반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
카프카를 통한 로그 관리 방법
메모리 누수 위험있는 FinalReference 참조 분석하기
김진광
2023.10.12
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
[행사] 브레인즈컴퍼니 ‘가을문화행사 2023’
Java에서 가장 많이 접하는 문제는 무엇이라 생각하시나요? 바로 리소스 부족 특히 ‘JVM(Java Virtual Machine) 메모리 부족 오류’가 아닐까 생각해요.
메모리 부족 원인에는 우리가 일반적으로 자주 접하는 누수, 긴 생명주기, 다량의 데이터 처리 등 몇 가지 패턴들이 있는데요. 오늘은 좀 일반적이지 않은(?) 유형에 대해 이야기해 볼게요!
Java 객체 참조 시스템은 강력한 참조 외에도 4가지 참조를 구현해요. 바로 성능과 확장성 기타 고려사항에 대한 SoftReference, WeakReference, PhantomReference, FinalReference이죠. 이번 포스팅은
FinalReference를 대표적인 사례
로 다루어 볼게요.
PART1. 분석툴을 활용해 메모리 누수 발생 원인 파악하기
메모리 분석 도구를 통해 힙 덤프(Heap Dump)를 분석할 때, java.lang.ref.Finalizer 객체가 많은 메모리를 점유하는 경우가 있어요. 이 클래스는 FinalReference와 불가분의 관계에요. 나눌 수 없는 관계라는 의미죠.
아래 그림 사례는 힙 메모리(Heap Memory)의 지속적인 증가 후 최대 Heap에 근접 도달 시, 서비스 무응답 현상에 빠지는 분석 사례인데요. 이를 통해 FinalReference 참조가 메모리 누수를 발생시킬 수 있는 조건을 살펴볼게요!
Heap Analyzer 분석툴을 활용하여, 힙 덤프 전체 메모리 요약 현황을 볼게요. java.lang.ref.Finalizer의 점유율이 메모리의 대부분을 점유하고 있죠. 여기서 Finalizer는, 앞에서 언급된 FinalReference를 확장하여 구현한 클래스에요.
JVM은 GC(Garbage Collection) 실행 시 해제 대상 객체(Object)를 수집하기 전, Finalize를 처리해야 해요.
Java Object 클래스에는 아래 그림과 같이 Finalize 메서드(Method)가 존재하는데요. 모든 객체가 Finalize 대상은 아니에요.
JVM은 클래스 로드 시, Finalize 메서드가 재정의(Override)된 객체를 식별해요. 객체 생성 시에는 Finalizer.register() 메서드를 통해, 해당 객체를 참조하는 Finalizer 객체를 생성하죠.
그다음은 Unfinalized 체인(Chain)에 등록해요. 이러한 객체는 GC 발생 시 즉시 Heap에서 수집되진 않아요. Finalizer의 대기 큐(Queue)에 들어가 객체에 재정의된 Finalize 처리를 위해 대기(Pending) 상태에 놓여있죠.
위 그림과 같이 참조 트리(Tree)를 확인해 보면, 많은 Finalizer 객체가 체인처럼 연결되어 있어요. 그럼 Finalizer 객체가 실제 참조하고 있는 객체는 무엇인지 바로 살펴볼까요?
그림에 나온 바와 같이 PostgreSql JDBC Driver의 org.postgresql.jdbc3g.Jdbc3gPreparedStatement인 점을 확인할 수 있어요. 해당 시스템은 PostgreSql DB를 사용하고 있었네요.
이처럼 Finalizer 참조 객체 대부분은 Jdbc3gPreparedStatement 객체임을 알 수 있어요. 여기서 Statement 객체는, DB에 SQL Query를 실행하기 위한 객체에요.
그렇다면, 아직 Finalize 처리되지 않은 Statement 객체가 증가하는 이유는 무엇일까요?
먼저 해당 Statement 객체는 실제로 어디서 참조하는지 살펴볼게요. 해당 객체는 TimerThread가 참조하는 TaskQueue에 들어가 있어요. 해당 Timer는 Postgresql Driver의 CancelTimer이죠.
