반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
기술이야기
검색
기술이야기
쿠버네티스 모니터링 솔루션, Zenius K8s의 주요기능과 특장점
기술이야기
쿠버네티스 모니터링 솔루션, Zenius K8s의 주요기능과 특장점
많은 기업이 Kubernetes(K8s)를 통해 애플리케이션을 대규모로 배포하고 관리하면서, 이에 맞는 모니터링 솔루션의 중요성이 더욱 커지고 있습니다. 멀티 클러스터 환경이 확산되고 애플리케이션과 인프라 요소가 긴밀히 연결된 IT 인프라에서는, 리소스 상태를 실시간으로 파악하고 신속하게 대응할 수 있는 모니터링이 필요하기 때문입니다. 이러한 상황에서 Zenius K8s는 멀티 클러스터 통합 관리, 애플리케이션 성능 분석, 연관 장비 모니터링 등 다양한 기능을 제공합니다. Kubernetes 환경을 더욱 효과적으로 관리하게 해주는 Zenius K8s의 주요기능과 특장점을 알아보겠습니다. Zenius K8s의 주요기능 [1] 멀티 클러스터 통합 모니터링 쿠버네티스 환경에서는 여러 클러스터를 동시에 관리해야 할 상황이 빈번하게 발생합니다. Zenius K8s는 멀티 클러스터 환경을 단일 화면에서 통합해서 관리할 수 있는 기능을 제공하여, 운영자가 각 클러스터의 상태를 손쉽게 모니터링할 수 있도록 지원합니다. 특히, 자동 생성되는 Topology Map은 클러스터 내부 구성 요소(Node, Pod, Container) 간의 관계를 직관적으로 시각화합니다. 이를 통해 운영자는 각 구성 요소의 연관성과 의존성을 명확히 이해할 수 있으며, 잠재적인 문제를 빠르게 식별할 수 있습니다. 이러한 시각적 도구는 운영자가 복잡한 구조를 보다 체계적으로 관리하는 데 중요한 역할을 합니다. [전체 클러스터 운영 요약 화면 예시] Zenius K8s는 또한, 클러스터별 주요 성능 지표를 요약한 화면과 세부 데이터를 확인할 수 있는 상세 데이터 화면을 제공합니다. 요약 화면에서는 클러스터 간의 성능 차이를 비교 분석할 수 있으며, 세부 데이터 화면에서는 개별 클러스터 내 특정 구성 요소의 성능 문제를 심층적으로 분석할 수 있습니다. 예를 들어, 특정 클러스터에서 리소스 사용량이 급증하는 현상을 요약 화면에서 확인한 후, 상세 데이터 화면으로 전환해 어떤 Pod나 노드가 문제의 원인인지 정확히 파악할 수 있습니다. 이러한 데이터 기반의 접근 방식은 운영자가 적절한 대응 조치를 빠르게 취할 수 있도록 합니다. [2] 지능형 장애 탐지 및 신속한 대응 지원 Zenius K8s는 쿠버네티스의 기본 이벤트 관리 기능을 확장하여, Kubernetes 자체 이벤트와 Zenius 전용 이벤트를 구분해 보다 세부적으로 체계화된 장애 관리 기능을 제공합니다. 각 이벤트에 대해 임계값과 심각도를 운영자 정의할 수 있어, 운영자는 환경에 적합한 기준으로 장애를 감지하고 우선순위를 설정할 수 있습니다. Zenius K8s의 다채널 알림 시스템은 푸시 앱, 이메일, 문자 등 다양한 방식으로 장애 정보를 즉시 전달하여 운영자가 신속하게 대응할 수 있도록 합니다. 단순히 알림을 보내는 것에 그치지 않고, 장애 발생 시점부터 종료 시점까지의 전체 상황을 기록하고 분석할 수 있어, 운영자는 문제 해결뿐만 아니라 유사 상황에 대한 재발 방지 대책을 수립할 수 있습니다. 또한, Zenius K8s는 발생한 장애 이벤트에 대한 상세 로그와 이력 데이터를 제공하여, 운영자가 근본 원인을 신속히 파악할 수 있도록 지원합니다. 이를 기반으로 장애 발생 원인과 영향을 체계적으로 분석하고, 동일한 문제가 재발하지 않도록 최적의 운영 환경을 설계할 수 있습니다. [이벤트 현황관리 화면 예시] [3] 실시간 로그 모니터링 및 분석 운영 환경에서 발생하는 로그는 문제의 원인을 파악하고 성능을 최적화하는 데 중요한 데이터를 제공합니다. Zenius K8s는 컨테이너 기반 애플리케이션의 동작, 오류, 디버깅 로그는 물론, Kubernetes 이벤트 로그(Kubelet, API Server 등)까지 실시간으로 수집하고 분석할 수 있는 기능을 제공합니다. 이 기능은 운영자가 시스템의 전반적인 상태를 심층적으로 모니터링하고, 잠재적 문제를 사전에 발견할 수 있도록 지원합니다. Zenius K8s의 실시간 로그 모니터링은 시점별 데이터 분석 기능을 통해 특정 기간 동안 발생한 로그 데이터를 확인하고, 문제 발생 시점과 원인을 빠르게 추적할 수 있도록 돕습니다. 운영자는 실시간으로 발생하는 로그를 모니터링하며, 필요할 경우 보고서 형태로 데이터를 내보내어 팀 내 공유나 추가 분석에 활용할 수 있습니다. 이 기능은 장애 대응 시간을 단축시키는 동시에, 문제 해결을 위한 협업을 효율적으로 지원합니다. 또한, Zenius K8s의 실시간 로그 분석 기능을 통해 운영자는 현재 발생하고 있는 로그를 실시간으로 확인하여 상황에 따라 빠르게 조치를 취할 수 있습니다. 이 기능은 운영 환경에서 투명성을 강화하고, 예기치 않은 장애로 인한 서비스 중단을 최소화하는 데 중요한 역할을 합니다. [4] 효율적인 리소스 활용 지원 Zenius K8s는 클러스터와 주요 구성 요소(Node, Pod, Container)의 CPU, 메모리, 네트워크 사용량을 실시간으로 추적하여, 자원이 비효율적으로 사용되거나 과부하가 발생할 가능성을 사전에 감지할 수 있는 모니터링 기능을 제공합니다. 운영자는 이를 통해 특정 구성 요소가 리소스를 과도하게 소모하고 있는지 빠르게 확인할 수 있으며, 이를 기반으로 적절한 조치를 취할 수 있습니다. 예를 들어, 특정 Pod가 비정상적인 메모리 사용량을 보일 경우, Zenius K8s는 이를 즉각 감지하여 경고를 제공하고, 운영자가 문제를 해결할 수 있도록 도와줍니다. 이러한 기능은 리소스의 낭비를 줄이고, 시스템의 안정성을 높이는 데 중요한 역할을 합니다. 또한, 쿠버네티스의 자동 확장 기능에 따라 생성되는 파드(Pod)에 대해 Zenius K8s는 자동으로 모니터링을 수행합니다. 