반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
카프카를 통한 로그 관리 방법
메모리 누수 위험있는 FinalReference 참조 분석하기
김진광
2023.10.12
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
[행사] 브레인즈컴퍼니 ‘가을문화행사 2023’
Java에서 가장 많이 접하는 문제는 무엇이라 생각하시나요? 바로 리소스 부족 특히 ‘JVM(Java Virtual Machine) 메모리 부족 오류’가 아닐까 생각해요.
메모리 부족 원인에는 우리가 일반적으로 자주 접하는 누수, 긴 생명주기, 다량의 데이터 처리 등 몇 가지 패턴들이 있는데요. 오늘은 좀 일반적이지 않은(?) 유형에 대해 이야기해 볼게요!
Java 객체 참조 시스템은 강력한 참조 외에도 4가지 참조를 구현해요. 바로 성능과 확장성 기타 고려사항에 대한 SoftReference, WeakReference, PhantomReference, FinalReference이죠. 이번 포스팅은
FinalReference를 대표적인 사례
로 다루어 볼게요.
PART1. 분석툴을 활용해 메모리 누수 발생 원인 파악하기
메모리 분석 도구를 통해 힙 덤프(Heap Dump)를 분석할 때, java.lang.ref.Finalizer 객체가 많은 메모리를 점유하는 경우가 있어요. 이 클래스는 FinalReference와 불가분의 관계에요. 나눌 수 없는 관계라는 의미죠.
아래 그림 사례는 힙 메모리(Heap Memory)의 지속적인 증가 후 최대 Heap에 근접 도달 시, 서비스 무응답 현상에 빠지는 분석 사례인데요. 이를 통해 FinalReference 참조가 메모리 누수를 발생시킬 수 있는 조건을 살펴볼게요!
Heap Analyzer 분석툴을 활용하여, 힙 덤프 전체 메모리 요약 현황을 볼게요. java.lang.ref.Finalizer의 점유율이 메모리의 대부분을 점유하고 있죠. 여기서 Finalizer는, 앞에서 언급된 FinalReference를 확장하여 구현한 클래스에요.
JVM은 GC(Garbage Collection) 실행 시 해제 대상 객체(Object)를 수집하기 전, Finalize를 처리해야 해요.
Java Object 클래스에는 아래 그림과 같이 Finalize 메서드(Method)가 존재하는데요. 모든 객체가 Finalize 대상은 아니에요.
JVM은 클래스 로드 시, Finalize 메서드가 재정의(Override)된 객체를 식별해요. 객체 생성 시에는 Finalizer.register() 메서드를 통해, 해당 객체를 참조하는 Finalizer 객체를 생성하죠.
그다음은 Unfinalized 체인(Chain)에 등록해요. 이러한 객체는 GC 발생 시 즉시 Heap에서 수집되진 않아요. Finalizer의 대기 큐(Queue)에 들어가 객체에 재정의된 Finalize 처리를 위해 대기(Pending) 상태에 놓여있죠.
위 그림과 같이 참조 트리(Tree)를 확인해 보면, 많은 Finalizer 객체가 체인처럼 연결되어 있어요. 그럼 Finalizer 객체가 실제 참조하고 있는 객체는 무엇인지 바로 살펴볼까요?
그림에 나온 바와 같이 PostgreSql JDBC Driver의 org.postgresql.jdbc3g.Jdbc3gPreparedStatement인 점을 확인할 수 있어요. 해당 시스템은 PostgreSql DB를 사용하고 있었네요.
이처럼 Finalizer 참조 객체 대부분은 Jdbc3gPreparedStatement 객체임을 알 수 있어요. 여기서 Statement 객체는, DB에 SQL Query를 실행하기 위한 객체에요.
그렇다면, 아직 Finalize 처리되지 않은 Statement 객체가 증가하는 이유는 무엇일까요?
먼저 해당 Statement 객체는 실제로 어디서 참조하는지 살펴볼게요. 해당 객체는 TimerThread가 참조하는 TaskQueue에 들어가 있어요. 해당 Timer는 Postgresql Driver의 CancelTimer이죠.
해당 Timer의 작업 큐를 확인해 보면 PostgreSql Statement 객체와 관련된 Task 객체도 알 수도 있어요.