해당 Timer의 작업 큐를 확인해 보면 PostgreSql Statement 객체와 관련된 Task 객체도 알 수도 있어요.
그럼 org.postgresql.jdbc3g.Jdbc3gPreparedStatement 클래스가 어떻게 동작하는지 자세히 알아볼까요?
org.postgresql.jdbc3g.Jdbc3gPreparedStatement는 org.postgresql.jdbc2.AbstractJdbc2Statement의 상속 클래스이며 finalize() 메서드를 재정의한 클래스에요. Finalize 처리를 위해 객체 생성 시, JVM에 의해 Finalizer 체인으로 등록되죠.
위와 같은 코드로 보아 CancelTimer는, Query 실행 후 일정 시간이 지나면 자동으로 TimeOut 취소 처리를 위한 Timer에요.
정해진 시간 내에 정상적으로 Query가 수행되고 객체를 종료(Close) 시, Timer를 취소하도록 되어 있어요. 이때 취소된 Task는 상태 값만 변경되고, 실제로는 Timer의 큐에서 아직 사라지진 않아요.
Timer에 등록된 작업은, TimerThread에 의해 순차적으로 처리돼요. Task는 TimerThread에서 처리를 해야 비로소 큐에서 제거되거든요.
이때 가져온 Task는 취소 상태가 아니며, 처리 시간에 아직 도달하지 않은 경우 해당 Task의 실행 예정 시간까지 대기해야 돼요.
여기서 문제점이 발생해요.
이 대기 시간이 길어지면 TimerThread의 처리가 지연되기 때문이죠. 이후 대기 Task들은 상태 여부에 상관없이, 큐에 지속적으로 남아있게 돼요.
만약 오랜 시간 동안 처리가 진행되지 않는다면, 여러 번의 Minor GC 발생 후 참조 객체들은 영구 영역(Old Gen)으로 이동될 수 있어요.
영구 영역으로 이동된 객체는, 메모리에 즉시 제거되지 못하고 오랜 기간 남게 되죠. 이는 Old(Full) GC를 발생시켜 시스템 부하를 유발하게 해요. 실제로 시스템에 설정된 TimeOut 값은 3,000초(50분)에요.
Finalizer 참조 객체는 GC 발생 시, 즉시 메모리에서 수집되지 않고 Finalize 처리를 위한 대기 큐에 들어가요. 그다음 FinalizerThread에 의해 Finalize 처리 후 GC 발생 시 비로소 제거되죠. 때문에 리소스의 수집 처리가 지연될 수 있어요.
또한 FinalizerThread 스레드는 우선순위가 낮아요. Finalize 처리 객체가 많은 경우, CPU 리소스가 상대적으로 부족해지면 개체의 Finalize 메서드 실행을 지연하게 만들어요. 처리되지 못한 객체는 누적되게 만들죠.
요약한다면 FinalReference 참조 객체의 잘못된 관리는
1) 객체의 재 참조를 유발 2) 불필요한 객체의 누적을 유발 3) Finalize 처리 지연으로 인한 리소스 누적을 유발
하게 해요.
PART2.
제니우스 APM을 통해 Finalize 객체를 모니터링하는 방법
Zenius APM에서는 JVM 메모리를 모니터링하고 분석하기 위한, 다양한 데이터를 수집하고 있어요. 상단에서 보았던
FinalReference 참조 객체의 현황에 대한 항목도 확인
할 수 있죠.
APM 모니터링을 통해 Finalize 처리에 대한 문제 발생 가능성도
‘사전’
에 확인
할 수 있답니다!
위에 있는 그림은 Finalize 처리 대기(Pending)중인 객체의 개수를 확인 가능한 컴포넌트에요.
이외에도 영역별 메모리 현황 정보와 GC 처리 현황에 대해서도 다양한 정보를 확인 할 수 있어요!
이상으로 Finalize 처리 객체에 의한 리소스 문제 발생 가능성을, 사례를 통해 살펴봤어요. 서비스에 리소스 문제가 발생하고 있다면, 꼭 도움이 되었길 바라요!