이를 통해 새로 생성된 파드의 상태와 리소스 사용량을 실시간으로 추적하여 운영자는 추가적인 설정 없이도 전체 시스템의 상태를 효율적으로 관리할 수 있습니다. Zenius K8s의 특장점 Zenius는 K8s는 위에 살펴본 주요기능에 더해서, 복잡한 쿠버네티스 환경을 더욱 효과적으로 운영하고 관리할 수 있도록 지원할 수 있는 세 가지 특장점을 가지고 있습니다. [1] 확장성 있는 구조를 바탕으로 한 연관 장비 통합 모니터링 Zenius는 K8s 모니터링을 포함하여 SMS, NMS, APM, DBMS등 총 23개의 포인트 솔루션을 연계할 수 있는 Framework으로 구성되어 있습니다. 따라서 운영자는 Kubernetes 클러스터는 물론 컨테이너 오케스트레이션, 서비스 모니터링, 네트워크 관리, 애플리케이션 성능 분석까지 한 시스템에서 일괄적으로 모니터링하고 관리할 수 있습니다. 이러한 확장성은 운영자가 새로운 모니터링 대상을 손쉽게 추가하고, 기존 인프라와 새로운 인프라를 유기적으로 통합하여 대규모 환경에서도 일관된 관리 체계를 유지할 수 있도록 합니다. 예를 들어, Kubernetes 클러스터와 네트워크 장비를 연결해 네트워크 병목 현상이 클러스터 및 애플리케이션 성능에 미치는 영향을 파악할 수 있습니다. 이러한 통합 모니터링은 대규모 환경에서도 일관성을 유지하며, 복잡한 IT 환경에서 발생하는 문제의 근본 원인을 효율적으로 분석할 수 있도록 지원합니다. Zenius K8s는 또한, 서버, 네트워크 장비, 애플리케이션 등 IT 인프라 전반에 대한 성능 데이터를 통합적으로 제공합니다. 이를 통해 특정 장비나 네트워크에서 발생한 성능 저하가 클러스터 및 애플리케이션 운영에 미치는 영향을 직관적으로 파악할 수 있습니다. 이처럼 전체 IT 인프라를 아우르는 통합 모니터링 기능은 운영자에게 단순히 데이터를 제공하는 것을 넘어, 서비스 안정성과 문제 해결의 정확성을 높이는데 기여합니다. [2] APM 연계를 통한 애플리케이션 심층 분석 쿠버네티스는 애플리케이션을 컨테이너화하여 자동화된 배포, 확장, 관리를 가능하게 함으로써 서비스의 안정성과 효율성을 높이는 데 주로 활용됩니다. 따라서 쿠버네티스 모니터링 솔루션은 APM(Application Performance Management)과의 연계가 중요합니다. Zenius K8s는 APM과의 강력한 연계를 통해 Kubernetes 환경 내에서 운영 중인 애플리케이션의 성능을 세밀하게 분석할 수 있도록 지원합니다. 이를 통해 애플리케이션이 처리하는 트랜잭션 속도와 같은 주요 성능 지표는 물론, 지연 발생 구간, 병목 현상 등을 실시간으로 모니터링하고 분석하여 문제의 근본 원인을 신속히 진단할 수 있도록 합니다. 특히, APM 연계를 통해 애플리케이션의 전체 트랜잭션 흐름을 시각화함으로써 개별 트랜잭션에서 발생하는 성능 저하나 지연이 클러스터 성능에 미치는 영향을 파악할 수 있습니다. 예를 들어, 특정 트랜잭션에서 비정상적인 지연이 발생할 경우, APM 솔루션은 이를 실시간으로 탐지하여 해당 구간에 대한 세부적인 성능 데이터를 제공합니다. 이를 통해 트랜잭션 지연의 원인을 파악하고, 최적화 작업을 통해 성능을 개선할 수 있습니다. 또한, Zenius K8s는 트랜잭션 병목 현상의 위치와 원인을 명확히 규명할 수 있는 분석 도구를 포함하고 있어, 특히 마이크로서비스 구조의 복잡한 애플리케이션에서 병목 구간을 체계적으로 최적화할 수 있습니다. 이와 같은 심층적인 성능 분석 기능은 단순히 자원 사용 모니터링을 넘어, 애플리케이션 내부에서 발생하는 성능 이슈를 구체적으로 진단하는 데 중점을 둡니다. [3] 메타정보와 변경 이력 관리의 편의성 Zenius K8s는 Kubernetes 오브젝트에 대한 상세한 메타정보를 명령어 입력 없이 직관적으로 조회할 수 있는 고급 메타정보 뷰어를 제공합니다. 운영자는 각 오브젝트의 이름, 라벨(Label), 주석(Annotation) 등 주요 메타정보를 빠르게 확인할 수 있어 오브젝트 상태를 명확히 이해할 수 있습니다. 이 기능은 클러스터의 모든 오브젝트에 대해 체계적인 정보를 제공하며, 특히 동적이고 복잡한 Kubernetes 환경에서 유용하게 활용됩니다. [K8s 구성 요소 별 메타 정보 조회 화면 예시] 또한, Zenius K8s는 구성 변경 이력 관리 기능을 포함하여 이전에 수행된 구성 변경 사항을 시각적으로 한눈에 확인할 수 있도록 지원합니다. 예를 들어, 운영자는 특정 시점에서 이루어진 설정 변경이 클러스터 성능에 미친 영향을 파악하거나, 문제 발생 시 원인을 추적하여 신속히 복구할 수 있습니다. 이를 통해 변경 이력 내역을 단계별로 조회할 수 있습니다. Zenius K8s의 메타정보 및 변경 이력 관리 기능은 구성 변경이 빈번하게 발생하는 대규모 Kubernetes 환경에서 특히 중요한 역할을 합니다. 구성 요소가 많고 자주 변경되는 환경에서는 변화에 따른 혼선이 발생하기 쉬운데, 이 기능은 구성 내역의 투명성을 제공하고, 불필요한 문제를 예방하며, 신속한 문제 해결을 가능하게 합니다. 운영자는 변경 이력을 기반으로 각 오브젝트의 최신 상태와 과거 설정 내역을 체계적으로 관리하여 안정적인 운영을 유지할 수 있습니다. [메타 정보 이력 추적 및 변경 사항 조회 화면 예시] Zenius K8s는 멀티 클러스터 관리, 실시간 모니터링, 장애 탐지 및 대응, 자원 활용 최적화 등 Kubernetes 운영에서 필수적인 기능을 제공합니다. 특히, Framework 기반 구조를 통해 SMS, NMS, APM, DBMS와 같은 다양한 포인트 솔루션과 연계가 가능하여, 컨테이너 오케스트레이션부터 네트워크 관리, 애플리케이션 성능 분석까지 포괄적인 모니터링과 관리를 지원합니다. 특히, APM 연계 기능은 애플리케이션의 트랜잭션 속도, 병목 현상, 지연 발생 구간 등 주요 성능 지표를 실시간으로 모니터링하고 분석할 수 있도록 하여, 문제의 근본 원인을 빠르게 진단하고 최적화할 수 있도록 돕습니다. 연관 장비 모니터링 기능은 서버, 네트워크 장비 등 IT 인프라 전반의 상태를 통합적으로 분석하여, 각 요소가 Kubernetes 클러스터와 애플리케이션 성능에 미치는 영향을 정확히 파악할 수 있도록 지원합니다. Zenius K8s는 이러한 기능들을 통해 운영자가 복잡한 IT 환경에서도 안정적이고 효율적인 관리 체계를 구축할 수 있도록 도와주는 유용한 솔루션입니다.