그럼 org.postgresql.jdbc3g.Jdbc3gPreparedStatement 클래스가 어떻게 동작하는지 자세히 알아볼까요?
org.postgresql.jdbc3g.Jdbc3gPreparedStatement는 org.postgresql.jdbc2.AbstractJdbc2Statement의 상속 클래스이며 finalize() 메서드를 재정의한 클래스에요. Finalize 처리를 위해 객체 생성 시, JVM에 의해 Finalizer 체인으로 등록되죠.
위와 같은 코드로 보아 CancelTimer는, Query 실행 후 일정 시간이 지나면 자동으로 TimeOut 취소 처리를 위한 Timer에요.
정해진 시간 내에 정상적으로 Query가 수행되고 객체를 종료(Close) 시, Timer를 취소하도록 되어 있어요. 이때 취소된 Task는 상태 값만 변경되고, 실제로는 Timer의 큐에서 아직 사라지진 않아요.
Timer에 등록된 작업은, TimerThread에 의해 순차적으로 처리돼요. Task는 TimerThread에서 처리를 해야 비로소 큐에서 제거되거든요.
이때 가져온 Task는 취소 상태가 아니며, 처리 시간에 아직 도달하지 않은 경우 해당 Task의 실행 예정 시간까지 대기해야 돼요.
여기서 문제점이 발생해요.
이 대기 시간이 길어지면 TimerThread의 처리가 지연되기 때문이죠. 이후 대기 Task들은 상태 여부에 상관없이, 큐에 지속적으로 남아있게 돼요.
만약 오랜 시간 동안 처리가 진행되지 않는다면, 여러 번의 Minor GC 발생 후 참조 객체들은 영구 영역(Old Gen)으로 이동될 수 있어요.
영구 영역으로 이동된 객체는, 메모리에 즉시 제거되지 못하고 오랜 기간 남게 되죠. 이는 Old(Full) GC를 발생시켜 시스템 부하를 유발하게 해요. 실제로 시스템에 설정된 TimeOut 값은 3,000초(50분)에요.
Finalizer 참조 객체는 GC 발생 시, 즉시 메모리에서 수집되지 않고 Finalize 처리를 위한 대기 큐에 들어가요. 그다음 FinalizerThread에 의해 Finalize 처리 후 GC 발생 시 비로소 제거되죠. 때문에 리소스의 수집 처리가 지연될 수 있어요.
또한 FinalizerThread 스레드는 우선순위가 낮아요. Finalize 처리 객체가 많은 경우, CPU 리소스가 상대적으로 부족해지면 개체의 Finalize 메서드 실행을 지연하게 만들어요. 처리되지 못한 객체는 누적되게 만들죠.
요약한다면 FinalReference 참조 객체의 잘못된 관리는
1) 객체의 재 참조를 유발 2) 불필요한 객체의 누적을 유발 3) Finalize 처리 지연으로 인한 리소스 누적을 유발
하게 해요.
PART2.
제니우스 APM을 통해 Finalize 객체를 모니터링하는 방법
Zenius APM에서는 JVM 메모리를 모니터링하고 분석하기 위한, 다양한 데이터를 수집하고 있어요. 상단에서 보았던
FinalReference 참조 객체의 현황에 대한 항목도 확인
할 수 있죠.
APM 모니터링을 통해 Finalize 처리에 대한 문제 발생 가능성도
‘사전’
에 확인
할 수 있답니다!
위에 있는 그림은 Finalize 처리 대기(Pending)중인 객체의 개수를 확인 가능한 컴포넌트에요.
이외에도 영역별 메모리 현황 정보와 GC 처리 현황에 대해서도 다양한 정보를 확인 할 수 있어요!
이상으로 Finalize 처리 객체에 의한 리소스 문제 발생 가능성을, 사례를 통해 살펴봤어요. 서비스에 리소스 문제가 발생하고 있다면, 꼭 도움이 되었길 바라요!