------------------------------------------------------------
©참고 자료
◾ uxys, http://www.uxys.com/html/JavaKfjs/20200117/101590.html
◾ Peter Lawrey, 「is memory leak? why java.lang.ref.Finalizer eat so much memory」, stackoverflow, https://stackoverflow.com/questions/8355064/is-memory-leak-why-java-lang-ref-finalizer-eat-so-much-memory
◾ Florian Weimer, 「Performance issues with Java finalizersenyo」, enyo,
https://www.enyo.de/fw/notes/java-gc-finalizers.html
------------------------------------------------------------
#APM
#Finalize
#제니우스
#메모리 누수
#Zenius
#FinalReference
#제니우스 APM
김진광
APM팀(개발3그룹)
개발3그룹 APM팀에서 제품 개발과 기술 지원을 담당하고 있습니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
Helm과 Argo의 개념과 통합 활용법?!
Helm과 Argo의 개념과 통합 활용법?!
애플리케이션을 클라우드 네이티브 환경에서 효율적으로 관리하고 운영할 수 있는 플랫폼인 쿠버네티스(kubernetes)를 활용하는 기업들이 점점 더 늘어나고 있습니다. 이에 따라 효율적인 애플리케이션 관리를 통해 패키징 배포, 관리를 자동화하고 일관된 상태를 유지하는 것이 중요해지고 있습니다. 이번 글을 통해서는 애플리케이션 개발 및 도구 중 최근 많이 사용되는 Helm과 Argo에 대해서 자세히 알아보겠습니다. ㅣHelm의 등장 쿠버네티스를 활용한 애플리케이션 배포에 가장 기본이 되는 단위는 yaml 파일로, 주로 쿠버네티스 object(리소스)들을 정의하고 다루는데 활용됩니다. 쿠버네티스를 통해 애플리케이션을 배포하다 보면 비슷한 틀과 내용을 공유하고, 내부 값(configuration)만 일부 변경하는 작업을 하게 되는데요, 이 과정에서 애플리케이션마다 모두 yaml 파일을 만들어야 하나 보니 매우 번거로웠습니다. 위 이미지를 보면, A 애플리케이션은 정적 파일인 yaml을 오브젝트별(Service, Pod, ConfigMap)로 만들어서 생성하고 배포합니다. 그러다가 프로젝트의 확장에 따른 기능 추가로 인해 B와 C 애플리케이션으로 쪼개어 각각의 yaml 파일을 복사해서 사용합니다. 하지만, 팀 단위로 인프라가 확장될 경우는 어떻게 할까요? 개별 오브젝트에 대한 yaml 개별적으로 관리할 수 있을까요? 만약, 개별적으로 관리한다면 파일의 갯수와 코드량의 증가로 인해 개발자들은 매우 혼잡하게 될 것입니다. 