2024.11.21
기술이야기
효과적인 쿠버네티스 모니터링을 위한 6가지 고려사항
기술이야기
효과적인 쿠버네티스 모니터링을 위한 6가지 고려사항
컨테이너 오케스트레이션 플랫폼인 쿠버네티스(Kubernetes, K8s)는 자동화된 확장성과 자가 복구 기능을 통해 서비스의 안정성과 운영 효율성을 높이는 장점이 있습니다. 따라서 다양한 마이크로서비스 아키텍처(MSA)와 클라우드 환경에서 널리 활용되고 있습니다. 그러나 쿠버네티스는 파드(Pod), 노드(Node), 네트워크 등 각 요소가 끊임없이 동적으로 변화하며 상호작용하는 복잡한 구조이기 때문에, 체계적이고 세밀한 모니터링 없이는 운영에 어려움을 겪을 수 있습니다. 그렇다면 효과적인 쿠버네티스 모니터링을 위한 필수 고려사항은 무엇인지 6가지로 나눠서 알아보겠습니다. [1] 파드 및 컨테이너 모니터링 파드(Pod)와 컨테이너는 쿠버네티스에서 애플리케이션이 실행되는 가장 기본적인 단위이자 핵심 구성 요소입니다. 따라서 애플리케이션의 가용성과 성능을 안정적으로 유지하기 위해서는 각 파드와 컨테이너의 상태를 정밀하게 모니터링 하는 것이 중요합니다. 파드가 제대로 스케줄링되지 않거나, 컨테이너가 크래시 루프(CrashLoopBackOff) 상태에 빠지면 애플리케이션 성능이 저하되거나 서비스가 중단될 수 있습니다. 이러한 문제를 사전에 방지하려면 각 파드의 CPU, 메모리 사용량, 네트워크 I/O와 같은 자원 사용 현황을 실시간으로 모니터링하는 체계가 필요합니다. 특히, 자원 사용량을 지속적으로 추적하여 비정상적인 사용 패턴이나 과부하 상태를 사전에 감지하는 것이 중요합니다. 또한, 쿠버네티스의 오토스케일링(Auto-Scaling) 기능과 연계된 모니터링 솔루션을 통해 파드가 실시간 트래픽 변화에 맞춰 자동으로 확장 또는 축소될 수 있도록 설정하는 것이 자원 효율성 측면에서도 유리합니다. 이와 같은 종합적인 모니터링 솔루션은 파드와 컨테이너의 상태 변화에 대한 정확한 정보를 제공하고, 문제가 발생하기 전에 이를 사전에 탐지하고 대응할 수 있는 능력을 제공합니다. [2] 클러스터와 노드 상태 모니터링 쿠버네티스 클러스터는 다수의 노드로 구성된 분산 시스템으로, 각 노드는 파드(Pod)를 실행하는 주체로서 클러스터 전반의 성능과 안정성에 중요한 영향을 미칩니다. 각 노드의 CPU, 메모리, 디스크 I/O, 네트워크 대역폭 등 주요 리소스 사용량을 실시간으로 모니터링함으로써 리소스 과부하나 잠재적 장애를 사전에 감지하고 예방할 수 있습니다. 특히, 노드 간 리소스 사용의 불균형은 클러스터 전체 성능에 부정적인 영향을 미칠 수 있으며, 특정 노드에서 발생하는 비정상적인 리소스 소모는 장애의 전조로 볼 수 있습니다. 예를 들어, CPU나 메모리 자원의 지속적인 고갈, 네트워크 트래픽의 급격한 증가 등은 장애를 유발할 수 있는 주요 지표로, 이를 사전에 감지하고 신속하게 대응하는 것이 중요합니다. 이를 위해 각 노드의 메트릭 데이터를 분석하고, 비정상적인 패턴을 자동으로 탐지할 수 있는 쿠버네티스 모니터링 솔루션을 도입하는 것이 필요합니다. 이러한 솔루션은 클러스터 내 모든 노드의 상태를 실시간으로 모니터링하고, 비정상적인 리소스 사용을 빠르게 인식할 수 있게 해줍니다. 또한, 자동화된 경고 시스템을 통해 잠재적인 문제가 발생하기 전에 관리자에게 즉시 알림을 제공하며, 리소스 사용 추세를 기반으로 한 예측 분석 기능을 통해 향후 발생할 수 있는 문제를 미리 방지할 수 있도록 지원합니다. [3] 네트워크 모니터링 쿠버네티스는 내부 네트워크와 외부 네트워크 간 통신이 빈번하게 이루어지는 복잡한 분산 시스템입니다. 파드 간의 통신 오류나 클러스터 외부와의 연결 문제는 애플리케이션 성능 저하로 이어질 수 있기에, 네트워크 상태를 정밀하게 모니터링해야 합니다. 주요 모니터링 지표로는 네트워크 지연(latency), 패킷 손실(packet loss), 네트워크 인터페이스 속도와 대역폭 등이 있으며, 이러한 지표들은 애플리케이션 가용성과 성능에 직접적인 영향을 미칠 수 있습니다. 특히 서비스 메시(Service Mesh)와 같은 고급 네트워크 구성 요소를 도입한 환경에서는 네트워크 복잡성이 더욱 증가하므로, 네트워크 트래픽 경로를 시각화하고 트래픽 흐름을 분석할 수 있는 고도화된 모니터링 솔루션이 필요합니다. 이러한 시스템을 통해 비정상적인 트래픽 패턴이나 병목 현상을 사전에 감지하고, 네트워크 문제를 신속하게 해결할 수 있는 역량을 확보하는 것이 중요합니다. 특히, 네트워크 모니터링은 전체 클러스터의 안정성과 애플리케이션 성능을 보장하는 데 중요한 역할을 합니다. [4] 로그 및 메트릭 수집과 분석 모니터링의 핵심은 적절한 로그와 메트릭 데이터를 수집하고 이를 분석하여 시스템 상태를 지속적으로 파악하는 데 있습니다. 쿠버네티스는 클러스터 내에서 발생하는 다양한 이벤트를 로그로 기록하고, 각 파드, 컨테이너, 노드에서 발생하는 자원 사용량과 성능 관련 데이터를 메트릭으로 제공합니다. 이러한 로그와 메트릭을 실시간으로 수집하고 분석함으로써, 문제가 발생했을 때 그 원인을 빠르게 파악하고 대응할 수 있습니다. 예를 들어, 특정 파드에서 반복적으로 발생하는 에러 로그는 애플리케이션의 특정 기능이 문제가 있음을 시사하며, 이를 통해 운영자는 그 원인을 정확히 파악할 수 있습니다. 또한, 성능 저하가 발생할 때 메트릭 데이터를 분석하여 CPU, 메모리, 네트워크 등 리소스 부족이 원인인지 식별할 수 있습니다. 이러한 정보가 실시간으로 제공되기 때문에, 운영자는 문제를 조기에 발견하고 빠르게 대응할 수 있으며, 그 결과 시스템 장애나 성능 저하를 미연에 방지할 수 있습니다. 또한, 실시간으로 로그와 메트릭 변화를 추적하고 모니터링 솔루션의 경고 알림 기능 등을 활용하면, 문제를 사전에 예측하고 조치를 취할 수 있습니다. [5] 자동화 기능과의 긴밀한 연동 쿠버네티스의 주요 기능 중 하나는 자동화된 확장과 자가 치유(Self-Healing) 기능으로, 이를 통해 클러스터의 안정성과 가용성을 유지할 수 있습니다. 자동화된 확장은 클러스터 상태를 실시간으로 모니터링하여 자원이 부족할 때 자동으로 새로운 파드를 생성하고, 부하를 분산함으로써 성능 저하를 방지합니다. 