오늘날 기업의 IT 인프라는 클라우드, 가상화, 마이크로서비스(Kubernetes)로 빠르게 전환되고 있습니다. 서비스는 점점 더 세분화되고 연결 구조는 복잡해지면서, 단일 지점에서 발생한 문제라도 전체 서비스 품질에 즉각적인 영향을 미칠 수 있습니다. 그러나 기존의 네트워크 모니터링 방식은 주로 장비 단위에 국한되어 있어, 트래픽 증가나 지연 같은 현상이 발생했을 때 원인을 신속하고 정확하게 파악하기가 쉽지 않습니다.
이러한 환경에서는 단순한 장비 레벨 모니터링을 넘어, 인터페이스 → 트래픽 흐름 → 프로세스 단위까지 네트워크를 다각도로 관찰하는 체계가 필요합니다. Zenius의 NMS, TMS, NPM은 각각의 레벨에서 데이터를 수집·분석함으로써, 네트워크 전반을 단계적으로 추적하고 문제 지점을 빠르게 규명할 수 있도록 돕습니다. 이번 글에서는 세 가지 솔루션을 연계하여 실제 운영 환경에서 어떻게 트래픽 원인을 분석할 수 있는지를 구체적으로 살펴보겠습니다.
Zenius NMS, TMS, NPM의 정의와 역할을 먼저 정리해보겠습니다. 각각의 솔루션은 모두 네트워크 트래픽을 모니터링하고 분석하는 기능을 제공하지만, 적용되는 관점과 수집 방식, 그리고 활용 목적에서 분명한 차이가 있습니다.
Zenius NMS(Network Management System)는 SNMP를 기반으로 라우터, 스위치 등 네트워크 장비의 물리 인터페이스 관점에서 트래픽을 모니터링합니다. 이를 통해 장비별 포트 사용량, bps/pps, 에러 발생 여부 등을 실시간으로 확인할 수 있으며, 네트워크 전반의 기본적인 상태를 빠르게 파악하는 데 유용합니다.
반면 Zenius TMS(Traffic Management System)는 NetFlow, sFlow, IPFIX와 같은 Flow 데이터를 활용하여, 네트워크를 경유하는 IP·Port 단위 트래픽 흐름을 분석합니다. 스위치를 경유하는 트래픽에 대해 bps/pps와 같은 기본 지표를 확인할 수 있을 뿐 아니라, 애플리케이션별·서비스별·포트별로 트래픽을 분류하고 TopN 분석을 제공하기 때문에, 백본이나 라우터 구간에서 어떤 서비스가 대역폭을 가장 많이 사용하는지 직관적으로 파악할 수 있습니다.
마지막으로 Zenius NPM(Network Performance Monitoring)은 eBPF 기술을 기반으로 서버 및 컨테이너 환경의 커널 레벨 통신을 모니터링합니다. 단순 트래픽량뿐만 아니라 Latency, RTT, Jitter, Retransmit 등 정밀한 성능 지표까지 수집할 수 있어, Kubernetes나 MSA 기반 서비스처럼 복잡한 구조에서 세밀한 원인 분석이 가능합니다.
정리하자면, NMS는 장비·인터페이스 레벨, TMS는 네트워크 경로·서비스 레벨, NPM은 서버·프로세스 레벨에서 각각 네트워크를 해석합니다. 이 세 가지를 유기적으로 결합하면, 물리적 인터페이스 → 네트워크 경로 → 커널 기반 통신까지 다층적으로 추적할 수 있어, 복잡한 네트워크 환경에서 발생하는 트래픽 문제를 효과적으로 해결할 수 있습니다.
이제 각 솔루션이 실제로 어떻게 연계되어 활용되는지, 구체적인 기능 구성 및 분석 절차를 하나씩 살펴보겠습니다.
본격적으로 NMS·TMS·NPM 기반 트래픽 분석 절차를 살펴보겠습니다. 이번 사례는 쿠버네티스(K8s) 기반 WAS 서비스의 트래픽 흐름을 추적하며, 각 구간을 어떤 방식으로 점검할 수 있는지를 단계별로 살펴보겠습니다.