------------------------------------------------------------
©참고 자료
◾ uxys, http://www.uxys.com/html/JavaKfjs/20200117/101590.html
◾ Peter Lawrey, 「is memory leak? why java.lang.ref.Finalizer eat so much memory」, stackoverflow, https://stackoverflow.com/questions/8355064/is-memory-leak-why-java-lang-ref-finalizer-eat-so-much-memory
◾ Florian Weimer, 「Performance issues with Java finalizersenyo」, enyo,
https://www.enyo.de/fw/notes/java-gc-finalizers.html
------------------------------------------------------------
#APM
#Finalize
#제니우스
#메모리 누수
#Zenius
#FinalReference
#제니우스 APM
김진광
APM팀(개발3그룹)
개발3그룹 APM팀에서 제품 개발과 기술 지원을 담당하고 있습니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
브레인즈컴퍼니가 주목받은, BIXPO 2024 생생 후기
브레인즈컴퍼니가 주목받은, BIXPO 2024 생생 후기
한국전력공사가 주최하고 브레인즈컴퍼니가 참가한 'BIXPO 2024'가 지난 11월 6일(수)부터 8일(금)까지 진행됐습니다. 올해로 10주년을 맞이한 BIXPO 2024는 '에너지 미래로 향하는 여정'이라는 주제로 국내외를 대표하는 기업들과 기관들이 모여 최신 기술과 솔루션을 공유하는 자리였습니다. 이번 BIXPO 2024는 국제컨퍼런스, 국제발명특허대전, 신기술 전시회 등 다양한 프로그램으로 구성되어 있어 에너지 산업의 미래를 이끌 혁신 기술들을 한눈에 볼 수 있었습니다. 관람객들에게 다양한 볼거리와 체험 기회를 제공하여 관련 산업에 대한 이해를 높였습니다. 특히 이번 행사에서 주목을 받은 프로그램 중 하나는 신기술 전시회로 브레인즈컴퍼니, 한국전력공사, LS ELECTRIC, 효성중공업, IBM 등 150여 개의 국내외 기업이 참가하여 총 200개의 부스를 운영하며 많은 참관객의 이목을 끌었습니다. 신기술 전시회는 ▲재생에너지 확대와 친환경 연료전환을 다룬 '청정성(Carbon-free)' ▲차세대 전력 그리드의 운영 디지털화 및 예방 진단 고도화를 중심으로 한 '안정성(Stability)' ▲건축, 산업, 수송 분야의 효율화를 위한 '효율성(Efficiency)'이라는 세 가지 테마로 구성되어, 각 주제에 맞는 최신 기술과 제품들에 대한 자세한 소개와 시연이 진행됐습니다. 이번 BIXPO에서 브레인즈컴퍼니는 '효율성' 테마에 포함되어 전시부스를 운영하며 Zenius EMS, APM, SIEM, ITSM 등 주요 제품을 소개했습니다. 브레인즈컴퍼니 부스에서 제니우스를 접한 관람객분들은 K8s와 CMS 등 MSA 환경을 비롯해, 멀티 및 하이브리드 클라우드까지 모두 통합하여 모니터링할 수 있는 기능에 큰 관심을 보여주셨습니다. 한 관람객은 "각 지사별 IDC뿐만 아니라 클라우드로 이전한 시스템의 운영 현황까지 파악할 수 있는 솔루션이 필요했는데, 단일 플랫폼에서 실시간으로 인프라 상태를 모니터링하고 문제 발생 시 빠르게 대응할 수 있도록 지원하는 점이 인상적이다. 제품 기본 화면도 잘 구성되어 있고, 맞춤형 대시보드도 눈에 띈다"라고 소감을 전했습니다. 다른 관람객은 "최근 쿠버네티스 도입 후 활용에 어려움이 있었는데, Zenius의 쿠버네티스 모니터링 솔루션에 대한 자세한 설명을 듣고 그간의 고민에 대한 답이 담겨있다는 생각이 들었다. 긍정적으로 도입을 검토할 예정이다"라고 소감을 전했습니다. 또한 퍼블릭 클라우드, 프라이빗 클라우드, 하이브리드 클라우드 환경 모두를 모니터링할 수 있는 Zenius CMS에 대한 관심도 높았습니다. 이번 BIXPO에서는 브레인즈컴퍼니와 오랜 관계를 이어온 고객사들도 다수 방문해 자리를 빛내주셨습니다. 10년 이상 Zenius 제품을 사용해 온 한 고객은 "전시회에서 오랜 파트너를 만나 반가웠고, 새롭게 출시된 제니우스의 기능들과 향후 발전 방향성에 대해 깊이 있는 대화를 나눌 수 있어 의미 있는 시간이었다"라고 전했습니다. 브레인즈컴퍼니는 앞으로도 다양한 활동을 통해 지능형 IT 인프라 통합관리 솔루션 제니우스를 알릴 예정입니다.