또한 자가 치유 기능은 장애가 발생한 파드나 노드를 감지하여, 파드를 자동으로 재시작하거나 장애가 발생한 파드들을 다른 건강한 노드로 이동시키는 역할을 합니다. 이러한 기능이 원활하게 작동하려면, 모니터링 솔루션이 클러스터의 상태를 정확하게 파악하고, 자원 사용 현황 및 노드 상태에 대한 신뢰할 수 있는 데이터를 제공해야 합니다. 이를 위해 모니터링 솔루션은 높은 확장성과 안정성을 보장할 수 있는 설정이 필수적입니다. 예를 들어, 파드의 자원 부족이 발생하면 이를 실시간으로 감지하여 적절한 확장 작업이 즉시 이루어질 수 있도록 지원해야 합니다. 결과적으로, 쿠버네티스의 자동화 기능이 성공적으로 활용되려면 쿠버네티스 모니터링 솔루션과의 긴밀한 연동이 반드시 필요합니다. [6] 보안 및 규정 준수 분산 아키텍처를 기반으로 하는 쿠버네티스 클러스터는 외부 공격에 더욱 취약할 수 있으며, 다양한 보안 위협에 노출될 가능성이 존재합니다. 이러한 위협을 효과적으로 방어하기 위해서는 네트워크 트래픽 모니터링을 통해 비정상적인 활동이나 의심스러운 트래픽 패턴을 신속히 감지하고, 보안 정책 위반, 의도치 않은 구성 변경, 혹은 취약점 발견 시 자동으로 경고를 발송하는 보안 모니터링 체계가 필요합니다. 이와 함께, 컨테이너 이미지의 보안 취약점 분석을 사전에 실시하여 악성 코드나 알려진 취약점으로부터 클러스터를 보호하고, 이를 기반으로 하는 보안 스캔 자동화가 중요합니다. 또한, 클러스터 전반에서 발생하는 모든 활동을 실시간으로 감사(Audit) 및 기록하여 컴플라이언스 요구사항을 충족시키는 중앙 집중형 로그 관리 시스템이 필요합니다. 이러한 감사 로그는 규정 준수를 위한 기본적인 요소일 뿐만 아니라, 보안 사고 발생 시 원인 분석 및 대응을 위한 핵심 자료로 활용될 수 있습니다. 쿠버네티스와 같은 분산 시스템을 성공적으로 운영하기 위해서는 그 안에서 발생하는 다양한 이벤트를 실시간으로 모니터링하는 것이 매우 중요합니다. 6가지 고려사항을 통해 클러스터의 상태를 세밀하게 추적하고 분석함으로써, 예상치 못한 문제를 미리 발견하고 대비할 수 있습니다. 특히, 노드나 파드의 자원 소모가 비정상적으로 급증할 때 이를 빠르게 인식하고 조치를 취함으로써, 시스템의 성능 저하를 방지할 수 있습니다. 또한, 네트워크 상태와 보안 위협에 대한 철저한 모니터링은 전체 서비스의 가용성을 높이는 데 큰 도움이 됩니다. 이처럼 체계적인 모니터링 전략을 통해 쿠버네티스 환경에서의 안정성을 확보할 수 있으며, 서비스 중단 없이 원활한 운영을 이어갈 수 있습니다.
2024.10.24
기술이야기
쿠버네티스를 통해 본 컨테이너 오케스트레이션
기술이야기
쿠버네티스를 통해 본 컨테이너 오케스트레이션
‘쿠버네티스(kubernetes)’는 2013년 구글에서 공개한 이후 컨테이터 오케스트레이션 도구의 표준으로 자리 잡았습니다. CNCF의 1호 졸업 프로젝트이기도 한 쿠버네티스는 지속적인 릴리즈를 거쳐 꽤 성숙한 제품이 됐는데요. 쿠버네티스는 컨테이너화된 어플리케이션을 자동으로 배포하고 스케일링 및 관리하기 위한 컨테이너 오케스트레이션 도구라고 간단하게 정의할 수 있습니다. 일반적으로 컨테이너를 사용할 때 ‘도커(Docker)’를 많이 사용한다는 이야기를 들으셨을 것입니다. 도커는 컨테이너를 쉽게 만들고, 내려받고, 공유할 수 있도록 사용되는 컨테이너 플랫폼입니다. 온프레미스 환경 아래의 배포에서 가상환경의 배포로 발전하고 더 나아가 컨테이너 환경 아래에서 리소스를 관리하게 되면서, 도커는 컨테이너 런타임의 표준으로 자리 잡았습니다. 이미지 출처 ⓒ https://kubernetes.io/ko 컨테이너 환경의 배포는 온프레미스 환경과 가상화 환경의 배포보다 관리는 용이하지만, 컨테이너 수가 많아지게 되면서 부하 분산과 안정적인 배포를 위해 관리해야 할 필요성이 지속적으로 증가하였습니다. 이 때 등장하는 것이 컨테이너의 오케스트레이션 도구라고 할 수 있는 쿠버네티스입니다. 이번 시간에는 컨테이너 오케스트레이션의 주요 도구인 쿠버네티스를 통해 컨테이너 오케스트레이션에 대해 알아보고자 합니다. │쿠버네티스의 주요 목적 쿠버네티스의 주요 목적을 이해하려면 컨테이너 오케스트레이션의 개념을 먼저 짚고 넘어가야 합니다. 컨테이너 오케스트레이션 위키피디아의 정의에 따르면 ‘컴퓨터 리소스 자원과 애플리케이션 및 서비스에 대한 자동화된 설정 및 관리’를 의미합니다. 이를 컨테이너에 적용하면, 여러 컨테이너에 대한 프로세스를 최적화하고 적절한 자원의 할당과 자동으로 컨테이너를 생성하고 배포할 수 있도록 해야 합니다. 소수 사용자를 위한 비교적 단순한 컨테이너 앱은 보통 별도의 오케스트레이션이 필요하지 않을 수 있습니다. 관리자가 각 컨테이너 별 리소스 자원을 할당하면 그만이겠죠. 하지만 만약 앱의 기능과 사용자 수가 사소한 수준 이상이라면, 컨테이너 오케스트레이션 시스템을 사용하지 않고 직접 해결하기 어려워집니다. 무엇보다 아키텍처의 트렌드가 모놀리식(Monolithic Architecture)에서 마이크로서비스(Microservice Architecture)로 변화하는 과정에서 컨테이너의 수는 계속 증가할 것이고 무중단 서비스, 즉 고가용성을 제공해야 하는 환경이라면 컨테이너 오케스트레이션은 원활한 서비스 구성을 위한 필수 요소라고 할 수 있습니다. 마이크로서비스 아키텍처 환경에서는 애플리케이션의 세부 기능들이 작은 서비스 단위로 분리되어 있습니다. 이 각각의 서비스를 구현하는데 컨테이너 기술이 가장 흔하게 이용되는데요, 다수의 컨테이너를 관리하는 상황이라면 위의 4가지 이슈에 대한 해답을 찾아야 합니다. │쿠버네티스의 핵심 아키텍처 앞서 살펴본 4가지 이슈를 해결하기 위해 쿠버네티스는 아래와 같은 네 가지 핵심 아키텍처로 구성되어 있습니다. ① 선언적 구성 기반의 배포 환경 쿠버네티스는 동작을 지시하는 개념보다는 원하는 상태를 선언하는 개념을 주로 사용합니다. 즉 사용자가 설정한 원하는 상태(Desired State)와 현재의 상태(Current State)가 일치하는지를 지속적으로 체크하면서 업데이트합니다. 결과적으로 ‘이렇게 되어야 해!’ 