이러한 문제점을 해결하기 위해, 쿠버네티스에서 애플리케이션을 배포하기 위해 사용되는 대표적인 패키징 툴인 Helm이 등장하게 됐습니다. Helm을 활용하면 컨테이너 배포뿐 아니라 애플리케이션을 배포하기 위해 필요한 쿠버네티스 리소스를Node의 npm, Ubuntu의 APT, Mac의 Homebrew처럼 모두 패키지 형태로 배포할 수 있습니다. ㅣHelm의 역사 Helm은 v1부터 v3에 이르기까지 아래와 같은 변화의 과정을 거쳐왔습니다. Helm v1 ◾ [2015년 11월] DEIS의 내부 프로젝트로 시작되어 KubeCon에서 발표 ◾ [2017년 04월] MS에서 DEIS를 인수 Helm v2 ◾ [2016년 01월] Google 프로젝트에 합류 ◾ [2016년 ~ 2018년] Helm v2 고도화, 2.15.0 릴리스 발표에서 v2 향후 계획 세부사항 공유 Helm v3 ◾ [2018년 06월] CNCF 프로젝트에 합류, MS, 삼성 SDS, IBM 및 Blood Orange의 구성원 등이 참여 ◾ [2019년 11월] 릴리스 발표 v2에서 v3로 고도화되면서 가장 눈에 띄는 변화는 Tiller(클러스터 내에서 Helm 패키지 및 배포 상태를 관리하는 서버 구성요소)의 제거입니다. Helm v2에서는 클러스터에 Tiller를 설치하여, API Server와 REST*1 통신을 하고, Client와 gRPC*2 통신을 진행했었는데요, Helm v3부터는 Tiller가 제거되면서 Client에서 바로 REST 통신을 통해 API Server로 요청하는 방식으로 변경되었습니다. 그 외에도 Helm v3으로 업그레이드되면서 보안 취약점이 줄어들었으며, 설치 및 관리 과정이 단순화되었습니다. 또한 사용자에게 보다 더 안전하고 효율적인 배포 및 관리 환경을 제공할 수 있게 되었습니다. *1 REST (Representational State Transfer) : 웹 기반 애플리케이션에서 자원을 관리하기 위한 아키텍처 스타일, 데이터를 고유한 URL로 표현하고 HTTP 메서드(GET, POST, PUT, DELETE 등)를 사용하여 해당 자원에 대한 행위를 정의함 *2 gRPC (google Remote Procedure Call) : 구글에서 개발한 오픈소스 프레임워크, 원격지에 있는 다른 시스템 또는 서버에 있는 함수를 호출하는 방식 ㅣHelm의 주요 개념 Helm은 애플리케이션을 배포해 주는 툴이라고 앞서 살펴봤는데요, Helm과 같이 사용되는 주요 개념들을 살펴보겠습니다. ◾ Helm Chart: 쿠버네티스 리소스를 하나로 묶은 패키지입니다. 이는 yaml 파일의 묶음(패키지)으로, 이 묶음 public 혹은 private registry에 push 해두고, helm 명령어를 통해 Helm Chart를 설치하여 쿠버네티스 리소스를 배포하는 역할을 합니다. ◾ Repository: Helm Chart 들의 저장소 ◾ Release: kubernetes Cluster에서 구동되는 차트 인스턴스이며, Chart는 여러 번 설치되고 새로운 인스턴스는 Release로 관리됩니다. ㅣHelm의 주요 기능 Helm의 두 가지 주요 기능을 살펴보겠습니다. [1] Helm Chart를 통한 손쉬운 배포 Helm을 사용하면 어떻게 되는지 그림으로 살펴보겠습니다. 개발 클러스터가 있고 앱 2개를 배포한다고 가정했을 때, Helm Chart Template을 만들면 변수 처리를 통해 yaml 파일을 하나하나 수정할 필요 없습니다. kubectl 명령어를 통해 yaml 파일의 동적 값을 치환하여 템플릿 형태로 편리하게 배포할 수 있다는 장점이 있습니다. [2] Helm Package를 이용한 오픈소스 설치 및 배포 Helm을 통해서 쿠버네티스에서 가동할 수 있는 아래와 같은 다양한 오픈소스들의 제품들을 쉽게 설치/배포할 수 있습니다. 위제품들 외에도 Helm Chart는 총 14,376개의 패키지와 281,373개의 릴리스를 오픈소스로 제공합니다. 