터넷 서비스를 이용할 수 있도록 제공하죠. 하지만 WNMS을 무조건 도입만 한다고 해서 AP와 컨트롤러를 올바르게 관리할 수 있을까요? WNMS를 제대로 '잘' 이용하기 위해서는, 다음과 같은 2가지 핵심 개념을 기억해야 합니다. 하나, AP 장비를 한눈에 모니터링할 수 있어야 합니다 우선 핵심 개념 첫 번째는 여러 위치에 분산된 무선 AP와 컨트롤러를 한눈에 쉽게 모니터링할 수 있어야 한다는 점입니다. 다시 말해, 네트워크 관리자가 AP의 핵심 현황들을 종합적으로 모니터링할 수 있어야 하죠. 예를 들어 AP가 네트워크에 연결되어 정상적으로 작동하는지(UP), 연결이 끊어지거나 오류 상태가 있는지(Down)는 필수적으로 확인할 수 있어야 합니다. AP Up/Down은 무선 네트워크 관리의 핵심 요소로, 네트워크의 신뢰성과 성능을 보장하는 데 필수적이기 때문이죠. 또한 전송량이 높은 AP와 전송량이 많은 사용자 또한 파악할 수 있어야 합니다. [그림] Zenius-WNMS : 핵심 요약 페이지 Zenius(제니우스) WNMS를 통해 구체적으로 살펴볼까요? Zenius WNMS는 무선 AP 관제 상황에 대한 핵심 요약 페이지를 제공하여, 한 화면에서 무선 네트워크 상황을 일목요연하게 확인할 수 있습니다. AP의 핵심 현황인 AP Up/Down 상태는 물론, 전송량이 높은 AP 장비, 사용자 별로 전송량이 많은 항목들을 Top 10으로 선별하여 제공하고 있죠. 이처럼 AP 핵심 요약 페이지를 통해 무선 네트워크 상태를 신속하게 파악할 수 있습니다. 둘, AP 장비의 성능을 직관적으로 확인할 수 있어야 합니다 두 번째 핵심 개념은 컨트롤러에 연결된 무선 AP 장비별 성능을 직관적으로 확인할 수 있어야 한다는 점입니다. 특히 각 AP 별로 In/Out bps(bits per second) 정보를 기간 단위로 성능 추이를 확인할 수 있어야 하는데요. 이는 네트워크 트래픽의 흐름을 파악하여, 어느 시간대에 트래픽이 집중되는지를 알 수 있는 중요한 지표이기 때문이죠. 이에 따라 잠재적인 네트워크 문제나 과부하 상황을 사전에 식별하고, 이에 대응할 수 있습니다. 쉽게 예를 든다면 온라인 대형 쇼핑몰에서 특별 이벤트 기간일 경우 방문객이 급증하곤 하는데요. 이때 WNMS를 통해 AP 별 In/Out bps 정보를 모니터링한다면, 트래픽 패턴을 파악할 수 있습니다. 이 정보를 바탕으로 관리자는 네트워크 용량을 사전에 조정하고, 방문객에게 끊김 없는 와이파이 서비스를 제공할 수 있게 되죠. [그림] Zenius-WNMS : AP 장비 성능 모니터링 페이지 Zenius WNMS를 통해 좀 더 자세히 살펴보겠습니다. 위 이미지에 나와있듯이, Zenius WNMS는 무선 AP 장비 별 In/Out bps 성능 추이를 직관적으로 모니터링할 수 있습니다. 특정 시간대에 데이터 트래픽이 집중되는 경우, 추가적인 네트워크 자원을 할당하여 사용자의 불편을 최소화할 수 있죠. 이처럼 네트워크의 전반적인 성능을 평가하고, 필요한 경우 네트워크 구성을 조정하여, 전체 성능을 최적화할 수 있습니다. 또한 커서의 움직임에 따라 실시간으로 In/Out bps와 AP 사용자 수를 동시에 확인할 수 있습니다. 이에 따라 평소보다 많은 데이터를 소비하는 AP나, 비정상적으로 많은 사용자가 연결된 AP를 모니터링하고 조치할 수 있죠. 이처럼 가시성 높은 직관적인 UI를 통해 네트워크의 성능을 지속적으로 개선하고, 사용자에게 최적의 서비스를 제공할 수 있습니다. [그림] Zenius-WNMS : AP 장비 세부 항목별 추이 모니터링 뿐만 아니라 관리하고 있는 무선 AP 장비와 컨트롤러 페이지를 각각 한눈에 확인할 수 있고, 성능 항목에 대해서 일/주/월/년 기간 별 추이 모니터링도 지원하고 있습니다. 이를 통해 장기적인 네트워크 사용 패턴을 파악할 수 있으며, 예측 가능한 네트워크 용량 계획을 수립할 수 있습니다. 。。。。。。。。。。。。 스마트시티 구축, IoT(사물인터넷)의 증가, 산업 자동화 확대 등 무선 네트워크를 활용한 다양한 분야에서 WNMS의 역할이 확대되고 있습니다. 앞서 언급했듯 WNMS는 '사용자 입장'에서 무선 AP 장비와 성능을 직관적으로 모니터링할 수 있는지가 매우 중요합니다. 사용자가 손쉽게 네트워크 상태를 확인할 수 있어야, 필요한 조치를 신속하게 취할 수 있기 때문이죠. 분산된 AP 장비에 대한 통합 모니터링 UI를 제공하여 장애 발생 시 빠른 조치를 할 수 있게 하는 Zenius(제니우스) WNMS와 같은 도구를 활용하여, 성공적으로 무선 AP를 관리하시길 바랍니다!
2024.03.04
다음 슬라이드 보기