라는 선언적 방식으로 명령을 주면 쿠버네티스는 이를 해석하여 컨테이너들을 자동으로 관리하게 됩니다. ② 기능 단위의 분산 쿠버네티스에서는 각각의 기능들이 모두 독립적인 컴포넌트로 분산되어 있습니다. 앞으로 후술할 쿠버네티스 ‘APIserver’를 통해 내부 컴포넌트들을 컨트롤 하고 있습니다. ③ 클라스터 단위의 중앙 제어 쿠버네티스는 가용할 수 있는 리소스를 클러스터 > 노드 > 파드 단위로 추상화 하여 관리합니다. 각각의 클러스터를 통해 노드를 관리하고 노드 안의 컨테이너를 효율적으로 관리할 수 있습니다. ④ API 기반의 네트워킹 쿠버네티스의 구성 요소들은 오직 ‘APIserver’를 통해서만 상호 접근이 가능한 구조를 가지고 있습니다. 마스터 노드의 ‘Kubectl’라는 컴포넌트를 거쳐 실행되는 모든 명령은 이 API 서버를 거쳐 수행되며, 워커 노드에 포함된 ‘Kubelet’, ‘Kube-proxy’ 역시 API 서버를 통해 상호작용하게 되어 있습니다. │쿠버네티스의 오케스트레이션 기능 컨테이너 오케스트레이션의 핵심은 컨테이너의 프로비저닝, 배포, 네트워킹, 확장 가용성, 라이프사이클 관리, 상태 모니터링 일체를 자동화하는 데 있습니다. 쿠버네티스가 제공하는 오케스트레이션 기능은 위의 컨테이너 관리 이슈에 대한 적절한 해결책을 제공합니다. 이미지 출처 ⓒ https://kubernetes.io/ko ① 오토스케일링 (Auto-Scaling) 쿠버네티스에서 생성하고 관리할 수 있는 가장 작은 컴퓨팅 단위를 파드(Pod)라고 부르는데요. 쿠버네티스는 각 클러스터 안에 있는 노드의 CPU와 메모리 자원에 대한 할당을 Pod를 통해 자동으로 조정합니다. 만약 부하가 증가하여 리소스를 과하게 점유하고 있다면 자동으로 파드 복제본이 실행되어 가용성을 확보할 수 있습니다. ② 스케줄링 (Scheduling) 컨테이너를 일정한 알고리즘에 기초하여 구체적으로 어떤 노드에서 움직이게 할지 배치하는 것을 스케줄링이라고 합니다. ‘Kube Scheduler’라는 컴포넌트를 통해 클러스터 내에 실행할 파드를 노드에 스케줄링 할 수 있습니다. ③ 오토 힐링 (Auto-Healing) 쿠버네티스는 사용자가 지정한 컨테이너의 상태를 지속적으로 관찰하여 비정상적인 상태를 감지하면 컨테이너를 재시작하고 스케줄링을 빠르게 재시작 할 수 있습니다. 사용자의 선언적 상태에 따라 응답하지 않은 컨테이너를 새롭게 구동 시킬 수 있습니다. ④ 분산 부하 (Load-Balancing) 하나의 서비스에 여러 개의 컨테이너가 구동 시, 서비스에 들어오는 요청을 컨테이너들 사이에 균등하게 분배하여 부하를 분산시킵니다. 이를 통해 급증하는 서비스 요청에 대해 효율적인 대응이 가능합니다. │쿠버네티스의 구성요소 쿠버네티스는 총 네 가지의 구성요소로 이루어져 있습니다. 이미지 출처 ⓒ https://kubernetes.io/ko ① 클러스터 (Cluster) CNCF 재단에 따르면 클러스터는 공통의 목표를 위해 작동하는 애플리케이션의 그룹이라고 정의하고 있습니다. 쉽게 표현하면, 클러스터는 컨테이너를 통해 실행되는 여러 서비스들의 집합이라고 할 수 있겠는데요. 클러스터의 구성 목적은 애플리케이션의 효율적인 관리에 그 목적이 있습니다. 일반적으로 컨트롤 타워 역할을 하는 마스터 노드와 컨테이너가 실행되는 워커 노드로 구성되어 있습니다. ② 마스터 노드 (Master Nodes) 마스터 노드는 클러스터 전체를 관리하는 컨트롤 타워의 역할을 합니다. 대규모의 컨테이너 관리를 위해 각 워커 노드들의 리소스 사용률을 고려하여 컨테이너 배치와 모니터링이 필요한데요. 클러스터 내에서 이 역할을 수행하는 노드를 마스터 노드라고 부릅니다. ③ 워커 노드 (Worker Nodes) 워커 노드는 마스터 노드의 컨트롤을 받아 실제 컨테이너를 실행하고 쿠버네티스 실행 환경을 관리합니다. ‘Kubelet’이라는 노드 컴포넌트를 통해 파드의 실행을 직접 관리하며 APIserver와 통신하게 됩니다. 하나의 노드는 일반적으로 여러 개의 파드로 구성됩니다. 마스터 노드를 통해 파드에 대한 스케줄링을 자동으로 처리할 수 있습니다. ④ 파드 (Pod) 쿠버네티스에서 생성하고 관리할 수 있는 가장 작은 컴퓨팅 단위입니다. 위의 그림과 같이 하나의 파드 안에 다수의 컨테이너 혹은 단일 컨테이너로 구성될 수 있는데요. 쿠버네티스는 파드를 통해 컨테이너가 동일한 리소스 및 로컬 네트워크를 공유하게 합니다. 위와 같은 방식으로 컨테이너를 그룹화하면 분산된 환경에서도 동일한 하드웨어를 공유하는 것처럼 컨테이너를 서로 통신할 수 있도록 만듭니다. 파드의 사용 목적은 단순합니다. 일반적으로 서로 다른 컨테이너들이 각기 다른 기능들을 수행하며 하나의 완전한 애플리케이션으로 이루어 지게 되는데요. 이 때, 파드를 통해 각 컨테이너들의 내부 통신이 가능하게 하고 모든 컨테이너에 동일한 환경을 제공해 줄 수 있습니다. 요약하면 파드는 컨테이너가 제공하는 모든 기능을 활용하는 동시에 프로세스가 함께 실행되는 것처럼 보이게 하는 역할을 합니다. │쿠버네티스의 주요 컴포넌트 쿠버네티스의 주요 컴포턴트를 컨트롤 플레인 컴포넌트와 노드 컴포넌트로 나눠서 살펴보겠습니다. ① 컨트롤 플레인 컴포넌트 (Control Plane Components) 마스터 노드의 컨테이너, 워커 노드의 관리는 컨트롤 플레인 컴포넌트를 통해 이루어집니다. 컨트롤 플레인 컴포넌트는 클러스터 전체의 워크로드 리소스 등 주요 구성 요소들을 배포하고 제어하는 역할을 합니다. * Kube-APIserver API서버 라는 이름에서 말해주듯이 쿠버네티스의 컴포넌트와 사용자와의 접점 역할을 맡고 있습니다. 쿠버네티스에서 클러스터의 모든 구성 요소들은 오직 API서버를 통해서만 상호 접근이 가능하도록 설계되어 있습니다. 쿠버네티스의 중앙관리자라는 표현이 어울릴지 모르겠지만, 파드의 생성부터 스케줄링, etcd와의 통신까지 쿠버네티스의 모든 동작 과정에 API서버는 쿠버네티스의 중심에 있습니다. * etcd etcd는 클러스터 안의 각 구성요소에 대한 정보가 키-값 형태로 저장된 자체적인 데이터베이스입니다. 현재 클러스터에 있는 컴포넌트가 몇 개인지, 각각의 파드들이 어떤 노드에 붙어 있는지, 어떤 컨테이너를 들고 있는지에 대한 모든 정보가 etcd에 저장됩니다. 