2024.11.11
벽을 넘어서고 싶은 신입 개발자의 브레인즈 생활기
벽을 넘어서고 싶은 신입 개발자의 브레인즈 생활기
지원 이유와 여정 대학교 졸업 후, 부족한 웹개발 역량을 쌓기 위해 5달간의 풀스택 부트캠프 교육을 수료하고 1달간의 기업 협업 인턴을 마쳤습니다. 이후, 제 역량을 마음껏 펼쳐내며 지속적으로 성장할 수 있는 회사에서 일하고 싶다는 생각이 들었습니다. 그러다 풀스택 기술뿐만 아니라, 빅데이터 및 AI 기술을 활용해 차세대 기술을 개발하는 브레인즈컴퍼니의 채용공고를 발견했습니다. 이 회사에서라면 많은 것을 배워 역량을 키우고 성장하며 일할 수 있겠다는 생각에 지원했고, 면접 끝에 첫 직장에 취업하게 됐습니다. 웹개발도 재밌지만 개발자로서 지속적으로 새로운 기술들을 습득하며 성장하는 것에서 성취감과 보람을 느끼는 것이 컸고, 그럴 수 있는 부서에서 첫 회사 생활을 시작할 수 있다는 생각에 기뻤습니다. 채용 과정 면접에서 기억에 남는 질문은 "우리 부서는 프론트엔드 보다 백엔드를 더 추구하는 편이라 함께 일을 하게 된다면, 프론트엔드와 백엔드 모두를 아울러 사용할 것인데 할 수 있습니까?"였습니다. 풀스택 개발자로서 일을 하게 된다는 질문이었고, 저는 이 부분에 대해 긍정적이었기 때문에 자신 있게 할 수 있다고 대답했습니다. 백엔드 개발자보다 많은 영역에서 발전하며 성장할 수 있다는 생각에 더욱 기대되고 설렜던 기억이 있습니다. 그렇게 저의 첫 직장 생활이 시작됐습니다. 입사 후, 지난 3달간의 일대기 채용이 된 후, 출근까지 2주간의 자유 시간이 주어졌습니다. 졸업 후 부트캠프 교육을 이수하면서 줄곧 달려왔고, 즐겁게 공부했지만 지쳐있는 심신을 달래기 위해 여행도 다녀오고 친구들과 가족들과 시간을 보내면서 출근 준비를 했습니다. 그렇게 2주 후 첫 출근을 하는 날이 됐고, 본격적으로 사원으로 근무하는 날이 다가왔습니다! 브레인즈컴퍼니의 개발 그룹은 1~5그룹으로 나눠져 있으며, 저는 개발4그룹에 소속됐습니다. 개발4그룹은 프론트엔드와 백엔드 개발뿐만 아니라, 빅데이터 및 AI 기술을 동원한 신기술 개발을 담당하고 있어, 배울 점도 많고 나아가야할 길도 멀리 펼쳐져 있다고 느꼈습니다. 1st Month_적응기 입사 첫 달은, 개발4그룹에서 집중적으로 개발 진행 중인 로그매니저와 Zenius AI의 제품 매뉴얼과 웹페이지에서 실제로 사용되고 있는 각각의 기능들을 학습하며 제품을 파악하고 익숙해지는 기간을 가졌습니다. 그렇게 한 달 간은 개발에 투입되기보다는 제품 및 사용된 기능들에 대한 학습과 공부를 하는 기간이었습니다. 단순히 제품의 매뉴얼만을 보며 학습을 했다면 집중도가 떨어졌을 수 있지만, 제품에서 사용하고 있는 다양한 기술들, Elasticsearch, Kibana, Kafka, Cluster 등 스택들에 대해 공부하면서 흥미와 재미를 느끼며 학습을 이어갈 수 있었습니다. 잘 몰랐던 신 기술들을 접하면서, 앞으로도 배우게 될 다양한 기술들에 대해 기대감이 부풀었던 한달이었습니다. 이외에도 학습을 진행하면서 원래 사용하던 스택인 JavaScript와 Linux의 Base부터 차근차근 다시 복습하며 결점을 보완하고, 제 자신을 Refactoring하기도 했던 한 달이었습니다. 