먼저 운영환경의 기본 구성도를 확인하고 분석 대상이 되는 구간을 정리합니다. 본 사례에서는 DB POD → WAS POD → Worker Node → 내부 L3 → 백본 → 방화벽으로 이어지는 흐름을 점검 대상으로 삼습니다. 이러한 흐름을 명확히 정의해두면 이후 어떤 도구와 지표를 중점적으로 확인해야 할지 쉽게 구분할 수 있습니다.
다음으로 각 구간을 어떤 방식으로 수용하고 분석할지 체계를 구성합니다.
- 내부 L3, 백본, 방화벽은 SNMP를 통해 NMS에 연계하여 인터페이스 단위 트래픽을 수집합니다.
- 백본은 NetFlow, sFlow 등의 Flow 데이터를 TMS에 수용해 애플리케이션 및 서비스 흐름을 분석합니다.
- Worker Node는 Agent 기반으로 NPM에 연결해 POD 간 세밀한 통신 현황을 추적합니다.
이렇게 구성하면 서버, 네트워크 장비, 서비스 경로까지 계층별로 입체적인 모니터링이 가능합니다.
① POD ↔ WAS POD
DB POD와 WAS POD 사이의 통신은 [NPM > 모니터링 > 트래픽 > View, 필터 조건 검색] 경로를 통해 확인합니다. 여기서 IP와 Port를 기준으로 필터링하면, 해당 세션의 트래픽량뿐 아니라 Latency, RTT, Jitter, Retransmit 같은 세밀한 성능 지표를 함께 살펴볼 수 있습니다.
또한, [NPM > 모니터링 > 트래픽현황 > View, 필터 조건 검색] 메뉴를 이용하면 DB POD Port를 기준으로 실제 트래픽 흐름이 어떻게 연결되는지를 시각적으로 파악할 수 있습니다.
② WAS POD ↔ Worker Node ↔ 내부 L3
그다음에는 [NPM > 모니터링 > 트래픽현황] 화면에서 Worker Node 전체 기준으로 트래픽을 점검합니다. 이 과정에서는 상위 트래픽 발생 호스트, 송수신 바이트, Latency, Jitter 추이를 시간대별로 확인할 수 있어, 특정 시점에서 발생한 지연 현상을 이벤트와 연관 지어 분석하기에 적합합니다.
③ Worker Node ↔ 내부 L3
내부 L3 구간은 [NMS > 모니터링 > 장비 > 인터페이스] 메뉴에서 확인합니다. bps, pps, 에러 발생 여부 같은 항목을 중심으로 살펴보면 링크의 안정성과 과부하 여부를 빠르게 점검할 수 있습니다.
또한, [NMS > 모니터링 > 성능 > 인터페이스] 메뉴를 활용하면 시간대별 bps/pps 그래프를 통해 트래픽 패턴 변화를 확인할 수 있으며, 이는 NPM에서 관측한 Latency나 Jitter 지표와 교차 검증하는 데 도움이 됩니다.
④ 내부 L3 ↔ 백본 ↔ 방화벽
마지막으로 백본 구간은 TMS를 통해 흐름을 분석합니다. [TMS > TopN > 어플리케이션] 메뉴에서 HTTPS, PostgreSQL 등 주요 애플리케이션별 트래픽 분포를 확인할 수 있으며, [TMS > TopN > 트래픽, Port] 화면에서는 IP와 Port를 기준으로 어떤 서비스가 대역폭을 점유하고 있는지 빠르게 파악할 수 있습니다.
[ TMS > TopN > 트래픽, Port ] IP, Port 등 다양한 기준의 백본 경유 트래픽 분석
결국, NPM은 POD·서버 간 세밀한 지연과 통신 성능을, NMS는 네트워크 장비 인터페이스 단위 안정성을, TMS는 서비스 및 애플리케이션 흐름을 각각 보여줍니다. 이렇게 다층적인 분석을 통해, 단일 구간이 아닌 전체 서비스 경로를 종합적으로 추적할 수 있으며, 이는 재현이 어려운 네트워크 장애 원인 파악에 큰 도움이 됩니다.