중요한 점은 etcd가 다운된다면 클러스터는 제대로 동작하지 못하게 되므로 자체적인 백업 스케줄링은 쿠버네티스 관리에 필수 요소라고 할 수 있습니다. * kube-controller-manager 컨트롤러 매니저는 클러스터 내에 작업 중인 다양한 리소스들을 모니터링하며 사용자가 설정한 원하는 상태(Desired State)와 현재의 상태(Current State)가 일치하도록 관리하는 작업을 합니다. 주요 컨트롤러로는 파드 복제를 유지해 주는 레플리카셋(ReplicaSet), 앱 배포를 세밀하게 관리할 수 있는 디플로이먼트(Deployment) 등으로 구성되어 있으며, 하나의 패키징 된 형태를 가지고 있습니다. * Kube-Scheduler 스케줄러는 각 파드들이 어떤 노드에서 작업을 수행할지 결정해 주는 역할을 맡고 있습니다. 비유하자면 작업 장소를 선택해 주는 의사 결정만 담당하고 있으며 실질적인 배치 작업은 아래 설명할 Kubelet이 담당하고 있습니다. ② 노드 컴포넌트 (Node Components) 노드 컴포넌트는 노드에서 작동하는 파드들을 관리하기 컴포넌트입니다. 워커 노드뿐 아니라 마스터 노드에서도 존재합니다. * Kubelet Kebelet은 클러스터의 모든 노드에서 실행되는 에이전트입니다. 파드의 실행을 직접적으로 관리한다고 볼 수 있는데요. 컨테이너디(Containerd), 크라이오(CRI-O) 같은 컨테이너 런타임과도 통신이 가능하며 노드 내에 구동 중인 컨테이너에 대한 라이프사이클을 관리합니다. 본래 쿠버네티스에서는 컨테이너 생성과 실행을 위한 런타임 엔진으로 도커(Docker)를 지원해왔으나, 2022년 2월 기준으로 완전히 중단되었습니다. 물론 런타임 엔진에서 도커가 제외된다는 것이 클러스터에서 도커 자체를 사용하지 못하게 된다는 뜻은 아닙니다. * Kube-proxy Kube-proxy는 노드에서 구동되는 쿠버네티스 네트워크 프록시입니다. 쿠버네티스에서 서비스라고 불리는 내부/외부 트래픽을 어느 파드로 전달할 것인지에 대한 규칙을 생성하고 관리하는 역할을 합니다. 。。。。。。。。。。。。 쿠버네티스의 주요 오케스트레이션 기능과 쿠버네티스의 주요 구성 요소 및 컴포넌트들을 살펴보았는데요. 쿠버네티스만이 컨테이너의 관리 복잡성을 해결할 수 있는 유일한 오픈소스는 아닙니다. 아파치 소프트웨어 재단에서 개발한 ‘아파치 메소스(Apache Mesos)’, 도커에서 개발한 ‘도커 스웜(Docker Swarm)’ 등의 컨테이너 관리 오픈소스도 있지만 2024년 현재 쿠버네티스는 독점적인 위치를 차지하고 있습니다. 무엇보다 3대 퍼블릭 클라우드사인 AWS, Azure, GCP 모두 매니지드 쿠버네티스 플랫폼을 제공하고 있습니다. 국내 퍼블릭 클라우드인 kt cloud, 네이버클라우드, NHN클라우드, 가비아, 카카오클라우드, 삼성클라우드플랫폼 등 모두 각 클라우드 환경에 최적화된 쿠버네티스 서비스를 제공하고 있죠. 또한, RedHat은 쿠버네티스 기반의 오픈시프트(OpenShift)를 통해 CaaS(Container as a Service) 시장의 선점을 노리고 있습니다. 스타트업과 대기업을 가리지 않고 기업에서 운영하는 컨테이너 기반의 애플리케이션이 복잡화됨에 따라 컨테이너 오케스트레이션 관리 도구인 쿠버네티스는 이제 기업 IT 운영전략의 핵심 요소가 되었습니다. 제니우스 쿠버네티스 모니터링 화면 예시 브레인즈컴퍼니의 제니우스(Zenius) 역시 컨테이너 모니터링뿐 아니라 쿠버네티스에 대한 모니터링을 환경을 제공하고 있습니다. 멀티 클러스터 환경에서의 모든 클러스터에 대한 모니터링뿐 아니라 Object Meta 정보를 제공하며 다양한 임계치 기반의 이벤트 감시 설정으로 선제적 장애 대응이 가능합니다. 📚참고 자료 쿠버네티스 공식 문서: Kubernetes Components 쿠버네티스 공식 문서: Options for Highly Available Topology 쿠버네티스 공식 문서: Container runtimes
2024.02.05
기술이야기
쿠버네티스와 Helm 등 CNCF의 주요 프로젝트
기술이야기
쿠버네티스와 Helm 등 CNCF의 주요 프로젝트
지난 포스팅을 통해 정리한 것처럼 CNCF는 클라우드 네이티브 생태계의 활성화를 위해, 다양한 오픈소스 프로젝트를 개발하고 공급하고 있습니다. 또한 프로젝트 채택 단계부터 사용 빈도까지의 성숙도를 관리하기 위한, 프로세스 체계를 보유하고 있는데요. 이번 시간에는 CNCF의 주요 프로세스인 쿠버네티스(K8s), Helm 등과 CNCF 프로세스에 대해서 알아보고자 합니다. 。。。。。。。。。。。。 CNCF 프로젝트 프로세스 2023년 10월 기준으로 약 170여 개의 CNCF 프로젝트가 진행 중인데요. 이들 프로젝트는 성숙도에 따라서 샌드박스(Sandbox), 인큐베이팅(Incubating), 졸업(Graduated)으로 나뉩니다. 성숙도 수준에 대한 평가는 CNCF 위원회 멤버들에 의해서 결정되며, 졸업(Graduated) 단계의 프로젝트로 인정받기 위해서는 3분의 2 이상의 찬성 표가 필요합니다. ▲프로젝트 성숙도 단계 Step1. 샌드박스(Sandbox) CNCF의 새로운 프로젝트가 채택되면 Sandbox 단계에서 시작합니다. 이 단계에서는 프로젝트가 CNCF의 가이드라인과 정책에 부합되는지를 확인하는 절차를 주로 거칩니다. Step2. 인큐베이팅(Incubating) Sandbox를 통과한 프로젝트는 Incubating 단계로 집입하며, 이 단계에서는 프로젝트의 커뮤니티와 기술적 성숙도를 더욱 강화하도록 합니다. 해당 프로젝트의 커뮤니티의 규모와 다양성을 평가하고 기능들의 안정성을 검증합니다. Step3. 졸업(Graduated) Incubating 단계를 성공적으로 통과한 프로젝트는 Graduated 단계로 올라갑니다. 높은 수준의 품질과 안정성이 보장되어야 이 단계에 올라갈 수 있는 거죠. 커뮤니티가 활발하게 유지되고 관련자의 참여가 적극적으로 이루어져야 하며, 실제 사용 사례에서 성공한 경험들이 존재해야 합니다. Step4. 