2nd Month_개인정보 마스킹 기능 개발 입사 두 달째 부터는, 로그매니저와 Zenius AI의 기능들과 매뉴얼에 대해 전반적인 이해를 갖게 됐고, 각 사이트 기능들의 동작 원리 등을 대략적으로 파악할 수 있었습니다. 두 달이 된 이 시점부터 프론트엔드와 백엔드 모두를 사용하는 프로젝트가 주어졌습니다. 주어진 프로젝트는 ‘개인정보 마스킹 기능 개발’ 이었습니다. 로그매니저 내에서 수집되는 대용량의 로그들 안에 개인 정보가 포함될 경우가 있는데, 개인정보가 그대로 노출되는 것을 방지하기 위해 개인정보에 해당하는 정보는 마스킹처리를 자동적으로 진행하는 기능 개발을 진행하게 됐습니다. 예를 들어, 로그에 ‘961219-1234567’, ‘서울시 성동구 성수이로’, ‘010-1234-5678’ 등과 같은 주민등록번호, 주소, 연락처 뿐만 아니라 다양한 개인정보들을 지정한 특수문자(Default로는 *을 사용) 로 마스킹 처리를 해주는 기능을 개발하는 과정이 중점이 되는 프로젝트였습니다. 풀스택 공부를 하면서, 백엔드는 Node.js와 MySQL, PrismaOrm 등을 사용해 기능 개발을 진행했지만, 이번 프로젝트는 Elasticsearch, Kafka.js, Cluster.js 및 커스텀마이징된 다양한 메소드와 함수들을 통해 진행했기 때문에 배울 점이 매우 많았고, 성장하는 것을 느낄 수 있었습니다. 이외에도 프론트엔드에서 Ace.js를 통한 텍스트 편집기를 개발하고, 개인정보유형에 해당하는 정보가 입력되면 Syntax Highlighting 기능을 통해 해당 부분에 형광펜 효과를 적용시켜주는 기능의 개발을 진행했습니다. 개인정보 유형에 해당하는 정보에 대응되는 정규표현식, 그리고 백엔드에서 마스킹 처리될 특수문자 타입의 데이터 등은 Elasticsearch의 Index를 통해서 데이터의 저장과 반환작업 처리를 진행해줬으며, 이 데이터들을 기반으로 프론트엔드와 백엔드에서 모두 정상적인 마스킹 기능과 Syntax Highlighting 기능을 개발할 수 있었습니다. 새로운 기술을 활용해 프로젝트를 진행하면서 어려운 점도 많았고 시행착오도 겪었지만, 그만큼얻어가고 배워가는 것이 많았던 첫 업무였습니다. Elasticsearch, Kibana, Cluster, Kafka 등 새로운 기술 스택에 대해 배우고 적용할 수 있었다는 점이 매우 흥미로웠고 뿌듯한 경험이었습니다. <사진 설명: 개인정보 유형과 마스킹 여부, 정규표현식 관리와 마스킹 기능 ON/OFF가 가능한 페이지> <사진 설명: 선택한 개인정보 정규표현식에 해당되는 데이터 Syntax Hilighting 기능 구현> 3rd Month_데몬프로세스 그룹화 작업 및 테스트케이스 입사 세 달째 부터는, 어느 정도 회사 생활에 적응이 된 상태가 됐습니다. 아침 일찍 일어나는 것에도 적응이 됐고, 초반에는 어색했던 업무회의와 주간업무보고서 작성도 이제는 자연스럽게 하고 있는 모습을 발견할 수 있었습니다. 첫번째 프로젝트를 마친 후, 두번째로는 로그매니저의 데몬프로세스 기능을 그룹별로 정렬하는 업무를 맡게 됐습니다. 데몬프로세스가 각각의 그룹 속성을 지니고 있지만, 이를 그룹별로 나눠서 보여준다면 좀 더 가독성과 가시성이 높아질 것이기 때문에, Elasticsearch에서 반환 받는 데이터를 그룹의 조건에 따라 분류해주는 작업이 주가 됐습니다. 