이를 통해 사용자들은 자신의 요구에 맞는 가장 적합한 솔루션을 선택하여 개발할 수 있습니다. 또한 많은 사용자들이 검증하고 사용함에 따라 안정성 있는 운영도 가능하죠. 다양한 Helm Chart 패키지는 커스터마이징이 가능한 경우가 많은데요, 사용자는 필요에 따라 구성을 조정하고 수정해서 사용할 수 있는 장점이 있습니다. 다음으로는 Helm 못지않게 많이 활용되는 ArgoCD에 대해서 살펴보겠습니다. ㅣ ArgoCD란?! 기존의 kubernetes 애플리케이션을 배포하고 관리하는 방식은 수동적이었습니다. yaml 파일을 직접 편집하고, kubectl로 변경사항을 클러스터에 적용하는 수동 배포 방식은 실수를 많이 유발했죠. 또한 여러 개발자나 팀이 각자의 방식대로 배포 및 관리를 수행하는 경우, 클러스터 상태의 일관성이 저하되었는데요. 이로 인해 개발 및 운영팀 간의 협업이 어렵고 생산성이 감소되는 문제가 발생하기도 했습니다. 이러한 기존 접근 방식에 대한 대안으로 GitOps가 탄생했는데요, GitOps는 Git 저장소를 사용하는 소프트웨어 배포 접근 방식입니다. GitOps는 인프라와 소프트웨어를 함께 관리함으로써, Git 버전 관리 시스템과 운영환경 간의 일관성을 유지할 수 있도록 합니다. ArgoCD는 GitOps를 구현하기 위한 도구 중 하나로 kubernetes 애플리케이션의 자동 배포를 위한 오픈소스 도구입니다. kubernetes 클러스터에 배포된 애플리케이션의 CI/CD 파이프라인에서 CD 부분을 담당하며, Git 저장소에서 변경사항을 감지하여 자동으로 kubernetes 클러스터에 애플리케이션을 배포할 수 있습니다. kubernetes 애플리케이션 배포 과정을 살펴보겠습니다. ① 사용자가 개발한 내용을 Git 저장소에 Push(이때, kubernetes 배포 방식인 Helm 배포 방식의 구조로 Git 저장소에 Push 할 수 있습니다.) ② ArgoCD가 Git 저장소의 변경 상태를 감지 ③ Git 저장소의 변경된 내용을 kubernetes에 배포하여 반영 ㅣ ArgoCD의 주요 기능 ◾ 애플리케이션을 지정된 환경에 자동으로 배포 ◾ 멀티 클러스터 관리기능 제공 ◾ OCI, OAuth2, LDAP 등 SSO 연동 ◾ 멀티 테넌시와 자체적인 RBAC 정책 제공 ◾ 애플리케이션 리소스 상태 분석 ◾ 애플리케이션 자동 및 수동 동기화 기능 제공 ◾ Argo가 관리하고 있는 쿠버네티스 리소스 시각화 UI 제공 ◾ 자동화 및 CI 통합을 위한 CLI 제공 위 내용은 ArgoCD가 제공하는 주요 기능을 나열한 것인데요, 이 중에서도 대표적인 다섯 가지 기능에 대해서 자세히 살펴보겠습니다. ① 쿠버네티스 모니터링 ArgoCD는 쿠버네티스를 항상 추적하고 있다가 저장소의 변경사항이 감지되면, 자동으로 클러스터의 상태를 저장소의 상태와 동기화합니다. 또한 문제가 생기면 이전 상태로 롤백 할 수 있으며, 이를 통해 시스템 복구 및 문제 해결을 용이하게 합니다. ② 멀티 클러스터 관리 다중 클러스터 환경에서도 배포를 관리할 수 있어 복잡한 인프라 환경에서의 효율적인 작업을 가능하게 합니다. ③ ArgoCD 대시보드 Argo에서는 클러스터 상태를 효과적으로 관리하고 모니터링할 수 있는 대시보드를 제공합니다. ArgoCD 대시보드를 통해 애플리케이션의 실시간 상태와 동기화 상태와 같은 전체적인 배포 파이프라인을 자동화하여 시각적으로 확인할 수 있고, 롤백 및 이력 추적 기능도 동시에 제공하고 있습니다. ④ 안전한 인증 및 권한 관리 역할 기반 액세스 제어(RBAC) 및 권한 제어기능을 통해 민감한 정보에 대한 접근을 제어할 수 있습니다. ⑤ GitOps 지원 ArgoCD는 GitOps 방법론을 따르므로 애플리케이션의 배포를 Git Repository와 동기화할 수 있습니다. 