사용 사례 검증 Graduated 프로젝트 중 실제로 다양한 산업에서 사용되고, 기업과 조직이 해당 프로젝트를 많이 채택하는지를 평가하여, 지속적인 성장 가능성과 성숙도를 평가합니다. CNCF에서 관리하는 프로젝트 영역은 꽤 넓고 다양한데요. 애플리케이션 개발을 위한 도구부터 컨테이너 오케스트레이션, 서비스 프로비저닝, 모니터링 도구 등 소프트웨어 개발부터 운영까지를 위한 도구들이 존재합니다. 이제부터는 가장 성공적인 프로젝트인 쿠버네티스를 포함하여, Incubating 단계 이상의 프로젝트를 알아보고자 합니다. CNCF의 주요 프로젝트 쿠버네티스(kubernetes) 쿠버네티스는 CNCF에서 최초로 Graduated 단계에 진입한 프로젝트입니다. 컨테이너 오케스트레이션 기능을 통해, 애플리케이션 컨테이너 기반으로 자동화하고 확장할 수 있는 플랫폼을 제공합니다. A. 컨테이너 오케스트레이션 기능 컨테이너화된 애플리케이션을 자동으로 배포·확장하고 관리하는 기능을 제공합니다. 애플리케이션의 변경이 필요할 경우, 개발자가 애플리케이션을 빠르게 수정 및 배포하고 운영할 수 있게 합니다. B. 스케일링 기능 리소스 사용량이나 사용자 트래픽 증가에 따라 자동으로 애플리케이션을 확장·축소하는 오토 스케일링 기능을 제공합니다. C. 롤백 기능 문제가 발생된 애플리케이션의 경우, 롤백 기능을 제공하여 서비스 장애에 신속히 대응합니다. Helm Helm은 쿠버네티스 환경에서 애플리케이션을 관리하기 위한 도구로 사용됩니다. Helm은 차트라고 불리는 패키지로 애플리케이션을 패키징 하는데요. 이 차트에는 애플리케이션의 설치부터 관리에 필요한 모든 것을 포함합니다. 쉽게 말하면 이 차트라는 기능을 통해 애플리케이션을 탬플릿화하고, 배포하며, 롤백 및 공유하는 역할을 하는 프로젝트입니다. Envoy ▲Envoy를 사용하는 주요 업체 리스트 ⓒenvoyproxy.io Envoy는 클라우드 네이티브 환경에서 애플리케이션의 네트워크 트래픽을 관리하고, 제어하기 위한 프로젝트입니다. 프록시 기능을 수행하고, 클라이언트 서버 간의 통신을 관리하며, 애플리케이션 간의 통신의 보안 향상시킵니다. 여러 애플리케이션 사이에서 부하 분산을 자동화하여 가용성과 성능을 향상시킬 수 있도록 합니다. 부하 분산을 함에도 불구하고 특정 시스템에 부하가 생겨 장애 발생이 생길 경우, 트래픽을 가중치에 따라 다른 시스템으로 분산시키는 역할을 합니다. Containerd Containerd는 쿠버네티스 환경에서 컨테이너를 만들고 실행하는 데 도움을 주는 프로젝트입니다. 개발자가 컨테이너를 만들고 실행시키는 역할을 하며, 필요할 때는 중지하거나 삭제하는 작업을 지원합니다. 컨테이너 실행에 필요한 파일과 설정을 모아 놓은 이미지를 다운로드하고, 저장하며, 불러오는 역할과 같은 이미지 관리 기능도 제공하고 있습니다. Prometheus Prometheus는 시스템이나 애플리케이션의 동작을 실시간으로 모니터링하고, 이상 상황이 발생할 경우 알림을 줄 수 있는 도구입니다. 다양한 데이터를 수집하고 기록하여 차후 분석 용도로 활용할 수 있습니다. 또한 핵심 지표들을 유형 및 종류별로 제공하여, 다각적인 관점에서의 관찰을 지원합니다. 시스템의 리소스부터 애플리케이션의 동작 및 응답 상태를 적시에 확인하게 해줍니다. Fluentd ▲Fluentd 개념 설명 ⓒfluentd.org Fluentd는 다양한 시스템에서 발생되는 로그 데이터를 수집·처리·전송하는 데이터 수집 도구로서, 스플렁크(SPLUNK)와 유사한 역할을 수행하는 프로젝트입니다. 다양한 소스에서 발생되는 로그를 수집할 수 있을 뿐만 아니라, 원하는 목적지의 저장소까지 전송하는 역할을 수행합니다. 예를 들어 Syslog 등을 실시간 수집하고, 이를 Elasticsearch나 Amazon S3 등의 원하는 저장소로 목적지를 설정할 수 있게 합니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼, CNCF에서 클라우드 네이티브 생태계 활성화를 위해 다양한 프로젝트를 진행하고 있는데요. 브레인즈컴퍼니 역시 클라우드 네이티브 모니터링을 위한 다양한 제품과 기능 등을 속속 출시하고 있습니다. 대표 제품인 제니우스(Zenius)를 통해 클라우드 네이티브의 핵심요소인 컨테이너(Docker)의 상태와 리소를 실시간으로 모니터링할 수 있습니다. MSA 환경을 만들기 위한 필수 도구인 쿠버네티스(K8s)의 Cluster·Node·Pod 등의 구성과 변화를 관찰하며, 이상 상황 알림을 통해 선제적 장애 대응 또한 가능합니다. Zenius에 대해 더 자세히 알고 싶으시다면, 바로 아래 링크를 클릭해 주세요! 🔍더보기 Zenius로 클라우드 네이티브 모니터링하기 CNCF 세 가지 핵심가치(1탄)도 있어요
2024.01.03
기술이야기
서버 모니터링 트렌드 살펴보기
기술이야기
서버 모니터링 트렌드 살펴보기
기업이나 조직의 IT 인프라 모니터링은 서버 모니터링에서 출발합니다. 통상적으로 서버 모니터링부터 네트워크, 데이터베이스, 웹애플리케이션, 전산설비 등으로 모니터링의 범위를 확장해 나가는 것이 일반적입니다. 서버는 초창기 메인 프레임부터 유닉스 서버, 리눅스 서버를 거쳐 최근의 가상화 서버에 이르기까지 물리적 및 논리적으로 그 성격이 변화해 왔습니다. 그에 따라 서버 모니터링의 관점도 많이 변모해 왔습니다. 기껏해야 1~2대 규모로 운영하던 메인 프레임의 시대와 수천, 수만대의 서버팜을 관리해야 하는 시대의 모니터링 개념은 달라야 합니다. 또, 가상화 시대를 맞아 물리적 서버 개념보다는 논리적 서버 개념이 중요해지고, 서버 1~2대의 장애 상황보다는 서버팜이 이루고 있는 서비스의 영속성이 중요해졌습니다. 이처럼 서버라는 인프라가 기술 발전에 따라 변모하고 있고, 그에 대응해 모니터링 콘셉트나 방법도 변화하고 있습니다. 이번 블로그에서는 서버 관련 새로운 인프라 개념 및 기술들이 대두되면서 변화하는 서버 모니터링의 새로운 트렌드에 관해 논의해 보고자 합니다. 1. 클라우드 네이티브 모니터링 더 많은 기업이나 조직이 전통적인 레거시 시스템에서 클라우드로 이동함에 따라 클라우드 모니터링의 필요성이 급격히 증가했습니다. 