두번째 개발 후에는 로그매니저의 각 기능들에 대한 테스트 케이스 및 오류 사항 확인의 과정을 거쳤고, 제가 개발한 ‘개인정보 관리’ 기능에 대한 테스트 케이스 작성도 진행했습니다. 개발자가 개발을 잘하는 것도 중요하지만, 이렇게 자신이 개발한 기능에 대해 테스트케이스를 작성하면서 유저가 해당 테스트케이스를 확인하고, 개발한 기능을 자연스레 사용할 수 있게 해야 하는 것은 개발만큼이나 중요하다고 생각하기 때문에 기분 좋게 테스트케이스 작성을 진행할 수 있었습니다. 또, 로그매니저 제품 각 기술들의 테스트케이스들을 확인하며 각각의 기능들을 모두 테스트해볼 수 있는 기회가 됐으며, 개발하고 서비스되고 있는 기술들에 대해 좀더 명확하게 인지하고 확인할 수 있어 제품 이해에 큰 도움이 됐습니다. 이를 기회로 개발만이 중요한 것이 아닌 테스트케이스의 중요성을 절실히 깨닫고, 제가 개발하는 기술들에 대한 테스트케이스 작성이 필수불가결하다는 것을 느끼게 됐습니다. 느낀 점 브레인즈컴퍼니 개발4그룹에 입사 후, 3달간 근무하며 느낀 점은 제가 만족하며 회사를 다니고 있다는 점입니다. 그룹의 모든 구성원분들이 잘 적응할 수 있도록 도와주고 챙겨주셨고, 문제가 될 수도 있는 실수가 발생해도 모든 그룹원들이 다 잘 다독여 주셨습니다. 또, 좋은 피드백을 줘서 지속적으로 배워가고 성장할 수 있는 회사의 성장할 수 있는 부서라고 생각합니다. 그룹의 상래님, 신후님, 천웅님, 태민님 모두 제게 좋은 피드백과 도움을 주시고, 개선돼야할 점과 공부해야 할 부분, 그리고 개발을 하면서 고쳐야 할 습관들을 알려주셔서 점차 앞으로 나아갈 수 있다고 생각합니다. 일을 하면서 빼놓을 수 없는 게 워라밸일 것이라고 생각합니다. 첫 회사에서 일과 삶의 밸런스가 매우 적절하다고 생각하고 만족하며 근무를 하고 있습니다. 퇴근을 한 뒤에도 운동을 할 수 있고, 식단 관리도 병행하며 몸을 기르고 있습니다. 만약, 워라밸이 좋지 않았더라면 이렇게 삶을 유지할 수 없을 거라는 생각이 듭니다. 글을 마치며 면접에서 제가 했던 말이 있습니다. 저는 앞에 벽이 있다면 돌아가 다른 길을 찾으려 하기보다는 그 벽을 넘을 수 있는 방법을 생각합니다. 앞으로 나아갈 수 있고 성장할 수 있는 삶을 추구하고 있습니다. 비록 그 벽을 넘지 못하더라도, 다음에 그 벽보다 낮은 벽은 넘을 수 있을 것입니다. 시도조차 하지 않으면 당연히 발전도 없다고 생각합니다. 매번 도전하고 또 도전하며 발전하는 개발4그룹의 일원이 돼, 신기술 개발에도 큰 보탬이 되는 개발자로 성장하고 싶습니다. 그리고 브레인즈컴퍼니 개발4그룹에서 반드시 실현 가능하다고 생각합니다. 다양한 기술들을 배우고 학습해 제 것으로 만들고, 그룹과 회사에 보탬이 되는 개발자로 성장하겠습니다! [출처] https://twitter.com/gom_translate https://me2.kr/wvu3p http://jjaltoon.gallery/?p=11311 https://me2.kr/eq144
2022.08.25
[2025년 상반기 Zenius 활용 세미나] 후기
[2025년 상반기 Zenius 활용 세미나] 후기