이를 통해 코드와 인프라의 일관성을 유지하고 변경사항을 추적할 수 있습니다. ㅣ Helm과 ArgoCD의 통합 활용 프로세스 Helm과 Argo를 함께 사용하면 개발, 테스트, 배포 프로세스를 효과적으로 관리할 수 있습니다. Helm으로 애플리케이션을 패키징하고 버전을 관리하며, Argo를 활용하여 GitOps 워크플로우를 통해 지속적인 통합 및 배포를 자동화할 수 있습니다. ① develop: Helm을 사용하여 애플리케이션을 Helm Chart로 패키징 합니다. 이후 개발된 Helm Chart를 저장하기 위한 Git 저장소를 설정합니다. ArgoCD에서 저장한 저장소를 특정 배포 대상 Kubernetes 클러스터와 연결하여, Git 저장소의 변경사항을 감지하고 새로운 배포를 시작하여 클러스터에 적용합니다. ② git push: 개발자가 로컬 저장소 내용을 원격 저장소에 배포합니다. ③ Observe(GitOps): ArgoCD는 Git 저장소의 변경 사항을 감지하여, 변경사항이 발생하면 새로운 버전의 애플리케이션을 배포하여 자동화 및 일관성을 유지합니다. ④ 운영/테스트/개발 ㅣ마무리 오늘 함께 살펴본 Helm과 ArgoCD 두 가지 강력한 도구를 함께 이용한다면 CI/CD 통합, 버전 관리, 자동화 등의 이점을 활용해서 kubernetes 환경에서 애플리케이션을 더 효율적으로 관리할 수 있습니다. 한편 애플리케이션을 효과적으로 개발하는 것도 중요하지만, kubernetes 환경의 프로세스를 실시간 모니터링하고 추적하여 관리하는 것도 매우 중요합니다. 브레인즈컴퍼니의 kubernetes 모니터링 솔루션 Zenius-K8s는 다양한 CI/CD 도구를 이용하여 개발한 kubernetes 애플리케이션의 전체 클러스터 및 구성요소에 대한 상세 성능 정보를 모니터링하고, 리소스를 추적함으로써 시스템의 안정성과 성능을 높여주고 있습니다.
2024.03.08
쿠버네티스 모니터링 툴 선택 시 필수 고려사항 4가지
쿠버네티스 모니터링 툴 선택 시 필수 고려사항 4가지
쿠버네티스(K8s, Kubernetes)는 IT 인프라에서 필수적인 컨테이너 오케스트레이션 플랫폼으로 자리 잡았습니다. 하지만 구성 요소가 복잡하고 변화가 빠른 환경이기 때문에, 안정적인 운영과 장애 대응을 위한 모니터링 툴을 필요로 합니다. 이를 통해 클러스터 상태를 실시간으로 파악하고, 장애를 신속히 감지하며, 운영을 효율적으로 최적화할 수 있습니다. 하지만 모든 쿠버네티스 모니터링 툴이 동일한 수준의 기능과 성능을 제공하는 것은 아닙니다. 운영 환경에 적합하지 않은 툴을 선택하면 오히려 관리가 더 어려워지고, 비용이 증가하며, 장애 발생 시 신속한 대응도 어려워집니다. 효과적인 쿠버네티스 관리 체계를 구축하기 위해 쿠버네티스 모니터링 툴을 선택할 때 고려해야 할 네 가지 핵심 요소를 살펴보겠습니다. 쿠버네티스 모니터링 툴의 핵심 요소① 멀티 클러스터 및 하이브리드 클라우드 환경 지원 많은 기업이 쿠버네티스를 멀티 클러스터 환경에서 운영하고 있으며, 특히 하이브리드 및 멀티 클라우드 환경에서는 개별 클러스터를 따로 관리하는 방식이 운영 복잡성을 증가시키고 효율성을 저하시킬 수 있습니다. 