클라우드 네이티브 모니터링 도구는 Amazon Web Services(AWS), Microsoft Azure, Google Cloud Platform(GCP)과 같은 클라우드 환경에서 애플리케이션과 클라우드 인프라를 모니터링하도록 설계됐습니다. 또, 클라우드 인프라의 성능, 가용성 및 보안에 대한 실시간 인사이트를 제공해, IT운영부서가 문제를 신속하게 발견하고 해결할 수 있도록 지원합니다. 일반적인 클라우드 모니터링은 메트릭과 로그를 사용해 클라우드 인프라 및 애플리케이션 성능을 하나의 통합된 화면에 제공합니다. 또한 통합 IT 환경 측면에서는 컨테이너 오케스트레이션 플랫폼 및 서버리스 컴퓨팅과 같은 다른 클라우드 환경과 통합해 모니터링할 수도 있습니다. 클라우드 기반 모니터링의 최신 추세는 하이브리드 모니터링입니다. 조직은 하이브리드 모니터링을 통해 클라우드와 온프레미스에서 각각 실행 중인 서버 및 애플리케이션 모두를 단일 플랫폼에서 모니터링할 수 있습니다. 2. 인공지능과 머신러닝 서버 모니터링의 또 다른 트렌드는 인공 지능(AI)과 머신 러닝(ML)을 사용해 모니터링 과정을 자동화하는 것입니다. AI 및 ML 알고리즘은 모니터링 과정에서 생성된 방대한 양의 데이터를 분석하고 패턴을 식별해 이상 징후를 감지할 수 있습니다. 이는 실시간으로 수행될 수 있으므로 운영관리자는 발생하는 모든 문제에 신속하게 대응할 수 있습니다. ML 알고리즘은 과거 데이터를 분석해 트래픽이 가장 많은 시기나 잠재적 장애와 같은 미래 추세를 예측할 수 있습니다. 이를 위해 서버의 성능과 관련된 대규모 데이터 세트에서 ML 알고리즘을 교육해야 합니다. 이 데이터는 서버 로그, 시스템 메트릭, 애플리케이션 로그 및 기타 관련 정보가 해당됩니다. 다음으로 알고리즘을 학습해 다양한 메트릭 간의 패턴과 상관 관계를 식별하고 이상 징후와 잠재적 문제를 감지합니다. 머신 러닝 모델이 훈련되면 서버를 실시간으로 모니터링하도록 배포할 수 있으며, 모델은 지속적으로 서버 메트릭을 분석하고 이를 학습한 패턴과 비교합니다. 편차나 이상을 감지하면 문제를 해결하기 위해 경고 또는 자동화된 작업을 트리거할 수 있습니다. 예를 들어, 트래픽이 갑자기 증가하는 경우 리소스를 자동으로 Scaling 하거나 다운 타임을 방지하기 위해 다른 조치를 취할 수 있습니다. 전반적으로 인공 지능과 머신 러닝을 사용해 서버 모니터링을 자동화하면, 문제해결에 시간을 절약하고 인적 오류의 위험을 줄일 수 있습니다. 또, 심각한 문제로 번지기 전에 잠재적 문제를 식별해 서버 인프라의 전반적인 안정성과 가용성을 향상할 수 있습니다. 3. 컨테이너 모니터링 컨테이너가 애플리케이션 배포에 점점 더 많이 사용되면서, 컨테이너 모니터링은 서버 모니터링의 중요한 측면이 됐습니다. 컨테이너란 애플리케이션을 모든 인프라에서 실행하는데 필요한 모든 파일 및 라이브러리와 함께 번들로 제공하는 소프트웨어 배포 도구입니다. 컨테이너를 사용하면 모든 유형의 디바이스 및 운영 체제에서 실행되는 단일 소프트웨어 패키지를 만들 수 있습니다. 뿐만 아니라, 단일 시스템에서 한 컨테이너는 다른 컨테이너의 작업을 방해하지 않으므로 확장성이 뛰어나고, 결함이 있는 서비스가 다른 서비스에 영향을 주지 않아 애플리케이션의 복원력과 가용성이 향상되는 장점이 있습니다. 컨테이너 모니터링은 CPU 및 메모리 사용량과 같은 컨테이너 리소스 사용률에 대한 실시간 메트릭을 제공할 수 있습니다. 또, 애플리케이션이 의도한 대로 실행되고 있는지 확인하기 위해 Kubernetes(쿠버네티스)와 같은 컨테이너 오케스트레이션 플랫폼을 모니터링하고, 컨테이너 및 기본 인프라에 대한 실시간 가시성을 제공합니다. 4. 서버리스 모니터링 서버리스 컴퓨팅은 사용량에 따라 백엔드 서비스를 제공하는 방법으로, 개발자가 서버를 관리할 필요없이 애플리케이션을 빌드하고 실행하는 것을 가능하게 합니다. 서버리스 컴퓨팅은 벤더 종속성(Vendor lock-in), 콜드 스타드와 DB백업이나 영상 인코딩 등 단시간에 많은 컴퓨팅 용량이 필요한 경우, 효율적이지 않음에도 불구하고 최근 몇 년 동안 주목을 받아오며 서버리스 모니터링이 서버 모니터링의 새로운 트렌드가 됐습니다. 서버리스 모니터링은 CPU, 메모리, 디스크 사용량 등 리소스 사용률, 애플리케이션 성능, 호출 시간 및 오류율과 같은 기능 성능에 대한 실시간 인사이트를 제공합니다. 서버리스 모니터링은 데이터베이스 쿼리 성능과 같은 서버리스 함수의 종속성에 대한 인사이트도 제공합니다. 5. 마이크로서비스 모니터링 마이크로서비스는 하나의 큰 애플리케이션을 여러 개의 작은 기능으로 쪼개어 변경과 조합이 가능하도록 만든 아키텍처로, 각 서비스를 다른 서비스와 독립적으로 개발, 배포 및 확장할 수 있는 장점이 있습니다. 하지만 마이크로서비스는 일반적으로 분산된 환경에 배포되므로 성능을 추적하고 문제를 찾아내기가 어렵고, 독립적으로 설계됐으므로 호환성에 어떤 문제가 있는지 감지할 필요가 있어 마이크로서비스 모니터링이 필요합니다. 마이크로서비스 모니터링은 개별 마이크로서비스 및 전체 애플리케이션의 성능과 상태를 추적하는 프로세스로 로그, 메트릭 및 트레이스와 같은 다양한 소스에서 데이터를 수집하고 분석해 문제를 식별하고 성능을 최적화하는 작업입니다. 마이크로서비스 모니터링은 각 마이크로서비스 별 가용성, 응답 시간, 가동 시간, 지연 시간, 오류율을 포함합니다. CPU, 메모리, 디스크 사용량과 같은 리소스 사용률을 추적해 잠재적인 성능 병목 현상이나 리소스 제약을 식별할 수 있고, 마이크로서비스 간의 데이터 흐름을 추적하고 서비스 간의 종속성 추적을 모니터링합니다. 또, 마이크로서비스 모니터링은 애플리케이션 전체의 전반적인 상태와 성능뿐만 아니라 타사 서비스 및 API의 성능과 상태도 모니터링할 수 있습니다. ----------------------------------- 브레인즈컴퍼니는 꾸준히 연구개발에 매진해 상기와 같은 새로운 트렌드를 반영한 Zenius-EMS를 개발, 출시했습니다. Zenius-EMS는 고객들이 레거시 시스템에서부터 클라우드 네이티브 시스템에 이르기까지 다양한 관점의 서버모니터링을 할 수 있도록 지원합니다. *이미지 출처: Unsplash, flaction
2023.03.29
1