쿠버네티스(K8s) 환경의 서비스는 일반적으로 다수의 POD가 상호 연결되어 하나의 서비스를 제공합니다. 이러한 구조에서는 특정 Worker Node의 트래픽이 급격히 증가했을 때, 기존의 일반 모니터링 도구(SMS) 만으로는 증가 원인을 정확히 분석하기 어렵습니다. SMS는 대개 NIC 단위 트래픽 수준까지만 보여주기 때문입니다.
따라서 Zenius NPM을 활용해 OS(커널) 관점에서 IP·Port 기준의 세밀 분석을 수행해야만, 어떤 POD·세션·포트가 원인인지 구체적으로 밝혀낼 수 있습니다.
먼저 [NPM > 모니터링 > 트래픽 > View, 필터 조건 검색]에서 문제의 Worker Node를 기준으로 플로우 목록을 정렬합니다. 다수의 POD에서 동일 포트(예: 8081) 로 통신하는 패턴이 확인되면, 수집 트래픽 증가 가능성이 높습니다.
→ 8081은 Zenius APM 데이터 수집 포트이므로, APM 수집량 증가에 따른 네트워크 사용량 상승을 1차 가설로 설정합니다.
다음으로 [NPM > 모니터링 > 트래픽현황 > View, 필터 조건 검색]에서 RemotePort = 8081로 필터링합니다. 트래픽 맵을 통해 어떤 POD들이 8081 수집 지점으로 트래픽을 보내는지와 연결 방향을 직관적으로 확인할 수 있습니다. 본 사례에서는 4개의 POD에서 동일 포트로 집중되는 흐름이 나타났고, 추가 8081 통신 대상은 확인되지 않았습니다.
3) K8s에서 트래픽 발생 POD 상태 교차 검증
이제 [Zenius K8s > 모니터링 > 파드]에서 트래픽 발생 POD(예: 192.168.0.216) 를 선택해 상태와 자원 사용률(CPU/메모리), 네트워크(bps) 를 확인합니다. 본 사례에서는 상태가 정상이고 Limit 대비 사용률도 안정적이어서, 트래픽 증가는 장애가 아닌 정상적인 수집 과정에서 발생한 현상으로 판단할 수 있습니다.
4) APM 지표로 맥락 검증
마지막으로 [Zenius APM > 모니터링] 대시보드에서 요청 건수, 응답 시간, 동시 사용자 등의 애플리케이션 지표를 확인합니다. NPM에서 포착된 8081 증가 시점과 APM 지표가 동조하면, 네트워크 증가는 APM 수집 트래픽 증가(정상 동작)로 판단할 수 있습니다.
반대로 APM 지표가 평온한데 8081만 치솟는다면, 이는 수집 설정이나 라우팅 구성의 이상을 의심해야 합니다. 이 경우, 동일 조건을 재현해 문제를 다시 발생시켜 보고, 원인이 확인되면 수집 주기·라우팅·리소스 할당 등을 조정(튜닝)하여 최적화할 수 있습니다.
NPM–NMS–TMS–K8s–APM을 유기적으로 연결해, 특정 Worker Node 트래픽 급증 이슈를 포트/세션 단서 포착 → 흐름 확인 → POD 상태 교차 검증 → 애플리케이션 지표로 맥락 확인의 순서로 좁혀가는 방법을 살펴봤습니다.
핵심은 커널 레벨의 정밀 지표(NPM)로 원인을 가설화하고, 맵/인터페이스/서비스 흐름을 통해 이를 빠르게 검증하는 것입니다. 이 흐름을 표준 운영 절차로 적용하면, 재현이 어려운 상황에서도 원인 구간의 신속한 특정과 실질적인 조치(설정·라우팅·리소스 튜닝)도 가능합니다.
이번 글에서는 Zenius NMS·TMS·NPM을 통해 네트워크 트래픽을 다층적으로 분석하는 방법을 살펴보았습니다. 각 솔루션이 담당하는 관점과 역할은 다르지만, 함께 연계해 활용하면 장애 원인을 더 빠르고 정확하게 파악할 수 있습니다. 복잡해지는 인프라 환경에서 이런 분석 체계를 마련해 두는 것이 안정적인 서비스 운영의 핵심입니다.
TC 팀에서 Zenius의 성공적인 활용을 위한 다양한 활동을 하고 있습니다.