브레인즈컴퍼니는 지난 5월 28일, 주요 고객사와 협력사를 대상으로 [2025년 상반기 Zenius 활용 세미나]를 개최했습니다. 이번 세미나는 Zenius의 최신 기능과 실제 활용 사례를 중심으로, IT인프라 운영 효율성 향상을 위한 전략과 인사이트를 공유하는 자리였습니다. 공공기관, 교육기관, 대기업, 금융기관 등 다양한 산업군의 고객이 참석한 이번 세미나는 브레인즈컴퍼니 및 Zenius 전체에 대한 소개로 시작됐습니다. │브레인즈컴퍼니 및 Zenius 소개 프리세일즈팀의 신지연 님이 브레인즈컴퍼니와 Zenius에 대한 전반적인 소개를 진행했습니다. 지연님 은 "브레인즈컴퍼니는 복잡한 IT 환경에서도 안정적인 통합 모니터링을 구현할 수 있는 기술력과 안정적인 운영 경험이 강점이다. 고객사의 만족도를 높이고 기술력을 유지하기 위해 지속적인 제품 고도화와 기술 지원 체계를 강화하고 있다"고 강조했습니다. 브레인즈컴퍼니 소개에 이어서 지능형 IT 인프라 통합관리 솔루션 제니우스(Zenius) 기능 전체에 대한 전반적인 소개가 진행됐습니다. 이 시간을 통해 참석자들은 Zenius의 다양한 통합 모니터링 기능과 클라우드·온프레미스 환경을 아우르는 유연한 확장성 등 등 Zenius의 특장점을 확인할 수 있었습니다. │통합 로그 관리 솔루션, Zenius SIEM 소개 이어서 연구개발본부의 장범진 님이 통합 보안 로그 관리 솔루션인 Zenius SIEM에 대한 발표를 진행했습니다. Zenius SIEM은 대용량 로그의 수집, 분석, 시각화를 하나의 플랫폼에서 통합적으로 수행할 수 있는 솔루션으로, 다양한 산업 분야에서의 적용 가능성과 기술적 완성도를 바탕으로 주목받고 있습니다. 범진 님은 발표에서 “Zenius SIEM은 대규모 로그 환경에서도 탁월한 검색 성능을 제공하며, 복합 이벤트 기반의 분석 기능을 통해 잠재적 위협을 조기에 식별할 수 있는 점이 큰 강점”이라고 설명했습니다. 또한 “이러한 기능을 기반으로 보안 위협에 대한 실시간 대응과 함께, 규제 기관의 로그 보존 및 감사 요건을 안정적으로 충족할 수 있다”고 덧붙였습니다. 이후 실제 화면 시연을 통해, 다양한 로그 유형의 수집 현황, 이벤트 기반 경보 설정, SQL 기반 검색, 대시보드 시각화 구성 등 핵심 기능을 참석자들이 직접 확인할 수 있도록 상세히 소개했습니다. │Zenius의 주요 신규 기능 소개 Zenius SIEM 소개에 이어서 기술지원팀의 정채린 님이 Zenius의 주요 신규 기능과 모듈을 소개했습니다. 채린 님은, 멀티 클라우드 및 하이브리드 환경에서 분산된 서비스들을 통합적으로 모니터링 할 수 있는 클라우드 통합 모니터링 솔루션 Zenius CMS, 쿠버네티스 환경의 클러스터, 노드, 파드, 컨테이너를 포함한 전 계층의 리소스의 모니터링을 제공하는 쿠버네티스 전용 모니터링 솔루션 Zenius K8s 그리고 커널 레벨에서 네트워크 트래픽을 수집·분석해 복잡한 MSA 환경에서도 병목 지점과 장애 구간을 명확히 식별할 수 있도록 돕는 Zenius NPM에 대한 상세한 소개를 진행했습니다. 또한 Zenius EMS의 주요 업데이트 및 최신기능에 대한 소개도 함께 진행했습니다. 채린 님은, "복잡하게 변화하는 IT 인프라 환경에서도 안정적이고 일관된 운영을 가능하게 하기 위해 기능을 지속적으로 Zenius를 고도화하고 있다. 앞으로도 고객이 실질적으로 체감할 수 있는 확장성과 편의성 중심으로 완성도를 높여갈 예정이다"고 강조하며 소개를 마무리했습니다. 이어서 기술지원팀 이승현 님이 Zenius EMS의 핵심 기능에 대한 상세한 소개와 함께 실시간 데모 시연을 진행했습니다. 