따라서, 클러스터 간 연계성을 강화하고 중앙 집중형 관리 체계를 구축하는 것이 중요합니다. - 통합 대시보드를 통한 멀티 클러스터 관리 개별 클러스터 단위로 모니터링하면 운영이 복잡해지므로, 모든 클러스터의 상태를 단일 인터페이스에서 통합적으로 관리할 수 있어야 합니다. 이를 통해 개별 확인이 아닌 전체 운영 상황을 한눈에 파악하고, 클러스터 간 리소스를 효율적으로 관리할 수 있으며 장애 대응 속도도 향상시킬 수 있습니다. - 클라우드별 성능 모니터링 지원 AWS EKS, Azure AKS, GCP GKE, OpenShift 등 다양한 클라우드 환경에서 운영되는 쿠버네티스 클러스터의 특성을 고려한 솔루션이 필요합니다. 각 클라우드의 성능 모니터링 기능을 지원해야 하며, 이기종 클러스터 간 일관된 관리가 가능해야 합니다. - 클러스터 간 네트워크 및 서비스 연관성 분석 기능 단일 클러스터 내부의 리소스 모니터링을 넘어, 클러스터 간 통신 및 애플리케이션 트랜잭션 흐름을 분석할 수 있는 기능이 중요합니다. 서비스 연결 상태, 분산된 애플리케이션의 성능 이상 징후를 조기에 감지할 수 있습니다. 쿠버네티스 모니터링 툴의 핵심 요소② 실시간 장애 탐지 및 장애 자동 대응 지원 쿠버네티스는 장애 발생 시 자동 복구(Self-Healing) 메커니즘을 통해 파드(Pod)를 복구합니다. 그러나 장애 감지와 복구에는 일정 시간이 소요되며, 복구 지연, 리소스 불균형, 네트워크 라우팅 지연 등의 문제가 발생할 수 있습니다. 특히, 노드 장애 시 새로운 노드로 파드를 재배치하는 과정에서 리소스 부족이나 스케줄링 지연이 발생할 수 있으며, 서비스 연결이 일시적으로 영향을 받을 수도 있습니다. 따라서 실시간 장애 감지 및 자동 대응 체계를 구축하는 것이 중요합니다. - 정교한 장애 감지 시스템 단순히 CPU 및 메모리 사용률을 모니터링하는 수준을 넘어, 서비스 응답 지연, 애플리케이션 장애, 네트워크 이상 징후 등을 탐지할 수 있는 복합 장애 감지 기능이 필요합니다. 이를 통해 성능 저하가 발생하기 전에 조기에 문제를 인지하고 대응할 수 있어야 합니다. - 다양한 알림 및 대응 체계 장애가 발생했을 때 단순한 로그 기록만 남기는 것이 아니라, 이메일, SMS, 푸시 알림 등 다양한 채널을 활용한 즉각적인 경고 전송이 가능해야 합니다. 이를 통해 운영자는 실시간으로 문제를 인지하고 신속하게 대응할 수 있습니다. - 자동화된 장애 대응 지원 쿠버네티스의 자동 복구 및 오토스케일링(Auto-Scaling) 기능이 원활히 작동하도록 지원해야 합니다. 장애 발생 시 실시간 탐지 및 원인 분석을 통해 자동 복구를 트리거하고, 사전 정의된 정책에 따라 적절한 조치를 수행할 수 있어야 합니다.또한, 리소스 부족 감지 시 오토 스케일링이 정상적으로 작동하는지 모니터링하고, 운영자가 신속하게 대응할 수 있도록 인사이트를 제공해야 합니다. 쿠버네티스 모니터링 툴의 핵심 요소③ 서비스 관점까지 고려한 모니터링 지원 쿠버네티스 환경에서는 노드, 파드, 컨테이너 등의 인프라 리소스를 모니터링하는 것만으로는 운영의 안정성을 보장할 수 없습니다. 실제 애플리케이션의 성능과 서비스 품질을 측정하고 분석하는 것이 더욱 중요합니다. 특히, 애플리케이션 레벨에서의 성능 저하 원인을 신속하게 파악하고 대응할 수 있는 모니터링 체계가 필요합니다. - 애플리케이션 성능 모니터링 툴과의 연계 지원 애플리케이션 성능 모니터링(APM, Application Performance Monitoring)과의 연계를 통해 애플리케이션 트랜잭션, 데이터베이스 쿼리 지연 시간 등을 분석할 수 있어야 합니다. 이를 통해 서비스 성능 병목을 신속하게 식별하고 최적화할 수 있습니다. - 서비스 흐름에 대한 분석 기능 쿠버네티스 환경에서는 마이크로서비스 아키텍처(MSA) 기반의 서비스 간 호출 관계가 복잡하게 이루어집니다. 따라서, 서비스 간 트랜잭션 흐름을 실시간으로 추적하고 분석할 수 있는 기능이 필요합니다. 이를 통해 특정 서비스의 성능 저하가 전체 시스템에 미치는 영향을 정확히 파악하고 최적화할 수 있습니다. - 네트워크 성능까지 포함한 모니터링 지원 클러스터 내부 네트워크뿐만 아니라, 외부 시스템과의 연결 상태까지 모니터링하여 지연(Latency)이나 패킷 손실(Packet Loss) 발생 원인을 추적할 수 있어야 합니다. 이를 통해 네트워크 장애가 애플리케이션 성능에 미치는 영향을 분석하고, 최적의 대응 방안을 마련할 수 있습니다. 쿠버네티스 모니터링 툴의 핵심 요소④ 효율적인 운영을 위한 자동화 및 확장성 쿠버네티스 환경에서는 클러스터 크기와 워크로드가 지속적으로 증가할 가능성이 높습니다. 이에 따라, 모니터링 솔루션이 점진적인 확장성을 고려하여 설계되었는지 확인하는 것이 필요합니다. 특히, 대규모 환경에서도 안정적인 성능을 유지하고, 운영 자동화를 통해 관리 부담을 최소화할 수 있는 기능이 중요합니다. - 대규모 환경에서도 원활한 모니터링 지원 쿠버네티스 환경이 확장되더라도 모니터링 솔루션 자체가 과도한 리소스를 소비하지 않고, 성능 저하 없이 운영될 수 있어야 합니다. 이를 위해 대규모 클러스터에서도 효율적인 데이터 수집 및 분석이 가능하도록 설계된 분산 아키텍처와 최적화된 리소스 사용 전략이 필요합니다. - 자동화된 감시 템플릿 및 운영 정책 지원 새로운 노드 또는 클러스터가 추가될 때, 일일이 개별 설정을 변경할 필요 없이 사전 정의된 감시 정책이 자동으로 적용될 수 있어야 합니다. 이를 통해 운영자의 개입 없이도 일관된 모니터링 체계를 유지하고, 관리 효율성을 극대화할 수 있습니다. - 사용자 정의 모니터링 기능이 제공 조직마다 중요한 모니터링 지표가 다를 수 있으므로, 필요한 지표를 직접 설정하고 대시보드를 맞춤 구성할 수 있어야 합니다. 특정 애플리케이션 또는 서비스의 핵심 성능 지표(KPI)를 집중적으로 모니터링할 수 있도록 유연한 사용자 정의 기능을 제공하는지 확인해야 합니다. 쿠버네티스 관리에서 궁극적으로 중요한 것은 운영 환경의 가시성을 확보하고, 문제 발생 시 신속하게 대응할 수 있는 체계를 구축하는 것입니다. 이를 위해서는 앞서 언급한 네 가지 요소를 기준으로 쿠버네티스 모니터링 툴의 기능을 평가하고, 현재 운영 방식과 비교하여 실질적인 개선이 가능한지를 검토하는 과정이 필요합니다. 쿠버네티스 환경이 점점 더 복잡해지고 있는 만큼, 멀티 클러스터 운영 지원, 실시간 장애 감지 및 자동 대응, 애플리케이션 중심의 모니터링, 운영 자동화 및 확장성 확보와 같은 요소를 충족하는 관리 툴을 선택하는 것이 중요합니다. Zenius K8s는 복잡한 쿠버네티스 환경을 효율적으로 관리할 수 있도록 필수적인 기능을 갖춘 솔루션입니다. 다양한 고객 사이트에서 안정성을 검증받았으며, 쿠버네티스 운영을 보다 예측 가능하고 안정적으로 유지하는 데 효과적인 대안이 될 수 있습니다.
2025.02.28
다음 슬라이드 보기