승현 님은 Zenius EMS의 주요 기능 중, 운영 실무자가 실제 환경에서 가장 자주 활용하는 항목들을 중심으로 상세한 시연을 진행했습니다. 관리 대상의 체계적인 등록 절차부터 시작해, 감시 항목별로 세분화된 임계값 설정, 알람 정책 구성, 그리고 오버뷰 대시보드 및 토폴로지 맵을 직접 구성하고 편집하는 과정을 실제 화면을 통해 단계별로 소개했습니다. 이후 질의응답 시간이 이어졌습니다. 참석자들은 이 시간을 통해 각 솔루션의 기술적 차별점과 실제 운영 환경에서의 적용 방안에 대해 보다 구체적으로 확인할 수 있었습니다. │세미나를 마무리하며... 이번 [Zenius 활용 세미나]에 참석한 한 고객사 관계자는 “단순한 제품 설명에 그치지 않고, 실제 운영 현장에서 어떤 효과를 낼 수 있을지를 구체적으로 확인할 수 있어 매우 유익한 시간이었다”고 소감을 전했습니다. 또 다른 참석자는 “현재 클라우드 네이티브 전환을 준비 중인 상황에서, 오늘 소개된 CMS와 K8s가 특히 인상 깊었다. 운영에 필요한 기능을 고루 갖추고 있을 뿐 아니라, 기존에 사용 중인 Zenius와도 원활하게 연동된다는 점이 큰 강점으로 느껴졌다”고 전했습니다. 앞으로도 브레인즈컴퍼니는 빠르게 변화하는 IT 인프라 환경 속에서 고객이 직면하는 다양한 운영 과제를 함께 해결하고, Zenius의 실질적 가치와 활용 가능성을 더 많은 고객에게 전달하기 위해 활용 세미나를 비롯한 다양한 활동을 지속해 나갈 예정입니다.
2025.05.30
모비젠과 빅데이터∙AI 플랫폼 사업 MOU
모비젠과 빅데이터∙AI 플랫폼 사업 MOU
양사 보유한 빅데이터 및 AI 플랫폼 분야 전문성으로 시너지 창출 브레인즈컴퍼니(099390)는 빅데이터 플랫폼 전문 기업 모비젠과 ‘빅데이터 및 인공지능(AI) 플랫폼 사업’ 공동 추진을 위한 양해각서(MOU)를 체결했다고 8일 밝혔다. 이번 협약으로 양사는 빅데이터 플랫폼 분석 기술 및 AI 분야의 전문성을 바탕으로 시너지를 창출할 계획이다. 특히 공공분야의 빅데이터 및 AI 사업에 공동 대응할 방침이다. 최근 양사는 부동산 분야 빅데이터 플랫폼 및 혁신서비스 구축 관련 프로젝트를 컨소시엄 형태로 수주해 구축 중이다. 해당 프로젝트에서 모비젠은 빅데이터 연계 및 서비스 구축을 담당하고, 브레인즈컴퍼니는 AI 기술을 활용해 부동산에 대한 고객 맞춤형 혁신 서비스를 제공할 예정이다. 브레인즈컴퍼니는 AI와 빅데이터 기술을 접목한 지능형 IT 인프라 통합관리 솔루션 전문 기업으로, 국내 주요 공공 및 금융기관, 통신사, 대기업, 포털 등에 솔루션을 공급하고 있다. 최근 클라우드∙AI 플랫폼 전문기업 에이프리카를 인수하고 AI 플랫폼 분야로 사업을 확장 중이다. 모비젠은 통신 데이터를 비롯해 교통, 물류, 이커머스 등에서 발생하는 다양한 형태의 빅데이터를 수집∙저장∙분석하고 모니터링하는 기업이다. 최근 출시한 서비스형 소프트웨어(SaaS)기반의 빅데이터 분석 플랫폼은 다양한 저장소의 데이터를 시각적으로 분석해, 웹 기반 분석 애플리케이션 제작이 가능한 원스톱 환경을 제공한다. 심재걸 브레인즈컴퍼니 전략사업본부장은 “이번 MOU를 통해 양사는 빅데이터 및 AI 분야 사업에 대한 협력 강화를 바탕으로, 클라우드 기반 빅데이터 및 AI 플랫폼 전문 기업으로 발돋움할 것”이라고 말했다.
2022.12.08
다음 슬라이드 보기